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Abstract

Nonlocal order parameters for deconfinement, such as the entanglement entropy and

Wilson loops, depend on spatial surfaces Σ. These observables are given holographically

by the area of a certain bulk spatial surface Γ ending on Σ. At finite charge density

it is natural to consider the electric flux through the bulk surface Γ in addition to its

area. We show that this flux provides a refined order parameter that can distinguish

‘fractionalized’ phases, with charged horizons, from what we term ‘cohesive’ phases, with

charged matter in the bulk. Fractionalization leads to a volume law for the flux through

the surface, the flux for deconfined but cohesive phases is between a boundary and a

volume law, while finite density confined phases have vanishing flux through the surface.

We suggest two possible field theoretical interpretations for this order parameter. The

first is as information extracted from the large N reduced density matrix associated to

Σ. The second is as surface operators dual to polarized bulk ‘D-branes’, carrying an

electric dipole moment.
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1 Holographic phases of matter

Certain large N gauge theories admit a holographically dual description in terms of a theory

of classical gravity in one higher spatial dimension [1]. Many of the most interesting questions

one would like to ask of such theories concern the gauge field dynamics. For instance,

one would like to gain a dual geometrical understanding of confinement. This was largely

achieved shortly after the discovery of holography [2], as we will briefly review.

If the large N gauge theory has more structure, one can ask more refined questions. In

particular, if the gauge theory has a global U(1) symmetry, then one can place the theory

at a nonzero chemical potential µ, which will typically induce a charge density 〈J t〉. In this

finite density state, one can ask whether the charge carriers are “confined” or “deconfined”.

As we shall elaborate throughout this paper, this is not the same notion of confinement

and deconfinement as we have used in the previous paragraph, which referred to the charge-

neutral glue sector. New concepts are required. Phases in which the charge carriers are

deconfined are known as fractionalized phases of matter.1 We will introduce the notion of

a “cohesive” phase to describe the opposite of a fractionalized phase, i.e. when the charge

carriers are confined.2

Various (nonlocal) field theoretic order parameters exist for deconfinement. Confining

and deconfined phases can be distinguished using Polyakov loops, Wilson loops, and the

entanglement entropy. All of these have beautifully simple realizations in holography as

certain surfaces in the bulk geometry [2, 3, 4, 5]. Deconfined phases are characterized

by an event horizon in the bulk, while confined phases are dual to geometries that are

effectively cut off at some IR scale. Similarly sharp order parameters do not yet exist for

fractionalization, as distinct from deconfinement. The objective of this paper is to start to

remedy this situation from a holographic perspective.

It has been proposed that fractionalization can be diagnosed by a mismatch in the

Luttinger count in phases that do not break the U(1) symmetry spontaneously [6, 7, 8].

This suggestion led directly to the observation that finite density holographic duals are

naturally classified by whether the asymptotic electric flux emanates from behind an event

horizon or is carried by charged matter in the bulk, e.g. [9]. For fermionic bulk matter, the

flux from behind the horizon indeed appears as a deficit in the Luttinger count. An elegant
1“Fractionalized” is often used synonymously to “deconfined” in a condensed matter context, and also

used to describe a class of gapped phases, but we will use the term more restrictively.
2The term “mesonic” has previously been used by one of the authors to describe the opposite of frac-

tioanlization, but ultimately this may have misleading associations.
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general proof of this statement was obtained in [10], building on previous partial results

[9, 11, 12, 13]. Furthermore, this picture has lead to the interesting suggestion that in the

superfluid case, where the U(1) is spontaneously broken, fractionalization could be detected

as a deficit in the transverse Magnus force acting on a moving superfluid vortex [10].

It is desirable, however, to have a clean field-theoretic order parameter characterizing

fractionalization, in the spirit of the various nonlocal order parameters defining deconfine-

ment. In a holographic context, following the logic of the previous paragraph, this translates

into finding a quantity that can be measured at the conformal boundary of the dual space-

time, and that detects whether the asymptotic electric flux originates from behind a horizon

or not. In this paper we will construct two, closely related, such quantities. We do not

know at this point precisely what the objects we consider correspond to in the boundary

quantum field theory. This is clearly an important question. We will argue that they corre-

spond in the first case to a refinement of the entanglement entropy that can be defined in

systems at a finite charge density, and in the second case to operators describing branes in

the bulk carrying a dipole moment. Let us first recall relevant established results concerning

confinement in the neutral ‘glue’ sector.

1.1 Neutral sector: Confinement and deconfinement

We will briefly review how confinement and deconfinement appear holographically. We will

focus on the entanglement entropy. The entanglement entropy is associated with a spatial

hypersurface Σd−1 in the d+ 1 dimensional field theory.

The holographic prescription for calculating entanglement entropy has been proposed by

Ryu and Takayanagi [5]: given a boundary hypersurface Σ, find the minimal surface Γ in

the bulk that ends on Σ, i.e. that satisfies Σ = ∂Γ. To leading order in the bulk semiclassical

limit, the entanglement entropy is then

SE =
AΓ

4GN
, (1)

where AΓ is the area of the bulk minimal surface, and GN is the bulk Newton’s constant.

The area will be divergent because the minimal surface reaches all the way to the asymptotic

boundary. It is natural to cut off this divergence at a UV scale, where it provides the short

distance “boundary law” of the entanglement entropy.

Holographic computations of the entanglement entropy appear rather similar to those

of spatial Wilson loops [3, 4]. In 2 + 1 field theory dimensions in particular, both quantities

depend on a spatial curve Σ1. However, there can be subtle differences. The entanglement
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entropy is given by the area of a minimal bulk spatial hypersurface in the Einstein frame

metric. Areas of hypersurfaces in the Einstein frame have the important property that they

are preserved under dimensional reduction. This allows the entanglement entropy to be

computed without depending sensitively on the bulk UV completion. Spatial Wilson loops,

in contrast, are computed by the bulk on-shell fundamental string worldsheet action in a full

ten dimensional string theory background. This is consistent perhaps with the fact that the

Wilson loop refers to a specific gauge-theoretic operator, whereas the entanglement entropy

can be defined independently of the operator content of the quantum field theory.

The question of interest is then how AΓ scales with the linear dimension R of the bound-

ary region, in the limit of large R. There is an unfortunate linguistic clash here between

the terms commonly employed for Wilson loops and entanglement entropy, with “area law”

taken to mean different things. We will refer to a “boundary law” as a scaling

AΓ ∼ R d−1 . (2)

In contrast, a “volume law” will be

AΓ ∼ R d . (3)

We have already noted that the entanglement entropy universally has a UV sensitive bound-

ary law contribution due to short distance correlations across the surface Σ.

Geometries dual to confining theories typically have the property that the effective (d+2)-

dimensional spacetime metric collapses in the far IR. In many circumstances this can be

understood as an internal dimension capping off [2]. The collapse reduces the number of

low energy degrees of freedom, typically leading to a mass gap. In terms of the hypersur-

faces needed to compute the entanglement entropy, the collapse of the geometry allows the

hypersurfaces to terminate in the far IR, as their cross sectional areas vanish.

Consider the case where the hypersurface Σ consists of two parallel infinite spatial hyper-

planes separated by a distance L. We can think of this as the limit of a rectangle where all

lengths except one have been taken large. With a confining gravity dual, there are then two

candidate minimal surfaces Γ. One connects the two hyperplanes, while the other is discon-

nected, connecting each hyperplane separately to the far IR region where the bulk surfaces

end. It has been found in several examples that at large separations L, the disconnected

surfaces have a lower area and therefore determine the entanglement entropy [14, 15, 16].

This leads to an entanglement entropy at large L with a pure boundary form

SE(L) ∼ Vol (Σ)

εd−1
+ Vol (Σ) · const. , (4)
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where ε is a UV cutoff. In particular, the entanglement entropy is independent, at leading

order, of the separation L. This process is illustrated in figure 1 below.

IR UVIR UV L L

Figure 1: Left, minimal bulk hypersurfaces in a confining geometry. At large boundary

separations L the surface is disconnected and leads to a boundary law for the entanglement

entropy. Right, minimal hypersurfaces in a finite temperature black hole geometry. At large

separations L the surface remains connected and leads to a volume law. In both cases, the

surfaces for small boundary separations are connected.

Geometries dual to deconfined phases, in contrast, are typically characterized by an

event horizon in the IR. Horizons can be scale invariant, such as the AdS Poincaré hori-

zon or the various extremal horizons discussed in detail below, or can be finite temperature

Schwarzschild-like horizons. Zero temperature horizons are considered in the following para-

graph. For finite temperature horizons, similarly to the case of confining geometries, there

is an IR scale at which the geometry ends. However, the geometry close to the horizon is

distinct: minimal spatial surfaces are unable to cross the horizon [5, 16, 17]. Instead, as the

boundary hyperplanes we considered in the previous paragraph are taken far apart, the bulk

surfaces droop down close to the horizon and then extend along the horizon. This leads to

a volume law of the entanglement entropy at large separation

SE(L) ∼ Vol (Σ)

εd−1
+ L ·Vol (Σ) · const. . (5)

The second term here is the volume scaling term and is essentially just the thermal entropy

of the system. This behavior is also illustrated in figure 1.

For extremal horizons, while the spatial bulk surfaces are still unable to cross the horizon,

the emergence of a scaling symmetry in the far IR typically results in a bulk surface that does

not lead to a volume law. The IR correction to the UV sensitive boundary scaling is a term
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in the entanglement entropy that vanishes at large separations, scaling like Lθ−(d−1), where

θ < d− 1 is the hyperscaling violation exponent [18, 19]. We will derive this fact below. If

θ = d−1 one finds a logarithmic enhancement to the boundary law [18, 19]. One interesting

exceptional case is the extremal Reissner-Nordström horizon, where a volume scaling term

as in (5) does appear due to the ground state entropy density and corresponding finite size

horizon [20]. Other exceptional cases are locally critical theories without a ground state

entropy density, recently discussed in [21]. In these cases, at large separation the bulk

hypersurface appears to be disconnected, leading to an entanglement entropy of the form

(4), as for confining geometries.

1.2 Charged sector: Cohesion and fractionalization

The previous subsection reviewed how the entanglement entropy distinguishes between var-

ious confining and deconfined holographic phases. The essential point is that the bulk

minimal surfaces ending on well separated parallel boundary hyperplanes probe the far IR

spacetime geometry. These have qualitatively different behavior depending on whether the

IR geometry collapses or ends at a horizon. We would like a refinement of the entangle-

ment entropy that can determine whether there is flux emanating from behind a horizon, in

addition to detecting the horizon itself.

In figure 2 below we show the various classes of bulk backgrounds that we would like

to differentiate. We are primarily interested in zero temperature solutions. There are at

least four possibilities. If there is a horizon in the spacetime, then all or some of the electric

flux may emanate from behind the horizon (we will include certain null singularities in our

notion of horizons). These are the fractionalized and partially fractionalized cases. If, in

contrast, all flux originates from charged matter in the spacetime, then there may either be a

neutral horizon in the far IR, or the geometry may confine. These are deconfined cohesive

and confined cohesive phases, respectively. One may find in addition spacetimes in which

the charge emanates from a singularity, but with a geometry that is confining according

to the usual criteria [22]. Known examples have apparent pathologies such as hyperscaling

exponent θ > d−1. For this reason we have not included a picture corresponding to confined

but fractionalized phases. It is of interest to see if such phases can exist.

All of the possibilities shown in figure 2 have been constructed. Fully fractionalized

phases include extremal black holes with and without dilaton fields [23, 24, 25, 26, 27, 28].

Partially fractionalized backgrounds were constructed in [29, 30]. Backgrounds with de-

confined neutral horizons and cohesive charge carriers include electron stars [31, 32, 33],
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Figure 2: From left to right: (i) all flux emanates from horizon, (ii) a fraction of the flux

emanates from a horizon, a fraction is from charged bulk fields, (iii) all flux from bulk fields

outside a neutral horizon, (iv) all flux from bulk fields in a confining geometry.

the ground states of holographic superconductors [34, 35] and the topologically charged

spacetimes of [30]. Confined cohesive phases include electron stars and holographic super-

conductors in confining spacetimes [36, 37, 38, 39].

The entanglement entropy alone is unable to distinguish between charged and neutral

horizons. This is clear because it is possible to have the same near-horizon geometry with

and without flux emanating from behind the horizon (compare for instance [26] and [32]).

The area AΓ of a bulk spatial hypersurface Γ is the simplest invariant one can associate

to the surface. However, given a bulk theory with a Maxwell field, a second equally simple

invariant is the conserved electric flux ΦΓ through the hypersurface. The origin of the electric

flux in the bulk is precisely the question we are trying to address. Therefore a flux-sensitive

observable is likely to be of use. This motivates consideration of the following ‘deformed’

holographic entanglement entropy

S γ
E =

AΓ

4GN
+ γ ΦΓ . (6)

The idea is that we will again associate a bulk spatial hypersurface Γ to a boundary spatial

hypersurface Σ such that ∂Γ = Σ. The deformed entropy (6) is to be evaluated on this

bulk surface Γ. In the remainder we will discuss exactly which bulk hypersurface Γ should

be used in the expression for the deformed entropy. We will consider two scenarios. In the

first, we take the surface Γ to be the same Ryu-Takayanagi minimal surface as is used for

the entanglement entropy. In this case, the flux ΦΓ can be thought of as additional data

associated to the entanglement entropy. In the second scenario, we extremize the deformed

entropy itself. Here ΦΓ is to be thought of as an electric dipole moment that has been

induced on a D-brane worldvolume theory. Such polarized D-branes would presumably be

dual to a class of surface operators.
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2 A hypersurface order parameter

For any bulk spatial hypersurface Γ, the flux ΦΓ is easily evaluated in fully fractionalized

cases. The absence of explicit charged sources, combined with Gauss’s law and assuming

for the moment that the surface does not fall through the horizon (we recalled above that

minimal spatial hypersurfaces indeed cannot), leads to the conclusion that

ΦΓ = ρL ·Vol (Σ) . (7)

Thus ΦΓ obeys a volume law in these cases. Here ρ is the charge density of the boundary

field theory and we have again taken the asymptotic boundary Σ of Γ to be two very large

parallel spatial hyperplanes separated by a distance L. Recall that the field theory charge

density is given by the electric flux at the asymptotic boundary [9]. The result (7) is proven

in figure 3 below.

L

ΣΓ

Flux

Figure 3: By Gauss’s law, in the absence of bulk charges, the electric flux through the

surface Γ is equal to the flux at the asymptotic boundary in the region bounded by the

surface Σ = ∂Γ. The total asymptotic flux is ρL ·Vol (Σ).

By ΦΓ we will always refer to the conserved flux. In the presence of bulk dilaton fields,

this will not be simply the integral of the Maxwell field strength. Gauss’s law, using if

necessary a modified flux due to dilatons [29, 40], plays a key role in holographic derivations

of the Luttinger theorem [10, 13]. It seems natural that it should also feature prominently

in our discussion.

Another situation that is easy to describe is when there are disconnected bulk surfaces

that fall straight into the IR and terminate there, such as the minimal surfaces in confining
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geometries that we reviewed above. In this case, independently of whether the flux originates

from a horizon or from charged bulk matter, there is no flux through the bulk hypersurface

and so

ΦΓ = 0 . (8)

Here we are making the assumption that the bulk flux is purely radial and that the bulk

surfaces fall straight into the IR without bending and picking up some flux.

The cases that remain to be considered are those in which at least part of the flux is

sourced by charged matter in the bulk and where the hypersurface Γ is not of the discon-

nected type described in the previous paragraph. These cases are more sensitive to the

precise form of the surface involved. In the following two subsections we will consider two

distinct natural choices for the bulk hypersurface. As we discuss in the final section, these

correspond to two distinct dual field theoretic interpretations of the flux.

2.1 Electric flux through minimal hypersurfaces in the bulk

Minimal spatial hypersurfaces in the bulk determine the entanglement entropy of boundary

regions according to the Ryu-Takayanagi proposal reviewed above. The simplest choice of

hypersurface Γ on which to evaluate the deformed entropy would thus seem to be these min-

imal hypersurfaces. From this perspective, the deformed entropy is not really being taken

seriously as a new observable; rather we are associating a new quantity, the flux through

the bulk hypersurface, to the data that arises in computing the entanglement entropy holo-

graphically.

We have already computed the flux through minimal hypersurfaces in fully fractionalized

(7) and in confining phases (8). To discuss partially fractionalized and deconfined cohesive

phases, we need to find the explicit form of the hypersurface in the far IR. This depends

of course on the spatial IR geometry of the bulk spacetime. We will consider a large class

of zero temperature scaling geometries that have arisen in recent holographic studies as the

near horizon geometries of extremal black holes, both with [31, 32, 29, 30] and without

[25, 26, 27] charged bulk matter. The IR spatial geometry takes the form

ds2
spatial =

dr2

r2(d−2θ)/(d−θ) +
dx2

d

r2
. (9)

Here the IR limit is understood to mean r →∞. The boundary spatial dimension is d and

θ is the hyperscaling violation exponent [19, 28]. The dynamical critical exponent z will not

appear in our discussion.
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We wish to consider hypersurfaces that are extended along d−1 of the boundary spatial

dimensions, forming a large rectangle with area Vol (Σ), and that form a curve x(r) in the

remaining dimension. In that case the area of the hypersurface is given by

A = Vol (Σ)

∫
dr

rd

√
r2θ/(d−θ) + ẋ2 . (10)

A minimal hypersurface Γ is then easily found to solve

ẋ2 =
r2θ/(d−θ)

(ro/r)
2d − 1

. (11)

Here ro is the maximal radius reached by the hypersurface.

For the case of large boundary separation L in the x direction, we can relate L to the

depth ro that the hypersurface reaches

L =

∫
drẋ ∼

∫ ro

dr
rθ/(d−θ)√

(ro/r)
2d − 1

∼ rd/(d−θ)o . (12)

In particular, because θ < d− 1 [19], L will diverge as ro →∞. This shows us that picking

out the leading IR contribution, i.e. the one in the range r ∼ ro, is self-consistent. The

region 0 ≤ r � ro of the integral (12) will give a contribution to L that does not diverge

as ro → ∞. This is good because the IR contribution is universal in that it only depends

on the scaling geometry (9), while the remaining contribution is sensitive to the whole bulk

spacetime. The case θ → −∞ is subtle and needs to be considered separately [21].

We may now extract the universal IR contribution to the area and flux through the

hypersurface. From (10), the area is

AΓ

Vol (Σ)
∼
∫ ro dr

rd
rθ/(d−θ) · (ro/r)d√

(ro/r)
2d − 1

∼ rd(1−d+θ)/(d−θ)
o ∼ Lθ−(d−1) . (13)

While this term necessarily vanishes at large L, again because θ < d − 1, it represents

the leading interesting large L dependence of the area of the hypersurface. The leading

contribution from the remainder of the spacetime will just be a constant that is independent

of L. This constant will include the UV divergent boundary law term. The picture that

one has in mind is that, at large separations L, the minimal surface falls straight into the

IR region before it has the chance to significantly bend and close off. As we have discussed

above, the behavior (13) of the hypersurface area is only sensitive to the spatial geometry

(9) and is not sensitive to the origin of the electric flux.

To obtain the flux through the bulk minimal surface we need to know the distribution

of bulk charges. In all known cohesive deconfined cases, where the charge extends all the
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way into the IR, the charge density is constant in the scaling regime where the geometry

has the form (9) [31, 32, 29, 34, 35, 30]. This of course befits a scalar quantity in a scaling

solution. In known partially fractionalized solutions, the charge ends a certain radius and

does not extend all the way into the IR [29]. We consider these two cases separately.

In the presence of a constant charge density σ in the IR geometry, Gauss’s law for the

(generalized if necessary) electric field E(r) takes the form

d

dr
E =

√
grr

rd
σ . (14)

Therefore in a cohesive deconfined phase, with a neutral horizon and spatial geometry (9),

the electric field is

E =

∫ ∞
r

√
grr

rd
σdr ∼ σr(θd+θ−d2)/(d−θ) . (15)

The IR contribution to the flux through the minimal surface is then

ΦΓ

Vol (Σ)
=

∫
Edx =

∫ ro σ ẋ dr

r(d2−θd−θ)/(d−θ) ∼ σ r
[d(1−d+θ)+θ]/(d−θ)
o ∼ σ Lθ+θ/d−(d−1) . (16)

We see that, unlike the area, the IR contribution to the flux can grow with L. Specifically,

it grows if d(d − 1)/(d + 1) < θ. However, given that θ < d − 1, it is always less than a

volume law.

In partially fractionalized cases the charge density does not reach the far IR. From our

observation in equation (12), that L grows with ro, it follows that the leading IR contribution

to the flux will be insensitive to the presence of bulk charges. This is because the surface

has ‘fallen through’ the region where the charges lie. Therefore EIR is constant and the flux

through the minimal surface is

ΦΓ

Vol (Σ)
=

∫
Edx ∼ EIRL ∼ (ρ− ρcoh.)L . (17)

For the final step, we used the fact that Gauss’s law implies that ρ = EUV = EIR +

ρcoh., where ρcoh. is the total boundary field theory charge density that is accounted for as

conventional gauge-invariant ‘cohesive’ charge. This is the charge density that contributes to

the Luttinger count, in the case of fermionic matter. It follows that partially fractionalized

phases exhibit the same volume law scaling for the flux ΦΓ as fractionalized phases, but

with a coefficient that is less than the total charge density.

The results we have just discussed are summarized in table 1 below. We see that the

electric flux through minimal surfaces in the bulk is able to distinguish the four phases of

interest. Fractionalized and partially fractionalized phases exhibit a volume law for the flux

term, with a coefficient that detects the extent of fractionalization. Deconfined but cohesive
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Holographic phase IR contribution to area AΓ IR contribution to flux ΦΓ

Fully fractionalized Lθ−(d−1) ·Vol (Σ) or L ·Vol (Σ) ρL ·Vol (Σ)

Partially fractionalized Lθ−(d−1) ·Vol (Σ) (ρ− ρcoh.) L ·Vol (Σ)

Deconfined, cohesive Lθ−(d−1) ·Vol (Σ) Lθ+θ/d−(d−1) ·Vol (Σ)

Confined, cohesive Vol (Σ) 0

Table 1: The IR contribution to the area and electric flux through a minimal spatial hy-

persurface Γ in the bulk, in different holographic phases. The boundary of the hypersurface

∂Γ = Σ is two spatial hyperplanes separated by a large distance L.

phases have a flux given by a universal L dependence that is always less than a volume law.

Confined and cohesive phases have no flux.

In addition to the IR contributions shown in table 1, there will be a contribution from the

remainder of the surface. An exception to this statement is for the confined cohesive case,

in which ΦΓ = 0 identically. The nonuniversal contribution will be proportional to Vol (Σ)

but independent of L to leading order at large separations. This provides a boundary law

contribution. Thus we can also summarize the results as follows:

Fractionalization ⇒ ΦΓ ∼ volume law , (18)

Deconfined cohesive ⇒ boundary law ≤ ΦΓ < volume law , (19)

Confined cohesive ⇒ ΦΓ = 0 . (20)

We emphasize that the volume law for the flux here is independent of θ and z in the near

horizon geometry, and in particular is not related to the volume law for the entanglement

entropy of extremal Reissner-Nordstöm black holes.

2.2 Minimizing the deformed entropy

Taking the deformed holographic entanglement entropy more seriously, we can select the

bulk hypersurface Γ by minimizing the deformed entropy itself. Evaluating the deformed

entropy (6) on the scaling geometry background (9), and using the result (15) for the electric

field in terms of the background charge density σ, we obtain the functional

SγE =
AΓ

4GN
+ γ ΦΓ = Vol (Σ)

∫
dr

(
1

4GNrd

√
r2θ/(d−θ) + ẋ2 + γ

σ ẋ

r(d2−θd−θ)/(d−θ)

)
. (21)
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Minimizing the deformed entropy thus reduces to studying the dynamics given by the La-

grangian

L =
1

rd

(
1

4GN

√
r2θ/(d−θ) + ẋ2 + γσ ẋ rθ/(d−θ)

)
. (22)

While we will continue to use the language of entropy, and the associated 1/(4GN ) prefactor

of the area, it is presumably most natural to view this Lagrangian as describing the world-

volume dynamics of a Euclidean brane that is electrically neutral but carries an inherent

electric dipole moment. The flux through the surface ΦΓ ∼
∫

Γ ?F precisely describes the

coupling of a dipole moment on the surface to the external electric field.

The quantity C ≡ ∂L/∂ẋ is constant because the Lagrangian (22) does not depend on

x(r). Knowing this, it is easy to determine that the profile of the hypersurface satisfies

ẋ2 = r2θ/(d−θ) D2(r)

(1/4GN )2 −D2(r)
; D(r) ≡ Crd − γσ rθ/(d−θ) . (23)

The maximal radius ro reached by the hypersurface is given by ẋ2(ro) =∞ or, equivalently,(
4GND(ro)

)2
= 1 . (24)

For γσ = 0, this condition reduces to C = ±1/4GNr
d
o , and we recover the equation of motion

found in the previous subsection. Thus, in particular, for fully fractionalized geometries, the

computation and results are the same as before. The sign of C is irrelevant in this case.

However, for γσ 6= 0, the parameter space needs to be carefully studied. Not all values of

γσ need yield a single hypersurface that starts at the boundary r = 0 and ends at r = ro;

depending on the sign of C, it is possible to have none or several solutions. We will explore

such interesting dynamical features of the Lagrangian (22) in the following subsection.

In this subsection we wish to determine the IR contribution to the area AΓ and flux ΦΓ

associated to the hypersurface Γ that minimizes the deformed entropy. We focus on the

IR contribution, in the cases where this exists, by restricting all relevant integrals to the

region ro(1− ε) ≤ r ≤ ro, with the depth ro taken to be large. At small ε, we may expand

D(r) = D(ro)−D′(ro)(ro − r), with D(ro) = 1/4GN and

D′(ro) ∼


1
ro
, θ ≤ 0 ,

1
ro
r
θ/(d−θ)
o , θ ≥ 0 .

(25)

The different cases arise due to different terms balancing at leading order in the equation

that determines the endpoint. To leading order in ε, the boundary separation associated to

depth ro is

L ∼
∫ ro

ro(1−ε)
dr ẋ ∼ rθ/(d−θ)o

√
roD(ro)

D′(ro)
∼

r
d/(d−θ)
o , θ ≤ 0 ,

r
(2d−θ)/2(d−θ)
o , θ ≥ 0 .

(26)
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In both cases L diverges as ro →∞, justifying the isolation of the near boundary contribu-

tion to capture the large separation behavior. At this point, we are only considering values

of GN and γσ such that a solution to D(ro) = 1/4GN exists at large ro for some choice of

constant C.

We can now evaluate the two terms in the action on these solutions. The flux is

ΦΓ ∼
∫ ro

ro(1−ε)

dr

rd
ẋ rθ/(d−θ) ∼

r
(d+θ)/(d−θ)−d
o ∼ L1−d+θ+θ/d, θ ≤ 0 ,

r
(2d+θ)/2(d−θ)−d
o ∼ L(θ+2d(1−d+θ))/(2d−θ), θ ≥ 0 ,

(27)

and the area is

AΓ ∼
∫ ro

ro(1−ε)

dr

rd

√
ẋ2 + r2θ/(d−θ) ∼

r
d/(d−θ)−d
o ∼ L1−d+θ, θ ≤ 0 ,

r
θ/2(d−θ)−d+1
o ∼ L(−θ+2d(1−d+θ))/(2d−θ), θ ≥ 0 .

(28)

We see that, with θ < d−1, the area term dominates the on shell action for θ < 0, while the

flux term dominates for θ > 0. Both terms contribute equally when θ = 0. Furthermore,

both terms typically go to zero with large L. There is a window of positive values of θ

just below θ = d − 1 where the action becomes large with large L. The power of L in

these cases is always less than one. Thus, as we concluded in the previous section for the

flux through minimal surfaces (eq. (19)), allowing for the contribution of a non-universal

boundary scaling term we have

Deconfined cohesive ⇒ boundary law ≤ SγE < volume law . (29)

In fractionalized phases, the absence of bulk charge combined with Gauss’s law implies

that the flux term in the deformed entropy is a total derivative that does not affect the

dynamics. The surface Γ will therefore simply minimize the area. The same conclusion

holds for the far IR of partially fractionalized backgrounds, where there is again no bulk

charge. Our discussion in previous sections thus goes through unchanged and we conclude,

as in eq. (18), that the deformed entropy has a volume law scaling in these cases:

Fractionalization ⇒ SγE ∼ volume law . (30)

Finally, we consider the deformed entropy in confined cohesive phases. Let us consider

the specific model of a fluid of charged fermions in an AdS soliton-like geometry, in which

an internal S1 caps off in the IR [39]. The spatial bulk geometry in the far IR is then

ds2 =
αdr2

1− r
+ (1− r)dθ2 +

dx2
d

r2
. (31)
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We have rescaled the radial coordinate so that the θ circle collapses at r = 1. The deformed

entropy is now given by

SγE = 2πVol (Σ)

∫
dr

(
1

4GNrd

√
αr2 + (1− r)ẋ2 + γ

σ
√
α

rd−1
ẋ

)
. (32)

The constant of motion is

C =
1

rd−1

(
γσ
√
α+

1

4GN

(1− r)ẋ/r2√
α+ (1− r)ẋ2/r2

)
, (33)

and the Euler-Lagrange equation can be compactly written as

ẋ2 = α
r2

1− r
1

K2(r)− 1
; K(r) ≡ 1

4GN

√
1− r
r

1

Crd−1 − γσ
√
α
. (34)

As r approaches the IR cutoff at unity, the denominator K2(r)− 1 becomes negative unless

the constant C takes on the precise value C = γσ
√
α. Only the hypersurface with this

constant of motion probes the deep IR; all others terminate before reaching the confinement

scale. This unique IR-probing hypersurface has K2(r) diverging as 1/(1− r) in the far IR,

and its profile in this region satisfies

ẋ = ±4(d− 1)αγσGN . (35)

If this hypersurface is obtained by minimizing the undeformed entanglement entropy,

we set γ = 0 and find that ẋ = 0, namely the hypersurface falls straight into the IR

and terminates there. This is in keeping with our previous comments concerning minimal

surfaces in confining geometries. It is interesting that the deformation of the entropy makes

the hypersurface profile become linear with r near the IR cutoff. This means that the entire

bulk hypersurface gets “skewed” to one side in order to extremize the amount of flux it can

get. Depending on the sign of γσ, it is clear that one sign in (35) will have lower deformed

entropy (32). In both cases, the minimizing surface at large separation has two disconnected

components that fall into the far IR. Because the surfaces bend and pick up some flux in

this case, we obtain a boundary law contribution to the flux as well as to the area of the

surface.

Confined cohesive ⇒ SγE ∼ boundary law . (36)

This is different to the vanishing flux we found through minimal hypersurfaces in confining

geometries (eq. (20)). The deformed entropy can still distinguish confined cohesive and

deconfined cohesive phases, however. In the confined cohesive case, there is no dependence

at all on L at large separations, while the boundary law in deconfined cohesive phases will

have subleading L dependence.
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2.3 Dynamics of dipole surfaces in charged media

Before moving on to discuss possible field theory interpretations of the above results, we will

explore in more detail the dynamics of hypersurfaces Γ that minimize the deformed entropy.

This will be the dynamics of surfaces with a tension and a dipole moment in scale-invariant

charged media.

We noted above that the surface has an endpoint at any radius ro at which ẋ(r) diverges.

From (24), this occurs whenever

|D(ro)| =
1

4GN
; D(r) ≡ Crd − γσ rθ/(d−θ) . (37)

From (23) we can easily convince ourselves that this formula captures all endpoints. As we

have already mentioned, the structure of the above equation is such that multiple endpoints

are possible. The hypersurfaces Γ can consist of multiple disconnected hypersurfaces or

of one hypersurface that does not reach all the way to the boundary. Both of these cases

correspond to the formation of “bubbles” in the interior of the bulk. We will now describe

the possible scenarios, with the plots in figure 4 below summarizing the various cases.

The behavior of |D(r)| near the boundary is primarily determined by the sign of the

exponent θ. The fact that θ/(d− θ) < d for any θ < d− 1, implies that we will always have

the scaling relation |D(r)| ∼ rθ/(d−θ) at r → 0. On the other hand, the large r behavior will

always be |D(r)| ∼ rd. A solution x(r) will exist at those r for which |D(ro)| ≤ 1/4GN ,

and hence we can already conclude that any solution that exists at all will have at least one

endpoint at a sufficiently large position ro; there are no solutions that extend to r =∞. We

can also conclude that, if θ < 0, any existing hypersurfaces will have an additional endpoint

near the boundary. Thus, no solutions reach the boundary in geometries with θ < 0.

Consider first θ < 0. The function |D(r)| decreases as we move away from the boundary,

and at some point it will reach a minimum and then start growing again. See figure 4 below.

Thus, eq. (37) will either never be satisfied or will be satisfied by two points ro. In the

former case, there is no solution. In the latter case, the hypersurface exists between the two

endpoints, both with ro > 0, and so it will form a “bubble” in the bulk.

If θ = 0, the function |D(r)| tends to |γσ| as we approach the boundary. The minimizing

hypersurface will reach the boundary if |γσ| < 1/4GN . If the hypersurface does not reach

the boundary, one may again find a bubble in the bulk. This occurs if Cγσ > 0; in this

case |D(r)| decreases as we move away from the boundary, vanishes at Crd = γσ, and then

increases with r until it assumes the expected IR scaling as rd. Eq. (37) will then have two

solutions corresponding to the two endpoints of the bubble. Alternatively, if Cγσ < 0 (while
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still having |γσ| > 1/4GN ), there will be no solutions. See figure 4 below.
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Figure 4: Typical plots of the function |D(r)| in various parts of parameter space. The

horizontal lines correspond to different possible structures of solutions to |D(r)| = 1/4GN .

The shaded regions are where a solution to the Euler-Lagrange equation (23) exists. Bubbles

are solutions that exist without reaching the boundary.

Finally, if 0 < θ < d−1, there will always exist a hypersurface that satisfies the equation

of motion and reaches the boundary. If Cγσ < 0, the function |D(r)| will be monotonic, and

it will intersect the horizontal line D = 1/4GN exactly once, at the point ro corresponding
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to the single endpoint of the hypersurface. If Cγσ > 0, similar reasoning to the θ = 0 case

leads to the conclusion that there are three endpoints. The solution therefore consists of

two disconnected parts: one that reaches the boundary, and one forming a bubble. Again,

see figure 4.

The existence of bubble solutions may have interesting consequences for the quantum

dynamics of our ‘dipole surfaces’. It is of interest to return to these solutions once the

microscopics of these surfaces is better understood. In terms of our immediate interest in

solutions that reach the boundary, we see that no solutions exist at θ < 0 or at θ = 0 when

the flux term dominates over the gravitational one, i.e. when |γσ| > 1/4GN . In all other

cases one can find values for the constant C for which there exist admissible solutions. In

particular, C can be found such that the endpoint ro becomes large. As we noted in the

previous subsection, these solutions have the property that L = 2
∫ ro

0 ẋdr becomes large as

ro becomes large. Generally, there may be more than one value of C, and hence more than

one solution, for a given large L. In this cases, the surface with lowest deformed entropy

should be chosen.3

For the cases in which there are no solutions that reach the boundary, one must consider

more carefully the crossover between the IR scaling metrics we have been considering and

the full spacetime, e.g. an asymptotically AdS space. In general, though, one will still find

situations in which, at large separations L, the asymptotic solutions are repelled from the

near horizon region, to the extent that connected solutions do not exist at large L. This

is similar to the behavior of minimal surfaces in confining geometries. In those case one

finds disconnected solutions at large separation. In the case of the deformed entropy in

the presence of a background charge density, however, it is not clear what the disconnected

solutions would be, as the surface cannot make it all the way into the IR in order to cap off

smoothly.

3 Towards field theoretical order parameters

Let us discuss separately the field theory interpretation of flux through minimal surfaces

and of the action obtained by minimizing the deformed entropy.

Knowing the electric flux through a minimal Ryu-Takayanagi spatial hypersurface Γ is
3 A detailed examination of the candidate hypersurfaces reveals that some of them may have profiles

whose derivatives ẋ(r) change sign before diverging. The width of such hypersurfaces can increase as we

go further into the IR, and sometimes they can exhibit self-intersections. Our numerical studies on specific

bulk geometries have never resulted in one such surface being the global minimizer of the deformed entropy.
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equivalent, by Gauss’s law, to knowing the electric charge contained within the surface and

knowing the flux in the region at infinity delimited by the boundary ∂Γ = Σ of the surface.

See our discussion around figure 3 above. The flux at infinity is just the total charge of

the dual field theory contained within the region bounded by Σ, which is certainly a known

quantity. It remains to describe the bulk charge contained within the bulk surface Γ from a

boundary perspective.

The physical significance of the bulk spatial region bounded by the bulk minimal sur-

face Γ is not well established. Nonetheless, it seems reasonable to expect that classical

field configurations inside this bulk region are captured by the large N reduced density

matrix associated to the corresponding boundary region. This is the density matrix whose

entanglement entropy is given by the area of the bulk minimal surface. Classical field con-

figurations should include all data that can be computed by direct evaluation on the saddle

point ‘master field’ of the large N gauge theory.4 The bulk charge inside the surface is one

such classical observable. Therefore, we may expect that the bulk charge we are interested

in can be extracted from the large N reduced density matrix. This would show, at least in

principle, that the flux ΦΓ is a well-defined field theory observable. However, it remains to

be seen if a simple expression can be obtained for ΦΓ in terms of the reduced density matrix

of the region inside Σ.

We turn now to the interpretation of the deformed entropy as an action that should be

extremized. As we noted in the previous section, this action describes a worldvolume theory

with a tension and a dipole moment under the external electric field. To obtain the surface

operator dual to such bulk worldvolume theories, they must be engineered (if possible) using

D-branes in string theory. While polarization is commonplace among D-branes [43], some

work in a specific string theory background will be necessary to see if these effects can lead

to the desired effective worldvolume actions. The essential question is how to maintain the

charges on the (overall neutral) worldvolume separated, so that there is a net moment. An

external electric field will of course polarize the worldvolume, but we are instead looking for

an inherent dipole moment that can then interact with an external electric field.

From an effective field theory point of view we can ask what kind of worldvolume dy-

namics is necessary to generate or prevent the generation of a ΦΓ ∼
∫

Γ ?F term in the

action. This term breaks charge conjugation C. Furthermore, the dipole moment induces a
4This perspective outlined in this paragraph has been emphasized to us by Matt Headrick. Related

discussions concerning the region of the bulk captured by the reduced density matrix of a boundary region

can be found in [41, 42].
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preferred orientation on the brane and therefore also breaks parity P . It follows that we can

expect a dipole coupling to be present in the effective worldvolume action if the microscopic

dynamics breaks C and P but preserves CP . This suggests that the surface operators we

require could be dual to D-branes with chiral worldvolume theories.

A third way to get a handle on the field theory physics dual to the fractionalization-

cohesion transitions we have discussed is by generalizing the large N gauge theory approach

to deconfinement introduced by [44]. A gauge theory on a spatial sphere undergoes a Hage-

dorn transition at high temperatures due to the large growth in the number of long single

trace operators. This transition describes deconfinement according to the Polyakov loop or-

der parameter. Aspects of this story were generalized to finite density systems in [45]. The

onset of fractionalization in large N gauge theories at finite density should be describable in

a similar language. Instead of the partition function, one should compute the charge den-

sity. In fractionalized phases the expectation value of the charge density will be dominated

by long charged operators, while in a cohesive phase, the charge density will be carried

predominantly by short charged operators.
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