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The holographic dual of a finite-temperature gauge theory with a small number of flavors typically

contains D-brane probes in a black hole background. At low temperature, the branes sit outside the black

hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the

branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. In

the new phase, the meson spectrum is continuous and gapless. At large Nc and large ’t Hooft coupling, we

show that this phase transition is always first order. In confining theories with heavy quarks, it occurs

above the deconfinement transition for the glue.

DOI: 10.1103/PhysRevLett.97.091601 PACS numbers: 11.25.Tq, 11.10.Wx, 11.15.�q, 11.30.Rd

The gauge-gravity correspondence is a powerful tool to

study the nonperturbative physics of gauge theories in

diverse dimensions. The classical supergravity regime cor-

responds to the large-Nc, strong ’t Hooft coupling limit of

the gauge theory. This allows the study of a large class of

theories that share some of the important features of four-

dimensional QCD, such as confinement, chiral symmetry

breaking, thermal phase transitions, etc. In principle, be-

cause of its asymptotic freedom, QCD itself is not in this

class. This means that calculations of certain quantitative

properties of QCD, such as the detailed mass spectrum, for

example, will require going beyond the supergravity ap-

proximation. However, this does not exclude the possibility

that some aspects of QCD can be studied in this approxi-

mation: Some predictions of the gauge-gravity correspon-

dence may be universal enough to apply to QCD, at least in

certain regimes. A suggestive recent example is the gauge-

gravity calculation of the shear viscosity in the hydrody-

namic regime of strongly coupled finite-temperature gauge

theories. The viscosity/entropy ratio is universal for a large

class of gauge theories in the regime described by their

gravity duals [1], which, for a high enough temperature,

generically contain a black hole horizon. Moreover, this

ratio appears to be surprisingly close to that inferred from

experiments at the Relativistic Heavy Ion Collider (RHIC)

[2]. It is therefore important to investigate other universal

features of the gauge-gravity correspondence.

The quarks in QCD transform in the fundamental rep-

resentation. For a large class of gauge theories, the holo-

graphic description of fundamental matter with a small

number of flavors Nf � Nc is provided by Nf probe

branes in the appropriate gravitational background [3]. At

sufficiently high temperature T, the latter contains a black

hole [4]. Here we exhibit some universal features of this

system that depend only on these two facts. In particular,

we demonstrate the existence of a first order phase tran-

sition for the fundamental matter, as follows:

At sufficiently small T=Mq (where Mq is the quark

mass), the brane tension is sufficient to overcome the

attraction of the black hole, and, hence, the branes lie

outside the horizon in a ‘‘Minkowski’’ embedding—see

Fig. 1 and below. At sufficiently large T=Mq, the gravita-

tional attraction overcomes the brane tension and the

branes fall into the horizon, yielding a ‘‘black hole’’ em-

bedding. In between, a limiting, critical solution exists. We

will show that the phase diagram in the vicinity of this

solution exhibits a self-similar structure. Thermodynamic

considerations show that, as the temperature is raised, the

probe branes jump discontinuously from a Minkowski to a

black hole embedding at some T � TF. Hence (in the

approximations stated above), there is a first order phase

transition exemplified by discontinuities in, e.g., the quark

condensate h �  i or the entropy density. Various aspects of

this transition were noted before in two specific models

[5,6]. In the following, we show that the (previously un-

known) critical behavior and, as a result, the first order

transition are essentially universal to all Dp=Dq systems.

Confining gauge theories with sufficiently heavy quarks

are particularly interesting because two distinct phase tran-

sitions occur [5]. At T � TD, a black hole appears in the

gravitational background. Here the gluons and the adjoint

matter become deconfined [4], but the branes remain out-
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FIG. 1 (color online). Profiles of D7-brane embeddings in a

D3-brane background. The thick black circle is the horizon

(� � 1).
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side the horizon. The above transition for the fundamental

matter occurs later at T � TF > TD.

The string-frame metric for a black Dp-brane is

 ds2 � H�1=2��fdt2 � dx2p� �H1=2

�
du2

f
� u2d�2

8�p

�

;

(1)

where H�u� � �L=u�7�p, f�u� � 1� �u0=u�7�p, and, as

usual, L7�p ’ gsNc‘7�ps , with ‘s the fundamental string

length. There is also a nontrivial dilaton e� � gsH
�3�p�=4

and a Ramond-Ramond field C01...p � H�1. The horizon

lies at u � u0. Regularity of the Euclidean section, ob-

tained by t! itE, requires identifying tE with the period

 

1

T
� 4�L

7� p

�
L

u0

��5�p�=2
: (2)

String theory on the above background is dual to (p� 1)-

dimensional super-Yang-Mills theory at temperature T. In

certain cases, one periodically identifies some of the xp
directions to produce a lower-dimensional theory at low

energies; for example, a D4-brane with one compact di-

rection effectively describes a (3� 1)-dimensional gauge

theory. Under these circumstances, a different background

with no black hole may describe the low-temperature

physics, and a phase transition may occur as T increases

[4]. In the gauge theory, this is a deconfinement phase

transition for the gluons and adjoint matter. Below, we

assume that T is high enough that the appropriate gravita-

tional background is always Eq. (1).

Now consider a Dq-brane probe that shares d of the xp
directions with the backgroundDp-branes and wraps an Sn

inside the S8�p. Assuming that the Dq-brane also extends

along the radial direction, q � d� n� 1. In the gauge

theory, this corresponds to introducing fundamental matter

that propagates along a (d� 1)-dimensional defect. To

ensure stability, we assume that the Dp=Dq intersection

under consideration is supersymmetric at zero temperature.

Two cases of special interest here are the D3=D7 (n � 3)

[6] and the D4=D6 (n � 2) [5] systems.

Next, we study the behavior of the brane probe near the

horizon, following Ref. [7]. In order to do so, we write

 d�2
8�p�d�2�sin2�d�2

n�cos2�d�2
7�p�n;

u�u0��Tz2; �� y

L

�
L

u0

��p�3�=4
; ~x�

�
u0
L

��7�p�=4
x;

(3)

with T the temperature above. Expanding the metric (1) to

lowest order in z; y yields Rindler space together with some

spectator directions:

 ds2���2�T�2z2dt2�dz2�dy2�y2d�2
n�d~x2d���� ;

(4)

with the horizon at z � 0. The Dq-brane lies at constant

values of the omitted coordinates, so they play no role.

The Dq-brane embedding is given by a curve [z���, y���]

in the �z; y� plane. Since the dilaton is constant near the

horizon, up to an overall constant, the (Euclidean)

Dq-brane action is simply the volume of the brane, i.e., I /
R
d�

����������������

_z2 � _y2
p

zyn, where _z � dz=d� and _y � dy=d�.

Now in the gauge z � �, the equation of motion becomes

 zy �y� �y _y� nz��1� _y2� � 0: (5)

The solutions fall into two classes: ‘‘black hole’’ and

‘‘Minkowski’’ embeddings (see Fig. 1). Black hole embed-

dings fall through the horizon and are distinguished by an

induced horizon on the brane of size y0. The appropriate

boundary condition in this case is dy=dz � 0, y � y0 at

z � 0. Minkowski embeddings are those for which the

brane closes off smoothly a distance z0 above the horizon.

These satisfy the boundary condition dz=dy � 0, z � z0 at

y � 0. There is also a critical solution, y � ���
n

p
z, which

just touches the horizon at y � z � 0.

Equation (5) enjoys a scaling symmetry: If y � f�z� is a

solution, then so is y � f��z�=� for any real positive �.

This transformation rescales z0 ! z0=� for Minkowski

embeddings or y0 ! y0=� for black hole embeddings,

which implies that all solutions of a given type can be

generated from any other one by this transformation.

Consider solutions very close to the critical one y�z� �
���
n

p
z� ��z�. Linearizing (5), one finds that for large z the

solutions take the form ��z� � z�� , with �� � �n=2�
�����������������������������

n2 � 4�n� 1�
p

=2. In the cases of interest (i.e., d > 1),

n 	 4 and the exponents are complex, leading to oscilla-

tory behavior, with:

 y � ���

n
p
z� z�n=2
a sin�	 logTz� � b cos�	 logTz��; (6)

where 	 �
�����������������������������

4�n� 1� � n2
p

=2 and a, b are constants de-

termined by z0 or y0. It is easy to show that, under the

rescaling discussed above, these constants transform as

 

a
b

� �

! 1

��n=2��1

cos�	 log�� sin�	 log��
� sin�	 log�� cos�	 log��

� �
a
b

� �

:

(7)

This result implies that the solutions exhibit discrete self-

similarity and yield critical exponents that characterize the

near-critical behavior. We refer the reader to Refs. [7,8] for

details but emphasize that this behavior is universal for all

Dp=Dq systems with n 	 4.

Each near-horizon solution gives rise to a ‘‘global’’

solution when extended to the full spacetime. The latter

are characterized by a quark mass Mq and a quark conden-

sate h �  i, which are read off from the asymptotic behavior.

Both of these quantities are fixed by z0 or y0. As we will

see, the values corresponding to the critical solution, M�
q

and h �  i�, give a rough estimate of the point at which the

phase transition occurs.

To study the global solutions, we introduce an isotropic,

dimensionless radial coordinate � with

 �u0���7�p�=2 � u�7�p�=2 �
���������������������������

u7�p � u7�p0

q

: (8)
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Now the horizon is at � � 1. For concreteness, we assume

that the Dp=Dq system under consideration is T-dual to

the D3=D7 one, so �p� d� � �n� 1� � 4. Then the

Euclidean action density of Nf coincident Dq-branes in

the background (1) is
 

IDq � N

Z 1

�min

d�

�
u

u0�

�
d�3

�

1� 1

�2�7�p�

�

 �n�1� 
2��n�1�=2
��������������������������������

1� 
2 � �2 _
2
q

; (9)

where N � NfTDqu
n�1
0 �n=4T is a normalization con-

stant; TDq � 1=�2�‘s�qgs‘s, the Dq-brane tension; �n,

the volume of a unit n sphere; 
 � cos�; and _
 � d
=d�.

The equation for 
 derived from (9) yields the large-�
behavior: 
 � m=�� c=�n � � � � [9]. The constants m
and c give the quark mass and condensate, respectively,

through [5,6]
 

Mq �
u0m

2�9�p�=�7�p��‘2s
;

h �  i � � 2�‘2s�n� 1��nTDqu
n
0c

4n=�7�p�
:

(10)

Combining the first with (2) yields the relation m�5�p�=2 �
�M=T between the dimensionless quantity m, the tempera-

ture T, and the mass scale

 

�M� 7�p
2�9�p�=�7�p��L

�
2�‘2sMq

L

��5�p�=2
� Mq

geff�Mq�
: (11)

Here g2eff�Mq� � �Mp�3
q is the (dimensionless) effective

coupling of the (p� 1)-dimensional gauge theory eval-

uated at the quark mass scale [10]. We have also used � �
g2YMNc and g2YM � gs‘

p�3
s . �M is precisely the mass gap in

the meson spectrum at temperatures well below the phase

transition [5,11,12]. Here we see that it is also the scale of

the phase transition for the fundamental matter TF � �M,

since the latter takes place at m� 1.

A key observation [8] is that for a near-critical solution

the values (m, c) are linearly related to the constants (a, b)

in the near-horizon region. Together with the transforma-

tion rule (7) for the latter and eliminating �, we deduce

that �m�m��=z1��n=2�
0 and �c� c��=z1��n=2�

0 are periodic

functions of �	=2�� logz0 with unit period for Minkowski

embeddings. The same applies for black hole embeddings

with z0 replaced by y0. We have confirmed this behavior

numerically.

The oscillatory behavior of m and c as functions of z0 or

y0 implies that the quark condensate is not a single-valued

function of the quark mass. The preferred solution will, of

course, be the one that minimizes the free-energy density

of the Dq-brane F � TIDq. The expression (9) for the

latter is divergent, as can be seen by inserting the asymp-

totic 
 behavior. This divergence must be first regulated by

replacing the upper limit of integration by a finite ultravio-

let cutoff �max. Then it may be renormalized by subtracting

the free energy of a fiducial embedding, as in Ref. [5].

Alternatively, one has holographic renormalization [13] for

brane probes [14] where a boundary ‘‘counterterm’’ is

added to the action (9). ForD7-branes in aD3 background,

this boundary term is

 Ibound � �N

4
���2

max �m2�2 � 4mc�: (12)

The renormalized action I � IDq � Ibound is then finite as

the cutoff is removed, �max ! 1. The results for the

D3=D7 case are shown in Fig. 2. The plot of the condensate

shows the transition is discontinuous, jumping between a

Minkowski (point A) and a black hole (point B) embed-

ding. We emphasize again that this first order transition is a

direct consequence of the multivalued nature of the physi-

cal quantities brought on by the critical behavior described

earlier. The transition occurs away from the critical solu-

tion and so accessing the self-similar region requires su-

percooling the system.

It follows from our analysis that the free-energy density

takes the form F � N Tf�m2�, where the function f de-

pends only on even powers of m because of the reflection

symmetry 
! �
. Converting the result to field theoretic

quantities, the free-energy density scales as

 F� NfNcT
d�1geff�T�2�d�1�=�5�p�; (13)

where g2eff�T� � �Tp�3. The explicit temperature depen-

dence above is that expected on dimensional grounds for a

d-dimensional defect, and the NfNc dependence follows

from large-N counting rules. However, the dependence on

the effective coupling is a prediction of the gauge-gravity

correspondence for strong coupling. It would be interesting
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T M
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FIG. 2 (color online). Quark condensate and free energy for a

D7 in a D3 background. The dashed (solid) curves correspond to

the Minkowski (black hole) embeddings. The dotted vertical line

indicates the precise temperature of the phase transition.
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if this could be compared to the strong coupling limit of a

perturbative calculation. The same observations apply for

other thermodynamic quantities such as, e.g., the entropy

density S � �@TF. We remind the reader that the back-

ground geometry makes the leading contribution to the

free-energy density [15]

 F� N2
cT

p�1geff�T�2�p�3�=�5�p�; (14)

which corresponds to that coming from the gluons and

adjoint matter. Of course, for p � 3, the effective coupling

factor is absent and this bulk contribution differs from the

weak coupling result by only a factor of 3=4 [16].

A striking feature of this new phase transition is found in

the spectrum of mesons (i.e., of quark-antiquark bound

states). The latter correspond to excitations supported on

the probe branes [12]. Fluctuation analyses [17] reveal that,

for the Minkowski embeddings, the meson spectrum is

discrete and possesses a mass gap, while for the black

hole embeddings, it is continuous and gapless. This implies

that, in a large class of gauge theories with fundamental

matter, quark-antiquark bound states survive the deconfin-

ing phase transition for the gluonic degrees of freedom

provided �M * TD, where �M is the typical mesonic scale.

This is potentially interesting in connection with QCD,

since in QCD heavy quark mesonic bound states with
�M � TD � 175 MeV certainly exist. One generic feature

of the low-lying mesons in the class of theories discussed

here is that they are extremely deeply bound at strong

coupling [11,12], as is apparent from Eq. (11). It is intrigu-

ing that the mesonic states claimed to explain certain

features (such as the entropy density) of the strongly

coupled quark-gluon plasma formed at RHIC are also

deeply bound [18]. It would be remarkable to establish a

precise relationship between the two.

Of particular interest are thermal phase transitions in

gauge theories with spontaneously broken chiral symme-

tries (at zero temperature). Here the question is when the

chiral symmetry is restored, as was recently studied in

Ref. [19] for the D4=D8= �D8 model of Ref. [20]. With

the insights of the present Letter, we see that their results

indicate that chiral symmetry is restored as a separate

phase transition if �M> TD, where the meson scale is

now defined in terms of the constituent quark mass.

However, self-similar behavior is absent because the probe

brane topology is different. The D8= �D8 probes split into

two disconnected pieces upon falling into the horizon. In

the gauge theory, this difference in topologies is reflected

in the fact that the fundamental matter lives on a pair of

defects, rather than a single defect as considered here.

Several of the conclusions reached in the Nc; �! 1
approximation are likely to be affected once finite-Nc and

finite-� corrections are included. For example, at large but

finite Nc, the black hole will Hawking-radiate and the

brane probe will experience a thermal bath at a temperature

determined by the local acceleration. Note that this effect is

of order 1=N2
c and, therefore, subleading with respect to the

order-Nf=Nc contributions of the brane probes. Finite

’t Hooft coupling corrections correspond to higher-

derivative corrections to both the supergravity and

D-brane actions. These may spoil the self-similar behavior.

We will return to these and other issues in Ref. [17].
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