
J
H
E
P
0
4
(
2
0
1
4
)
0
4
0

Published for SISSA by Springer

Received: November 28, 2013

Revised: January 30, 2014

Accepted: March 4, 2014

Published: April 7, 2014

Holographic Q-lattices

Aristomenis Donosa and Jerome P. Gauntlettb

aDAMTP, University of Cambridge,

Cambridge, CB3 0WA, U.K.
bBlackett Laboratory, Imperial College,

London, SW7 2AZ, U.K.

E-mail: aristomenis.donos@gmail.com, J.Gauntlett@imperial.ac.uk

Abstract: We introduce a new framework for constructing black hole solutions that are

holographically dual to strongly coupled field theories with explicitly broken translation

invariance. Using a classical gravitational theory with a continuous global symmetry leads

to constructions that involve solving ODEs instead of PDEs. We study in detail D = 4

Einstein-Maxwell theory coupled to a complex scalar field with a simple mass term. We

construct black holes dual to metallic phases which exhibit a Drude-type peak in the optical

conductivity, but there is no evidence of an intermediate scaling that has been reported in

other holographic lattice constructions. We also construct black holes dual to insulating

phases which exhibit a suppression of spectral weight at low frequencies. We show that the

model also admits a novel AdS3 × R solution.

Keywords: Gauge-gravity correspondence, Black Holes in String Theory, AdS-CFT Cor-

respondence, Holography and condensed matter physics (AdS/CMT)

ArXiv ePrint: 1311.3292

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2014)040

mailto:aristomenis.donos@gmail.com
mailto:J.Gauntlett@imperial.ac.uk
http://arxiv.org/abs/1311.3292
http://dx.doi.org/10.1007/JHEP04(2014)040


J
H
E
P
0
4
(
2
0
1
4
)
0
4
0

Contents

1 Introduction 1

2 Black hole solutions 3

2.1 Black hole ansatz for the holographic Q-lattice 4

2.2 Black holes dual to the metallic phase 6

2.3 Black holes dual to the insulating phase 9

3 Conductivity 11

4 Final comments 13

A A novel AdS3 × R solution 15

1 Introduction

It is a remarkable fact that many phenomena observed in condensed matter systems are

now known to have gravitational analogues via the AdS/CFT correspondence. One area of

focus, where there has been significant recent progress, concerns the holographic descrip-

tion of physics associated with a “lattice”. More specifically, there are are now several

different constructions of black hole solutions that are holographically dual to strongly

coupled systems which explicitly break translation invariance using a spatially periodic

deformation [1–6].

One motivation for constructing such black holes arises in the context of studying the

optical conductivity of strongly coupled systems at finite charge density. In the absence of

a lattice the translation invariance of the system implies that there is a delta function peak

at zero frequency, implying that the system is an ideal conductor. To extract more realistic

metallic behaviour one can investigate the impact of a lattice. The first construction of

electrically charged black holes describing holographic lattices was made in D = 4 Einstein-

Maxwell theory coupled to a real scalar field [1]. For the specific black holes that were

constructed, it was shown that the system is in a metallic phase with the delta function

peak smeared out into a Drude-type peak.1 This observed low frequency behaviour is

consistent with the general analysis of conductivities that was made earlier in [12] (see

also [15]).

Moving away from the low-frequency regime, with the scale set by the chemical po-

tential, a particularly striking conclusion of [1] was that the optical conductivity appears

1Drude-type physics has also been discussed in a holographic context in, for example, [7–17].
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to exhibit a power-law behaviour at intermediate frequencies. More precisely the optical

conductivity was seen to have the form

|σ(ω)| = Bω−2/3 + C , (1.1)

where B,C are frequency independent constants, and furthermore, the same behaviour was

also seen for other lattices and other spacetime dimensions in [2, 3, 5]. Since an intermediate

scaling of the optical conductivity for the high Tc cuprates is seen with the same scaling

exponent −2/3, albeit with C = 0 and a frequency independent phase (e.g. [18, 19]), it

is important to analyse this result in more detail. In fact for the holographic lattice that

we construct in this paper we will not see such scaling behaviour. We will discuss the

connection between our results and [1–3, 5] at the end of the paper.

A more recent motivation for studying holographic lattices is that it provides a frame-

work for investigating metal-insulator transitions within a holographic context [4]. This is

particularly interesting because there are many perplexing systems, such as the cuprates,

where such transitions are observed and holographic techniques may provide important

new insights. The strategy of [4] is to construct black holes dual to holographic lattices

that flow in the IR to metallic ground states and then to vary the strength and/or the

periodicity of the lattice aiming to induce a transition to a new insulating phase. In [4]

this was achieved using D = 5 electrically charged black holes dual to helical lattices. Fur-

thermore, new zero temperature insulating ground states that break translation invariance

were also found in [4].

An important technical issue that arises in constructing black holes dual to lattices

is that, in general, they require solving partial differential equations. For example, the

holographic lattices that were constructed in [1–3, 5] break translation invariance in one

of the spatial dimensions and lead to a problem in PDEs in two variables; the one spatial

direction as well as a radial direction. For the general setup where the translation invariance

is broken in all of the spatial directions, time independent black holes in D spacetime

dimensions will typically depend on D − 2 spatial variables as well as a radial variable,

leading to PDEs in D − 1 variables. For D = 4, 5 solving such PDEs numerically is an

involved exercise. An interesting exception is the construction of the D = 5 black holes

dual to helical lattices [4], where a Bianchi VII0 symmetry was utilised to construct black

holes by solving ODEs only.

In this paper we introduce a new framework for constructing holographic lattices that

also involves just solving ODEs. The key idea is to break the translation invariance by

exploiting a continuous global symmetry of the bulk classical gravitational theory. A simple

theory that can be used to illustrate the idea, which is also the theory we will focus on in

the paper, consists of Einstein-Maxwell theory coupled to a complex scalar field, φ. The

field φ is neutral with respect to the Maxwell field, and the model is taken to have a global

U(1) symmetry in addition to the U(1) gauge-symmetry associated with the Maxwell field.

For example, the Lagrangian density involving φ can take the form

L(φ) =
√
−g
[
−|∂φ|2 − V (|φ|)

]
, (1.2)
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leading to the following contribution to the bulk stress-tensor

Tµν(φ) = ∂(µφ∂ν)φ
∗ − 1

2
gµν

[
|∂φ|2 + V (|φ|)

]
. (1.3)

The breaking of the translation invariance in, say, the x1 direction can be achieved using

the ansatz φ = eikx1ϕ(r) and it is clear from the form of the stress tensor given in (1.3) that

this can be combined with an ansatz for the metric and Maxwell fields that is dependent on

the radial variable only.2 This construction shares some similarities with the construction

of Q-balls [21], which exploits a global symmetry and a time dependent phase to construct

spherically symmetric solitons, and so we call them holographic Q-lattices.

It is worth noting that this particular Q-lattice, involving a single complex scalar

field, can be viewed as arising from two real scalar fields, with the same mass, each with

a periodic spatial dependence in the same direction that is shifted by an amount π/2k.

In this sense it can be viewed as a simple generalisation of the lattice studied in [2].

More generally, this lattice construction can easily be extended to study the breaking of

translation invariance in additional spatial directions by considering a model with a larger

global symmetry. For example, one can use a model with additional complex scalar fields

and with additional global U(1) symmetries. One can also have larger global symmetry

groups and/or use higher rank tensor fields instead of scalars. Such lattices will be studied

in detail elsewhere.

The plan of the rest of the paper, including some of the key results, are as follows.

In section 2 we study D = 4 Einstein-Maxwell theory coupled to a complex scalar field

with a simple mass term. We construct Q-lattice black holes that describe metallic phases

which at zero temperature approach AdS2 × R2 in the far IR. We numerically calculate

the low temperature behaviour of the DC resistivity and extract the scaling behaviour

that is predicted from [12] using the memory matrix formalism. This comprises the first3

numerical confirmation of [12] for fully back reacted black holes and complements the

recent analytic results of [20] in the context of perturbative lattices. We also construct

black holes that describe insulating phases, realising the first holographic metal-insulator

transition for d = 3 field theories. At low temperatures there is a transfer of spectral

weight in the insulating phase and the real part of the optical conductivity develops a mid

frequency hump. Some details of the conductivity calculation is presented in section 3,

which includes some new technical material. Interestingly, the model that we analyse also

admits an AdS3 × R solution which we discuss in an appendix. We conclude with some

final comments in section 4, including a discussion of the absence of intermediary scaling

in the optical conductivity.

2 Black hole solutions

We shall consider D = 4 Einstein-Maxwell theory coupled to a complex field φ with action

given by

S =

∫
d4x
√
−g
[
R+ 6− 1

4
F 2 − |∂φ|2 −m2|φ|2

]
, (2.1)

2In the process of writing up this work, this possibility was also pointed out in a footnote in [20].
3We will comment on the results of [1] in section 4.
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where F = dA. We have set 16πG = 1 and also fixed the scale of the cosmological constant

for convenience. The equations of motion can be written

Rµν = gµν

(
− 3 +

m2

2
|φ|2

)
+ ∂(µφ∂ν)φ

∗ +
1

2

(
F 2
µν −

1

4
gµνF

2

)
,

∇µFµν = 0, (∇2 −m2)φ = 0 , (2.2)

and admit an AdS4 vacuum solution, with unit radius, which is dual to a d = 3 CFT. The

CFT has two global abelian symmetries. The first arises from the gauge symmetry in the

bulk and there is a corresponding conserved current which is dual to the bulk-gauge field

A. The second arises from the global symmetry in the bulk, associated with multiplying φ

by a constant phase, and there is not a corresponding conserved current4 in the CFT. The

CFT also has a complex scalar operator with scaling dimension ∆ = 3/2± (9/4 + m2)1/2

dual to the scalar field φ. We want this to be a relevant operator in a unitary CFT and

hence we take −9/4 ≤ m2 < 0.

The CFT at finite temperature T and chemical potential µ can be holographically

described by the standard electrically charged AdS-RN black solution given by

ds2 = −Udt2 − U−1dr2 + r2
(
dx2

1 + dx2
2

)
,

A = µ

(
1− r+

r

)
dt , (2.3)

with φ = 0 and U = r2 − (r2
+ + µ2

4 ) r+r +
µ2r2+
4r2

. The temperature is given by T = (12r2
+ −

µ2)/16πr+ and at T = 0 it approaches the following AdS2 × R2 solution as r → r+:

ds2 =
1

6
ds2(AdS2) + dx2

1 + dx2
2 ,

F =
1√
3
V ol(AdS2) , (2.4)

where ds2(AdSd) denotes the standard unit radius metric on AdSd.

For the mass window −9/4 ≤ m2 < −3/2 the scalar field φ violates the AdS2 BF bound

and hence the AdS-RN black hole solution will become unstable at some temperature,

leading to a different T = 0 ground state. In order to exclude this possibility, for most of

the paper we will consider

m2 = −3

2
↔ ∆ =

3 +
√

3

2
. (2.5)

At the end of the paper we will comment on the case m2 = −2 and ∆ = 2.

2.1 Black hole ansatz for the holographic Q-lattice

We are interested in describing the d = 3 CFT with chemical potential µ and an explicit

breaking of translation invariance in one of the spatial directions, which we take to be x1.

4A discussion of such global symmetries arising in a different holographic context appears in [22].
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The ansatz we shall consider is given by

ds2 = −Udt2 + U−1dr2 + e2V1dx2
1 + e2V2dx2

2 ,

A = adt ,

φ = eikx1ϕ , (2.6)

where U, V1, V2, a and ϕ are functions of the radial co-ordinate only and k is a constant.

Substituting this ansatz into (2.2) we find that the equations of motion can be equivalently

recast as four second order ODEs for V1, V2, a, ϕ and one first order ODE for U . It is useful

to note that this ansatz is invariant under the scaling t → ct, xi → cxi, r → c−1r and

U → c−2U, eVi → c−1eVi , a→ c−1a, k → c−1k.

We will impose the following boundary conditions on the ODEs. We demand that we

have a regular solution at the black hole event horizon at r = r+, which leads to an expan-

sion depending on six independent constants r+, V1+, V2+, V22, a+ and ϕ+. Specifically as

r → r+ we have

U = 4πT (r − r+) + . . . ,

V1 = V1+ +

(
1−

4e−2V1+ϕ2
+k

2

12− a2
+ − 2ϕ2

+m
2

)
V22(r − r+) . . . ,

V2 = V2+ + V22(r − r+) . . . ,

a = a+(r − r+) +

(
−1 +

2e−2V1+ϕ2
+k

2

12− a2
+ − 2ϕ2

+m
2

)
a+V22(r − r+)2 . . . ,

ϕ = ϕ+ +
4(m2 + e−2V1+k2)

12− a2
+ − 2ϕ2

+m
2
ϕ+V22(r − r+) . . . , (2.7)

where T is the temperature of the black hole given by

T = (4π)−1 12− a2
+ − 2ϕ2

+m
2

4V22
. (2.8)

At the UV boundary, r → ∞, we demand that we approach AdS4 with deformations

corresponding to chemical potential µ and lattice deformation parameter λ. We find that,

schematically, we can develop the expansion

U = r2 + · · · − M

r
+ . . . ,

V1 = log r + · · ·+ Vv
r3

+ . . . ,

V2 = log r + · · · − Vv
r3

+ . . . ,

a = µ+
q

r
. . . ,

ϕ =
λ

r3−∆
+ · · ·+ ϕc

r∆
+ . . . . (2.9)

This gives a UV expansion that depends on seven parameters M,Vv, µ, q, λ, ϕc and k.
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Notice that for fixed m2, the holographic Q-lattice is specified by three dimensionless

quantities fixing the deformations in the UV: T/µ, λ/µ3−∆ and k/µ. We thus expect a

three-parameter family of black holes. We have four second order ODEs and one first order

ODE, and so a solution is specified by nine parameters. We have six parameters for the

near horizon expansion plus another seven for the UV expansion. After subtracting one for

the scaling symmetry that the system of ODEs possesses, we deduce that there is indeed,

generically, a three-parameter family of black hole solutions. We also note that the scaling

symmetry can be used to set µ = 1 if one wishes.

We will choose specific values in the two-dimensional space parameterised by λ/µ3−∆

and k/µ, and then examine the behaviour as T/µ is lowered. In particular, we will see

that there is a transition from metallic to insulating behaviour as we move in this two-

dimensional space.

2.2 Black holes dual to the metallic phase

The CFT deformed by the Q-lattice will be in a metallic phase if the zero temperature

limit of the black hole solutions interpolate between the lattice deformed AdS4 in the UV

and the stable AdS2 × R2 solution in the IR. Indeed this will happen when the lattice

deformation in the UV becomes an irrelevant deformation of the AdS2 × R2 solution in

the IR, and then the general arguments of [12], based on the memory matrix formalism,

show that the T = 0 ground state should be metallic. In particular, at low temperatures,

T � µ, the DC resistivity is expected to scale as5

ρ ∼
(
T

µ

)2∆(k)−2

, (2.10)

where ∆(k) is the smallest scaling dimension of the k-dependent irrelevant operators in

the locally quantum critical theory arising in the IR. In addition to k, ∆(k) depends on

other UV data, as we discuss below. Furthermore, there should be a Drude peak in the

optical conductivity at small temperatures, which at T = 0 becomes a delta-function at

zero frequency.

To examine when this situation can arise we now analyse perturbations about the

AdS2 × R2 solution. Within our ansatz we consider

U = 6r2(1 + u1r
δ), V1 = v10(1 + v11r

δ), V2 = v20(1 + v21r
δ),

a = 2
√

3r(1 + a1r
δ), φ = eikx1ϕ1r

δ . (2.11)

The corresponding perturbations are associated with operators with scaling dimension

∆ = −δ or ∆ = δ+ 1 in the locally quantum critical IR theory captured by the AdS2×R2

solution. We find after substituting into the equations of motion the exponents come in

four pairs, satisfying δ+ + δ− = −1, with δ+ = 0, 0, 1 and a mode just involving the scalar

field with δ+ = δϕ, where

δϕ = −1

2
+

1

2
√

3

√
3 + 2m2 + 2e−2v10k2 . (2.12)

5Note that a different, non-standard, definition of ∆(k) is used in [4, 12, 20] for this expression.
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There is also another additional single mode with δ+ = −1 (corresponding to r+ in (2.15)

below). What is most significant here is that the scalar field perturbation will be an

irrelevant deformation in the IR (i.e. δϕ > 0), provided that the lattice deformation in the

IR satisfies

(e−v10k)2 > −m2 . (2.13)

In this case the dimension of the irrelevant operator in the locally quantum critical theory

is given by ∆(k) = 1 + δϕ and we have

∆(k) =
1

2
+

1

2
√

3

√
3 + 2m2 + 2e−2v10k2 . (2.14)

When (2.13) is satisfied we can use the two marginal modes with δ+ = 0 and the

two irrelevant modes to construct domain walls interpolating between the lattice deformed

AdS4 in the UV and the AdS2 × R2 solution in the IR. Specifically, we can develop the

following IR expansion

U = 6(r − r+)2

(
1− 4

3v10
V+(r − r+) + . . .

)
,

V1 = v10(1 + V+(r − r+) + . . . ) ,

V2 = v20

(
1 +

v10

v20
V+(r − r+) + . . .

)
,

a =
√

12(r − r+)(1− v10V+ . . . ) ,

ϕ = ϕ+(r − r+)δϕ + . . . . (2.15)

We have five IR parameters, r+, v10, v20, V+, ϕ+ and hence when combined with the UV ex-

pansion (2.9) and taking into the scaling symmetry, we expect, generically, a two parameter

family of solutions which can be labelled by λ/µ3−∆ and k/µ.

For the values of λ/µ3−∆, k/µ where these domain walls exist, we expect that they will

arise as the zero temperature limit of lattice deformed black holes which will have, for very

small T/µ, DC resistivity scaling as in (2.10) and a Drude peak in the optical conductivity

for small ω/µ, of the form

σ ∼ Kτ

1− iωτ
, (2.16)

for constant K, τ . It should be stressed that the value of ∆(k) appearing in the DC

resistivity depends on the value of v10 which is fixed by the details of domain wall solution,

including all UV data. In effect the value of v10 is renormalising the lattice momentum

from k in the UV to e−v10k in the IR.

One might expect that this metallic scenario unfolds for large wavelength and small

Q-lattice deformations of the AdS-RN black hole i.e. λ/µ3−∆ � 1 and k/µ � 1. As an

illustrative example, we have numerically constructed Q-lattice black holes in the metallic

phase with λ/µ = 1/2 and k/µ = 1/
√

2. By examining the properties of these solutions

– 7 –
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Figure 1. Black holes in the metallic phase for lattice parameters λ/µ = 1/2 and k/µ = 1/
√

2.

Panels (a) and (b) shows the real and imaginary parts of the optical conductivity, Re(σ) and Im(σ),

respectively, for four different temperatures. As the the temperature is lowered, the Drude peak

becomes more pronounced. Panel (c) shows the behaviour of the DC resistivity, ρ, as a function of

T/µ. The blue line is the data and the red dashed line is the scaling expected from (2.10). Panel

(d) shows a plot of 1 +ω|σ|′′/|σ|′ versus frequency; there is no evidence for an intermediate scaling

of the form (1.1), which corresponds to the red dashed line.

at very low temperatures, we find that they approach domain walls interpolating between

AdS4 in the UV and AdS2 × R2 in the IR. In section 3 we describe the calculation of the

optical conductivity; the results for the metallic phase black holes that we have constructed

are presented in figure 1.

In figure 1(c) we see that the DC resistivity increases with temperature and hence

we do indeed have a metallic phase. In figures 1(a) and 1(b) we have plotted the real an

imaginary part of the optical conductivity, respectively, for four different temperatures. In

particular, in 1(a) we see the Drude-type peaks appearing, which get more pronounced as

the temperature is lowered. By fitting6 to (2.16) we obtain the values for τµ and K/µ

given in table 1.

To observe the exact scaling behaviour ρ ∼ (T/µ)2∆(k)−2 = (T/µ)2δϕ , with ∆(k), δϕ,

as in (2.14), (2.12), as predicted by [12], is not straightforward because the scaling only

6For ω � T we make the four parameter fit: 1/σ = (a1 + a2ω
2)− iω(a3 + a4ω

2), for constants ai, where

we used σ∗(ω) = σ(−ω), and we note that a1 = (Kτ)−1 = ρ and a3 = K−1.
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T/µ τµ K/µ

0.1 20 0.37

0.0503 33 0.32

0.0154 113 0.26

0.00671 272 0.24

Table 1. Parameters after fitting to the Drude behaviour (2.16) for small ω, for the black holes in

the metallic phase for lattice parameters λ/µ = 1/2 and k/µ = 1/
√

2.

manifests itself when T � µ. We have constructed the black hole solutions down to

temperatures T/µ ∼ 2.5 × 10−7 and, as noted, we find that the black holes approach

the AdS2 × R2 solution. By identifying v10 with V1+ we deduce that k ∼ 0.707 gets

renormalised to a value e−v10k ∼ 2.236 and hence ∆(k) ∼ 1.413 corresponding to the

scaling ρ ∼ (T/µ)0.826. We have calculated the conductivity for temperatures down to

T/µ ∼ 7×10−4 and from this deduced the DC resistivity. The scaling behaviour eventually

manifests itself at these low temperatures as one can see from panel (c) of figure 1. Our

results in 1(c) are consistent with this scaling to the order of less than 1%. This is the

first direct check of the prediction of [12] for back-reacted holographic lattices.7 Note that

for very large temperatures the resistivity should eventually approach unity, which is the

constant value for the AdS-Schwarzschild black hole at zero momentum [24].

We can also investigate the possibility that there is a scaling of the form (1.1), which

has been reported for other models in the range 2 . ωτ . 8 [1–3, 5]. If this scaling is

present then 1+ω|σ|′′/|σ|′ = −2/3. Our results are plotted in figure 1(d) and, for example,

from table 1 for T/µ = 0.1 the relevant range is 0.1 . ω/µ . 0.4, while for T/µ = 0.00671 it

is 0.0073 . ω/µ . 0.029. Our results show that there is a strong temperature dependence

and there is no evidence of a mid frequency scaling region. Note that |σ| has a minimum

at some value of ω and hence the function 1 + ω|σ|′′/|σ|′ will diverge at that point and,

furthermore for larger values of ω it will be positive. Finally we note that for very large

ω/µ and fixed T , the conductivity should approach that of the AdS-RN black hole with

σ → 1 [24].

2.3 Black holes dual to the insulating phase

The metallic phase discussed in the last subsection arises for a given UV lattice, specified

by λ/µ3−∆ and k/µ, whenever the T = 0 ground state approaches AdS2 × R2 in the far

IR. In this section we will construct black holes where this does not occur and we will see

that they exhibit insulating behaviour.

We focus on the specific values λ/µ3−∆ = 2 and k/µ = 1/23/2. The optical conductivity

and the DC resistivities for these black holes are displayed in figure 2. The DC resistivity

is increasing as we lower the temperature indicating that the system is in an insulating

7The recent analytic results on the scaling of the DC resistivity for perturbative lattices [20] also con-

firmed the prediction of [12]. Note, though, that the order in perturbations that were considered do not

include back reaction of the metric and, in particular, that length scales get renormalised from the UV to

the IR. Analytic results for back-reacted Q lattice black holes will appear in [23].
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Figure 2. Black holes in the insulating phase for lattice parameters λ/µ3−∆ = 2 and k/µ = 1/23/2.

Panel (a) shows the behaviour of the DC resistivity, ρ, as a function of T/µ. Panels (b) and (c) show

the real and imaginary parts of the optical conductivity, Re(σ) and Im(σ), respectively, for four

different temperatures. For very low temperatures we see in panel (b) the suppression of spectral

weight for small ω and the development of a mid-frequency hump.

phase. Furthermore, for very low temperatures, for example T/µ ∼ 0.00118, we see that

the real part of the optical conductivity reveals a suppression of spectral weight for small

ω/µ, with the weight being transferred to a mid frequency hump. Very similar behaviour

was seen for the helical lattice black holes dual to insulating phases in [4].

Lowering the temperature further we might expect to find the T = 0 ground states for

this insulating phase. Actually this is not guaranteed as there are certainly situations in

holography where black holes only exist down to a minimum temperature, for example [25].

For the insulating black holes with the above lattice parameters we have found an inter-

esting feature at the low temperature Tc/µ ∼ 2.8 × 10−5. Specifically we find that there

appears to be a kink in the entropy density versus temperature curve, with s′(Tc) = 0,

which at first sight appears to represent a minimum temperature. However, closer detailed

numerical investigation shows that there is another branch of insulating black holes at lower

temperature, with broadly similar insulating behaviour. The simplest interpretation is that

there is a first order transition at Tc. Assuming this to be the case, we have found that the

low temperature branch exists at least down to the ultra low temperatures T/µ ∼ 10−9.
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Furthermore, we find that the entropy density is going to zero and that the solutions are

becoming singular. We are particularly interested in extracting the far IR behaviour of the

T = 0 black holes. However, in general, this is a non-trivial task unless some simplification

represents itself in the numerical solutions, such as the functions approaching a power-law

behaviour. We have not been able to find any evidence for such power law behaviour in

the present setting.

It would be certainly interesting to explore these issues further. Note that we have

considered other values for the UV lattice data, finding somewhat similar results, but a

more comprehensive analysis of the behaviour for general values of λ/µ3−∆ and k/µ is

left for future work. One point that is worth highlighting is that the model also possesses

another fixed point solution that may play an important role in understanding the phase

structure of the model. As we describe in the appendix there is a novel electrically neutral

AdS3 × R fixed point solution with a spectrum containing modes corresponding to both

irrelevant and relevant operators. The presence of the relevant operator indicates that for

generic lattice data it will not be possible to construct domain wall solutions interpolating

between AdS4 in the UV and AdS3×R in the IR. However, it is possible that a fine tuned

domain wall solution exists for specific lattice data, which might correspond to an unstable

RG flow providing a bifurcation between the metallic and insulating behaviours analogous

to what was observed for the helical black hole lattices in [25].

3 Conductivity

In this section we explain how we calculate the conductivity for the black holes that we

have constructed. Although the general idea is standard, the technical implementation in

the presence of the lattice deformation warrants some discussion. We consider the following

consistent linear perturbation about the black hole solutions

δgtx1 = δhtx1(t, r) ,

δAx1 = δax1(t, r) ,

δφ = ieikx1δϕ(t, r) , (3.1)

where δhtx1 , δax1 and δϕ are all real functions of (t, r) and we note the factor of i in the

last line. After substituting into the equations of motion we obtain real partial differential

equations. We next allow for a time dependence of the form e−iωt by writing

δhtx1(t, r) = e−iωtδhtx1(r) ,

δax1(t, r) = e−iωtδax1(r) ,

δϕ(t, r) = e−iωtδϕ(r) , (3.2)

and we are lead to the following system of ODEs:

δa′′x1 +
(
U−2ω2 − U−1a′2

)
δax1 +

(
U−1U ′ − V ′1 + V ′2

)
δa′x1

+2i
k

ω
a′
(
ϕ′δϕ− ϕδϕ′

)
= 0,
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δϕ′′ +
(
U−2ω2 −m2U−1 − k2U−1e−2V1

)
δϕ

+
(
U−1U ′ + V ′1 + V ′2

)
δϕ′ − ikωU−2e−2V1ϕδhtx1 = 0 ,

δh′tx1 + a′δax1 − 2V ′1δhtx1 − 2i
k

ω
U
(
ϕ′δϕ− ϕδϕ′

)
= 0 . (3.3)

At the black hole event horizon we impose purely ingoing boundary conditions with

the perturbations behaving as

δax1 = (r − r+)−iω/4πT
(
δa(+)
x1 + . . .

)
,

δϕ = (r − r+)−iω/4πT
(
δϕ(+) + . . .

)
,

δhtx1 = (r − r+)−iω/4πT (δh
(+)
tx1

(r − r+) + . . . ) , (3.4)

where the dots refer to terms higher order in (r− r+). The regularity of this perturbation

at the black horizon can be seen by using ingoing Eddington-Finklestein coordinates (v, r)

with v = t+ log(r − r+)
1

4πT . Using the equations of motion we find that this expansion is

fixed by two parameters δa
(+)
x1 , δϕ(+) with

δh
(+)
tx1

= −a+δa
(+)
x1 + 2kϕ+δϕ

(+)

r2
+(1− i ω

4πT )
. (3.5)

In the UV we impose that as r →∞:

δhtx1 = δh
(0)
tx1
r2 + . . . ,

δax1 = δa(0)
x1 +

δa
(1)
x1

r
+ . . . ,

δϕ =
δϕ(0)

r3−∆
+ · · ·+ δϕ(1)

r∆
+ . . . . . (3.6)

Now we are interested in a perturbation that switches on an electric field and then we

want to read off the current to obtain the conductivity. One might be tempted to set

δh
(0)
tx1

= δϕ(0) = 0 but this over constrains the system. To see this we note that a solution to

the ODEs (3.3) is specified by five parameters. From the IR and UV expansions (3.4), (3.6)

we have a total of seven parameters. However, since the ODEs (3.3) are linear we can scale

one of the seven parameters to unity, leaving six. This means that we need to impose just

one more constraint on the parameters. This constraint can be found as follows.

To ensure that we are extracting just the current-current correlator, we can use diffeo-

morphisms and gauge-transformations to demand that the perturbation satisfies, as r →∞,

1

r2
(δgµν + Lζgµν)→ 0 ,

δA+ LζA+ dΛ→ e−iωtµx1dx1 ,

r3−∆ (δφ+ Lζφ)→ 0 , (3.7)

where ζµ and Λ are smooth and µx1 will be the source for the current. For our specific

set-up we can take Λ = 0 and the only non-vanishing component of ζµ to be ζx = εe−iωt
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where ε is a small parameter. From this we can deduce that we have µx1 = δa
(0)
x1 and that

we should impose the condition

δϕ(0) − ikλ
ω
δh

(0)
tx1

= 0 . (3.8)

The optical conductivity is then given by

σ(ω) = − i
ω

δa
(1)
x1

δa
(0)
x1

. (3.9)

The DC resistivity is given by ρ = 1/σ(0). It is worth mentioning that to calculate ρ

numerically, one needs to calculate the optical conductivity for ω � T .

4 Final comments

We have studied holographic Q-lattices for Einstein-Maxwell theory coupled to a single

complex scalar field in D = 4 space-time dimensions. We have shown that the system

exhibits both metallic and insulating phases. The metallic phase is governed by the elec-

trically charged AdS2 ×R2 solution that appears in the IR region of the T = 0 electrically

charged AdS-RN solution. We showed in detail that the phase exhibits a Drude-type

peak and furthermore, at low temperatures the DC resistivity exhibits a scaling behaviour

confirming the prediction of [12].

We have also constructed Q-lattice black holes in a new insulating phase down to

very low temperatures. For temperatures lower than T/µ ∼ 10−3 we see a transferral of

spectral weight in the optical conductivity and the generation of a mid frequency hump.

At temperatures T/µ ∼ 2.8 × 10−5 we have found evidence for a first order transition

to another branch of insulating black holes. It would be interesting to investigate these

further including trying to elucidate the ultimate IR ground states at T = 0 which seem

to have vanishing entropy density. A possibly related issue, is to further understand the

role played by the neutral AdS3 × R ground state that we have found and discussed in

the appendix.

We focussed on the case where the mass of the complex scalar is given by m2 = −3/2

with ∆ = (3 +
√

3)/2 in the d = 3 CFT, which saturates the AdS2 × R2 BF bound,

corresponding to a stable metallic phase. We have also made some numerical investigations

into the case m2 = −2 with ∆ = 2 in the d = 3 CFT. We have constructed black holes with

conductivities exhibiting metallic and insulating behaviours much as in figure 1. However,

for this case the complex scalar violates the AdS2×R2 BF bound and hence, at least for the

metallic black holes, one will find an additional new phase appearing at low temperatures.8

When there is no lattice deformation a possible ground state for this model was identified

in [26]. It will be interesting to see how this is modified by the lattice deformation and also

to investigate the impact on the insulating phase.

It is also natural to consider a more general class of models including a coupling of the

scalar field to the gauge field and a more general potential than the simple mass term. We

8The same is true for the model considered in [1].

– 13 –



J
H
E
P
0
4
(
2
0
1
4
)
0
4
0

expect that within this more general class of models it will be possible to obtain the many

novel IR ground states in explicit form [23]. It will be particularly interesting to explore

interconnections with charge density waves [27] which should lead to close analogues of Mott

insulating ground states. Such models can be studied in various spacetime dimensions.

For the Q-lattices that we have constructed for specific values of lattice strength λ and

wave-number k, for both m2 = −3/2 and m2 = −2, we find no evidence that the metallic

phase has an intermediate scaling of the form (1.1). How can this be reconciled with the

results reported in [1–3, 5], where numerical evidence for this behaviour was found and

moreover it was suggested that this might be a universal feature of holographic lattices?

One possibility is that the numerical evidence found in those papers is actually misleading

and in fact there is not a robust power-law behaviour for the lattices considered.

An interesting perspective is to consider the same model (2.1) that we have in this

paper, but with a family of lattice deformations, labelled by α, given by

φ =
√

2λ (cosα cos kx1 + i sinα sin kx1)
1

r3−∆
+ . . . (4.1)

as r → ∞. For α = π/4 this gives the family Q-lattices that we discussed in this paper,

while for α = 0 it gives the lattices discussed in [2] (who just considered m2 = −2). Notice

that the strength of the lattice, λ, does not depend on α and also that for α 6= (2n+1)π/4,

for integer n, the metric will be co-homogeneity two and one will need to solve PDEs.

For this general family of lattices we can use the results of [12] and also of [27, 28] to

deduce the scaling behaviour of the DC resistivity in the metallic phase. In addition to the

scalar mode with wave-number k, with dimension (2.14) in the IR, one also needs to take

into account9 longitudinal modes involving perturbations inAt, Ax1 and gtt, gx1x1 , gtx1 , gx2x2
and with wave-number 2k (corresponding to the fact that the scalar lattice sources them

at least at quadratic order). From the analysis presented in [27] (in particular equation

(2.17)), one can deduce that when m2 ≤ −1/4 the DC resistivity scaling will always be

determined by the decoupled scalar mode in the IR. Interestingly for −1/4 < m2 < 0, for

certain windows of k, the scaling can be determined by the longitudinal modes. Note

in particular, for the scalar lattice in [1] with m2 = −2 and α = 0, we are arguing

that the DC resistivity scaling is actually governed by the scalar mode and not one of

the longitudinal modes as was stated in [1]. Note that this work also claimed to see a

numerical fit to a scaling governed by the longitudinal mode: we believe that the fitting

was misleading and that continuing to lower temperatures will reveal the scaling behaviour

that we are predicting.

It is also worth pointing out that we do not expect the black hole solutions will be

substantially different as we vary α away from π/4, despite the fact that one is solving

PDEs instead of ODEs as in this paper. While additional harmonics of the bulk fields will

play a role, the higher harmonics are expected to be exponentially suppressed. In fact this

was seen in the numerical work in [1]. Thus it is natural to expect that conductivity for

non-zero ω is also not substantially different from what we have seen in this paper.

9Note that there will also be scalar modes with wave-number nk and longitudinal modes with wave-

number 2nk, for n > 1, but these will be more irrelevant in the IR and hence will not dominate the scaling

of the DC resistivity.
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All of the constructions in this paper have just involved classical gravity. it is worth

recalling, however, that there are good reasons to expect that there are no global symmetries

in theories of quantum gravity (e.g. [29]). One point of view is that we are just studying

a sector of a larger classical theory that does not have a global symmetry. Alternatively

we can view the breaking of the continuous symmetry as a higher order effect in the large

N expansion. Within these contexts, or closely related ones, we think that top-down

constructions should be possible.

Finally we point out that the holographic lattice constructions that we have discussed

in this paper, where the translation symmetry is broken explicitly, can also be adapted to

situations where the the symmetry is broken spontaneously.
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A A novel AdS3 × R solution

Provided that m2 < 0 (equivalently, the operator dual to φ in the d = 3 CFT dual to

the AdS4 vacuum is a relevant operator), the model (2.1) admits an electrically neutral

AdS3 × R solution given by

ds2 =
1

3
ds2(AdS3) + dx2

1 ,

φ =
6

−m2
ei
√
−m2x1 , (A.1)

with A = 0.

To explore whether there are domain wall solutions which can connect this solution

with AdS4, we investigate the spectrum for this fixed point. Within our ansatz (2.6) we

can consider the perturbations given by

U = 3r2(1 + u1r
δ), V1 = v11r

δ, V2 = log(r) + v21r
δ,

a = a1r
1+δ, φ =

(
6

−m2

)1/2

ei
√
−m2x1φ1r

δ . (A.2)

These perturbations correspond to scaling dimension ∆ = −δ or ∆ = δ + 2 in the d = 2

CFT dual to the AdS3 × R solution. We find that the exponents come in four pairs with

δ+ + δ− = −2 and there is an unpaired mode with δ = −1. The paired modes have δ+

values given by 0,−1 and

δ1 = −1 +
1√
3

√
9− 2

√
3
√

3−m2, δ2 = −1 +
1√
3

√
9 + 2

√
3
√

3−m2 . (A.3)
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We see that in the mass range −9/4 ≤ m2 < 0, which is relevant for trying to map onto

AdS4 in the UV, δ1 corresponds to a relevant operator (i.e. δ1 < 0) and δ2 corresponds

to an irrelevant operator (i.e. δ2 > 0). Note that both of these deformations have a1 = 0

in (A.2) and do not involve the gauge-field.

A parameter count now reveals that, generically, because of the presence of the relevant

operator, there will not be domain wall solutions interpolating between the lattice deformed

AdS4 in the UV and AdS3 × R in the IR. However, there is the possibility that there is a

fine-tuned domain wall solution. If this exists it might correspond to a bifurcating, unstable

RG solution, separating the metallic and insulating behaviours, as in figure 2 of [4].

More generally, we expect that there are closely related models where the AdS3 ×
R geometry has irrelevant operators in the IR so that one can construct domain walls

that interpolate from the Q-lattice deformed AdS4 in the UV. Furthermore, changing

the dimension of space-time and the number, n, of spatial directions where translation

invariance is broken by the holographic Q-lattice will allow one to construct domain walls

from AdSD in the UV and various AdSD−n × Rn in the IR. This will be explored in

detail elsewhere.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.

References

[1] G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices,

JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

[2] G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP

11 (2012) 102 [arXiv:1209.1098] [INSPIRE].

[3] G.T. Horowitz and J.E. Santos, General relativity and the cuprates, arXiv:1302.6586

[INSPIRE].

[4] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9

(2013) 649 [arXiv:1212.2998] [INSPIRE].

[5] Y. Ling, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic lattice in Einstein-Maxwell-dilaton

gravity, JHEP 11 (2013) 006 [arXiv:1309.4580] [INSPIRE].

[6] P. Chesler, A. Lucas and S. Sachdev, Conformal field theories in a periodic potential: results

from holography and field theory, Phys. Rev. D 89 (2014) 026005 [arXiv:1308.0329]

[INSPIRE].

[7] A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870]

[INSPIRE].

[8] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near

quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76

(2007) 144502 [arXiv:0706.3215] [INSPIRE].

[9] S.A. Hartnoll and C.P. Herzog, Ohm’s law at strong coupling: S duality and the cyclotron

resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

– 16 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP07(2012)168
http://arxiv.org/abs/1204.0519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0519
http://dx.doi.org/10.1007/JHEP11(2012)102
http://dx.doi.org/10.1007/JHEP11(2012)102
http://arxiv.org/abs/1209.1098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1098
http://arxiv.org/abs/1302.6586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6586
http://dx.doi.org/10.1038/nphys2701
http://dx.doi.org/10.1038/nphys2701
http://arxiv.org/abs/1212.2998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2998
http://dx.doi.org/10.1007/JHEP11(2013)006
http://arxiv.org/abs/1309.4580
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4580
http://dx.doi.org/10.1103/PhysRevD.89.026005
http://arxiv.org/abs/1308.0329
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0329
http://dx.doi.org/10.1088/1126-6708/2007/09/024
http://arxiv.org/abs/0705.3870
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.3870
http://dx.doi.org/10.1103/PhysRevB.76.144502
http://dx.doi.org/10.1103/PhysRevB.76.144502
http://arxiv.org/abs/0706.3215
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3215
http://dx.doi.org/10.1103/PhysRevD.76.106012
http://arxiv.org/abs/0706.3228
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3228


J
H
E
P
0
4
(
2
0
1
4
)
0
4
0

[10] S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic

holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

[11] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by

gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].

[12] S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys.

Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].

[13] Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Lattice potentials and fermions in holographic

non Fermi-liquids: hybridizing local quantum criticality, JHEP 10 (2012) 036

[arXiv:1205.5227] [INSPIRE].

[14] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

[15] R. Mahajan, M. Barkeshli and S.A. Hartnoll, Non-Fermi liquids and the Wiedemann-Franz

law, Phys. Rev. B 88 (2013) 125107 [arXiv:1304.4249] [INSPIRE].

[16] R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013)

086003 [arXiv:1306.5792] [INSPIRE].

[17] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Charge transport by holographic

Fermi surfaces, Phys. Rev. D 88 (2013) 045016 [arXiv:1306.6396] [INSPIRE].

[18] D. van der Marel et al., Quantum critical behaviour in a high-Tc superconductor, Nature 425

(2003) 271 [cond-mat/0309172].

[19] D. van der Marel, F. Carbone, A.B. Kuzmenko and E. Giannini, Scaling properties of the

optical conductivity of bi-based cuprates, Ann. Phys. 321 (2006) 1716 [cond-mat/0604037].

[20] M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton a mass, Phys. Rev.

Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].

[21] S.R. Coleman, Q balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744]

[INSPIRE].

[22] I. Amado et al., Holographic type II goldstone bosons, JHEP 07 (2013) 108

[arXiv:1302.5641] [INSPIRE].

[23] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography,

arXiv:1401.5077 [INSPIRE].

[24] C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and

M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

[25] A. Donos and J.P. Gauntlett, Superfluid black branes in AdS4 × S7, JHEP 06 (2011) 053

[arXiv:1104.4478] [INSPIRE].

[26] G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors,

JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].

[27] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013)

126008 [arXiv:1303.4398] [INSPIRE].

[28] M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10

(2010) 058 [arXiv:1005.4075] [INSPIRE].

[29] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D

83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

– 17 –

http://dx.doi.org/10.1007/JHEP04(2010)120
http://arxiv.org/abs/0912.1061
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1061
http://dx.doi.org/10.1126/science.1189134
http://inspirehep.net/search?p=find+J+Science,329,1043
http://dx.doi.org/10.1103/PhysRevLett.108.241601
http://dx.doi.org/10.1103/PhysRevLett.108.241601
http://arxiv.org/abs/1201.3917
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3917
http://dx.doi.org/10.1007/JHEP10(2012)036
http://arxiv.org/abs/1205.5227
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5227
http://arxiv.org/abs/1301.0537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0537
http://dx.doi.org/10.1103/PhysRevB.88.125107
http://arxiv.org/abs/1304.4249
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4249
http://dx.doi.org/10.1103/PhysRevD.88.086003
http://dx.doi.org/10.1103/PhysRevD.88.086003
http://arxiv.org/abs/1306.5792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5792
http://dx.doi.org/10.1103/PhysRevD.88.045016
http://arxiv.org/abs/1306.6396
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6396
http://dx.doi.org/10.1038/nature01978
http://dx.doi.org/10.1038/nature01978
http://arxiv.org/abs/cond-mat/0309172
http://dx.doi.org/10.1016/j.aop.2006.04.012
http://arxiv.org/abs/cond-mat/0604037
http://dx.doi.org/10.1103/PhysRevLett.112.071602
http://dx.doi.org/10.1103/PhysRevLett.112.071602
http://arxiv.org/abs/1310.3832
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3832
http://dx.doi.org/10.1016/0550-3213(85)90286-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B262,263
http://dx.doi.org/10.1007/JHEP07(2013)108
http://arxiv.org/abs/1302.5641
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5641
http://arxiv.org/abs/1401.5077
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5077
http://dx.doi.org/10.1103/PhysRevD.75.085020
http://arxiv.org/abs/hep-th/0701036
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701036
http://dx.doi.org/10.1007/JHEP06(2011)053
http://arxiv.org/abs/1104.4478
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4478
http://dx.doi.org/10.1088/1126-6708/2009/11/015
http://arxiv.org/abs/0908.3677
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3677
http://dx.doi.org/10.1103/PhysRevD.87.126008
http://dx.doi.org/10.1103/PhysRevD.87.126008
http://arxiv.org/abs/1303.4398
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4398
http://dx.doi.org/10.1007/JHEP10(2010)058
http://dx.doi.org/10.1007/JHEP10(2010)058
http://arxiv.org/abs/1005.4075
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4075
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://arxiv.org/abs/1011.5120
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120

	Introduction
	Black hole solutions
	Black hole ansatz for the holographic Q-lattice
	Black holes dual to the metallic phase
	Black holes dual to the insulating phase

	Conductivity
	Final comments
	A novel AdS(3) x R solution

