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We describe a novel interferometric method, based on nested Fresnel zone lenses or photon sieves, for
testing and measuring the radius of curvature of precision spherical surfaces that have radii in a range
between several meters and a few hundred meters. We illustrate the measurement concept with
radius measurements of a spherical mirror with a radius of about 10 m. The measured radius is
9877 mm� 10 mm for a coverage factor k � 2. Our measurements also demonstrate, for the first time
to the best of our knowledge, the utility of photon sieves for precision surface metrology because they
diffuse higher diffraction orders of computer generated holograms, which reduces coherent noise.
OCIS codes: (050.1965) Diffractive lenses; (220.4840) Testing.
http://dx.doi.org/10.1364/AO.53.004532

1. Introduction

Precise spherical surfaces are important for many
applications in science and engineering. For exam-
ple, spherical surfaces remain fundamental building
blocks for even the most advanced optical imaging
systems because spherical surfaces with low spheric-
ity errors can be manufactured at acceptable cost [1].
Nearly spherical surfaces are characterized by the
radius of the best-fit sphere, in the least squares
sense, and the sphericity, a map of deviations from
the best-fit sphere. The interferometric radius bench
method is an established procedure for measuring
the radius of curvature of convex or concave spherical
surfaces when a low measurement uncertainty is
required [2]. In this method a transmission sphere,
or Fizeau objective, is used to create a spherical
wavefront that comes to a focus. The spherical test
surface is first positioned such that the focus is at
the surface of the test part and the test beam of the
interferometer is reversed (cat’s eye position). The
test part is then moved along the optical axis of
the interferometer until its center of curvature
coincides with the focus of the test beam (confocal
position). The cat’s eye and confocal positions can

be located with low uncertainty using phase-shifting
interferometry [3,4]. The distance between these two
positions is the radius of the spherical test part.
When a displacement measuring laser interferom-
eter is used to measure the displacement between
the cat’s eye and confocal positions, relative uncer-
tainties of 10−4 or below can be achieved [3,5,6].
Further improvement is possible when motion errors
of the translation stage are characterized and
compensated in the measurement [7,8]. In practice,
the range of radii that can be measured with the
radius bench method is limited by the length of
the available radius bench. Larger radii can some-
times be measured using special setups in which
the interferometer test beam is folded [9,10]. Gener-
ally, however, measurements of large radii with
low uncertainty remain very challenging unless
the radii are large enough to permit interferometric
measurements against a transmission flat [11].

We have recently described a modified radius
bench method for spherical test surfaces with large
radius of curvature in which the transmission
sphere is replaced by a nested zone lens that
generates separate wavefronts for the cat’s eye and
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confocal positions [12]. The measurement procedure
is illustrated in Fig. 1. A central zone lens creates
a focus that defines a cat’s eye position, while a
larger annular zone lens is used to define a confocal
position. In this way it becomes possible to measure
a large radius using only a comparatively small
displacement between the cat’s eye and confocal
positions, because

R � f 1 � f 2 � δ; (1)

where R is the radius of the spherical test part, f 1
and f 2 are the focal lengths of the annular and
central zone lenses, and δ is the displacement
between the cat’s eye and confocal positions. Our first
implementation of the nested zone lens successfully
demonstrated the radius measurement method, but
it had several disadvantages that limited its practi-
cal usefulness. The zone lenses were fabricated on a
special wedged substrate with an angle between the
front and back surfaces to eliminate interference be-
tween the surfaces. Wedged substrates are not only
costly, but cause problems with the lithographic fab-
rication of the zone lenses because they are incom-
patible with most lithography tools. An even more
serious problem is that the small diffraction angles
in the zone lens for the confocal position make it very
difficult to separate the diffraction orders of the zone
lens. Even with a spatial filter in the imaging arm of
the interferometer, the measurements were affected
by a significant amount of coherent stray light from
unwanted diffraction orders. In this paper we de-
scribe several improvements of the original concept
described in [12] that overcome most of its limita-
tions and make nested zone lenses a useful tool for

characterizing the radii of spherical precision surfa-
ces with a large radius of curvature.

2. Measurement Setup

Instead of the radius bench setup described in [12]
and shown in Fig. 1, in which the spherical test
mirror is moved between the cat’s eye and confocal
positions, we chose the simplified measurement
setup shown in Fig. 2. The zone lens (ZL in Fig. 2)
is designed such that the cat’s eye and confocal posi-
tions are the same. When the focus of the central
zone lens with focal length, f 2, is on the test part sur-
face, the curvature of the wavefront created by the
annular zone lens matches the nominal curvature
of the test part. This is equivalent to setting δ � 0
in Eq. (1). The nested zone lens thus becomes a holo-
graphic test plate comparable to the interferometric
test plates that are used in optics shops to test the
radii of lens surfaces. When the focus of the central
zone lens is located on the test part surface and no
fringes are seen in the interferometer, the fringes ob-
served in the annular area of the zone lens are amea-
sure of the difference between the nominal and
actual test part radius. The sensitivity of the annular
fringe pattern to test part radius is low, allowing a
relatively large range of test part radii to be mea-
sured with a single hologram while ultimately limit-
ing the achievable accuracy of the method. For the
design of the test plate an initial estimate of the
part radius is required, which can be obtained, for
example, with a mechanical spherometer.

Efficient lithographic fabrication of the nested
zone lens at acceptable cost requires plane-parallel
glass substrates. This, however, complicates the ap-
plication of the zone lenses with interferometers be-
cause the reflection from the unpatterned substrate
surface creates additional fringe systems that im-
pede the analysis of the fringes originating from
the test and reference surfaces that form the interfer-
ometer cavity of interest (indicated in blue curves in
Figs. 1 and 2). This problem can be avoided by a de-
sign with a tilted zone lens, or a design in which the
zone lens is set up in a focused test beam, as shown in
Fig. 2, instead of a collimated beam. Our zone lenses
were placed in the beam created by an f/7 transmis-
sion sphere (Fizeau objective) with an aperture of

Fig. 1. Radius bench method with a nested zone lens (see [12]).
ZL denotes the nested zone lens, and TF denotes an interferometer
transmission flat. The surfaces of the interferometer cavity are
indicated with dotted (blue) lines.

Fig. 2. Schematic of radius test setup with a holographic test
plate. ZL denotes the nested zone lens, or photon sieve, and TS
denotes an f/7 interferometer transmission sphere. The interfer-
ometer cavity is marked with dotted (blue) lines.
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150 mm. A second important advantage of the non-
collimated test beam is that the diffraction angles at
the annular zone lens are increased, which makes
it far easier to separate the diffraction orders of
Fresnel type zone lenses.

We fabricated two types of holographic test plates
for measuring the radius of an aluminum coated con-
cave mirror with a radius of curvature of about 10 m
and 50 mm part diameter. The respective zone lenses
were positioned 350 mm from the intersection of the
transmission sphere reference surface with the opti-
cal axis such that the zone lenses faced the test mir-
ror. The central zone lens had a diameter of 10 mm
and a focal length, f 2, of 80 mm. The annular zone
lens had an outer diameter of about 50 mm, close
to the diameter of the mirror under test, and a focal
length of 9434 mm. The general layout of the zone
lenses is shown in Fig. 3. An additional hologram
is needed to align the test plate in the test beam
of the interferometer [13]. The alignment hologram
is the red annular area shown in Fig. 3. It is a Fresnel
type retroreflector that was used in the 2nd diffrac-
tion order. The zone lenses were designed using com-
mercial optical ray tracing software for a test mirror
with a design radius of 9514 mm. The phase func-
tions of the test plate zone lenses were modeled with
radial Zernike polynomials; the phase function of the
alignment retroreflector was modeled using an even
radial polynomial. The phase functions of the zone
lenses also compensate for the spherical aberration
that is incurred by the focused test beam as it
traverses the zone lens substrate.

Two types of test plates were fabricated. In the
first type all holograms were realized as Fresnel type
phase holograms. Fresnel zone boundaries were cal-
culated from the phase functions using an isophase

contouring algorithm similar to the one described in
[14]. Fresnel zone boundaries were then rendered
with polygons suitable for lithographic fabrication
using a maskless lithography tool. In the second type
of test plate, the annular lens (green, largest shaded
area, in Fig. 3) was realized as a phase photon sieve.
Photon sieves were first suggested as improvements
of Fresnel zone lenses and mirrors for the focusing of
x rays [15–17]. They are related to earlier work on
binary Gabor zone lenses [18] and onmodulated zone
lenses [19]. Photon sieves are derived from Fresnel
zone lenses by replacing the contiguous Fresnel
zones with circular apertures that are placed at ran-
domized positions along the Fresnel zone. The distri-
bution of aperture positions and the distribution of
aperture diameters can be varied to tailor the optical
properties of a photon sieve to a specific application.
The greatest appeal of photon sieves for surface
metrology applications, like the one described here,
is that they offer a new approach to the management
of diffraction orders. Fresnel zone lenses diffract
light into higher diffraction orders at a discrete
set of diffraction angles. With photon sieves it is
possible to distribute the energy in the higher diffrac-
tion orders into a wide range of diffraction angles,
because they consist of a large number of apertures
at randomized angular positions. This makes it
possible to reduce or eliminate coherent noise in in-
terferometric surface form measurements. The inset
in Fig. 3 shows a small section of the photon sieve
layout that we designed for the radius test plate.
Our design essentially follows the original photon
sieve design introduced by Kipp et al. [15,16], with-
out the radial apodization in aperture density to
maintain uniform diffraction efficiency. For each
Fresnel zone, the diameter of the photon sieve aper-
tures was set to 1.53 times the width of the underly-
ing zone. The azimuthal position of the apertures
was randomized while overlapping apertures were
avoided. The sum of the aperture areas belonging
to a Fresnel zone was designed to be the same as
the area of the underlying Fresnel zone. The aper-
ture diameter was slightly adjusted to ensure an
integral number of apertures. The central and align-
ment zone lenses were of the Fresnel type in both
cases because the larger diffraction angle makes
the separation of diffraction orders unproblematic.

The holographic radius test plates were fabricated
in the Nano-Structured Optics Laboratory at the
National Institute of Standards and Technology
(NIST) on 6.5 mm thick substrates made from a boro-
silicate float glass [20] using a zone plate array
lithography (ZPAL) tool [21,22]. During the litho-
graphic exposure the temperature in the lithography
tool was maintained at 20°C within 0.01°C. After
patterning of the photoresist the substrates were
dry etched in an argon–chlorine plasma to a depth
d � λ∕�2n − 2� ≈ 670 nm, where λ � 632.82 nm is
the laser wavelength, and n � 1.47 is the refractive
index of the substrate material [23]. The etch depth
was chosen tomaximize the diffraction efficiency into

Fig. 3. Layout of a radius test plate with a central zone lens and
an annular photon sieve. The red area (outer ring) is a Fresnel
zone mirror that retroreflects the spherical test wavefront, for
alignment of the hologram in the test beam of the interferometer.
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the�1 diffraction orders. The alignment zone mirror
(see Fig. 3) was used in the first diffraction order.
During dry etching, the alignment zones were
covered with an adhesive polyimide film after an etch
depth of d � λ∕�4n� ≈ 108 nm was reached to ensure
adequate diffraction efficiency for the alignment
hologram [23].

3. Measurement Results and Uncertainty

Measurements of the spherical mirror with a nomi-
nal radius of 9514 mmwere set up in the test beam of
a phase-shifting Fizeau interferometer at NIST,
which was equipped with an f/7 transmission sphere
as indicated in Fig. 2. The holographic test plate was
mounted in a 5-axis mount and aligned in the test
beam such that a null fringe was obtained within
the area of the retroreflecting alignment hologram.
The test mirror was then positioned near the focus
f 2 of the central zone lens. Figure 4 shows the inter-
ference fringes at the interferometer camera for the
Fresnel type zone lens and for the photon sieve at ap-
proximately the same position inside the focus of the
central zone lens. One clearly evident difference in
the fringes is a much lower level of coherent high-
frequency noise in the photon sieve fringes. Stray
light from higher diffraction orders causes high-
frequency fringes throughout the aperture in the
Fresnel lens image (left image in Fig. 4). The level
of coherent noise is significantly lower in the photon
sieve images because the energy in the higher dif-
fraction orders is diffused into a wide range of angles
by the photon sieve instead of being concentrated at a
few angles. The photon sieve has effectively only two
diffracted wavefronts of orders�1 and −1. The image
on the right in Fig. 4 also shows a high frequency er-
ror in the top quarter of the image that was traced to
a misalignment of the lithography tool on the day the
test plate was fabricated. It is of little consequence
for the present application because we are exclu-
sively interested in rotationally invariant properties
of the zone lenses, which are not affected by the small
lithography tool write error. The geometric errors of
the two orthogonal linear air slides that form the mo-
tion system of the lithography tool are unlikely to
cause a significant power error in the zone lenses.
Thermal effects and errors due to errors in the scales

of the lithography motion system are thought to be
insignificant. A relative scale error in the zone lens
pattern causes a relative error in the focal length
of approximately twice the magnitude. The zone
lenses were fabricated and used in temperature
controlled laboratory spaces at a temperature
of 20°C� 0.02°C.

The radius of the test mirror can be calculated
from a measurement of the (spherical) defocus error
term in the area of the annular zone lens. Figure 5
shows the test part surface and the reference wave-
front when the test part is positioned near the focus of
the central zone lens. The distance, d, measured by
the interferometer is approximated by

d�θ� ≈ R� ΔR − �ΔR� Δz� cos θ; (2)

where R is the nominal (design) radius of the mirror,
ΔR is the radius error that we seek to measure, and
Δz is the displacement of the test mirror’s nominal
center of curvature from the focal point of the outer
zone lens, which, e.g., can be due to a position error
of the test mirror at the confocal position (see also
[24]). An interferometer with the measurement
setup in Fig. 2 measures the difference, Δm�θ�,
between the test mirror surface and the test
wavefront,

Δm�θ� � R − d�θ�
� −ΔR� �ΔR� Δz� cos θ

≈ Δz − �ΔR� Δz� · 1
2
θ2: (3)

When δm is described with a defocus Zernike poly-
nomial term, a0

2,

δm � 2a0
2

�
y
ra

�
2
; (4)

where ra is the aperture radius on the test mirror,
and θ ≈ y∕R for small angles, it follows that

Fig. 4. Interferometer fringes of the interferometer cavity in
Fig. 2 with a Fresnel type zone lens (left) and a photon sieve (right).
The dashed (yellow) lines indicate the boundaries between the
central and annular zone lenses.

Fig. 5. Difference of test mirror surface (blue, left, arc) with de-
sign radius, R, and radius error, ΔR, and reference wavefront with
design radius, R, (black, right, arc) when the mirror is positioned
near the primary focus of the central zone lens with a displace-
ment, Δz.
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ΔR� Δz � −4a0
2

�
R
ra

�
2
: (5)

When the test part is positioned at the focus of the
inner zone lens, Δz � 0 and the radius error, ΔR, of
a mirror with nominal (design) radius, R, can be cal-
culated from measurements of the defocus Zernike
term, a0

2, and the aperture radius, ra, on the test
mirror.

Five measurements of the wavefront within the
central zone lens and the annular zone lens were
made for several axial displacements around the fo-
cus of the central zone lens. Phase measurements
were made by mechanical shifting of the test part us-
ing a phase-shifting algorithm with 7 samples and
π∕2 phase steps [25]. The wavefront error map in
the central and annular areas was measured sepa-
rately by masking either the central or annular zone
lens. The Zernike defocus terms, a0

2, in both areas
were then calculated by fitting a Zernike polynomial
consisting of constant, tilt, and defocus terms to the
data. Figures 6 and 7 show the defocus terms in the
annular areas as a function of the defocus term in the
central zone lens areas for both the Fresnel (Fig. 6)
and photon sieve (Fig. 7) test plates. Each data point,
shown in red, represents the mean of five measure-
ments, and the error bars indicate the standard
deviation of the five measurements. They are a mea-
sure of the repeatability of the defocus terms. The
error bars in horizontal direction are too small to
be visible in Figs. 6 and 7. A straight line was fitted
to the data sets for the Fresnel zone lens and the pho-
ton sieve to determine the defocus in the annular
lens when the test mirror is positioned at the focus
of the central zone lens. We applied an iterative,
weighted, least squares fitting procedure to accom-
modate the large variation in the measurement re-
peatability of the annular defocus terms, especially
in the case of the Fresnel zone lens measurements
shown in Fig. 6. The weights equal the reciprocal
of the noise variance of the mean defocus term at
each position, modeled as the sum of the respective

repeatability variance and the variance of other er-
rors. The latter variance, assumed to be constant,
was estimated from the difference between the ob-
served and predicted variance of the residual errors
after fitting. The blue circles in Figs. 6 and 7 indicate
the values for the defocus of the annular lens at the
focus (0 inner ZLs area) of the central zone lens and
their estimated standard deviation. The radius of the
test mirror was then calculated using Eq. (5) (for
Δz � 0), from the defocus, a0

2, and the design radius,
R � 9514 mm. The diameter of the reflective mirror
area, 2ra, measured with calipers, was 49.4 mm with
a standard uncertainty of 0.12 mm.

Two sets of measurements—labeled A and B in the
following—of the test mirror with both the Fresnel
type zone lens and the photon sieve made several
months apart. In both instances the experiment
was set up and aligned from the beginning. The
results of the measurements are summarized in
Table 1. The table lists the aperture radius, ra, in
the second column. The third column lists the
Zernike defocus term, a0

2, of the annular zone lens
at the focus of the inner zone lens, followed by the
resulting radius error calculated using Eq. (5), in col-
umn four. The right column in Table 1 contains the
estimates of the test mirror radius and their uncer-
tainties. The difference in the annular zone lens de-
focus term of the Fresnel zone lens and the photon
sieve was caused primarily by the differences in
the curvature of the zone lens substrates. A quad-
ratic (power) flatness error in the substrate causes

Fig. 6. Measured defocus Zernike coefficient in the outer zone
lens (red circles, nonzero inner ZLs area) as functions of the
defocus Zernike coefficient in the inner zone lens area.

Fig. 7. Measured defocus Zernike coefficient in the outer photon
sieve (red circles, nonzero inner ZLs area) as functions of the
defocus Zernike coefficient in the inner zone lens area.

Table 1. Results of Two Radius Measurements of a Test Mirror With a
Fresnel Type Nested Zone Lens (ZL) and a Nested Photon Sieve (PS)a

ra∕mm a0
2∕nm ΔR∕mm �R� ΔR�∕mm

ZL A 24.7� 0.14 −603.1� 0.2 363.0� 4.1 9877� 5
ZL B 24.7� 0.14 −599.5� 0.2 360.9� 4.0 9875� 5
PS A 24.7� 0.14 −641.2� 0.1 364.7� 4.3 9879� 5
PS B 24.7� 0.14 −638.1� 0.1 362.8� 4.3 9876� 5

aMeasured defocus values for the repeat measurements (B)
are shown in Figs. 6 and 7

4536 APPLIED OPTICS / Vol. 53, No. 20 / 10 July 2014



a position error of the hologram when it is aligned in
the test beam using the annular alignment zone lens
in reflection (see Fig. 3). This, in turn, results in a
radius error of the test wavefront. The flatness errors
of the substrates were measured and the radii, R�
ΔR in Table 1, are corrected for the effect of the quad-
ratic component in the substrate flatness error.

Calculating the spherical mirror radius with
Eq. (5) requires an estimate of the aperture radius,
ra, in the interferogram, which corresponds to the
unit circle radius for the calculation of the Zernike
defocus term, a0

2. In our case, the test beam overfilled
the test mirror, which has a radius of 24.7 mm with a
standard uncertainty of 0.12 mm. Precise measure-
ment of the diameter of the reflective area of the test
mirror in the interferograms was difficult, resulting
in a standard uncertainty of 0.9 camera pixels,
which, for our measurement setup, corresponds to
a standard uncertainty for the aperture radius
uncertainty of 64 μm. The combined standard uncer-
tainty, u�ra�, for the aperture radius at the Zernike
normalization radius is, thus, 0.14 mm.

The uncertainty of the radius error, ΔR, is calcu-
lated from the uncertainty, u�a0

2�, of the Zernike
defocus coefficient, and the uncertainty, u�ra�, of
the aperture radius ra, using the familiar error
propagation formula for uncorrelated variables [26],

u�ΔR� � 4
�
R
ra

�
2

����������������������������������������������������
u�a0

2�2 � 4
�
a0
2

ra

�2

u�ra�2
s

: (6)

The defocus coefficients, a0
2, for the annular zone

lenses were estimated using a set of defocus mea-
surements near the focus of the central zone lens
as shown in Figs. 6 and 7. The defocus coefficients
and their standard deviation at the focus of the
central zone lens were estimated using a straight
line fit. The resulting uncertainties for the radius
errors in our measurements are listed in Table 1.

There are additional sources of uncertainty. Good
alignment with less than one fringe visible in the
area of the alignment hologram was difficult with
the available mount for the zone lens. We estimate
that we were able to achieve an alignment error in
the direction of the optical axis of no more than
10 μm. This results in an additional uncertainty
for the radius error of about 1 mm. This uncertainty
was added, in quadrature, to the uncertainty of the
radius errors, ΔR, shown in Table 1 to calculate the
uncertainty of the mirror radii, R� ΔR, which are
shown in the last column of Table 1. The effects of
write errors of the lithography tool were estimated
to be negligible. Intuitively this can be understood
by realizing that a scale error, β, in a zone lens
pattern causes an error of approximately 2f β in its
focal length, f [27]. In our case, β is on the order of
several μm per m. The zone lenses were designed
for a nominal substrate thickness of 6.5 mm. The
actual thicknesses of the two substrates differed
from the nominal thickness by about 200 μm. The

resulting change in the measured radius error is,
however, insignificant as the alignment hologram
compensates most of the resulting power error in
the test beam.

It is instructive to examine Eq. (6) for the uncer-
tainty of the radius that follows from Eq. (5) when
the effects of errors in the hologram and its align-
ment are ignored. It turns out that the uncertainty
of the radius is dominated by the uncertainty,
u�ra�, of the aperture radius, ra. This is largely a
consequence of the large radius error, ΔR, of the test
mirror, resulting in a large value for a0

2, and our zone
lens design, which slightly overfilled the test mirror.
A better zone lens design would underfill the test
mirror. The aperture radius can then be calculated
from the optical design and its uncertainty only de-
pends on the uncertainty inherent in the zone lens
fabrication and the estimate of the pixel radius cor-
responding to the aperture radius. Alternatively, fi-
ducials on the mirror could be used to obtain a
better estimation of the mirror diameter. A low un-
certainty for the aperture radius, u�ra�, is important,
especially when the actual mirror radius differs
appreciably from the design radius because of the
increasing weight, �2a0

2∕ra�2, in Eq. (6).
When a lower measurement uncertainty is re-

quired, it may be preferable to measure ΔR directly
by measuring the distance between the cat’s eye
position for the central zone lens and the confocal po-
sition for the annular zone lens using a displacement
measuring laser interferometer similar to the mea-
surement procedure described in [12,27]. This re-
moves the errors resulting from measuring the
outer zone lens in a non-null configuration, elimi-
nates errors due to the uncertainty in the effective
aperture radius, ra, and increases the sensitivity
(resolution) of the radius error measurements.

4. Summary and Conclusion

We have demonstrated a new method for measuring
the radius of precision spherical surfaces with large
radius based on a pair of nested zone lenses or photon
sieves that are fabricated on a flat substrate. The rel-
ative standard uncertainty of about 5 × 10−4 is com-
parable to the uncertainty that is typically achieved
with the radius bench method for shorter radii. Im-
proved uncertainties can be achieved for parts with a
smaller radius error, or when the distance between
the cat’s eye and confocal positions is measured with
a displacement measuring laser interferometer, as
described in [12,27]. The incorporation of nonlinear
effects in the interpretation of the annular zone lens
defocus can also reduce the measurement errors
when the actual radius of the test mirror signifi-
cantly deviates from the design value. Our measure-
ment was the first, to the best of our knowledge, to
apply a photon sieve in solving a measurement prob-
lem in precision surface metrology. Our measure-
ments show that the photon sieve enabled us to
manage diffraction orders of a binary diffractive optic
in a situation where unwanted diffraction orders
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would otherwise be difficult to filter out. The reduc-
tion in coherent noise is evident in the interfero-
grams in Fig. 4 and the reduced uncertainties in
Fig. 7. This result is, potentially, of broader signifi-
cance for the application of diffractive optics as null
correctors in interferometric precision metrology.
The design of diffractive null correctors is often com-
plicated by the need to filter out light from unwanted
diffraction orders. Photon sieves appear to offer a
new way to manage stray light from higher diffrac-
tion orders.

Our research was in part performed using resour-
ces provided by the NanoFab of the NIST Center for
Nanoscale Science and Technology.
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