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and quantum critical systems using the holographic framework. We analyze the dispersion
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up models. Comparing to a simple hydrodynamic formula, we entangle the complicated

interplay between the three least damped modes and shed light on the underlying physical

processes. Such as the dependence of the plasma frequency and the effective relaxation time

in terms of the electromagnetic coupling, the charge and the temperature of the system.

Introducing momentum dissipation, we then identify its additional contribution to the

damping. Finally, we consider the spontaneous symmetry breaking (SSB) of translational

invariance. Upon dialing the strength of the SSB, we observe an increase of the longitudinal

sound speed controlled by the elastic moduli and a decrease in the plasma frequency of the

gapped plasmon. We comment on the condensed matter interpretation of this mechanism.
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1 Introduction

Plasma oscillations, whose quanta are called plasmons, are collective electronic oscillations

in metals. Their history is an incredible and successful connubium between art and tech-

nology. Already in the 4th century, Romans manufactured dichroic glass, used for example

in the Lycurgus Cup, where plasmon effects from gold and silver particles dispersed in the

glass matrix interplay with transmitted and reflected light at certain wavelengths. These

techniques in staining glass where later refined and became one of the major artistic tech-

niques in the Middle Ages [1], where stunning artworks with stained glass were created,

cf. figure 1. Although plasmonic effects have been known for over a millennium, a complete

understanding of the underlying physics of these phenomena was not accomplished until

the 1970s, which marks the beginning of modern plasmon-based applications. The techno-

logical uses of plasmons have been motivated by the attempt to overcome the diffraction

limit of light and by their ability to highly enhance the electric field intensity. The mod-

ern applications are limitless, from solar cell and cosmetics to a completely new branch of

science known as plasmonics [2, 3].

Plasmons appear as a result of interaction processes between electromagnetic radiation

and conduction electrons and their main features can be understood with classical electro-

magnetism [4]. The dispersion relation of the longitudinal plasmon modes is characterized
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by the longitudinal part of the (tensorial) dielectric function ǫij = ∂Di

∂Ej
— see e.g. [5] for

details. More precisely, the condition that a plasmon excitation leads to an oscillation in

polarization P without the influence of a change in external field D leads to the condition

ǫL(k, ω) = 0 , (1.1)

which we therefore will call ‘plasmon condition’ in the following. Using Maxwell’s equations

in a medium and basic definitions, the dielectric function can also be shown to be related

to other elementary properties, like the conductivity of the material

ǫL(k, ω) = 1 +
i

ω

4π σL(k, ω)

ǫ0
, (1.2)

where ǫ0 is the vacuum dielectric constant and σL(k, ω) the spatially resolved longitudinal

conductivity. Over a wide range of frequencies, the optical properties of metals can be

explained using the free electrons gas approximation. This model idealizes the physics of

a metal considering it as a gas of free electrons with number density n moving against a

fixed background of positive ion cores. The electrons are driven by an applied external

electromagnetic field, and their motion is damped with a characteristic collision frequency

γ = 1/τ . The timescale τ is labelled as the relaxation time of the free electron gas. For a

free electron gas it is then a standard calculation to derive the dielectric function1 [5],

ǫ(ω) = 1 −
ω2
p

ω2 + i γ ω
, (1.3)

where, crucially, we define the quantity

ω2
p =

4π n e2

m∗ ǫ0
, (1.4)

as the plasma frequency of the metal. Here we use the symbol m∗ to denote the effective

mass of the electronic quasi-particles, which can differ significantly from the microscopic

electron mass.2

For large frequencies ωτ ≫ 1, we can neglect the damping effects and the dielectric

function is purely real:

ǫ(ω) = 1 −
ω2
p

ω2
, (1.5)

i.e. the known result for the underdamped free electron plasma (without taking into account

interband transitions). In the other limit, ωτ ≪ 1, the imaginary part of the dielectric

function cannot be discarded and the physics is very different. In this last regime, the

metals are mainly absorbing and the fields fall off inside the sample following Beer’s law

∼ e−z/δ, where δ is known as the skin-depth. As we will see later, these features can be

linked to the so-called k-gap dispersion relation [6] which will appear in our model as well.

1Here, for simplicity, we omit the sub-index L indicating that the dielectric function we are after relates

to the longitudinal collective modes of the system.
2Let us already mention that no quasi-particles are present in the holographic picture we discuss in this

paper. Therefore, this weakly coupled logic is a good guidance but it should not be taken too seriously.
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Figure 1. Left: one example of the applications of plasmons in art in the form of a stained glass

window in Notre Dame, Paris. Right: the typical bulk plasmon dispersion relation ω2 = ω2

p + c2 k2

compared with the photon dispersion relation in vacuum.

The nature of plasmons in ordinary, and weakly coupled, metals (Fermi liquids) can

be understood using rather simple classical models [5] and it can be summarized simply

as the presence of a sound mode dressed by electromagnetic interactions. It is important

to clarify that the sound mode we are discussing is the electronic sound, usually denoted

as zero sound. Strictly speaking, this term refers to the sound mode related to the zero

temperature shape deformations of the Fermi surface. This hydrodynamic mode can be

obtained using Fermi liquid theory [7] and it is just a manifestation of the elastic property

of the electronic liquid [8]. Here, we use the term “zero sound” in a broader sense, to

simply define the collective sound mode of the quantum critical soup both at zero and

finite temperature. Despite the similar nature, it is not the normal sound associated with

the vibrational modes of the ionic lattice, i.e. the standard phonons. We will discuss this

point further in section 6.

The underlying picture is less clear when more “exotic” phases are considered. In par-

ticular, recent experiments [9–13] examined the dynamics of the collective plasmon modes

in strongly correlated and quantum critical materials. The results are quite different from

the weakly coupled paradigm, in the sense that the plasmon modes display an anomalously

strong damping. Not only that, but there are recent observations [14, 15] which indicate

that when increasing the momentum, plasmons stop existing as well-defined quasi-particles

and get smoothed out in the collective and incoherent “quantum soup” losing a charac-

teristic momentum scale. The strong damping of plasmons, even at zero momentum, is

expected for strongly coupled quantum critical systems and was first observed in a holo-

graphic model in [16]. This was later elaborated on in [17], which promoted the idea that

the plasmons are no longer kinematically protected, since the electron-hole (Lindhard) con-

tinuum is now substituted by a continuum of modes typical of quantum critical systems.

As a consequence, the plasmons can easily decay into such incoherent set of states and

therefore display an anomalous and new damping mechanism (even at zero momentum).

– 3 –
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The previous discussion leads us to an important point of this paper which is the iden-

tification and the analysis of the dielectric relaxation and plasmons damping mechanisms

in a strongly coupled medium, as e.g. in a quantum critical phase of matter. Working

with linear response, and assuming zero momentum for simplicity, the complex dielectric

function ǫ(ω) controls the relation between the electric field E and the polarization P ,

P (ω) = ǫ0 [ǫ(ω) − 1]E(ω) , (1.6)

Writing this relation in position space,

P (t) = ǫ0

∫

[ǫ(t− s) − δ(t− s)]E(s) ds , (1.7)

it becomes manifest that a non-trivial dielectric function implies a delay, i.e. relaxation

mechanism, between the electric field and the polarization in the material.

The simplest phenomenological model for the dielectric constant is the well-known

Debye model. It relies on a single relaxation time approximation for the polarization:

dP (t)

dt
= − 1

τD
P (t) , (1.8)

where the timescale τD is denoted as the Debye relaxation time. Within this model, the

dielectric function can be written simply as:

ǫ(ω) = ǫ∞ +
∆ǫ

1 + i ω τD
, (1.9)

where ǫ∞ is its value at infinite frequency. The Debye model is justified by a basic molecular

framework [18], but it still clearly represents an approximation and will be insufficient when

more involved processes are involved [19]. It thus stands to reason that particularly in

presence of strong coupling and collective dynamics the Debye model has to be extended,

and one of the main goals of this paper is to provide further insight into how this extension

has to be established. Moreover, along the lines of [16, 17], it is important to mention that

in the quantum critical systems considered, e.g. strange metals, the electric conductivity

displays very peculiar features. In particular, it differs from the standard wisdom (Drude

model) and it reads schematically:

σ(ω) = σ0 + σDrude(ω) . (1.10)

The first term is an important new contribution, denoted as the incoherent conductivity [20],

which is not present in Galilean invariant systems and is definitely not considered in the

Drude model for free electrons. It is completely insensitive to momentum dissipation

and it can be thought of as a quantum critical contribution. From a more microscopic

perspective, it can be generated from the production of particle-hole excitations carrying

charge but no net total momentum. As a matter of fact, given the relation between the

electric conductivity and the dielectric constant (1.2), it is not suprising that this new term

can induce new relaxation phenomena and therefore new contributions to the damping of

the plasmons.
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In summary, in this manuscript, we aim to investigate in details the relaxation mecha-

nism and the damping of the quantum critical plasmons using simple holographic bottom-

up models. We will first discuss the effects of polarization and the similarities/differences

with the simple Debye relaxation model. Then, we analyze carefully the dispersion rela-

tion of the quantum critical plasmons and in particular their possible overdamped nature.

We will discover a peculiar transition between a standard plasmon dispersion relation

ω2 = ω2
p + c2k2 and a propagating sound wave ω = ck which in the intermediate regime

displays a k-gap dispersion relation [6, 21].3 The k-gap simply refers to a dispersion relation

of the type:

Re[ω] ∼ c
√

k2 − k2g (1.11)

where a propagating mode appears beyond a certain cutoff value k = kg (see [6]).

Finally, we investigate the role of broken translational invariance on the plasmon dy-

namics. This last part is entirely new and it is motivated by several recent experimental

observations [25–28] and by the need of making the holographic models more realistic.

More precisely, we analyze two different situations:

• The introduction of momentum dissipation.

• The introduction of phononic degrees of freedom via the spontaneous symmetry

breaking of translations.

In order to realize these two patterns we will use a simple holographic massive gravity

model introduced in [29, 30] and studied in several directions in e.g. [31–35].

One very important point is to better understand the nature of the longitudinal sound

in holography. Even in absence of spontaneous symmetry breaking of translations, the

longitudinal sector of the fluctuations display a sound mode which has been identified

as the strongly coupled version of the zero sound of Fermi liquids [36–40]. Once SSB

of translations is introduced in the model, the nature of that sound mode changes. In

particular, the SSB provides a normal sound contribution which is going to be added to

the original “zero sound” mode. This can be directly seen in the value of the speed of such a

mode. It gets an additional contribution which is proportional to the elastic moduli which

becomes more and more dominant at strong SSB. In other words, dialing the strength of

the SSB the sound mode crosses over from a “zero sound” nature to a normal sound one

(see figure 2). By studying the effects of the electromagnetic interactions on this sound

mode we can indeed confirm this picture. While at small SSB, the sound mode gets gapped

by the polarization effects, at large SSB it does not. This is indeed the indication that

the sound mode becomes the normal sound of the elastic phonons, which, as we know,

is not affected by the electromagnetic interactions. Our findings provide new insights on

the nature and the dynamics of bulk plasmons and sound modes in the realm of strongly

coupled and quantum critical metals.

3This behavior is quite general for the longitudinal fluctuations, but it has recently discussed also for

the transverse sector in specific models [22–24]. One of them is, for example, the linear axions model we

consider in section 5.
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Figure 2. A simplified pictorial representation of the “zero sound” to “normal sound” crossover

when increasing the strength of the SSB. The “zero sound”, appearing in quantum electron systems

like Fermi liquids, gets gapped by the electromagnetic interactions producing the plasmon mode. On

the contrary in the “normal sound” regime, typical of an ordered ionic crystal, the electromagnetic

interactions do not gap the sound mode. In our system, the unique longitudinal sound mode

interpolates between these two regimes by increasing the strength of the SSB.

Note added: as this work was in the final stages, we became aware of [41] which also

studies plasmon attenuation in a different holographic model with pseudo-spontaneous

breaking of translations.

2 The model

We consider the elementary class of holographic models introduced in [29, 30] and described

by the following action:

S = M2
P

∫

d4x
√−g

[
R

2
+

3

ℓ2
− 1

4
m2 V (X) − 1

4
F 2

]

, (2.1)

where MP is the Planck energy scale and l the AdS radius.4 Additionally, we define

X ≡ gµν ∂µφ
I∂νφ

I and the field strength of the U(1) bulk field, F = dA. We study 4D

asymptotically AdS black hole geometries whose metric reads:

ds2 =
1

z2

[

−f(z) dt2 +
dz2

f(z)
+ dx2 + dy2

]

, (2.2)

4Both these quantities are fixed to unit in the computations.
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where z ∈ [0, zh] is the radial holographic direction spanning from the boundary to the

horizon, defined through f(zh) = 0. The φI are the Stückelberg scalars which admit a

radially constant profile φI = αxI with I = x, y (see [30] for more details) and At =

h(z) = Q(1 − z/zh) is the background solution for the U(1) gauge field encoding the

chemical potential µ and the charge density ρ as

µ =
Q√
λ zh

, ρ =

√
λQ

z2h
, (2.3)

where the parameter λ plays the role of the electromagnetic coupling e2, determining the

strength of the long range Coulomb interactions [16]. The blackening factor takes the

simple form

f(z) = z3
∫ zh

z
dv

[
3

v4
− m2

4 v4
V (v2) − Q2

2z4h

]

, (2.4)

and it vanishes at the horizon location z = zh. The corresponding temperature of the dual

QFT reads

T = −f ′(zh)

4π
=

12−m2 V
(
z2h
)
− 2Q2

16π zh
, (2.5)

while the entropy density is simply s = 2π/z2h. Due to the symmetries of the system only

dimensionless quantities are meaningful. For simplicity, without loss of generality, we fix

zh = 1 and always refer to dimensionless quantities e.g. ω/T , µ/T along the paper.

Depending on the choice of the potential V (X), the model defined in (2.1) realizes

different translational symmetry breaking patterns [42–44]. In this manuscript we consider

the following cases:

1. m2 = 0, µ = 0: section 3.

This corresponds to a Schwarzschild black hole geometry. In this case the dynamics

of the gauge and gravitational sectors decouple.

2. m2 = 0, µ 6= 0: section 4.

This scenario reduces to the Reissner-Nordström (RN) background solution.

3. m2 6= 0, µ 6= 0 and V (X) = X: section 5.

This corresponds to the well-known linear axions model [45].

4. m2 6= 0, µ 6= 0 and V (X) = X3: section 6.

For this choice of potential the model exhibits spontaneous symmetry breaking (SSB)

of translational invariance and a finite elastic response [43].

We consider the longitudinal sector of the fluctuations (see appendix A for more details).

In order to take into account the effects of Coulomb interactions and polarization, we follow

closely the method introduced in [16, 46]. More precisely, we observe that the fluctuations

of the gauge field Aµ behave close to the UV AdS boundary (z = 0) as:

δAµ = δA(0)
µ + δA(1)

µ z + O(z2) . (2.6)

– 7 –
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We can now convert the ‘plasmon condition’ (1.1) into a modified boundary condition

for the gauge field at z = 0, by using the relation to the conductivity in (1.2). This is

straightforward to express in terms of the bulk fields using the holographic dictionary,

cf. [16, 46]. This results in the following boundary condition
(

ω2 δA(0)
x + λ δA(1)

x

)

= 0 , (2.7)

assuming, without loss of generality, that momentum is in x-direction, and Dirichlet bound-

ary conditions for the other components. The original idea can be found in [16] and it has

been used extensively in the successive studies of plasmons in holography [17, 41, 46–

49]. In the rest of the manuscript we will use the boundary condition (2.7) for the gauge

field fluctuations and the standard Dirichlet boundary conditions for the other bulk field

fluctuations.

We are interested in the density response of the holographic model which is encoded

in the density-density correlator:

χ0(ω, k) ≡ 〈ρ(ω, k) ρ(ω,−k) 〉 , (2.8)

where ρ is identified with the time component of the current operator Jµ, dual to the bulk

gauge field Aµ.

Introducing the deformed boundary conditions (2.7) corresponds to gauging the U(1)

symmetry of the boundary field theory [50]. From a technical point of view, this procedure

is equivalent to a double trace deformation of the boundary field theory [16, 17, 47, 51, 52].

Taking an alternative view, we obtain the physical response function χ(ω, k) by dressing

the density-density correlator via the electromagnetic interactions induced by the, now

dynamical, photon. The physical response function can be defined as:

χ(ω, k) =
χ0(ω, k)

1− Vk χ0(ω, k)
, (2.9)

where Vk ≡ λ/k2, with λ the electromagnetic coupling appearing in the boundary con-

dition (2.7). This last result reproduces correctly the outcomes of the RPA approxima-

tion [5, 53]. In this language, the plasmons are simply the poles of the physical response

function, or dressed density-density correlator, and they can be substantially different from

the poles of the screened response function (2.8), which by definition are the quasinormal

modes of the system, see e.g. [54] for more details.

In summary, the main object of our discussion will be the physical response encoded

in eq. (2.9) and the collective excitations appearing therein.

3 The effects of the electromagnetic interactions

We start by considering the model described in eq. (2.1) in absence of a background charge

density, ρ = 0, and in absence of the translations breaking scalar sector, m2 = 0. This

choice corresponds to a vanishing background profile for the U(1) bulk gauge field Aµ. We

will study the effects of the electromagnetic interactions through the modified boundary

conditions (2.7) with λ 6= 0.

– 8 –
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Before proceeding, let us remind the reader about the result for zero charge density

and standard Dirichlet boundary conditions, i.e. λ = 0. Importantly, in this limit the gauge

and the gravitational sectors decouple and their dynamics are completely independent. In

the gravitational sector, the only hydrodynamic pole in the longitudinal spectrum is a

sound mode:

ω = vs k − iD k2 + . . . (3.1)

The sound speed can be computed from the standard thermodynamic relation v2s = dp/dε

with p the pressure and ε the energy density of the system. As a consequence of the

conformal invariance of the system, the speed is constrained to take the simple value

v2s = 1/(d−1). At the same time, the sound attenuation reads D = η/(2sT ) = 1/(8πT ) [55–

57]. On the other hand, the decoupled gauge sector displays a single hydrodynamic diffusive

mode which arises from the conservation of the electric current. More specifically, the

charge diffusion mode reads:

ω = − iDQ k2 , DQ =
σ

χρρ
, (3.2)

where σ is the electric conductivity and χρρ ≡ ∂ρ/∂µ the charge susceptibility. For the

background considered here we have σ = 1 and χρρ = 1. Therefore we find that:

DQ T =
3

4π
, (3.3)

which is in perfect agreement with our results in figure 3. Notice how this diffusion constant

does not depend on the electromagnetic coupling λ at zero charge density.

If we extend the analysis to the first non-hydrodynamic mode,5 we find the presence

of a second pole:

ω1 ∼ − iΓ1 + iDQ k2 + . . . (3.4)

The dynamics of the two modes appearing in eqs. (3.2) and (3.4) can be described by

the simple equation:

ω (ω + iΓ1 )− DQ Γ1 k
2 = 0 , (3.5)

which gives rise to the recently discussed k-gap phenomenon [6]. Schematically, the charge

diffusion mode collapses at a specific wavelength with the first non-hydro mode and pro-

duces a propagating mode at low frequencies and large momenta.6

In order to compute the QNMs of the system we search for the zeroes of the determinant

of the matrix valued bulk-to-boundary propagator [59], see appendix B for a more explicit

discussion. This corresponds to the blue dotted data shown in figure 3. Once we introduce

the electromagnetic interactions, by turning on λ, the picture changes as shown in figure 3.

The diffusive mode (3.2) acquires a finite damping at k = 0. The two modes now satisfy a

slightly different equation:

(ω + iΓ1) (ω + iΓP ) = c2 k2 , (3.6)

5We use the standard definition of a hydrodynamic mode, namely a mode satisfying

limk→0 ωmode(k) = 0.
6This behaviour appeared already in [58].
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Figure 3. Real and imaginary parts of the lowest modes with λ[0.01− 0.7] (blue-red). The

blacks lines show some fits using formula (3.6). The dispersion relations show the appearance of a

propagating mode above a certain momentum k ≡ kg typical of the k-gap phenomenon.

where ΓP is the damping of the pseudo-diffusive mode and c the asymptotic speed of the

propagating mode. Let us remark that these are not the standard quasinormal modes [54].

It is important to notice that in this sector there is no hydrodynamic mode. The appearance

of attenuation (at k=0) for the collective modes [60] is associated to the non Fermi-liquid

nature of the system (see [17] for a thorough discussion on this). The damping coefficient

ΓP appearing in (3.6), modelling the “gapping” of the diffusive mode, plays the role of a

relaxation rate related to the effects of the electromagnetic interactions and the consequent

polarization dynamics of the quantum critical sector. In some sense, this is a built-in feature

of the holographic dictionary; as discussed in [16, 47], the modified boundary conditions [16,

46] correspond to a double trace deformation from the dual field theory point of view. In

presence of a double trace deformation, the corresponding operator (which is not anymore

the U(1) conserved current) acquires an anomalous conformal dimension [61] and it is not

conserved. Let us emphasize that the total charge density remains conserved. Formally,

we expect that the presence of this relaxation time could be also understood in terms of

the global symmetry formulation of dynamical electromagnetism introduced in [21, 62, 63].

We are now interested in studying the dependence of the various parameters (Γ1,ΓP , c)

as functions of the electromagnetic coupling λ and the temperature T . The first observa-

tion, which is already evident in figure 3, is that the damping parameter Γ1 does not depend

on the electromagnetic coupling. From our numerical data (see figure 4) we observe that

Γ1 = 2π T , (3.7)

which is a natural outcome since the temperature is the only dimensionful scale available.

This frequency is just the first Matsubara frequency in a bosonic theory:

Γn = 2π T n , (3.8)

where n ∈ Z. We indeed find evidence for the higher Matsubara frequencies in our numer-

ical data.

– 10 –
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Figure 4. The Debye and quantum critical damping coefficients entering in expression (3.6) in

function of the electromagnetic coupling λ. The plot emphasize the very different nature of the two

relaxation scales.
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λ

0.2

0.4

0.6

0.8

1.0

T/kGap

Figure 5. The position of the k-gap as a function of the electromagnetic coupling λ. Increasing λ

the k-gap appears at smaller and smaller values of momentum.

On the contrary, the other relaxation scale shown in figure 4, is proportional to the

electromagnetic coupling ΓP ∼ λ. This means that the associated relaxation mechanism

is a direct effect of the long range Coulomb interactions parametrized by λ. Finally, let us

spend a few words about the k-gap appearance and the momentum scale at which the two

modes collide, i.e. kg. As is evident in figure 5 its value becomes smaller by increasing the

electromagnetic coupling λ. As shown also in figure 3, at higher values of λ the collision

appears at smaller values of the momentum. Nevertheless, this last feature does not imply

that this collision becomes more and more hydrodynamic and relevant at late time. At

large values of λ both the modes are strongly damped and the collision appears at very

large and negative imaginary values of the frequency.

In summary, we have noticed that, even in the simple case of zero charge density, the

holographic results go beyond the standard weakly coupled picture.
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4 Holographic plasmons at finite density

In this section we extend the computations of the previous part to the case of finite charge

density, ρ 6= 0. At this stage, we still have m2 = 0 and the system is still transla-

tional invariant. In this scenario, the gravitational and gauge sectors are no longer de-

coupled. The µ = 0 limit is subtle. We emphasize that the analysis of the previous

section 3 pertains to the gauge field sector and it does not take into account the decoupled

gravitational dynamics.

In absence of Coulomb interaction, i.e. λ = 0, the longitudinal excitations of the stan-

dard Reissner-Nordström background have been intensively studied in the literature [64–

66]. In this setup, there are two hydrodynamic modes in the longitudinal spectrum: the

sound mode and the charge diffusion mode. As shown in [66], their dispersion relations

depend non-trivially on the dimensionless ratio µ/T .

We now introduce the effect of long range electromagnetic interactions parametrized

by the coefficient λ, cf. (2.7). The numerical results of this section were originally presented

by some of the authors in [48]; here we interpret them in terms of a simple effective model.

We proceed by giving a phenomenological but analytic picture of what we expect,

which is inspired by [6] and references therein.

Assuming a single relaxation time approximation, we can write the coherent part of

the conductivity7 as:

σ(ω, k) =
n e2 τ

m∗

1

1 − i ω τ
+ . . . (4.1)

where n is the density of charge carriers, m∗ their effective mass, e their charge and τ a

characteristic relaxation timescale. The ellipsis indicate possible corrections which are sub-

leading in the low frequency/momentum limit. Let us emphasize that the relaxation time

τ is a phenomenological parameter and its nature cannot be identified by any momentum

dissipation mechanism. At this stage, momentum is a perfectly conserved quantity. This

relaxation time is tied to the presence of electromagnetic interactions and possible polar-

ization mechanisms and it is present even at zero charge density. Technically it is simply

a consequence of the double trace deformation encoded in the modified boundary condi-

tions (2.7). Moreover, at this stage, formula (4.1) is written in terms of quasi-particles,

which are definitely absent in our system. We will amend this flaw later on.

Now, to make progress, we consider the fundamental equation for the longitudinal

plasmons

ǫL(ω, k) = 0 , (4.2)

which was already introduced in the introduction (see [5, 16] for more details about its

derivation). At zero momentum, we can simply relate the dielectric function to the fre-

quency dependent electric conductivity:

ǫL(ω, 0) = 1 +
i 4π

ω
σ(ω) , (4.3)

7It is important to notice that we are thinking about the electric conductivity in presence of Coulomb

interactions. For a more detailed discussion see e.g. [47].
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where momentum dependent corrections are not taken into account yet. The simplest form

for the conductivity can be derived assuming a single relaxation time τ , in analogy with

the Drude model, and more specifically:

σ(ω) =

(
ω2
P τ

1 − i ω τ

)

, ω2
P =

4π e2 n

m∗
, (4.4)

where ωP is the plasma frequency. At this point, the equations are written in terms of

the plasma frequency and they do not rely on the existence of well defined quasi-particles.

Now, we want to extend the expression (4.3) to finite momentum. Given the invariance

of the system under x → −x, the first momentum correction has to be quadratic. More

specifically, using dimensional analysis, we can write:

ǫL(ω, k) = 1 +
i

ω
σ(ω) − c2 k2

ω2
+ O(k4) , (4.5)

where c is a parameter with the dimensions of a velocity and the minus sign is chosen such

that at σ = 0 one recovers a standard sound wave ω = ck. All in all, at leading order in

momentum, we obtain the final phenomenological expression:8

ω2

[

1 +
i

ω

(
ω2
P τ

1 − i ω τ

)]

= c2 k2 , (4.6)

which derives from two natural assumptions:

• A single relaxation time approximation for the momentum independent electric con-

ductivity σ(ω). This choice displays strong analogies with the Debye relaxation model

for dielectric materials [18].

• Considering only the first and quadratic momentum corrections to the longitudinal

dielectric function ǫL(ω, k).

Given the order of the polynomial, we will have three different and interacting modes, which

give rise to a quite complicated pattern. Let us analyze further the qualitative trend. At

τ = 0, where dissipation is infinite, there is no screening and the dispersion relation is that

of a simple propagating wave ω = ck with speed c. In the limit ωτ ≪ 1 we obtain the

simple equation:

ω2 +
i

ω
ω2
P τ = c2 k2 , (4.7)

at leading order in ωτ . This is the well known expression producing the so-called k-gap

dispersion relation (1.11). In particular, the real part of the dispersion relation becomes

non-zero only above a certain cutoff momentum, usually called k-gap k ≡ kg, which can

be easily derived as:

kg =
ω2
P τ

2 c
. (4.8)

8A similar formula was suggested in [48].

– 13 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
3

μ/T=0

1 2 3 4
k/T

-8

-6

-4

-2

0

2

ω/T

μ/T=0.72

1 2 3 4
k/T

-4

-2

0

2

4

ω/T

μ/T=2

1 2 3 4
k/T

-4

-2

0

2

4

ω/T

μ/T=3.3

1 2 3 4
k/T

-3

-2

-1

0

1

2

3

4

ω/T

Figure 6. Real (red) and imaginary (blue) parts of the lowest, longitudinal, collective modes in

the Reissner-Nordström geometry when increasing µ/T at fixed λ = 1. Colored lines represent

numerical data and dashed-black the fit to formula (4.6). The hydrodynamic formula fits well the

data in the regime ω/T, k/T ≪ 1.

Increasing further the relaxation time τ , the situation becomes more complicated and all

the three modes interact creating a non-trivial interplay. Finally, in the limit of ωτ ≫ 1,

the dispersion relation becomes simply:

ω2 = ω2
P + c2 k2 , (4.9)

which is the well-known gapped plasmon mode.

The main result of this section is shown in figure 6 where the numerical data are

compared with the analytic predictions. The simple phenomenological expression (4.6)

captures successfully the dispersion relation of the three lowest modes and the complicated

interplay between them at low frequency and momentum. Moreover, as shown in figure 7

we find that both the plasma frequency ωp and the effective relaxation scale τ increase with

the dimensionless parameter µ/T . More precisely, the plasma frequency goes to zero with

µ/T following a power-law, while the relaxation time approaches a finite value at µ/T = 0.

The dependence of τ and ωP on λ is shown in figure 8. We find that the relaxation time

diverges and the plasmon frequency vanishes as the Coulomb interaction is taken to zero.

The behavior of ωP is in agreement with the weakly coupled logic: it grows with the net
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Figure 7. Evolution of ωP and τ with increasing µ/T for λ = 1 obtained from the fits as shown in

figure 6.

charge of the system µ/T and with the strength of the Coulomb interaction λ, vanishing

in the limit µ/T → 0.

We emphasize that in the system under investigation momentum is conserved, so τ

cannot be thought of as the Drude relaxation time. As already mentioned in the previous

section, the effective relaxation scale τ appearing in the model (4.6) is not derived micro-

scopically and it is understood as an effect of the quantum critical sector of the theory, [17].

It would be desirable to find a more quantitative understanding of the microscopic phe-

nomena governing this effect and its relation to the polarization of the underlying degrees

of freedom.

Despite of the surprising success of the simple analytic model (4.6) in fitting the nu-

merical data, there are several open questions. First, the choice of the model was purely

phenomenological. Second, the nature of the relaxation time τ and the definition of the

conductivity (4.1) is still obscure. Finally, the role of the incoherent conductivity has not

been discussed. Our observation is that the introduction of an additional incoherent term

σ0 in the definition of eq. (4.6) spoils the agreement with the numerical data. Before pro-

ceeding with the introduction of translational symmetry breaking, let us summarize the

dynamics of the modes discussed in this section in a schematic picture (see figure 9).

At finite λ and zero chemical potential the two sectors are completely decoupled at

linear order in the perturbations. The gravitational sector contains a hydrodynamic sound

mode and the gauge sector, analyzed in section 3, displays two damped non-hydrodynamic

modes. The most damped one does not depend on λ (to first order in momentum) and

will not play any relevant role in the final picture. In contrast, the smallest damping, ΓP ,

increases linearly with λ. As a consequence, for small coupling this damping is very small

and it enters in the hydrodynamic window ω/T ≪ 1.

Now, let us switch on a small chemical potential µ/T ≪ 1. The chemical potential

couples the two sectors and, together with finite electromagnetic coupling λ, produces the

transition of the sound mode into a low momenta diffusive mode. This mode then collides

with a second non-hydro mode and produces the k-gap picture we see in figure 9. Moreover,
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Figure 8. Evolution of ωP and τ as functions of λ with fixed µ/T = 1 obtained from fitting the

numerical data. The fit for the relaxation time τ (dashed line) is consistent with a linearly inverse

scaling τ ∼ λ−1.

Figure 9. A simplified summary of the interplay between the gravitational sector and the gauge

field sector at finite chemical potential. The dynamics is explained in terms of the chemical potential

µ and the electromagnetic coupling λ. The zig-zag arrow, mediated by the dimensionless parameter

µ/T , represents the coupling between the gauge sector (blue area) and the gravitational sector

(orange area). Increasing the chemical potential, the two sectors become more and more interacting.
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due to conservation of momentum, there is always a hydrodynamic mode in the spectrum.

Now, at large λ ≫ 1, the modes stemming from the gauge sector are strongly damped and

they do not play any role in the combined dynamics. This is shown in the blue region in

figure 9. As discussed in the µ/T = 0 case, for a small electromagnetic coupling one of the

modes of the gauge sector becomes long-living, giving rise to the standard charge diffusion

mode in the extreme λ = 0 limit. On the other hand, the modes in the gravitational sector

approach each other as λ decreases and give rise to the sound mode of RN. When the

chemical potential is large enough, the two sectors are strongly mixed; the first mode from

the gauge sector enters the “hydrodynamic” regime and causes the interplay between the

three complex modes discussed in the text, first observed in [48]. In the limit of very large

µ/T we recover the standard (bulk9) gapped plasmon dispersion relation ω2 = ω2
P + c2 k2.

5 Plasmons with broken translations

So far, we have considered a holographic background which enjoys translational invari-

ance. Momentum, as an operator of the dual field theory, is a conserved quantity. The

momentum conservation equation produces several effects on transport, including an un-

natural divergent contribution to the electric conductivity. In realistic condensed matter

systems translation (and rotation) invariance is generally broken because of the presence

of impurities, disorder or more complicated mechanisms. In this section, we make use of

a generalization of the holographic picture that allows to break translational invariance,

retaining the simplicity of the framework [67, 68]. More specifically, we consider the ad-

ditional scalar sector in action (2.1) and, without loss of generality, set m2 = 1. The

explicit breaking of translational invariance introduces a finite relaxation rate for momen-

tum ΓM = τ−1
M , related to the mass of the graviton fluctuations, which in our case is

determined by the dimensionless parameter α/T . The stress tensor (or at least its spa-

tial component) is not conserved anymore and the corresponding hydrodynamic modes get

strongly affected. There is a vast literature on the topic; for more details we refer to [69].

We make use of the linear axions model of [45] to relax momentum in the dual field

theory. The Ward identity for the momentum operator is broken and at linear order10

it reads:

∂i T
it = 0 , ∂i T

ij = −ΓM T jt + . . . (5.1)

where the ellipsis indicate higher order corrections relevant for fast momentum dissipa-

tion. In the limit of slow momentum relaxation Γm/T ≪ 1, the relaxation rate is defined

(see [68]), by the analytic expression

ΓM =
s

4π (ε+ p)
α2 + O(α4) , (5.2)

9Also called a volume or co-dimension zero plasmon, in contrast to surface or interface plasmons. Hence,

‘bulk’ here should not be confused with the bulk spacetime.
10The linear order approximation corresponds to the limit of slow momentum dissipation τMT ≫ 1. From

the bulk perspective it corresponds to consider the graviton mass small compared to the temperature of

the system T .
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Figure 10. Evolution of ωP and τ with increasing α for µ/T = [0.2, 1, 4] (red, green, blue) and

fixed λ = 1. The dashed lines are the analytic predictions of (5.2) and (5.3) at small α/T ≪ 1.

The agreement between the data and the analytic correction (5.2) is apparent at α/T ≪ 1.

where s, ε and p are the entropy density, the energy density and the pressure of the system

and α the graviton mass.11 At this point, we can investigate the effects of momentum

dissipation on the dispersion relation of the plasmons.

Firstly, it is important to remark that we still find the expression obtained in (4.6) to be

a good approximation for the dynamics of the three lowest collective modes in the presence

of momentum dissipation. The effect of a finite α/T is simply to renormalize the effective

parameters entering in eq. (4.6). The numerical results are shown in figure 10. Increasing

momentum dissipation, the relaxation time entering in eq. (4.6) becomes smaller. This

can be simply understood by introducing a new contribution to the relaxation rate via the

inverse Matthiessen’ rule:

τ−1
total = τ−1

M + τ−1 . (5.3)

This formula, combined with the momentum relaxation rate defined in (5.2), approximates

correctly τtotal at slow momentum dissipation rates ΓM/T ≪ 1 as shown in figure 10.

Secondly, we observe that the plasma frequency increases with the momentum dissi-

pation parameter α/T . From a weakly coupled perspective, where the plasma frequency

is related to the inverse of the effective mass of the charge carriers m∗, this result is sur-

prising. It suggests that momentum dissipation decreases the effective mass of the charge

carriers, while at weak coupling the more scattering events the heavier the charge carriers’

effective mass becomes. However, given the absence of well-defined quasi-particles in the

strongly coupled holographic framework arguments using weak coupling are not expected

to be applicable. Moreover, we can notice that in the transverse spectrum of the linear

axions theory, at λ = 0, an analogous phenomenon happens. More specifically, at very

11More precisely the mass of the helicity-1 component of the graviton. Notice that the massive gravity

theory considered is not Lorentz invariant and therefore the various components of the graviton can acquire

different masses [30, 70].

– 18 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
3

strong momentum dissipation, a mode with a massive particle dispersion relation appears

in the spectrum [22, 23].

Finally, let us notice that, even in presence of strong momentum dissipation,

i.e. ΓM/T ≫ 1, a hydrodynamic mode is present in the longitudinal spectrum. As al-

ready shown in [71], such a mode simply corresponds to the conservation of energy and at

very strong momentum relaxation, i.e. the usually called incoherent limit, it simply encodes

the energy diffusion mode.

6 The effects of the spontaneous breaking of translational invariance

In this last section we consider a different symmetry breaking pattern; the spontaneous

breaking (SSB) of translations. We assume:12

V (X) = X3 , (6.1)

and we fix for simplicitym2 = 1. The nature of this second mechanism is very different. The

SSB of translations does not introduce any relaxation mechanism but it does give new and

dynamical degrees of freedom, which are identified as the Goldstone bosons for translational

invariance, i.e. the phonons [72]. As a physical consequence, the SSB of translations is

directly responsible for the elastic properties of the medium [73]. The strength of the SSB

is parametrized by the dimensionless parameter α3/T . We will provide more details in

the following (see [44] for a recent discussion about the explicit versus the spontaneous

breaking of translations in this context).

Importantly, we consider the longitudinal sector of the system and therefore what we

discuss is the longitudinal sound.13 In contrast to the transverse sound, the longitudinal

counterpart is present in both liquids and solids and it usually relates to the compressibility

of the material. From a very broad perspective, derived in details in [73–75], the speed of

longitudinal sound in generic systems, displaying the spontaneous breaking of translations,

is given by:

v2L =
K + G

χPP
(6.2)

where G and K are the shear and bulk elastic moduli, and χPP the momentum suscep-

tibility. Just using thermodynamics, the bulk modulus K, which is the inverse of the

compressibility, can be defined as:

K = −V
∂P

∂V
(6.3)

where V is the volume and P the mechanical (not the hydrodynamic) pressure, P ≡ Txx.

Importantly, the total compressibility can divided into two contributions:

K =
∂p

∂ε
χPP + κ (6.4)

12As shown in [43], this concrete choice of the potential does not affect the generality of the picture.

Similar results can be obtained using potentials of the form V (X) = XN with N > 5/2.
13For a discussion on transverse sound in the same model see [43, 44].
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where this time p is the hydrodynamic pressure p = P − 2κ, and κ is the contribution to

the bulk modulus which comes directly from the SSB of translational invariance.

Consider a system where translations are not broken, not even spontaneously. It

follows that:

G = κ = 0 , P = p (6.5)

Therefore, the speed of longitudinal sound drastically simplifies into:

v2L =
∂p

∂ε
, (6.6)

in agreement with hydrodynamics [56, 57]. Moreover, in a conformal field theory, where

ε = (d − 1)p, the speed takes the constant value v2s = 1/(d − 1), with d the number of

space-time dimensions. It is illustrative to rewrite the total speed of longitudinal sound as:

v2L =
∂p

∂ε
+

κ + G

χPP
(6.7)

Defining the spontaneous breaking scale as 〈SSB〉, the first term is ∼ 〈SSB〉0, while the

second one is ∼ 〈SSB〉2. See [76–78] for more details.

This analysis indicates that, even in the presence of SSB of translational invariance,

only one sound mode appears in the longitudinal spectrum and its speed is determined by

two different contributions:

v2L = v20 + v2SSB . (6.8)

as discussed in [76, 78, 79]. We will denote the first contribution, v20, which is finite in

absence of SSB, as “zero sound”. The naming and the identification are clearly a stretch,

because the presence of a Fermi surface in these systems is far from obvious [37, 40, 80, 81].

Moreover, such sound mode appears also for bosonic holographic systems [82]. Additionally,

the label “zero sound” usually refers to zero temperature; here we extend it to finite, but

small, temperatures without introducing any further distinction. All in all, for simplicity,

we keep the name. In simple terms, we can think of that contribution as the one coming

from the “fluid” soup provided by the strongly coupled CFT, the critical continuum of our

holographic setup. In our setup, this sector is charged under a U(1), introduced via the

Maxwell field of the holographic bulk theory.

The second term in (6.8), denoted with v2SSB, is given by the elastic response of the

material; it is directly related to the existence of longitudinal Goldstone bosons and it

vanishes in the limit of no SSB of translations. We will denote for simplicity this second

term the “normal sound” contribution. This second term is tightly connected to the pres-

ence of the scalar sector φI . Importantly, the scalar fields are not charged under the U(1)

symmetry of the system.

In our holographic setup, we have a dimensionless parameter α3/T which determines

the strength of the SSB of translations. We can now quantify the speed of longitudinal

sound as a function of this parameter. The numerical results, supporting these statements,

are found in figure 11. Our results are thus consistent with those from recent preprints [76,

78]. The speed of sound interpolates between two regimes:
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Figure 11. The speed of longitudinal sound as a function of the dimensionless SSB scale α3/T .

The red dots are numerical data extracted using formulae (6.6), (6.7) and (6.8). The superluminal

region v2
L

> 1 is displayed in the phase diagram with shaded color. The crossover between two

regimes is clear and it happens around α3/T ∼ 7.5. At small SSB the speed of sound is close to

the zero sound limit v2
0
= ∂p/∂ǫ = 1/2. At higher value of the SSB parameter the speed is mainly

governed by the elastic properties of the material; we call that “normal sound”. For simplicity, this

plot is done at µ = 0.

1. For vanishing or small SSB (α3/T ≪ 1), the sound is mainly governed by what we

called “zero sound” and it is given by the hydrodynamic formula (6.6).

2. For large SSB, on the contrary, the sound is mainly controlled by the ordered structure

(“lattice”) and its speed is dominated by the elastic contribution, the second term in

eq. (6.7).

This mechanism has been already directly observed in [60]. Let us notice that this transi-

tion between a solid like behaviour, where longitudinal sound is controlled by the elastic

moduli as in ordered crystals, and a fluid type regime where sound behaves more like the

electron sound of a Fermi liquid, is also evident in several other observables. We can men-

tion for example the shear elastic modulus and the dynamics of transverse shear waves

analyzed in [43, 44]. In the limit of large temperatures, compared to the graviton mass

governing the SSB, the system loses the elastic properties in a continuous way similar to

a glass transition. This observation was already present in several previous works in the

literature [42, 43, 60, 83, 84].
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Figure 12. Top panel: real and imaginary parts of the lowest collective modes for fixed λ = 1

and µ/T = 4 increasing the dimensionless SSB strength α3/T = (0.1, 3.75, 5, 10, 25) (red-blue). The

gapped plasmon smoothly crossovers to the ungapped normal sound mode. For clarity, we manually

removed the decoupled crystal diffusion mode. Bottom panel: the decoupled crystal diffusion mode

for α3/T = [0.1− 25] (red-blue).

Before switching on the Coulomb interactions, i.e. letting λ 6= 0, let us just point the

reader to the known results in absence of them. The analysis of the hydrodynamic modes

can be found in standard textbooks such as [73, 85] or in more modern works such as [79]

and it was recently tested in holography in [76].

Now, we study the behaviour of the system when long range Coulomb interactions are

taken into account. A comment regarding our setup is in order here. In some cases in

the literature [86], this kind of models have been referred to as Wigner Crystals. Here we

argue that there is no concrete indication that this is the case, at least in our particular

model. Let us remark that what we mean here with Wigner Crystal is the canonical

scenario of a lattice of strongly coupled electrons typical of 2D systems at very low density

and temperature [87, 88]. On the contrary, our system is to be understood as follows. The

neutral scalar sector, which sets the elastic properties of the material, encodes the phononic
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degrees of freedom, i.e. the Goldstone modes for the breaking of translational invariance.

One can think here of the neutral, acoustic, phonons of a regular rigid structure. Notice that

this is an effective field theory (EFT) description of these modes which does neither attempt

to describe any microscopic feature of the underlying lattice nor its dynamical formation.

On top of that, the charge sector, encoded in the Maxwell fields in the bulk, is coupled

to the phonon sector only indirectly via gravity. The long range Coulomb interactions are

implemented in the charged sector via modified boundary conditions and they do not affect

directly the neutral scalar sector. Importantly, the effect of the charged sector on the system

is mediated by the chemical potential µ and the strength of the Coulomb interactions λ,

while the effect of the neutral sector is governed by the SSB strength ∼ α. Let us remark

that, as we show below, our system has only one mode stemming from the hybridization

of the would-be plasmon of the charged sector and the phonon, in contrast to the weakly

coupled picture. Qualitatively, our system is more similar to the models used to address

the problem of acoustic polarons [89, 90]. This is further supported by our results as we

will argue now.

We investigate the low temperature regime T/µ ≪ 1 as we increase the strength of

the SSB, α3/µ. We already know, from the previous discussion, that in absence of SSB

the “zero sound” mode gets gapped at low temperature and it shows the typical plasmonic

dispersion relation:

ω2 = ω2
P + c2 k2 . (6.9)

The main question we address here is how the previous dispersion relation is modified in

presence of SSB of translations. The results are shown in figure 12. Increasing continuously

the strength of SSB, the gap of the plasmon mode in eq. (6.9) decreases and the dispersion

relation eq. (6.9) becomes the one of normal, gapless, sound. This is consistent with our

picture; the longitudinal sound (phonons) originating from the long range, uncharged,

order structure. Within our model, there is a competition between the effects of the

spontaneous symmetry breaking and the electromagnetic interactions. The first tends to

keep the sound mode gapless and propagating, while the second tends to gap this mode

and transform it into a plasmon. It would be interesting to compare to the situation in

which the “holographic lattice” is directly charged under the U(1) in the bulk, (as in the

case of [91]).

Finally, let us notice the SSB of translational invariance introduces a new additional

diffusive mode in the longitudinal sector, known as “crystal diffusion” [79]. This mode

has already appeared in [60] and it is evident in our spectrum as well. It does not couple

to the other modes and it is therefore not qualitatively influenced by the electromagnetic

coupling λ; it depends on the SSB strength as shown in the bottom panel of figure 12.

In order to make this discussion more quantitative, we plot in figure 13 the depen-

dence of the plasma frequency ωP and the effective relaxation scale τ as functions of the

dimensionless SSB parameter α3/µ by fitting the data presented in figure 12. We observe

that before a certain “critical” α3/µ is reached, the plasma frequency remains constant and

independent on the elastic moduli. After this, the plasma frequency sharply decreases, by

increasing the amount of SSB as discussed previously. Only in the low α3/µ limit, where
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Figure 13. The effective relaxation scale τ and the plasma frequency ωp in function of the dimen-

sionless SSB strength α3/µ for λ = 0.8, 1, 1.2 (blue-yellow). All points are at µ/T = 4.
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Figure 14. Transition point in various observables. The values appear to be very correlated to

each other and independent of λ.

ωP /T is independent of α3/µ, can it be thought of as the sound of a charged fluid. Notice

that the critical α3/µ value at which the plasma frequency starts to decrease is indepen-

dent of the electromagnetic coupling λ and in this sense it is rather connected with the

property of the background. Interestingly, the transition in the plasma frequency appears

to be much sharper than in other observables, see figure 14. In particular, we numerically

observe a robust correlation between:

(I) The value of α3/µ at which the dissipative fluids effects (related to the viscosity η)

and the elastic effects (governed by the shear modulus G) become comparable. This

point qualitatively signals the transition from a viscous fluid to a rigid material.

(II) The crossover value of the longitudinal speed of sound between its α = 0 value

v2L = 1/2 typical of a conformal fluid and its maximum value vmax
L obtained in

the limit of α3/µ → ∞ where dissipation becomes subleading and the system a

perfect solid.
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(III) The critical value at which the plasma frequency stops to be constant and starts to

decrease rapidly in function of α3/µ.

This correlation is highlighted in figure 14 and it confirms our interpretation of the model at

hand. Furthermore, the effective relaxation time τ seems to decrease with the translational

symmetry breaking as well. This feature is slightly counter-intuitive because one does not

expect the SSB of translations to contribute to the relaxation of the system. Anyway, let

us first remind the reader that the relaxation scale is completely phenomenological and

has no direct microscopic interpretation. Moreover, let us notice that in the deep SSB

regime, at large α3/µ, where the physics is more and more that of an ordered crystal,14

the relaxation time τ becomes indeed independent of the SSB breaking scale as expected.

At the same time, in the same regime, the plasma frequency drops very fast. That said,

this is a valuable direction to get a better understanding of these phenomena.

7 Conclusions

In this work we study the effect of the electromagnetic interactions on the density response

of simple holographic bottom-up models with and without broken translational invariance.

We analyze the dispersion relations of the collective longitudinal modes and their dynamics.

We introduce the dynamics of the gauge field and Coulomb interactions using a modified

set of boundary conditions [16], corresponding to a double trace deformation in the dual

field theory [17, 47, 50, 52]. We focus on the relaxation mechanisms affecting the plasmon

modes, relevant for the study of quantum critical and strongly coupled materials.

We review the dynamics of a Maxwell gauge field on the uncharged Schwarzschild back-

ground in presence of electromagnetic interactions in the dual theory. There, we observe

the appearance of a relaxation time scale proportional to the electromagnetic coupling. Our

results suggest this relaxation mechanism should be related to the polarization of the holo-

graphic medium and it could be thought of as a quantum critical correction to Debye-type

relaxation. It is tempting to associate it to the breaking of the global EM symmetry of [21].

The dynamics of the associated mode is indeed in agreement with the quasi-hydrodynamic

predictions of [21] and the k-gap phenomenon of [6]. The connection between double trace

deformations [61], the global symmetries picture of [62] and the effects of polarization and

screening surely deserves further investigation.

At finite charge density, and linear order in the perturbations, the gauge field couples

to the gravitational sector and the dynamics becomes much richer. We discuss a simple

phenomenological model (4.6), which successfully describes the qualitative dynamics of the

lowest three modes. Using such a framework, we find that both the plasma frequency and

the total effective relaxation time increase with the dimensionless parameter µ/T .

We extend the previous results in the literature [16, 48] by introducing the breaking of

translational invariance. This makes the holographic models closer to realistic experimental

14Despite translations are broken no characteristic lattice length scale is present in this class of models.

The background metric remains homogeneous. In this sense, these models, are more similar to amorphous

solids or glasses rather than standard crystals with a long-range ordered structure. This was empirically

confirmed in [92].
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setups. We consider the introduction of momentum dissipation via a simple effective model

known as the linear axions model [45]. The numerical results confirm that momentum

dissipation decreases the relaxation time of the collective modes. In other words, the

damping of those modes becomes larger and larger the faster momentum is dissipated,

which agrees with the naive intuition. Concretely, we find that the two contributions add

up satisfying an inverse Matthiessen’s rule:

τ−1
tot = τ−1

︸︷︷︸

EM interactions

+ τ−1
M

︸︷︷︸

momentum dissipation

. (7.1)

Moreover, we check that for slow momentum dissipation the relaxation time follows indeed

the analytic formulas derived previously in the literature [68] and obtained using hydrody-

namics. We find that the plasma frequency increases with the momentum dissipation rate.

Finally, we analyze the longitudinal collective modes of the system in presence of the

SSB of translational invariance. The qualitative results are very interesting. First, we

confirm the appearance of the crystal diffusion mode already observed and discussed in

the literature [74, 75]. More importantly, we identify a crossover between a fluid regime at

small SSB and a “crystal” regime at large SSB. In the first limit, the sound propagation is

driven by the strongly coupled CFT collective fluid. In this regime the plasma frequency

ωP , obtained from the fit to the formula (4.6), is independent of the parameter α3/µ. In

the second case, however, the sound is given by the elastic moduli of the system and we

find that ωP decrease with α3/µ. In other words, we find a competition between the SSB

of translations and the formation of the gap due to long range Coulomb interactions. At

infinite α3/µ, the gap of the sound mode vanishes and the dispersion relation is that of the

normal longitudinal sound of systems with spontaneous long-range ordered structures. In

that limit, sound is just given by the vibrational modes of the “lattice” and its dynamics

is controlled by the elastic properties of the latter. This sound mode effectively does not

get affected by electromagnetic interactions and it does not acquire any plasma gap. Our

results highlight the qualitative difference between this system and a Wigner Crystal.

Despite the amount of papers on the topic, several important questions have not yet

been addressed. An interesting future direction would be to understand the role of our

results in relation to the recent experiments performed in strange metals and quantum

critical materials [14, 15]. Finally, similar dispersion relations have been discussed in the

hydrodynamic description of collective modes in Weyl semimetals [93]. A k-gap dispersion

relation for plasmons in type II Dirac semimetals has been suggested in [94] and it is

possibly measurable. Similar results have also been discussed and experimentally observed

in the transverse spectrum of Yukawa fluids [95, 96]. Our results can clearly be of help in

this direction. We plan to come back to these issues in the near future.
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A Equations of motion

We consider the longitudinal fluctuations defined by the following set of fields:

{ δgtt , δgtx , δgxx , δgyy , δAt , δAx , δφx } , (A.1)

and we assume the radial gauge δAz = δgiz = 0. In the following we provide the equations

of motion, given the model and the ansatz discussed in section 2.

A.1 Linear axions

For the linear axions potential V (X) = X of section 5 we have:

kωδgtx
f2

+
δgtt(−2zf ′ + 6f + 4z4 (h′)2 − k2z2 + α2z2 − 6)

2fz2

+
δgyy(−12f2 + f(−2z2f ′′ + 8zf ′ + 2z4(h′)2 + 2k2z2 + α2z2 + 12) + 2ω2z2)

4f2z2

+
δgxx(−12f2 + f(−2z2f ′′ + 8zf ′ + 2z4(h′)2 + α2z2 + 12) + 2ω2z2)

4f2z2

+

(
3f ′

2f
− 2

z

)

δg′tt +
f ′δg′xx
4f

+
f ′δg′yy
4f

− 3z2h′δA′

t

f
− iαkδφx

2f
+ δg′′tt = 0 , (A.2)

δgtx(−2zf ′ + 6f + z4(h′)2 − 6)

fz2
+

kωδgyy
f

− iαωδφx

f

+ 2z2h′δA′

x + δg′′tx −
2δg′tx
z

= 0, (A.3)

kωδgtx
f2

− δgtt(−2zf ′ + 6f + 2z4(h′)2 + k2z2 + α2z2 − 6)

2fz2

+
δgyy(−12f2 + f(−2z2f ′′ + 8zf ′ + 2z4(h′)2 − 2k2z2 + α2z2 + 12)− 2ω2z2)

4f2z2

+
δgxx(12f

2 − f(−2z2f ′′ + 8zf ′ + 2z4(h′)2 + 3α2z2 + 12) + 2ω2z2)

4f2z2

+
3iαkδφx

2f
+

(
3f ′

4f
− 2

z

)

δg′xx −
f ′δg′yy
4f

+ δg′′xx = 0 , (A.4)

− kωδgtx
f2

+
δgtt(2zf

′ − 6f − 2z4(h′)2 + k2z2 − α2z2 + 6)

2fz2

+
δgyy(12f

2 − f(−2z2f ′′ + 8zf ′ + 2z4(h′)2 + 2k2z2 + 3α2z2 + 12) + 2ω2z2)

4f2z2
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+
δgxx(−12f2 + f(−2z2f ′′ + 8zf ′ + 2z4(h′)2 + α2z2 + 12)− 2ω2z2)

4f2z2

+
z2h′δA′

t

f
− iαkδφx

2f
− f ′δg′xx

4f
+

(
3f ′

4f
− 2

z

)

δg′yy + δg′′yy = 0 , (A.5)

− k2δAt

f
− kωδAx

f
− 1

2
h′δg′tt +

1

2
h′δg′xx +

1

2
h′δg′yy + δA′′

t = 0 , (A.6)

kωδAt

f2
+

ω2δAx

f2
+

f ′δA′

x

f
+

h′δg′tx
f

+ δA′′

x = 0 , (A.7)

and

δφx(ω
2 − fk2)

f2
− iαωδgtx

f2
+

iαkδgtt
2f

− iαkδgxx
2f

+
iαkδgyy

2f

+

(
f ′

f
− 2

z

)

δφ′

x + δφ′′

x = 0 . (A.8)

A.2 SSB model

For the SSB breaking potential V (X) = X3 of section 6 we have:

kωδgtx
f2

− δgtt(2zf
′ − 6f − 4z4(h′)2 + k2z2 − 4α6z6 + 6)

2fz2

+
δgyy(−6f2 + f(−z2f ′′ + 4zf ′ + z4(h′)2 + k2z2 + 38α6z6 + 6) + ω2z2)

2f2z2

+
δgxx(−6f2 + f(−z2f ′′ + 4zf ′ + z4(h′)2 + 38α6z6 + 6) + ω2z2)

2f2z2

+

(
3f ′

2f
− 2

z

)

δg′tt+
f ′δg′xx
4f

+
f ′δg′yy
4f

− 3z2h′δA′

t

f
− 30iα5kz4δφx

f
+δg′′tt = 0 , (A.9)

δgtx(−2zf ′ + 6f + z4(h′)2 − 8α6z6 − 6)

fz2
+

kωδgyy
f

− 12iα5ωz4δφx

f

+ 2z2h′δA′

x −
2δg′tx
z

+ δg′′tx = 0 , (A.10)

kωδgtx
f2

− δgtt(−2zf ′ + 6f + 2z4(h′)2 + k2z2 + 4α6z6 − 6)

2fz2

+
δgyy(−6f2 + f(−z2f ′′ + 4zf ′ + z4(h′)2 − k2z2 + 14α6z6 + 6)− ω2z2)

2f2z2

+
δgxx(6f

2 − f(−z2f ′′ + 4zf ′ + z4(h′)2 + 26α6z6 + 6) + ω2z2)

2f2z2

+
18iα5kz4δφx

f
+

(
3f ′

4f
− 2

z

)

δg′xx −
f ′δg′yy
4f

+
z2h′δA′

t

f
+ δg′′xx = 0 , (A.11)

− kωδgtx
f2

+
δgtt(2zf

′ − 6f − 2z4(h′)2 + k2z2 − 4α6z6 + 6)

2fz2
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+
δgyy(6f

2 − f(−z2f ′′ + 4zf ′ + z4(h′)2 + k2z2 + 26α6z6 + 6) + ω2z2)

2f2z2

+
δgxx(−6f2 + f(−z2f ′′ + 4zf ′ + z4(h′)2 + 14α6z6 + 6)− ω2z2)

2f2z2

− 6iα5kz4δφx

f
− f ′δg′xx

4f
+

(
3f ′

4f
− 2

z

)

δg′yy +
z2h′δA′

t

f
+ δg′′yy = 0 , (A.12)

− k2δAt

f
− kωδAx

f
− 1

2
h′δg′tt +

1

2
h′δg′xx +

1

2
h′δg′yy + δA′′

t = 0 , (A.13)

kωδAt

f2
+

ω2δAx

f2
+

f ′δA′

x

f
+

h′δg′tx
f

+ δA′′

x = 0 (A.14)

and

δφx(ω
2 − 3fk2)

f2
− iαωδgtx

f2
+

iαkδgtt
2f

− 3iαkδgxx
2f

−
iαkδgyy

2f

+

(
f ′

f
+

2

z

)

δφ′

x + δφ′′

x = 0 . (A.15)

B Numerical techniques

The numerics are carried out in Mathematica, with the packages xAct [97] and xTras [98].

The seven background equations of motion provide seven linearly independent solu-

tions. Three are found numerically by imposing in-falling boundary conditions at the

horizon, and can be characterized by the starting values of δAx, δgxx and δφx after fac-

toring out their oscillating behaviour. To simplify the numerics, an analytic expansion is

made from the horizon to a small offset, before numerically integrating to the boundary,

where a similar expansion is made. The remaining four solutions are found analytically as

pure gauge solutions.

A mode is characterized as a non-trivial solution to the set of equations of motion,

together with a set of boundary conditions. Six of these boundary conditions are Dirichlet

conditions on the metric fluctuations, δAt and δφx. The last condition is (2.7). As the

system is linear, if there is a non-trivial solution to the boundary value problem, it is a linear

combination of the seven solutions found above. That means that the sets of boundary

values for each of the seven solutions are linearly dependent, and the 7 × 7-matrix formed

by them has a vanishing determinant,
∣
∣
∣
∣
∣
∣
∣
∣

δgtt(z)1 δgtx(z)1 δgxx(z)1 δgyy(z)1 δφx(z)1 δAt(z)1 [ω2δAx(z) + λ δA′

x(z)]1

δgtt(z)2 δgtx(z)2 δgxx(z)2 δgyy(z)2 δφx(z)2 δAt(z)2 [ω2δAx(z) + λ δA′

x(z)]2

· · ·

∣
∣
∣
∣
∣
∣
∣
∣
z→0

= 0 .

(B.1)

This provides a convenient way of verifying if a choice of ω and k lie on a particular mode,

up to chosen numerical precision.

The numerical precision is chosen to be overly strong, as to eliminate potential nu-

merical artifacts, an example of the error in the equations of motion is shown in figure 15.
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Figure 15. Example of the numerical value accepted for the l.h.s. of A.9 at µ/T = 4, λ = 1 and

α3/T = 4.
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