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Abstract This article reviews the progress in our under-
standing of the reconstruction of the bulk spacetime in
the holographic correspondence from the dual field theory
including an account of how these developments have led to
the reproduction of the Page curve of the Hawking radiation
from black holes. We review quantum error correction and
relevant recovery maps with toy examples based on tensor
networks, and discuss how it provides the desired framework
for bulk reconstruction in which apparent inconsistencies
with properties of the operator algebra in the dual field theory
are naturally resolved. The importance of understanding the
modular flow in the dual field theory has been emphasized.
We discuss how the state-dependence of reconstruction of
black hole microstates can be formulated in the framework
of quantum error correction with inputs from extremal sur-
faces along with a quantification of the complexity of encod-
ing of bulk operators. Finally, we motivate and discuss a
class of tractable microstate models of black holes which
can illuminate how the black hole complementarity princi-
ple can emerge operationally without encountering informa-
tion paradoxes, and provide new insights into generation of
desirable features of encoding into the Hawking radiation.
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1 Introduction

The AdS/CFT correspondence [1–3] is the most well under-
stood example of the holographic emergence of spacetime
and gravity. The heuristic reasoning for the holographic prin-
ciple of gravity is simply that if we stuff in enough matter
in a box, then eventually it will collapse to form a black
hole whose maximum possible size would be that of the box
[4]. The maximal entropy of a theory of gravity inside the
box would then be the Bekenstein–Hawking entropy [5–8]
of the black hole whose horizon is of the size of the box,
which explicitly is A/4G, i.e. the quarter of the area A of
the horizon measured in Planck units (we set h̄ = c = 1).
This heuristic argument relies on a semi-classical descrip-
tion of gravity and should be approximately correct if the
size of the box is very large so that gravity is weak even
at the black hole horizon when the black hole is of the same
size as the box. More precise versions of this argument incor-
porating covariance under diffeomorphisms and inputs from
quantum information theory [9–11] have been instrumental
in providing a concrete ground for the holographic princi-
ple which states that a quantum theory of gravity in a space-
time with appropriate asymptotic boundary conditions can be
described in terms of a (non-gravitational) quantum many-
body system living at the boundary. The AdS/CFT corre-
spondence is a concrete instance of a holographic duality
between quantum (super)gravity with asymptotically anti-de
Sitter (AdS) boundary conditions (i.e. with constant negative
curvature near the boundary) and a (super)conformal gauge
theory.

The origin of the AdS/CFT correspondence is from the
description of D-branes in open and closed string theory, and
is a consequence of open-closed string duality [1] (see [12]
for a very accessible account). In closed string theory, coin-
cident Dp branes are solitonic solutions of ten (or eleven)
dimensional supergravity with AdSp+2 × X throats, where
X is a compact space of 8− p (or 9− p) dimensions. In open
string theory, these coincident branes are p + 1 spacetime
dimensional defects (extended over p spatial dimensions),
whose low energy descriptions are given by non-Abelian
gauge theories living on the worldvolume. A decoupling limit
(see Fig. 1) isolates the gauge theory from the remaining
stringy degrees of freedom in the open string description,
whereas in the closed string description, the excitations liv-
ing in the AdSp+2 × X near-horizon geometry decouples
from those in the remaining spacetime. It follows then that
the closed string theory (quantum gravity) in AdSp+2×X can

be described by a precise p + 1-dimensional gauge theory.1

One can obtain more examples of such holographic (a.k.a.
gauge/gravity) duality in various dimensions via such string-
theoretic setups including those where the gauge theories
are non-conformal (and the asymptotic boundary conditions
of gravity are non-AdS). We also obtain a precise mapping
between the gauge coupling gYM and the rank of the gauge
group (N ) with the parameters specifying the boundary con-
ditions of the quantum gravity theory, e.g. L , the asymptotic
curvature radius of AdS and the size of the internal manifold
X . The AdS/CFT correspondence and its generalizations are
often called gauge/gravity dualities [13].

The most remarkable aspect of these dualities follow from
two features of the holographic dictionary. Firstly, the ’t
Hooft coupling λ = g2

YM N is related to a positive power
of L/ ls (ls is the string length) that controls the correc-
tions to a two-derivative Einsteinian gravity theory arising
from the finite length of the string. Furthermore, N , the rank
of the gauge group, is related to a positive power of L/ l p
(l p is the Planck length) that controls the quantum correc-
tions to classical gravity. As a result, when both N and λ are
large, both ls and l p are small in units where the asymptotic
curvature radius L is set to unity, so that both stringy and
quantum effects are suppressed. Thus the dual description
is just a classical gravity theory to a very good approxima-
tion. The duality therefore implies that a many-body system
which evades a quasi-particle description can be described
by a classical Einsteinian theory of gravity in one higher
dimension with a negative cosmological constant and mini-
mally coupled to a few fields. This has led to an enormous
impact on our understanding of the collective description of
many strongly interacting systems, including strongly corre-
lated quantum materials [15], non-perturbative dynamics of
QCD [16,17] and its various phases such as the quark-gluon
plasma [18].

Over more than two decades, the correspondence has
also been subjected to stringent tests, where non-trivial dual
quantities such as the anomalous dimensions of single-trace
gauge-invariant operators and the spectrum of strings in anti-
de Sitter space have been matched using techniques like inte-
grability [19] and localization [20]. Recently a derivation of
the correspondence has been achieved when the dual gauge
theory is free (zero ’t Hooft coupling) while the string world-
sheet sees a quantum spacetime and gets localized at the
boundary [21,22].

The fundamental aspects of how the bulk spacetime and
its gravitational dynamics emerge from the dual gauge the-
ory are still shrouded in many mysteries. Nevertheless, there
has been remarkable progress in this direction via the tools
of quantum information theory. A path breaking proposal by

1 The compact space X is related to the global symmetries of the gauge
theory.
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Fig. 1 An illustration of how
the AdS/CFT correspondence
emerges from two dual
descriptions of coincident
D-branes in open and closed
string theory. These figures are
from [14]

Ryu and Takanayagi [23] and its further refinements [24,25]
that an appropriate codimension two bulk extremal surface
anchored to the boundary ∂R of a boundary spatial subre-
gion R captures the entanglement entropy of that region R in
the dual field theory, have been at the heart of these develop-
ments. To be specific, we need to consider the causal domain
of dependence DR of a region R as the set of points where
the values of measurements can necessarily be influenced by
or influence the data on R. Then the bulk operators in the
entanglement wedge, which is the causal domain of depen-
dence of (any) Cauchy slice bounded by the bulk extremal
surface anchored to ∂R and the subregion R at the boundary,
can be decoded from the algebra of operators in the dual CFT
in DR as illustrated in Fig. 9 [26–31].

Subsequently, quantum information theory has played a
fundamental role in understanding how this entanglement
wedge of the emergent spacetime can be reconstructed in
the dual conformal field theory (CFT) without encountering
inconsistencies. It has been shown that the correct frame-
work which achieves bulk reconstruction in a consistent way
can be obtained by reformulating the AdS/CFT correspon-
dence as a quantum error correcting code in which the bulk
spacetime is encoded in a redundant way in the Hilbert space
of the CFT. Furthermore, the encoding is protected against
deletion errors, i.e. allowing for the entanglement wedge
to be (approximately) reconstructed from its corresponding
boundary subregion even after the complement of the latter
is traced out [32–35].

The connection between the holographic principle of grav-
ity and quantum information theory is currently a topic of
fundamental interest to researchers in diverse fields. In fact,
this interdisciplinary area of research has been instrumental
in developing new perspectives in quantum error correction
itself, and has produced novel connections between quan-
tum fields (many-body systems) and quantum information
theory as well. One example of such a connection is the

postulate of the quantum null-energy condition which states
that the expectation value of a null projection of the energy–
momentum tensor is bounded from below by a specific null
variation of the entanglement entropy [36]. This postulate
has not only been proven in holographic field theories [37],
but also in generic two-dimensional CFTs [38] and free field
theories [39,40], and is also expected to hold generally. Fur-
thermore, such developments have led to new understanding
of connections between entanglement and the renormaliza-
tion group (RG) flow especially with respect to the existence
of quantities which evolve monotonically under the flow [41–
43].

The most fundamental test of our understanding of the
AdS/CFT correspondence is whether we can find explicit
mechanisms for the resolution of black hole information
paradoxes which are further refinements of Hawking’s orig-
inal result that a semi-classical black hole should lose its
mass to thermal (Hawking) radiation violating unitarity
[44,45]. The understanding of the AdS/CFT correspondence
in the information theory framework has driven remarkable
progress in this frontier as well. In particular, it has been
shown that the AdS/CFT correspondence itself leads us to
the correct way to compute the fine grained entanglement
entropy of the Hawking radiation.2 Surprisingly, these com-
putations can be done in the semi-classical evaporating black
hole geometry itself and produce results which are consis-
tent with unitarity. In setups where the holographic system

2 Following [46], we should call it the “not-so-fine-grained entropy”
actually. It is assumed that some averaging has been done due to which
an approximate notion of factorization of the Hilbert space into black
hole interior and radiation is valid for observables of an effective field
theory. Only in such an operational context, a Page curve can be defined
suitably. In this review, we will discuss a class of microstate models in
Sect. 5.3.2 which illustrates some aspects of how such factorizations
can emerge. In [46], there is a discussion on this issue within the semi-
classical approximation in the context of braneworld cosmology.
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is connected to a bath which collects the Hawking quanta
of an evaporating black hole, the bath develops an entan-
glement wedge, called the island which contains portions of
the interior of the black hole, once the black hole is past the
Page time (approximately the time when the black hole and
the Hawking radiation have the same number of degrees of
freedom). The inclusion of this spatially disconnected island
leads to reproduction the Page curve [47,48] for the time-
dependence of the von Neumann entropy of the Hawking
radiation in consistency with unitarity without invalidating
the effective semiclassical description of bulk physics [49–
53]. The further understanding of how information of the
black hole interior is encoded without encountering funda-
mental inconsistencies is probably the most exciting topic at
the intersection of quantum information theory and gravity.

The present review is aimed to provide an accessible
account for researchers in diverse fields to follow the devel-
opments connecting the holographic emergence of spacetime
and gravity with quantum information theory. We also give
a special emphasis on recent developments in connection
with black holes. Our account is somewhat complementary
to existing reviews in literature, and is also self-contained.
As instances of focused reviews on subtopics covered here,
we would especially like to mention [54] which reviews the
holographic entanglement entropy proposal, [55–57] which
review the black hole information puzzles and their possible
resolutions, [58–60] which review aspects of bulk reconstruc-
tion, and [61] (see [62] for a very accessible summary) which
reviews recent progress in reproduction of the Page curve
(the time-dependence of the entanglement entropy of Hawk-
ing radiation) from the AdS/CFT correspondence. We also
update the content of these reviews, and describe the central
concepts and proposals along with essences of their deriva-
tions or arguments supporting them in a sufficiently detailed
manner. Furthermore, we present perspectives on the open
questions and some promising directions for research in the
near future.

The plan of the review is as follows. In Sect. 2, we intro-
duce the Ryu-Takanayagi surface and its generalization the
quantum extremal surface which is the key to compute the
entanglement entropy of a subregion in the dual field theory.
As mentioned before, this is at the heart of the connection
between quantum information theory and the holographic
correspondence. We also review the proof of these proposals
for bulk extremal surfaces at leading and subleading orders.
We furthermore discuss the consistency checks for the pro-
posal for the quantum extremal surface. We especially out-
line the proof that the entanglement wedge contains the bulk
causal wedge which is the key to the understanding of the
non-triviality of bulk reconstruction. Furthermore, we dis-
cuss how the holographic prescriptions for computing entan-
glement entropy reproduce entanglement inequalities (espe-

cially the strong subadditivity) and the alternative maximin
construction.

In Sect. 3, we introduce the entanglement wedge recon-
struction hypothesis and the key postulate of equality of bulk
and boundary relative entropies in the bulk semi-classical
approximation. We then discuss various implications of the
latter postulate especially how it implies the emergence of
gravitational field equations at linearized order, and further-
more how the bulk canonical energy gets connected to Fisher
information at the boundary. We also discuss progress in
understanding of the emergence of bulk from modular flow
at the boundary, and the basic reasons for reformulating bulk
reconstruction as a quantum error correcting code. After-
wards, we introduce the appearance of islands which are dis-
connected portions of the entanglement wedge especially in
the context of double holography, and introduce and justify
the island rule for computing the entanglement entropy of
a subregion of a bath in contact with a holographic system
described by a semiclassical evaporating black hole while
sketching how this reproduces the Page curve of Hawking
radiation.

In Sect. 4, we review quantum error correction especially
in relation to operator algebras, and discuss how this frame-
work together with the postulate of equality of bulk and
boundary relative entropies imply reconstruction of local
bulk operators in the entanglement wedge in terms of the
operators of the dual field theory in the region of interest.
We discuss how apparent inconsistencies of bulk reconstruc-
tion are mitigated by formulating the bulk reconstruction in
AdS/CFT correspondence as a quantum error correcting code
that protects against deletion of complementary boundary
subregions. Toy models of AdS/CFT correspondence based
on tensor networks which provide examples of perfect recov-
ery maps for the entanglement wedge in the dual subregion of
the field theory are then presented. We focus particularly on
the Petz map, and discuss how a specific variation could pro-
vide the desired approximate recovery even at sub-leading
order, and relate to the modular flow at the boundary. We
furthermore discuss the connection between the bulk radial
coordinate and renormalization group flow in this context
with a perspective on issues which may spur further univer-
sal understanding of the holographic correspondence.

In Sect. 5, we review the exciting recent progress in the
reproduction of the Page curve from Hawking radiation. In
particular, we focus on how replica wormhole saddles imply
the quantum extremal surfaces and islands responsible for
restoring behavior of the Page curve that is consistent with
unitarity although these wormholes provide an intrinsically
averaged description of the black hole microstates. We then
discuss the state-dependence of the encoding of the interior in
the framework of universal (approximate) subsystem recov-
ery and also how the Python’s lunch mechanism generates
exponential complexity of the state-dependent encoding.
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Furthermore, we present a perspective on issues that are
crucial to fully understand how the black hole complemen-
tarity principle can emerge operationally without encounter-
ing information paradoxes such as the AMPS paradox while
emphasizing the need for a complex encoding of the interior.
We motivate the need for tractable microstate models of black
holes which can demonstrate the realization of all desirable
features of the encoding in the Hawking radiation especially
information mirroring (with decoding possible without full
knowledge of interior) and exponentially complex encoding
of the black hole interior excitations simultaneously. Further-
more, it should explain the origin of self-averaging in real
time to be consistent with the implications of replica worm-
holes. We proceed to discuss a class of tractable microstate
models explicitly, their promising results in this direction
along with implications and some open questions.

In Sect. 6, we conclude with a discussion on some of the
topics of significance which are not covered in this review
and some promising directions for further research.

2 Quantum extremal surfaces

2.1 Partial proof of the quantum extremal surface proposal

The entanglement entropy of a boundary subregion provides
the most fundamental link between holography and quantum
information.

Ryu and Takayanagi (RT) [23] were the first to describe
how entanglement entropy could be computed holograph-
ically in a static semi-classical spacetime (dual to a large
N quantum field theory). Then Hubeny, Rangamani and
Takayanagi (HRT) [24] extended this idea to time dependent
geometries. The RT/HRT formula states that the entangle-
ment entropy of a subregion R of the boundary theory is pro-
portional to the area of the classical, bulk co-dimension two3

extremal surface that is anchored to the boundary of R and is
homologous to R (see Fig. 2). The RT proposal was shown to
be correct at the leading order in h̄ by Lewkowycz and Mal-
dacena (LM) [63]. A generalization of this proof for the HRT
proposal using a bulk version of the Schwinger–Keldysh con-
tour was described in [64]. The RT/HRT prescription has
led to a much simpler proof of the strong sub-additivity of
entanglement entropy [27,65] and also to new inequalities
that holographic entanglement entropy should satisfy [66–
69]. The next to leading order correction to the holographic
entanglement entropy for semi-classical static situations was
computed by Faulkner, Lewkowycz and Maldacena (FLM)
[28]. They found that the entanglement entropy correct to
O(h̄0) is given by

3 If N is a submanifold of M then the codimension of N in M is defined
to be: codim(N ) = dim(M) − dim(N ).

Fig. 2 The red region is the boundary sub-region of interest (R). The
classical extremal surface anchored to the boundary of R is shown

S(R) = A(XR)

4Gh̄
+ Sent-bulk = Sgen(XR), (1)

where A(XR) is the area of the classical bulk extremal HRT
surface (XR) and the leading order quantum corrections are
given by the bulk entanglement entropy (Sent-bulk) which is
as follows. As shown in Fig. 3, the classical extremal surface
divides the bulk into two sub-regions Rb and R̄b; Sent-bulk

is the entanglement entropy of the reduced density matrix
(in the bulk effective field theory) on the bulk sub-region Rb

that is connected to the boundary region R. The bulk quan-
tum fields are assumed to be described by an effective field
theory (EFT) living on a fixed background and the entangle-
ment entropy of the bulk sub-region connected to the bound-
ary region R is computed using standard quantum field the-
ory techniques. The quantity defined in Eq. (1) is called the
generalized entropy. The quantity Sent-bulk suffers from diver-
gences, which can be absorbed into the renormalization of
the Newton’s constant leading to a well defined generalized
entropy [70–74]. It is not clear if the LM and FLM proofs
(reviewed below) can be extended to include higher order
corrections involving multiple loops of quantized gravitons.
However, the Engelhardt–Wall proposal is expected to work
for all orders in h̄ in which we consider the full quantum
theory of the bulk matter on a fixed (but backreacted) semi-
classical gravitational background as discussed below.

Engelhardt and Wall (EW) [25] conjectured that the holo-
graphic entanglement entropy of a boundary sub-region R
is given by the generalized entropy of the quantum extremal
surface (QES) χR anchored to (∂R), so that

S(R) = Sgen(χR), (2)

where the quantum extremal surface is the surface that
extremizes the generalized entropy and is homologous to R.
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Fig. 3 The red region is the boundary sub-region of interest. The
magenta extremal surface divides the bulk into two regions. Rb is the
bulk sub-region connected to the boundary region of interest

If there are multiple such extremal surfaces, the one with the
smallest generalized entropy satisfying the homology con-
straint is picked.4 This QES proposal is different from the
FLM formula, which is the generalized entropy of the clas-
sical RT/HRT surface.

The QES proposal hasn’t been proven, however it is
believed to be correct since it satisfies some non trivial consis-
tency checks which we will review in Sect. 2.2. This proposal
has been checked order by order in h̄ for a few sub-leading
corrections by comparing computations in the bulk with those
in the dual boundary CFT [75–77]. In the rest of this review,
we will use units where h̄ = 1 unless explicitly mentioned.

Before describing the checks on the QES proposal, we
will first review the classical argument from [63] that proves
the RT formula. The entanglement entropy of a boundary
sub-region R can be computed using the replica trick. This
consists of going to Euclidean time and considering an angu-
lar direction in the boundary field theory with origin at the
boundary of R. This is labelled by τ , with τ = τ + 2π . The
boundary quantum field theory (QFT) is then considered in a
sequence of spaces ( ˜Mn) with τ = τ +2πn, for positive inte-
gers n. This sequence is holographically dual to a sequence of
bulk geometries labelled by ˜Bn with the asymptotic boundary
˜Mn . One then computes the Rènyi entropy (Sn) as follows:

Sn = 1

1 − n
(ln Z [ ˜Mn] − n ln Z [ ˜M1]). (3)

Analytic continuation to non-integer n is well defined due
to the Carlson theorem [78]. The n → 1 limit gives the
von Neumann entropy. Here Z [ ˜Mn] and Z [ ˜M1] are the QFT

4 Beyond the semiclassical gravity limit, the area of the quantum
extremal surface should be promoted to an area operator Â which sat-
isfies the identity

δ Â

δXa
ρ = 0 = ρ

δ Â

δXa
,

where ρ is a state of the Hilbert space of the bulk matter theory as dis-
cussed in [25]. Furthermore, we will need to consider 〈A〉+ Sent−bulk +
〈counterterms〉 to define the holographic entanglement entropy (where
counterterms remove the ultraviolet divergences of the area operator).
The validity of such an approach has been examined in [75–77] pertur-
batively in the 1/N expansion.

partition functions for the spacetime ˜Mn and the original
spacetime M1. The holographic dictionary in the large N
limit tells us the following:

Z [ ˜Mn] = e−I [˜Bn ], (4)

where I [˜Bn] is the on-shell classical bulk action for the bulk
geometry ˜Bn . The bulk geometries ˜Bn have a Zn symmetry
that corresponds to cyclic permutations of the n replicas.
Taking a quotient with this, one can define Bn = ˜Bn/Zn .
Due to the quotient, these bulk geometries have the same
boundary conditions as the original geometry (˜B1), that is
τ = τ +2π . These geometries typically have a conical defect
with opening angle 2π

n at the fixed points of theZn symmetry.
The classical bulk action is a τ integral of a local Lagrangian
density, therefore it follows that I [˜Bn] = nI [Bn]. Thus the
Rènyi entropy can be written as follows:

Sn = n

1 − n
(I [Bn] − I [B1]). (5)

Note that when evaluating I [Bn] one excludes any contribu-
tions from the conical singularity. We can now analytically
continue to non-integer n and take the n → 1 limit. The von
Neumann entropy is then:

S = −∂n I [Bn] (6)

Varying n corresponds to changing the opening angle of the
conical defect. The metric and other fields also have to change
due to this change in n. However since the geometry Bn is a
solution of the equations of motion, the first order variations
of the bulk action away from these solutions should vanish.
Thus the only change in the action comes from a boundary
term (at the conical singularity). Therefore, the von Neumann
entropy is essentially a boundary term at the conical singu-
larity, which is a co-dimension 2 hypersurface in the bulk.
This boundary term was calculated in [63] and was shown to
reproduce the RT formula.

The above argument was extended by FLM [28] to include
quantum corrections (to O(h̄0)) by considering quantum
fluctuations in the bulk EFT. The partition function of bulk
quantum fields is then given by the following:

Z (n)
bulk = Tr [ρn

n ], (7)

where ρn is a state of the bulk quantum fields in the bulk
geometry Bn . The Rènyi entropy can now be written as
follows:

Sn = 1

1 − n
(ln Tr [ρn

n ] − n ln Tr [ρ1]). (8)

The von Neumann entropy is then:

S = −∂n(ln Tr [ρn
n ] − n ln Tr [ρ1])n=1. (9)
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Fig. 4 The boundary domain of dependence is coloured purple, the
causal wedge is the green bulk region and the causal surface is coloured
blue. The quantum extremal surface is marked as χR and is shown to
lie deeper into the bulk than the causal surface. Figure from [25]

We can add and subtract the term −∂n(ln Tr [ρn
1 ]) to Eq. (9)

and after some algebra we get:

S = Sent-bulk + Sarea, (10)

with

Sent-bulk = −∂n(ln Tr [ρn
1 ] − n ln Tr [ρ1])n=1 (11)

and

Sarea = −Tr [∂nρn]n=1

Tr [ρ1] . (12)

The Sent-bulk term involves ρ1 which is the density matrix
of bulk quantum fields in the original geometry. This there-
fore computes the bulk entanglement entropy. The Sarea term
can be expressed as a variation of a local Lagrangian, which
for the usual 2 derivative gravity action gives the area term as
seen before for the classical case. This concludes a heuristic
review of the arguments of FLM for the quantum correction
to the RT formula.

We will now define the causal wedge and the entanglement
wedge. These are important for bulk reconstruction, which is
the major focus of this review. For a boundary sub-region R,
the boundary domain of dependence of R, labelled by DR is
defined to be the set of all boundary points such that any in-
extensible timelike curve that passes through any point in DR

necessarily intersects R (i.e. D(R) is the set of points where
the values of measurements can necessarily be influenced by
or influence the data on R). The bulk casual wedge (WR)
is then defined to be the intersection of the causal past and
future of R. WR = J +(DR) ∩ J −(DR) The boundary of
WR is called the causal surface and is labelled by CR . See
Fig. 4 for a pictorial depiction of these definitions.

Classically it should be possible to reconstruct any bulk
operator within WR in terms of boundary operators on DR

since they are in causal contact with each other. Entangle-
ment wedge reconstruction however states that any operator
in the entanglement wedge of R can be reconstructed from
operators in DR , where the entanglement wedge is defined
to be the bulk domain of dependence of the Cauchy sur-
face that interpolates between R and the extremal surface
anchored to ∂R. This has led to the notion of sub-region
duality [79–81], which states that sub-regions of the bound-
ary are dual to sub-regions of the bulk. Bulk reconstruction
will be described in more detail in Sect. 3. We will now use
the definitions from above to review certain checks on the
QES proposal.
Sanity checksAny proposal for the holographic entanglement
entropy that claims to be correct to all orders in h̄ must pass
the following preliminary checks.

1. It must agree with the RT/HRT formula at leading order
in h̄

2. It must agree with the FLM formula at next to leading
order in h̄

Engelhardt and Wall [25] argued that their proposal indeed
passes these two checks. We review these arguments below.

Since the FLM proposal is valid only up to O(h̄0), it is
enough to show that the following is true:

Sgen(XR) = Sgen(χR) + O(h̄). (13)

The generalized entropy consists of two terms Sgen(X) =
A(X)
4Gh̄ + Sent . In a semi-classical bulk the classical and quan-

tum extremal surfaces are expected to be a distance O(h̄)

apart. Thus the entanglement entropies of bulk fields (Sent )
for the two surfaces are expected to differ only at O(h̄).
That is Sent (XR) − Sent (χR) = O(h̄). Now we can look
at the area term. Since the classical extremal surface extrem-
izes the area, first order variations of the classical surface do
not affect the area. That is since XR and χR are a distance
h̄ apart, the leading order difference in the two areas is at
most h̄2, that is A(XR) − A(χR) = O(h̄2). This therefore
proves that the holographic entanglement entropy proposal
agrees with the RT/HRT and FLM formulas at the appro-
priate orders. The FLM formula and the QES proposal will
not agree at higher orders in h̄ and one can perform com-
putations at higher orders to determine if the QES proposal
is correct [75–77]. The QES proposal passes some essen-
tial consistency checks and is therefore believed to be cor-
rect. These checks will be the focus of the rest of this sec-
tion.
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Fig. 5 This is a spatial slice of the geometry. The boundary is the
circumference of the circle. R (red) is the boundary subregion of interest
and R̄ is its complement. CR (magenta) is the causal surface for R and
XR = X R̄ (black) is the classical extremal surface, which is shown to
lie within the causal wedge of R. The grey region is the entanglement
wedge of R̄. Anything in the grey region can be reconstructed from
R̄. A signal from R can propagate up to CR and therefore into the
entanglement wedge of R̄. This violates micro-causality of the CFT

2.2 The entanglement wedge contains the causal wedge

If the sub-region duality is consistent then the QES must lie
deeper in the bulk than causal surfaces. This is an important
consistency check that the QES proposal passes. In this sec-
tion we reason why this consistency condition should hold
and review a proof of why the QES proposal passes this
check.

Let us assume that the extremal surface can lie closer to the
boundary than the causal surface. Let us consider a pure state
in the dual theory at the boundary. The entanglement entropy
of its reduced density matrices on R and its complement (ρR

and ρR̄) must therefore be the same. This can be reproduced
by the QES proposal if XR = X R̄ since the bulk fields are
also in a pure state. As shown in Fig. 5 if XR lies within the
causal wedge WR then the region betweenCR and XR would
be in the entanglement wedge of R̄ and can therefore be
reconstructed on R̄. However this region is in causal contact
with DR and therefore can be affected by a signal propagating
from DR . This leads to a contradiction in the dual boundary
theory since R and R̄ are causally disconnected. This can be
avoided only if XR lies deeper in the bulk than CR and is
spacelike to it.

It was shown in [82] that if the classical null energy con-
dition (NEC) holds then the classical extremal surface lies
deeper in the bulk than the causal surface. The NEC states
that Tkk ≥ 0 for any future directed null vector kμ. This can
be violated if there is quantum matter in the bulk and the clas-
sical extremal surface can therefore be closer to the boundary

than CR or it could be timelike separated from it. The way
to avoid this inconsistency is to use the QES instead of the
classical extremal surface. Below we review the argument
from [25] which shows that the QES χR lies deeper in the
bulk than CR and is spacelike to it.

We will first state the generalized second law (GSL). The
usual second law of thermodynamics states that the thermo-
dynamic entropy of any closed system is nondecreasing in
time. The GSL is a statement about the monotonicity of the
generalized entropy [83]. The generalized entropy is com-
puted on a Cauchy slice (at some “time”), the GSL then states
that the variation of this generalized entropy along any future
directed normal to the Cauchy slice is non negative. The gen-
eralized entropy can be defined for any causal horizon (H+),
which is defined to be the boundary of the past of any future
directed timelike or null worldline. Define H = H+ ∩ Σ ,
where Σ is a Cauchy slice and H+ is a future causal horizon.
Then the GSL states the following [25,83]

δSgen(H)

δHμ
kμ ≥ 0, (14)

where δHμ is a normal to H and kμ is any future directed
null vector. We will also require the following theorem from
[83], see also [25].

Theorem 1 Let M and N be co-dimension one null surfaces
that split the spacetime into two parts, an interior (Int) and
exterior (Ext), whereExt is defined to be the region containing
the boundary subregion DR which is of interest. Let M ∩
Ext (N )be empty.Alsoassume thatMandNcoincideat some
point p and that M and N are smooth in the neighbourhood of
p. Let Σ be a spatial slice that passes through p. Then there
exists a normal (δΣμ) to Σ ∩ M in the neighbourhood of p
such that

δSgen(M)

δΣμ
kμ ≥ δSgen(N )

δΣμ
kμ, (15)

where kμ is a future directed null normal to M and N.

To use this theorem and show that the QES lies deeper than
the causal surface we identify the null splitting surface M
with the boundary of the entanglement wedge. This can be
generated by shooting null rays from χR towards R. Let
us choose the Cauchy slice Σ such that it intersects the
boundary of the entanglement wedge at the QES. Let us also
assume that Σ intersects the future causal horizon of DR

at H+(D). The statement that the QES lies deeper than the
causal surface can be proved by contradiction. Assume that
χR ∩ IntH+(DR) is non empty as shown in Fig. 6. We can
continuously shrink the boundary domain of dependence DR

to a new region D′ such that the new causal horizon intersects
Σ at H+(D′), which is contained entirely in Ext(χR) (see
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Fig. 6 Σ is a spatial slice that contains the QES χR . The projections
of H+(D) (blue) and H+(D′) (red) are shown. The dotted curve is the
QES that intersects and is tangent to H+(D′) at point p. The region to
the right of the QES is Ext (χR). Figure reproduced from [25]

Fig. 6). Since we are shrinking the region continuously we
can choose a D′ such that its future causal horizon H+(D′)
intersects χR at p, is tangent to it at p and is in Ext(χR)

everywhere else. We can now identify H+(D′) as N from
Eq. (15) to obtain the following:

δSgen(EW (χR))

δΣμ
kμ ≥ δSgen(H+(D′))

δΣμ
kμ (16)

where EW (χR) (the boundary of the entanglement wedge) is
the surface generated by shooting null rays from χR towards
R. Since the QES extremizes the generalized entropy, the left
hand side of Eq. (16) is zero. Therefore we have

δSgen(H+(D′))
δΣμ

kμ ≤ 0, (17)

with equality only if χR lies on H+(D′) in a neighbourhood
of p. However the generalized second law states that

δSgen(H+(D′))
δΣμ

kμ ≥ 0. (18)

The equality holds only in non-generic spacetimes. There-
fore for generic spacetimes we have a contradiction. A sim-
ilar argument by using the time reversed GSL establishes a
contradiction for the past causal horizon. The proof can be
extended to the non generic case, see [25] for details. There-
fore the QES is spacelike or null separated from the causal
surface and is deeper in the bulk.

This statement leads to an important conclusion. The von
Neumann entropy is invariant under unitary transformations.
Suppose we perturb the boundary with some unitary opera-
tor localized to R, this should leave the boundary von Neu-

mann entropy unchanged. This boundary perturbation leads
to sources for the bulk fields. However only the bulk fields
within WR can be affected due to the boundary unitary. Since
χR lies deeper in the bulk thanCR and is spacelike or null sep-
arated from it, the QES is unchanged due to the boundary uni-
tary perturbation. The bulk entanglement entropy Sent-bulk is
also unaffected since the von Neumann entropy is unchanged
under unitary transformations. Thus the generalized entropy
is unaffected by such boundary unitary perturbations. The
classical extremal surface XR can lie inside the causal wedge
in spacetimes that violate the classical null energy condition.
Thus the FLM holographic entropy would be changed under
boundary unitaries, whereas the QES proposal is consistent
with entanglement wedge reconstruction and the invariance
of the boundary von Neumann entropy under unitary trans-
formations of the state.

2.3 Maximin vs extremal: strong sub-additivity and
entanglement wedge nesting

In the previous subsection we have described how the QES
proposal is consistent with the invariance of the boundary von
Neumann entropy under unitary transformations. There are
two other conditions that any proposal for holographic entan-
glement entropy should satisfy: (1) strong sub-additivity of
the von Neumann entropy and (2) entanglement wedge nest-
ing. The second condition states that if we consider a bound-
ary subregion R′ ⊂ R then the entanglement wedge of R′
should lie within the entanglement wedge of R. The subal-
gebra of operators localized to R′ must be a subset of the
subalgebra of operators localized to R and subregion duality
implies the same must be true for the dual operators localized
to the corresponding entanglement wedges. Thus entangle-
ment wedge nesting is a consequence of subregion duality.
The strong sub-additivity condition states that [84,85]

S(A ∪ B) + S(B ∪ C) ≥ S(B) + S(A ∪ B ∪ C), (19)

where A, B and C are three boundary sub-regions. A sim-
ple geometric proof of the strong sub-additivity for the RT
prescription was given in [65] (see Fig. 7).

Strong sub-additivity and entanglement wedge nesting
was shown for the covariant HRT prescription in [27] using
the maximin surfaces defined as follows. For the boundary
subregion R we consider all possible Cauchy surfaces Σ that
contain R and find the minimal area surface that is homolo-
gous to R (XR(Σ)) on each of these slices. Then we max-
imize over all such surfaces XR(Σ) to obtain the maximin
surface. This surface is more convenient for proofs since it
corresponds to a minimal surface on some Cauchy slice just
like the RT surface. The maximin surface was shown to be
equivalent to the HRT surface if the null curvature condition
(NCC) holds [27]. The NCC states that Rμνkμkν ≥ 0 for any
null vector kμ. Wall [27] proved that these maximin surfaces
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Fig. 7 The left most figure computes S(A ∪ B) + S(B ∪ C) via the
RT prescription. The figure in the middle is simply a re-colouring of the
different RT surfaces and must have the same entropy as the left most
figure. The red and blue curves in the middle figure are not the extremal
surfaces for the sub-regions B and A∪B∪C respectively, and therefore
have a larger area than S(A ∪ B ∪ C) + S(B). Figure from [86]

exist in spacetimes without horizons and on spacetimes with
Kasner like singularities. Thus in spacetimes satisfying the
NCC the existence of HRT surfaces is guaranteed. This exis-
tence proof was then extended to generic blackholes in AdS
with singularities that are not Kasner like [87]. The quan-
tum generalization of the maximin surface was defined in
[88] as follows. For a boundary subregion R we consider all
possible Cauchy surfaces Σ containing R and find the sur-
face that is homologous to R and minimizes Sgen , then we
maximize over all the Cauchy slices. In [88] it was proved
that the quantum maximin surfaces exist, are identical to the
QES and obey strong sub-additivity as well as entanglement
wedge nesting.

The RT/HRT and maximin prescription has led to stronger
inequalities on the von Neumann entropy that do not hold for
non holographic systems [66–69]. These inequalities haven’t
been shown to hold when we include quantum corrections via
the QES prescription, however exploration in this direction
was initiated in [89] where it was shown that if the bulk
entropies obey the monogamy of mutual information [66]
then the dual boundary entropies also obey the same.

3 Bulk reconstruction

3.1 The entanglement wedge reconstruction hypothesis

The AdS/CFT dictionary relates observables in the large N
strongly coupled QFT at the boundary to the observables in
the semi-classical bulk spacetime. The Euclidean partition
function (Z ) of the boundary theory is related to the on-shell
bulk gravitational action (I ) as follows [2,3]:

Z [φ0] = e−I [φ0], (20)

where φ0 is the boundary value of a bulk field φ and is
identified with the source of the dual boundary operator O.
Thus the bulk gravitational action is the generating functional

of all connected correlation functions in the boundary the-
ory. This is called the Gubser–Klebanov–Polyakov–Witten
(GKPW) prescription in literature. This prescription implies
that the connected correlation functions of the field theory can
then be obtained by functionally differentiating the on-shell
dual bulk gravitational action I with respect to the sources.
Divergences in the on-shell bulk gravitational action I arise
due to the infinite volume of the AdS spacetime near the
boundary and these mimic the local ultraviolet divergences
in the dual field theory. These divergences can be system-
atically removed by first regularizing with a radial cut-off
r = ε (the boundary is at r = 0) and subtracting them with
diffeomorphism-invariant local counterterms on the cut-off
surface. This procedure is called holographic renormaliza-
tion [90–93] (see [94] for implementation in more general
cases). The radial cutoff thus mimics an energy-scale cut-
off in the dual field theory. We discuss more on this issue
in Sect. 4.4. The Lorentzian generalization of (20) has been
discussed in [95–98].

An equivalent and useful way to state the correspondence
which generalizes readily to the Lorentzian signature is as
follows. Corresponding to any state ρB in the boundary the-
ory there exists an asymptotically AdSd+1 solution B in the
dual gravity theory which satisfies appropriate smoothness
conditions such as absence of naked singularities (unless
explicitly mentioned we will assume that B has no hori-
zon). The generic on-shell asymptotic boundary behavior of
a scalar field φ dual to an operator O with scaling dimension
Δ in such a geometry is:

φ(r, t, x)B = rd−Δφ0(t, x)(1 + O(r2))

+rΔ〈O(t, x)〉ρB (1 + O(r2)). (21)

The source φ0 which couples to O is identified with the lead-
ing term (non-normalizable mode) in the asymptotic expan-
sion as mentioned before. The coefficient of the sub-leading
term (normalizable mode) gets identified with the expecta-
tion value of O in the dual state ρB as indicated above. The
mass of the field m is related to the scaling dimension Δ via

Δ = d

2
+

√

d2

4
+ m2l2

with l the AdS radius. An extrapolate dictionary stated in
[99,100] relates correlation functions of the boundary theory
in the state ρB to scattering S-matrices of the semiclassical
bulk fields in the geometry B as follows:5

〈O(x1) . . .O(xn)〉ρB
= lim

r→0
r−nΔ〈φ(r, x1) . . . φ(r, xn)〉B .

(22)

5 The right hand side of (22) is more precisely the AdS analogue of
the Lehmann–Symanzik–Zimmermann (LSZ) reduction [101] of S-
matrices in flat space.
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Fig. 8 A scattering experiment in the bulk that is equivalent to a 4
point function in the boundary. Figure from [58]

For instance a four point function 〈O(x1)O(x2)O(x3)O(x4)〉
can be obtained from a 2 → 2 bulk scattering experiment
shown in Fig. 8. This extrapolate dictionary has been shown
to be equivalent to the GKPW prescription (20) in [102,103].

The extrapolate dictionary reproduces boundary observ-
ables as boundary limits of bulk observables. However, this
is not the goal of bulk reconstruction which aims to do the
opposite, namely describe (reconstruct) bulk observables in
terms of boundary observables. A naive way to do this is to
solve the bulk equations of motion with boundary conditions
determined by the data of the boundary CFT (expectation
values of the dual operators etc) and then use the extrapolate
dictionary. For a free bulk scalar field this gives (see [100]
for details of the computation):

φ(X) =
∫

dd xK (X, x)O(x), (23)

where the integration is over all boundary points (x) that are
spacelike separated from the bulk point X and K is referred
to as the smearing function (it is the inverse of the bulk-to-
boundary propagator). This expression is correct at the lead-
ing order in N and the 1/N corrections can be obtained by
perturbatively solving the bulk equations of motion including
the bulk vertices.

This naive procedure suffers from a major issue. Equa-
tion (23) says that a bulk local operator φ(X) depends on
all CFT operators localized to a region spacelike to X . This
non-locality persists even when the bulk operator is pushed
to the boundary. Therefore Eq. (23) doesn’t smoothly reduce
to the extrapolate dictionary. In order to recover the extrapo-
late dictionary the smearing function K (X, x) must become
more and more local as X is pushed to the boundary.

Hamilton, Kabat, Lifschytz, and Lowe (HKLL) addressed
this issue in the context of the AdS Rindler wedge which is the
bulk causal wedgeWR of a ball-shaped region R at the bound-
ary. Recall that the boundary limit of WR , i.e. ∂WR is DR , the
boundary domain of dependence of R. HKLL showed that
the reconstruction of the bulk operator in a Rindler wedge
can be made manifestly consistent with the extrapolate dic-
tionary if we work in Rindler coordinates (which covers WR)

instead of the global coordinates of AdS [104,105]. This is
referred to as AdS-Rindler reconstruction. For example, we
can choose the CFT state to be the vacuum. The dual geom-
etry is then pure AdS. The HKLL reconstruction procedure
is explicitly

φ(X) =
∫

DR

dd−1xdτ KRindler(X; x, τ )O(x, τ ), (24)

where τ is the Rindler time. Note that the integration is
restricted to DR the boundary domain of dependence of R
and O(x, τ ) is the Heisenberg picture operator evolved with
the Rindler Hamiltonian which generates translation in τ , i.e.
boosts. The smearing function KRindler is known explicitly in
terms of the mode functions obtained from the semi-classical
quantization of the bulk field in Rindler wedge (see [58]).
This leads to the causal wedge reconstruction conjecture,
which states that a bulk field within the causal wedge WR of
a boundary subregion R can be reconstructed on the bound-
ary domain of dependence DR , i.e. φ(X) can be represented
using boundary operators within DR provided X ∈ WR . As
we move X closer to the boundary, a smaller DR is required
to reconstruct φ on the boundary. This is manifestly consis-
tent with the extrapolate dictionary and therefore solves the
issue that occurred in the global reconstruction. It is impor-
tant to note that the explicit smearing function is known only
for the ball-shaped boundary subregions in the vacuum state.

The entanglement wedge reconstruction conjecture states
that bulk operators within the entanglement wedge of some
boundary region R can be reconstructed from operators on
DR at the boundary. This is called the entanglement wedge
reconstruction conjecture [26–30]. This conjecture has now
been proven using methods of operator algebra (quantum)
error correction as will be discussed in Sect. 4.2. This auto-
matically implies the causal wedge reconstruction since the
causal wedge is contained within the entanglement wedge
as shown earlier. Note that in the case of the AdS-Rindler
wedge reconstruction, the causal and entanglement wedges
coincide.

However, the prescription given by Eq. (24) cannot be
correct when we consider entanglement wedge reconstruc-
tion. Generically the entanglement wedge contains a region
which is spacelike separated from the boundary domain of
dependence DR . This is referred to as the causal shadow
[29] (see Fig. 9).6 The causal shadow is spacelike to DR ,

6 In [29], it was shown that a causal shadow is generated for an interval
slightly larger than half the boundary (a circle) in the asymptotically
AdS3 metric

ds2 = 1

cos2 ρ

(

− f (ρ)dt2 + dρ2

f (ρ)
+ sin2 ρdφ2

)

,

f (ρ) = 1 − 1

2
sin2(2ρ).

The metric is supported by bulk matter satisfying null energy condition.
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Fig. 9 The solid black lines are the edge of the boundary domain of
dependence DR . Solid blue lines are the edge of the causal wedge and
the solid red lines are the edge of the entanglement wedge. The black
dots are two bulk operators in the causal shadow region (beyond the
causal wedge and within the entanglement wedge). These two operators
need not be spacelike separated and need not commute, however a bulk
reconstruction formula analogous to Eq. (24) would imply that they
commute with each other

therefore all bulk operators in the causal shadow would com-
mute with operators in DR . Thus if an equation analogous to
(24) is correct for entanglement wedge reconstruction, then
all bulk operators in the causal shadow must commute with
each other, which leads to an inconsistency since they are not
necessarily mutually spacelike separated. See Fig. 9 for an
illustration.

Jafferis, Lewkowycz, Maldacena and Suh (JLMS) [30]
proposed that this inconsistency can be resolved if the bulk
reconstruction equation takes the form:

φ(X) =
∫

R
dd−1x

∫

dsK (X; x, s)Os(x),

Os(x) = ρ−is
R O(x)ρis

R = eiHρsO(x)ρ
−i Hρs
R , (25)

where ρR is the reduced density matrix on the boundary sub-
region R and Hρ = − log ρ is the modular Hamiltonian
and K is an appropriate smearing function. The conjugation
of the operator O by the density matrix is called modular
flow [106] and s is the modular flow parameter. Since the
modular Hamiltonian Hρ is typically non-local, the mod-
ular flowed operators Os are non-local also, and therefore
they do not commute with φ. This resolves the inconsis-
tency due to the causal shadow described before. The JLMS
proposal reduces to the HKLL prescription (24) for ball-
shaped regions in the vacuum as the modular Hamiltonian is
then exactly the Rindler Hamiltonian which generates boosts
[107–109] implying that Os(x) = O(τ, x). Generically, the
modular Hamiltonian is local only for boundary regions with
sufficient symmetry and for vacuum states.

The entanglement wedge reconstruction hypothesis states
that an appropriate smearing function K should always exist
for (25). Progress towards an explicit construction of this
smearing function will be discussed later in this section.

3.2 The equivalence of bulk and boundary relative
entropies and its consequences

We proceed to first show the key result of [30] which estab-
lishes the equivalence of the boundary and bulk relative
entropies as a consequence of the Engelhardt–Wall prescrip-
tion [25] for the holographic entanglement entropy in the
semi-classical approximation. This will be the fundamental
input in the proof of entanglement wedge reconstruction to
be discussed in Sect. 4.2.2 in the framework of operator alge-
bra error correction. We will also study some of the striking
consequences which follow from this relation.

The relative entropy between two states ρ and σ is a mea-
sure of their distinguishability (divergence) and is defined
as

S(ρ|σ) = Tr[ρ(log ρ − log σ)] (26)

Its classical analogue is the Kullback–Leibler divergence
between two probability distributions. It could be helpful
to see how the relative entropy arises as a measure of dis-
tinguishability. Consider a positive-operator-valued-measure
(POVM) which is a set of positive semi-definite operators Ai

such that
∑

i Ai = 1̂. We then define the classical proba-
bility distributions p and q obtained via pi = Tr(Aiσ) and
qi = Tr(Aiρ), and use the classical Kullback–Liebler diver-
gence between p and q to define

S1 := S1(ρ|σ) = supAi

(

∑

i

pi (log pi − log qi )

)

with the supremum taken over all possible POVMs. S1 is thus
a measure of distinguishability between the two states for a
single measurement. We can similarly consider n copies of
both ρ and σ along with all POVMs acting on these n-copies,
and define Sn := Sn(ρ|σ). The result of Hiai and Petz is that
[110]:

S(ρ|σ) = lim
n→∞ Sn .

We can paraphrase this as the statement that the probabil-
ity that we can confuse between ρ and σ after we per-
form a large number (n) of measurements on ρ decreases
as exp(−nS(ρ|σ)) as n → ∞. In quantum field theory, the
relative entropy is a measure of how well we can distinguish
two states based on the algebra of observables in a subre-
gion R. See [111] for a detailed and illuminating discussion.
The relative entropy is invariant under simultaneous unitary
transformations of the two states, and therefore like the von-
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Neumann entropy, it is an observable that depends only on
DR and not the specific choice of R.

The first crucial property of the relative entropy is that
it is non-negative and vanishes if and only if the two states
are identical [112]. It follows also from the similar feature
of Kullback–Leibler divergence as should be clear from the
above discussion. Furthermore, the relative entropy is related
to mutual information. Consider the union of two subregions
A and B, a joint state ρA∪B and the uncorrelated state ρA⊗ρB

with each density matrix obtained by tracing out the comple-
ment of the corresponding subregion. The mutual informa-
tion between A and B subregions in the joint state is defined
as

I (A, B) = S(A) + S(B) − S(A ∪ B) (27)

with S(A), S(B) and S(A∪B) referring to the von Neumann
entropies of ρA, ρB and ρA∪B respectively. One can readily
see that

I (A, B) = S(ρA∪B |ρA ⊗ ρB). (28)

The non-negativity of the relative entropy then implies that
I (A, B) is positive and vanishes only when the two intervals
are fully uncorrelated.

The second crucial property of the relative entropy is
its monotonicity under completely positive7 trace preserv-
ing (CPTP) maps. A density matrix maps to another density
matrix under a CPTP map and will characterize an arbitrary
noise channel in the context of quantum error correction. It
has been shown that [113]

S(N (ρ)|N (σ )) ≤ S(ρ|σ) (29)

for an arbitrary CPTP map N . Considering N to be the trac-
ing out of a subregion C , we can readily see that the mono-
tonicity of the relative entropy implies the strong subaddi-
tivity property (19) of the entanglement entropy as follows.
Under this trace operation we should have the inequality

S(ρA∪B∪C |ρA ⊗ ρB∪C ) ≤ S(ρA∪B |ρA ⊗ ρB), (30)

from the monotonicity property. We easily obtain (19)
from the above inequality using (28) and (27). The strong-
subadditivity of the entanglement entropy is saturated for
quantum Markov chain states in which A and C are indepen-
dently conditioned by B as will be discussed in Sect. 4.2.2.
This will have implications for toy models of holography.

7 Note that a map N : B(H) → B(K) between bounded linear oper-
ators in two Hilbert spaces H and K is said to be positive if it maps
positive operators on H to positive operators on K. The map N is said
to be completely positive if any extension of the map is also a positive
map. In other words, suppose the map N acts on a subsystem HA of
a composite system HA ⊗ HB , then complete positivity ensures that
(N ⊗ I)(ρAB) ≥ 0, for all (positive) ρAB ≥ 0.

To proceed further, we rewrite the relative entropy in the
following form

S(ρ|σ) = Tr [ρ log ρ − σ log σ ] + Tr [(σ − ρ) log σ ]
= −ΔS + Δ 〈Hσ 〉 ,

where ΔS is the difference between the von Neumann
entropies of the states ρ and σ , and Δ 〈Hσ 〉 denotes the dif-
ference between the expectation value of the modular Hamil-
tonian of Hσ = − log σ in these two states. Note these dif-
ferences are exact and not infinitesimal. Since the relative
entropy is non-negative and reaches its extremal vanishing
value when the two states are identical, the first order change
in the relative entropy must vanish for an infinitesimal dif-
ference between the two states i.e. when ρ = σ + δσ . This
implies the first law of entanglement entropy [114]

δS = δ 〈Hσ 〉 (31)

for any infinitesimal variation of the state σ .
The Engelhardt–Wall prescription states that for any

boundary subregion R

S(R)bdy = A(χR)

4G
+ Sent-bulk (32)

where χR is the quantum extremal surface which extrem-
izes the generalized entropy with Sent-bulk the entanglement
entropy of the bulk matter within the corresponding entan-
glement wedge. The area term can be viewed as the expec-
tation value of an operator in the bulk effective field the-

ory (Tr [ρ ÂχR
4G ]). Note that the von-Neumann entropy is

simply the expectation value of the modular Hamiltonian:
S(σ ) = Tr [σHσ ] = 〈Hσ 〉σ . Therefore Eq. (32) can be writ-
ten as an equivalence between the bulk and boundary modular
Hamiltonians as [115]:

Hbdy = ÂχR

4Gh̄
+ Hbulk (33)

Note that the area operator ÂχR will commute with both Hbulk

and Hbdy since XR is spacelike separated with all points in
the corresponding bulk and boundary regions. Furthermore,
the boundary relative entropy in the form (31) is

S(ρ|σ)bdy = −ΔSbdy + Δ
〈

Hbdy
σ

〉

. (34)

From (32) we readily obtain that

ΔSbdy = Δ

(A(XR)

4Gh̄

)

+ ΔSbulk (35)

and similarly from (33) we obtain

Δ
〈

Hbdy
σ

〉

= Δ

〈

ÂχR

4Gh̄

〉

+ Δ
〈

Hbulk
σ

〉

. (36)
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Subtracting Eq. (35) from Eq. (36) and noticing that the area
term cancels, we immediately obtain the desired result [30]

S(ρ|σ)bdy = S(ρ|σ)bulk (37)

stating the equivalence between the boundary and bulk
relative entropies. It is interesting to note that a similar
equivalence between boundary and bulk mutual information
(between two subregions) can also be readily proved [28].

Let us consider a bulk field φ within the entanglement
wedge of some boundary region R. Equation (33) implies:

[Hbdy, φ] = [Hbulk, φ] (38)

The area term in Hbdy, which is localized on the extremal
surface and is spacelike to the interior of the entanglement
wedge, drops out. Therefore bulk causality implies that the
bulk and boundary modular flows are identical.

The definition of the modular Hamiltonian contains some
ambiguities. For example in lattice gauge theories observ-
ables are located on the links of the lattice. Therefore, when
a surface splitting space into two parts cuts a link, it is not
clear which side of the surface should include the observ-
able on that link. These ambiguities are localized on the
boundary of R. Nevertheless, the relative modular Hamil-
tonian Hrel-bdy = HR−bdy − HR̄−bdy is free of such ambigui-
ties. Similarly, the bulk modular Hamiltonian has ambiguities
localized on the extremal surface, but the bulk relative mod-
ular Hamilton is free of these ambiguities. The relative bulk
and boundary modular Hamiltonians should be identical, i.e.
Hrel-bdy = Hrel-bulk, if the area term cancels out, i.e. if R
and its complement R share the same extremal surface (and
hence the two corresponding entanglement wedges are com-
plements of each other). This happens for a pure state (and
horizonless bulk geometries). This ambiguity free modular
Hamiltonian can be used to define the modular flow.

To see consequences of the equivalence of bulk and bound-
ary relative entropies, we need the first law of entanglement
entropy (31) which simply follows from the vanishing of the
first order variation of the relative entropy as shown above.
We will also need the result for the second order variation of
the relative entropy. Let

ρ = σ(ε) = σ + εδ1σ + ε2δ2σ + O(ε3).

We readily see that

δS(σ (ε)|σ) = ε2 1

2
Tr

[

δ1σ
d

dε
log(σ + εδ1σ)

∣

∣

∣

ε=0

]

+ O(ε3)

(39)

where terms containing δ2σ vanish for the same reason as in
the case of the first order variation mentioned before. This
implies

d2S(σ (ε)|σ)

dε2

∣

∣

∣

ε=0
= Tr

[

δ1σ
d

dε
log(σ + εδ1σ)

∣

∣

∣

ε=0

]

:= 〈δ1σ, δ1σ 〉σ (40)

The quantity 〈δ1σ, δ1σ 〉σ is called the quantum Fisher infor-
mation which defines a Riemannian metric on the space of
states. Quantum Fisher information is important in the study
of quantum metrology and state estimation, where it bounds
the amount of information that can be obtained about a state
by generalized measurements [116]. The positivity of rela-
tive entropy implies that the quantum Fisher information is
positive.

Let us consider σ to be the reduced density operator on a
ball shaped subregion B of the vacuum state of a holographic
CFT and ρ to be the corresponding reduced density operator
of a perturbed state close to the CFT vacuum. The vacuum is
dual to pure AdS and the perturbed state is dual to a pertur-
bation of pure AdS. It was shown in [117,118] using results
from [109,119] that at the leading and subleading orders the
variation of the bulk relative entropy can be written in the
form (with the bulk metric g = g0 + εδg + O(ε2)):8

δS(ρ|σ)bulk = E(g0, δg,Lξ g) − 2
∫

Σ

ξμδEμν(g)dΣν

(41)

where Σ is the Cauchy slice bounded by the boundary sub-
region and the bulk extremal surface, δg is the bulk metric
perturbation and

Lξ g = ∇μξν + ∇νξν

is the Lie derivative of the bulk metric g in the direction of
ξ which is the timelike Killing vector associated to the bulk
Rindler wedge (note that ξ vanishes on the extremal surface).
Eμν is proportional to the equations of motion. Furthermore,
E is a symplectic form on Σ given by:

8 The key to this result is the map of the bulk Rindler wedge dual to the
domain of dependence DB of the ball shaped region at the boundary B to
a hyperbolic black hole using[109] (the Casini–Huerta–Myers (CHM)
map). This map is dual to the statement that the vacuum state in DB can
be mapped conformally to a thermal density matrix in hyperbolic space
with radius of curvature RH = 1/(2πT ) given by the temperature. The
perturbations of the vacuum is dual to gravitational perturbations of the
hyperbolic black hole with a bifurcate horizon which can be analyzed by
the method of Wald and Hollands in [119]. Note that the QES is mapped
to the bifurcate horizon. Then the change in bulk relative entropy can
be split using (31) with the change in von-Neumann entropy given by
the change of the black hole entropy and the change in the modular
Hamiltonian (which gets identified with the usual Hamiltonian after
the CHM map) given by the change in the Arnowitt–Misner–Deser
energy. Then the change in the bulk relative entropy can be reproduced
essentially from the variation of the gravitational action according to
[119] which further develops results in [120].
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E(g0, δ1g, δ2g) = − 1

16π

∫

Σ

δ1hμνδ2 p
μν − δ2hμνδ1 p

μν

(42)

where h is the induced metric on Σ and pμν = √
h(Kμν −

hμνK ) with Kμν denoting the extrinsic curvature of the
Cauchy surface (and K = hμνKμν).

Since Lξ g0 = 0 as ξ is a Killing vector associated to
the unperturbed metric g0, the canonical energy vanishes,
i.e. E = 0 at leading order in ε. The first order variation of
relative entropy must vanish due to the positivity of relative
entropy. Since this should hold for any Cauchy surface Σ ,
we obtain:

δEμν(g) = O(ε2). (43)

This simply implies that the perturbed metric should sat-
isfy linearized Einstein’s equation expanded about the back-
ground for an arbitrary perturbation. Therefore positivity of
relative entropy is equivalent to linearized Einstein equations.

The second order variation of the relative entropy is then

d2S(ρ|σ)bulk

dε2

∣

∣

∣

∣

ε=0
= E(δg,Lξ δg)

−2
∫

Σ

ξμ ∂2Eμν(g)

∂ε2

∣

∣

∣

∣

ε=0
dΣν. (44)

The vanishing of the linearized equations of motion finally
implies that [121]:

d2S(ρ|σ)bulk

dε2

∣

∣

∣

∣

ε=0
= E(g0, δg,Lξ δg). (45)

The right hand side is the canonical energy of the linearized
perturbation [119]. Using the equivalence of the bulk and
boundary relative entropies and (40), we obtain that the left
hand side is exactly the quantum Fisher information in the
boundary. Therefore, the quantum Fisher information of a
perturbation of the density matrix in the CFT is dual to the
bulk canonical energy of the dual linearized gravitational
perturbation [121]. The positivity of the Fisher information
(which follows from that of the relative entropy) then must
imply the positivity of the canonical energy as indeed is the
case for perturbation about any stable vacuum.

3.3 Modular flow and bulk reconstruction

3.3.1 The JLMS smearing function

In this section we describe the explicit construction of the
smearing function [31] in Eq. (25). For this it is useful to
first consider the Fourier transform of the modular flowed
operators:

Oω =
∫ ∞

−∞
dse−isωeiHσ s Oe−i Hσ s, [Hσ , Oω] = ωOω,

(46)

where Hσ is the modular Hamiltonian for the state σ . We
describe below an explicit expression for the smearing func-
tion from [31] that can be obtained by looking at the zero
modular frequency mode. We can consider a bulk operator φ

in the entanglement wedge and look at its zero mode φ0(X).
Since the bulk modular flow is the same as boundary modu-
lar flow as seen in Eq. (38), it follows that [φω, Hσ ] = ωφω.
Therefore the zero mode φ0 commutes with the modular
Hamiltonian and this field must be localized on the extremal
surface. It was then shown in [31] that the zero mode of the
dual boundary operator is:

O0(x) =
∫

χR

dXχR

〈

φ(XχR )O(x)
〉

φ(XχR ), (47)

whereχR is the extremal surface corresponding to a boundary
subregion R. This generalizes the results from [122–124].
Inverting this expression gives

φ(XχR ) =
∫

R
dxK0(XχR , x)O0(x), (48)

where K0 can be obtained by inverting the usual bulk to
boundary correlator defined as follows:

〈

φ(XχR ), O(x)
〉 =

∫

dyK0(XχR , y) 〈O(x), O0(y)〉 . (49)

This shows how bulk operators on the QES can be recon-
structed. If we foliate the entanglement wedge by extremal
surfaces corresponding to smaller and smaller boundary sub-
regions contained within R we can reconstruct operators on
the full entanglement wedge. This foliation is well defined
due to entanglement wedge nesting which was reviewed in
Sect. 2.3. The inversion of the bulk to boundary propagator
only needs to be done over the extremal surface making this
a much simpler computation compared to the inversion of
the full bulk to boundary propagator. (A similar technical
computation in a different context was done in [125].)

These modular zero modes have been used to define
the modular Berry connection for the boundary CFT [126],
which has been related to the Riemann curvature in the bulk
[127].

3.3.2 A note on modular Hamiltonians for excited states
and bulk reconstruction

We have described the JLMS proposal and an explicit con-
struction of the smearing function. The only missing ingre-
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dient for entanglement wedge reconstruction is the modular
Hamiltonian, which can be explicitly obtained for sufficiently
symmetric boundary subregions of the vacuum state [107–
109,128,129]. However in generic situations the modular
Hamiltonian is a non-local object that is very hard to com-
pute (for examples see [130–132]). Using the Casini, Huerta
and Myers map [109] Sarosi and Ugajin [133] have described
an explicit CFT construction of the modular Hamiltonian for
ball shaped subregions in slightly excited states close to the
vacuum. Let the excited state be ρ = σ + δσ , then the mod-
ular Hamiltonian is [133]:

Hρ = Hσ +
∞
∑

n=1

(−1)n
∫ ∞

−∞
ds1 . . . dsnKn(s1 . . . sn)P

P =
n

∏

i=1

e
−

(

i
si
2π

+ 1
2

)

H0
δσe

(

i
si
2π

+ 1
2

)

H0 (50)

This construction of the modular Hamiltonian doesn’t assume
that the CFT is holographic. Sarosi and Ugajin [133] show
using the results of [118] (valid for the Rindler wedge) that
their construction of the modular Hamiltonian relates the
quantum Fisher information to the canonical energy of an
emergent bulk for any CFT without assuming either the
RT/HRT formula in the bulk or the large N limit for the
CFT. The expressions for the kernel Kn in Eq. (50) can be
found in [133], here we reproduce the kernels for n = 1, 2:

K1(s1) = 1

(2 cosh s1
2 )2 (51)

K2(s1, s2) = 1

16π

i

cosh s1
2 cosh s2

2 sinh s2−s1
2

(52)

Note that the kernel K1 is the same as the kernel seen in
the twirled Petz map [35,134] described in Sect. 4.2. See
[135,136] for an explicit evaluation of Eq. (50).

3.4 Why bulk reconstruction is quantum error correction

We have already seen hints of a connection between entan-
glement wedge reconstruction and quantum error correction.
For instance Eqs. (33) and (38) have been argued to be equiv-
alent to the conditions for quantum error correction [34].
Equation (50) has a structure reminiscent of the twirled Petz
map [35,134] which will be reviewed in Sect. 4.2. Moreover
entanglement wedge reconstruction leads to an interesting
puzzle [32]. Consider three boundary subregions A,B and
C , as shown in Fig. 10. The gray regions are the entangle-
ment wedges for the corresponding boundary subregions.
The dot indicates a bulk field φ(X). This bulk field lies out-
side the entanglement wedges of each of the three boundary
regions. However the field lies in the entanglement wedge of
A ∪ B, B ∪ C and A ∪ C . Thus the bulk operator φ can be

Fig. 10 Three boundary subregions with their corresponding entan-
glement wedges are shown. The dot indicates a bulk operator. Figure
from [32]

reconstructed on A ∪ B and must therefore commute with
all operators on C due to causality in the boundary theory.
Similarly we can argue that φ must commute with all oper-
ators on A and B by reconstructing it on B ∪ C and A ∪ C
respectively. Therefore the reconstructed bulk operator must
be proportional to the identity since it commutes with all CFT
operators. This inconsistency can be avoided if the three rep-
resentations of the bulk operator on the three subregions are
not the same. Thus the same bulk operator is encoded as
different operators on the boundary subregions. Such redun-
dant encoding is essential to quantum error correction. This
connection between bulk reconstruction and quantum error
correction will be described in detail in Sect. 4.2.

3.5 A first look at islands

Following the QES proposal by Engelhardt and Wall [25], the
Page curve [47,48] for an evaporating black hole in AdS2 was
computed in [49,50]. Similar models for black hole evapora-
tion were studied in [137,138]. The results from these mod-
els show that the semi-classical geometry can see features of
unitarity (Page curve) in black hole evaporation. The infor-
mation paradox is of course not resolved since it is still not
clear how the information about the black hole interior is
encoded in the radiation and how it can be decoded. Never-
theless this was an important step towards the resolution of
the paradox.

The setup for these computations is Jackiw–Teitelboim
[139–141] (JT) gravity with bulk matter described by a 1+1
dimensional CFT. This is dual to a quantum dot. At some time
t = 0 the bulk boundary conditions are changed by coupling
the dual quantum dot to a wire described by the same 1 + 1
dimensional CFT as in the bulk but on a flat background
without dynamical gravity (see Fig. 11). Therefore quanta
can now flow across the boundary and the black hole in AdS2

starts evaporating. The QES can be explicitly computed in
this setup since the bulk entanglement entropy is that of a two
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Fig. 11 The doubly holographic setup from [51]. A quantum dot
(shown in black) described holographically by JT gravity with holo-
graphic bulk matter is brought in contact with the same bath holographic
CFT without gravity. The boundary condition is such that the black hole
in JT gravity can evaporate. The holographic dual of the full setup is
locally AdS3 spacetime with a codimension one Planck brane where
the JT theory lives

dimensional CFT which can be obtained using the methods
of Cardy and Calabrese [142]. It was shown in [49,50] that
the QES has a phase transition which leads to the turning
around of the Page curve of the black hole. At early times,
the QES remains close to the bifurcation point of the original
black hole horizon (before coupling to the bath) and starts
moving outward towards the boundary. The von Neumann
entropy of the dual quantum dot increases due to the emitted
Hawking quanta. After the Page time, when the black hole
and the radiation have same number of degrees of freedom,
(a more precise definition of the Page time is in Sect. 5.1), a
different extremal surface has minimal generalized entropy.
This QES is located just inside the event horizon of the black
hole and has a decreasing entropy, and thus implying that the
the entanglement entropy of the quantum dot decreases. This
is the desired feature of the Page curve if the full system has
an unitary evolution (to be discussed later).

Although a Page curve was seen for the entropy of the
quantum dot (dual to the evaporating black hole), the entropy
of the Hawking radiation computed semi-classically in [49]
was shown to grow monotonically as seen in Hawking’s orig-
inal computation. In Sect. 5.1, we will analyze these models
from the point of view of the full gravitational path integral
which computes the Rènyi entropies of the Hawking radia-
tion and explain how the naive semi-classical computation
should be refined by including appropriate saddles which
automatically reproduce the location of the QES and give
results consistent with unitarity. Such computations however
simplify remarkably in a so-called doubly holographic setup
when the bulk matter comprising the Hawking quanta is itself
holographic. So, we briefly discuss this below.

In the setup of [51] the full two-dimensional quantum dot
plus wire (bath) system has a three dimensional holographic
dual. This can be though of as a locally AdS3 geometry with
a dynamical boundary where the JT gravity theory is located
(see Fig. 11). This is essentially the same as the setup in [143,
144] where the dynamical boundary was called the Planck
brane.

The computation of the generalized entropy in this setup
is simple since the bulk entanglement entropy can be com-

Fig. 12 The red segment in the figure on the left indicates where the
bulk entanglement entropy must be computed from the point of view of
the 2D gravity theory. The red region on the right is the late time entan-
glement wedge of the black hole in the 3D theory. The entanglement
wedge of the bath is the grey region in the right figure, which includes
an island behind the horizon

puted via the original RT/HRT prescription in the dual three
dimensional gravity theory to obtain:

Sgen(x) = φ(x)

4G(2)h̄
+ A(3)(Xx )

4G(3)h̄
, (53)

where x is the location of the QES on the Planck brane and
Xx is the classical extremal surface in three dimensions that
is anchored to x at one end and the boundary of the semi-
infinite interval in the bath system at the other (see Fig. 12).
The first area term in this two dimensional case is simply the
value of the dilaton (φ) from the JT theory at the location of
the QES. The entanglement wedge for the black hole in this
setup is shown in Fig. 12.

If we try to compute the entanglement entropy of the bath
CFT by usual methods, that is by tracing out everything to the
left of the black dot in Fig. 12 (left), we would end up with an
entropy that increases forever in time. This was seen in [49].
(This naive computation is the coarse-grained entropy as will
be defined later.) However in the doubly holographic setup
the full CFT (bulk + bath) is dual to a three dimensional
geometry. We should therefore use the RT/HRT prescrip-
tion to compute the entanglement entropy of the bath. This
results in an entanglement wedge for the bath that is exactly
the complement of the entanglement wedge for the quantum
dot (black hole) and hence they have the same entanglement
entropies and Page curves as should be the case if the full sys-
tem is a pure state and evolves unitarily. (The QES has exactly
the same phase transition in the doubly holographic setup at
Page time as in the computation in [49] which is for a gen-
eral CFT.) If we look from the two dimensional perspective
after the Page time (Fig. 12 (left)) we see two disconnected
pieces in the entanglement wedge of the bath (black curves
in Fig. 12) forming islands. However if we look at this from
the three dimensional perspective, the two islands are con-
nected (Fig. 12 (right)). This is a realization of ER = EPR
[145] paradigm in which the bath should be connected to the
interior via a bridge in an extra dimension (wormhole) as a
result of large amount of entanglement between them gen-
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erated by the accumulation of semiclassical Hawking EPR
(maximally entangled) pairs.

Based on the above computation the authors of [51] pro-
posed a new rule for computing entanglement entropies in
setups that involve reference systems coupled to gravitational
systems. This new rule for S(R) the entanglement entropy
of a subregion R in the bath (without gravity) coupled to a
gravitating system is as follows:

S(R) = min
I

Ext
I

[

Sent-bulk(R ∪ I ) + A(∂ I )

4G

]

. (54)

According to this rule, we should first extremize over the
islands I in the gravitating system and then minimize over
the extrema. Sent-bulk is the entanglement obtained from the
semiclassical description of the system (in the doubly holo-
graphic case it is given by the area of the RT surface). When
R is the entire bath (right of the black dot in Fig. 12), the
first term in Eq. (54) equals the entropy of the black hole (B)
since the full state on I ∪ B ∪ R is pure. The second term is
simply the area of the shared QES. Therefore this new island
rule gives the same entropy for the bath as that of the black
hole leading to the same Page curve for both subsystems.

After Page time the position of the QES in all such setups
geometrically realizes the Hayden–Preskill time for infor-
mation mirroring [146] (more discussion in Sect. 5.3.1) [49].
More precisely, if some information is thrown into the black-
hole post Page time then after the Hayden Preskill time
the information crosses the QES. Therefore, the information
escapes the entanglement wedge of the boundary and enters
the island i.e. the entanglement wedge of the wire (Hawk-
ing radiation). It follows that the information thrown into the
black hole can be recovered from the Hawking radiation after
the Hayden–Preskill time.

These island computations in two dimensional gravity
have been extended to higher dimensions in [147–149]. It has
also been shown that islands can extend outside of event hori-
zons [150]. The doubly holographic setups have been further
analyzed in [151] where the Page transition has been studied
after excising intervals in the bath CFT . Further studies have
been done in [152–160]. Islands in the context of de-Sitter
and cosmological spacetimes have been studied in [161–167]
and also in [168] in the context of AdS/BCFT duality. The
island rule (54) can be derived generally without invoking the
doubly holographic setup as will be reviewed in Sect. 5.1.

4 Holography and quantum error correction

4.1 Preliminaries: quantum error correction

Quantum error correction (QEC) is a mathematical frame-
work that allows for partial or complete recovery of quan-

tum information that is corrupted or lost by noise aris-
ing due to unwanted interactions of the quantum system
with the environment [169]. Formally, such noise is mod-
elled as a completely positive trace-preserving (CPTP) map
N : B(H) → B(K) from the set of bounded linear operators
on Hilbert space H to the set of bounded linear operators
on another Hilbert space K [112]. Such a CPTP map on the
system density operators can be described in terms of a set of
Kraus operators {Ei }, as,N (ρ) = ∑

i EiρE
†
i . The operators

Ei are often said to be the error operators associated with
the noise map N .

Since the no-cloning theorem prevents perfect copying
of an arbitrary quantum state [170], QEC aims to protect
against the effects of noise by encoding the information into
entangled states of a larger Hilbert space. Specifically, for an
d-dimensional quantum system with associated Hilbert space
H, an [[n, k]] quantum code protects k qudits by encoding
them into a dk-dimensional subspace C of the n-qudit space
H⊗n . Throughout this discussion, we will assume that the
noise acts identically and independently on each of the n
qudits that constitute the encoded space.

A QEC code C is said to correct perfectly for the noiseN ,
iff there exists a CPTP map R : B(H⊗n) → B(C) – often
called the recovery map – such that,

(R ◦ N )(ρ) = ρ,∀ρ such that PρP = ρ, (55)

where P is the projection map onto the codespace C. Note
that the noise acting on the encoded state is now a map on the
n-qudit space, leading to single-qudit as well as multi-qudit
errors. A given quantum code can only correct for some sub-
set of these errors on the n-qudit space, indicated by a third
parameter called thedistance t of the code. Thus, an [[n, k, t]]
quantum code can correct perfectly for the loss of any set of
t ≤ n qudits, or, equivalently it can correct for arbitrary errors
on up to t−1

2 qudits. Algebraic and information-theoretic con-
ditions for perfect QEC are known [171]. The algebra of the
Pauli operators has lead to the rich framework of stabilizer
codes and topological QEC. We refer to the comprehensive
review by Terhal et al. [172] for further details and references.

On the other hand, a quantum code C is said to correct
approximately for the noise map N , iff there exists a (CPTP)
recovery map R such that,

(R ◦ N )(ρ) ≈ ρ,∀ρ such that PρP = ρ, (56)

where P is the projection map onto the codespace C. The
performance of a QEC protocol (C,R) described by the pair
of codespace C and recovery R, is quantified by the fidelity
function F which is a measure of how close two quantum
states are. The fidelity between a pair of states ρ, σ ∈ B(H)

is defined as

F(ρ, σ ) = Tr
√

ρ1/2σρ1/2. (57)
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Moving beyond states, the framework of QEC can be eas-
ily extended to operator error correction [173,174]. Indeed,
the operator QEC (OQEC) framework is the most relevant
one in the context of bulk reconstruction of observables in
holography, and it will be useful to describe it in some detail
here. OQEC generalises the susbspace structure of stan-
dard QEC to a subsystem structure as follows. Suppose the
system Hilbert space H has a decomposition of the form
H ≡ HA ⊗ HB ⊕ HC , for some choice of Hilbert spaces
HA, HB and HC . Then, HA is said to be an error-correcting
subsystem for a noise map N acting on H, if, for all ρ with
support on HA and σ with support on HB , there exists a
recovery map R such that (R ◦ N )(ρ ⊗ σ) = ρ ⊗ σ ′, for
some σ ′ ∈ B(H) . Physically, this implies that information
stored in subsystem HA can be recovered from the action
of noise N by the recovery map R. Note that we recover
the structure of standard QEC codes when the system HB is
trivial (one-dimensional).

The subsystem QEC structure can then be used to recover
for an algebra of observables, via the framework of opera-
tor algebra quantum error correction [175]. Here, the focus
is on identifying subspaces or more generally subsystems of
the system Hilbert spaceH, such that we can reliably recover
observables X that have support on the chosen subspace or
subsystem. More generally, we may consider the C∗-algebra
A of observables on H.9 We will first formally state the nec-
essary and sufficient conditions for an algebra of operators
to be correctable under a noise map N .

Theorem 2 (Operator Algebra QEC Condition) The alge-
bra of observables A on a codespace C with projector P is
correctable against noiseN with operators {Ei } if and only
if [Ei P, X ] = 0 for all errors Ei associated with the noise
N and all observables X ∈ A .

4.2 Holography as QEC

We now proceed to restate the concept of bulk reconstruc-
tion in AdS/CFT in the language of quantum error correction.
This connection has already been touched upon in Sect. 3,
especially in the context of relating operators in the bulk
spacetime to operators of the boundary CFT (Sect. 3.4). Early
works in this direction demonstrated – using certain toy mod-
els and specific quantum codes – that the local operators in
the bulk can be interpreted as encoded operators on certain
subspaces of the states of the CFT at the boundary [32,176].
The theory of quantum error correction is then invoked to
show that these encoded operators are naturally protected
against erasures on the boundary by virtue of their entangle-
ment structure.

9 Note that the operator algebra of observables is closed under addition,
multiplication and Hermitian conjugation, thus forming a C∗-algebra.

4.2.1 Operator error correction and bulk reconstruction

The first concrete application of QEC was to explain the
somewhat counter-intuitive property that emerges in the con-
text of AdS-Rindler bulk reconstruction, namely that the
same bulk operator φ(x) can be reconstructed on the union of
different pairs of boundary subregions as shown in Fig. 10.
The framework of QEC allows for this to happen in a non-trial
manner, via a proposal that the same bulk operator is encoded
as different operators on the boundary subregions via a suit-
able erasure QEC code [32]. Note that the erasure noise map
is a specific example of a quantum noise map, wherein the
information is either left unaffected or erased with certain
probability. The idea of bulk reconstruction using a quan-
tum erasure code can be made concrete via two simple toy
examples. The first example is provided the 3-qutrit code
[177], defined by the span of the following three qutrit (3-
dimensional) quantum states.

|0̃〉 = 1√
3
(|000〉 + |111〉 + |222〉)

|1̃〉 = 1√
3
(|012〉 + |120〉 + |201〉)

|2̃〉 = 1√
3
(|021〉 + |102〉 + |210〉). (58)

The erasure-correcting property of this code ensures that any
three-qutrit state within the codespace can be reconstructed
even if one of the three qutrits is lost or erased. Given an oper-
ator O that acts on the single-qutrit space, one can always
find a 3-qutrit encoded operator Õ which acts in the same
way on the 3-qutrit code subspace. The unique feature of
this specific code is that there exist encoded operators (also
referred to as logical operators in the literature) that have
support only on two of the three qutrits that constitute the
encoded space. Furthermore, it is then possible to identify
sets of encoded operators that have the same action on the
codespace, but have nontrivial support on different pairs of
qutrits. This indeed captures the essence of the bulk recon-
struction via the entanglement wedges shown in Fig. 10 and
demonstrates that such redundant encoding of operators is
indeed possible.

More generally, we may consider the larger encoded space
H to be partitioned into subsystems HE and HĒ , where HE

denotes the subsystem whose states get erased due to the
noise and HĒ denotes the subsystem whose states are unaf-
fected by the erasure noise. Codespaces are then subspaces
of the form C ⊂ HE ⊗HĒ , such that any state |ψ̃〉 ∈ C can be
recovered after erasure of the HE subsytem. In the context of
operator error correction, this translates to the statement that
corresponding to an operator O that acts on the codespace,
there exists an operator OĒ acting only on subsytemHĒ such
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Fig. 13 Bulk-boundary factorization on a time slice and the entangle-
ment wedge. The boundary CFT is factorized as HA ⊗H Ā. The shaded
region denotes the entanglement wedge EA corresponding to the bound-
ary region A. Ha is the Hilbert space of the bulk excitations in EA. χA
denotes the RT extremal surface. Figure taken from [34]

that

OĒ |ψ̃〉 = O|ψ̃〉, ∀|ψ̃〉 ∈ C. (59)

It is now easy to identify the set of operators O which can be
corrected by a given codespace C, using the operator algebra
QEC condition in Theorem 2. Formally, the operator error
correction property in Eq. (59) holds if and only if O com-
mutes with any operator XE which acts only on HE . In other
words, Eq. (59) holds for a given operator O and codespace
C, if and only if,

〈ψ̃ |[O, XE ]|ψ̃〉 = 0, ∀|ψ̃〉 ∈ C. (60)

It is useful to note that the set of operators that satisfy Eq. (60)
form a ∗-subalgebra of the operators on the codespace C.

4.2.2 Proof of entanglement wedge reconstruction via
operator QEC

We proceed to prove entanglement wedge reconstruction
using the framework of operator algebra error correction
described above. The crucial input would be the JLMS result
of the equivalence of bulk and boundary relative entropies
[30] discussed in Sect. 3.2.

Formally, following the discussion in [34], we may con-
sider a factorization of the boundary CFTH intoHA⊗H Ā as
shown in Fig. 13. Let EA and E Ā denote the associated entan-
glement wedges and let Ha and Hā denote the Hilbert space
of bulk excitations in EA and E Ā respectively. The codespace
is a suitably chosen subspace of the CFT, with a natural fac-
torization of the form C = Ha ⊗ Hā . The JLMS proposal
can then be stated as follows, for a pair of density opera-
tors ρA, σA ∈ B(HA) and a pair of density operators ρa, σa
acting on the space Ha corresponding to the bulk subregion
a.

S(ρA|σA) = S(ρa |σa). (61)

Since the relative entropy between a pair of operators S(ρ|σ)

vanishes if and only if ρ = σ , the above equality is identical
to the statement that ρA = σA would imply ρa = σa and
vice-versa.

The relative entropy equivalence in Eq. (61) in conjunction
with the operator algebra QEC condition in Eq. (60) leads to
the following reconstruction theorem [64].

Theorem 3 (Bulk reconstruction) Consider any code sub-
space C ⊂ H of a finite-dimensional Hilbert space10 H with
the factorizationH = HA⊗H Ā and an operator O that acts
on C. Suppose there exists a factorization of the codespace
into C = Ha ⊗ Hā such that,

(i) the operator O acts only on Ha, and,
(ii) for any pair of pure states |Ψ 〉, |Φ〉 ∈ C, the reduced den-

sity operators ρ Ā = TrA[|Ψ 〉〈Ψ |], σ Ā = TrA[|Φ〉〈Φ|]
ρā = Tra[|Ψ 〉〈Ψ |] and σā = Tra[|Φ〉〈Φ|] satisfy

ρā = σā ⇒ ρ Ā = σ Ā.

Then, there exists an operator OA acting only on HA such
that its action on the codespace is the same as that of the
operator O. In other words,

OA|Ψ 〉 = O|Ψ 〉, ∀ |Ψ 〉 ∈ C. (62)

We will now outline the proof strategy of Dong et al. [64]
here, for completeness. We first note that the operator algebra
QEC condition in Theorem 2 implies that the bulk recon-
struction in Eq. (62) follows if we can establish that the
action of the operator O commutes with the action of any
X Ā (with support only on subsystem H Ā) on the codespace
(see Eq. (60)). This can be shown easily for any Hermitian
operator O , and then extended to general operators by linear-
ity. For any real number λ consider two states |Ψ 〉, |Φ〉 ∈ C,
such that,

|Ψ 〉 = eiλO |Φ〉.
If assumption (i) of the theorem holds, the operator O acts
only on the subsystem Ha . If we further assume that O is
Hermitian, the two states |Ψ 〉 and |Φ〉 are related by a unitary
operator, so that,

ρā = Tra[|Ψ 〉〈Ψ |]
= Tra[(eiλO ⊗ Iā)|Φ〉〈Φ|(e−iλO ⊗ Iā)]
= σā . (63)

Now if we use assumption (ii) – which is equivalent to the
relative entropy condition in Eq. (61) – we have, ρ Ā = σ Ā.
This in turn implies that the expectation value of any operator

10 The assumption that the Hilbert spaceH is finite can be accomplished
by imposing a UV cutoff in the CFT.
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X Ā acting only on subsystem H Ā is the same for the two
states |Ψ 〉 and |Φ〉. Thus,

〈Ψ |X Ā|Ψ 〉 = 〈Φ|X Ā|Φ〉
⇒ 〈Φ|e−iλO X Āe

iλO |Φ〉 = 〈Φ|X Ā|Φ〉. (64)

Expanding Eq. (64) to order λ, we get the desired commuta-
tivity condition, namely,

〈Φ|[O, X Ā]|Φ〉 = 0, ∀ |Φ〉 ∈ C.

Theorem 3 thus proves that bulk reconstruction is possi-
ble via the entanglement wedge prescription, provided there
exists a codespace which can be factorized into the bulk sub-
region a and its complement ā in such a way that the corre-
sponding density operators satisfy the relative entropy equal-
ity in Eq. (61). We refer to [178] for a more detailed explo-
ration of the various connections between holography and
operator algebra quantum error correction. Non-perturbative
gravity corrections imply only an approximate recovery of
the entanglement wedge is possible (with exponentially small
errors and even in absence of horizons) and the generalization
of the present discussion can be found in [179].11

One final aspect of holographic QEC that we would like
to highlight here is the important link between the erasure
correcting properties of a holographic code and the strong
subadditivity inequality. Consider a tripartite quantum state
ρABC ∈ B(HA ⊗ HB ⊗ HC ). The strong subadditivity
inequality (see (19)) states that,

S(ρABC ) + S(ρB) ≤ S(ρAB) + S(ρBC ). (65)

This inequality can be simply understood as the positivity of
conditional mutual information I (A;C |B) between subsys-
tems A and C , given B. It turns out that the quantum states
that saturate this inequality have an interesting structure, as
shown in [180]. Equality of Eq. (65) implies that the Hilbert
space HB can be decomposed as a direct sum of tensor prod-
ucts of the formHB = ∑

i HB1
i
⊗HB2

i
, and that the tripartite

state then has the block diagonal form,

ρABC =
∑

i

piρAB1
i

⊗ ρB2
i C

. (66)

This structure essentially implies conditional independence
of subsystems A andC , given subsytem B. In other words the
state ρABC can be thought of as a quantumMarkov chain, the
quantum analogue of a classical Markov Chain A → B →
C . Furthermore, it was shown that if subsystem C is erased
(or traced out) the tripartite state ρABC can be reconstructed
from the marginal state ρAB via the action of a recovery
map R : B(HB) → B(HB ⊗ HC ) called the Petz map,
described below in Sect. 4.3.1. Note that this recovery map
is completely independent of subsystem A.

11 Approximate state dependent recovery is a necessary starting point
in the presence of horizons as discussed later.

In the holographic setting, this Markov chain structure can
be applied to get a stronger statement of bulk recovery, as
follows. Let the boundary region A in Fig. 13 be made up of
three disjoint regions A1 ∪A2 ∪A3. Let A′ = A1 ∪A3 denote
the union of two such unconnected, disjoint regions. The full
boundary can be viewed as the union of the three regions Ā∪
A′∪A2. The question is, does there exists a recovery map that
can correct for erasure of the region A2, without invoking the
complementary region Ā? The quantum Markov condition
states that this is indeed possible if the boundary state is such
that A → A′ → A3 form a quantum Markov chain, which
will saturate the inequality in Eq. (65). Then, there exists a
recovery map R : B(HA′) → B(HA) that recovers for the
erasure ofHA2 , without involving the subsystemH Ā. In such
a situation, the erasure is said to locally correctable [178].
This observation has potential implications for decoding of
the black hole interior, as discussed in Sect. 5.3.2.

For a discussion on how such tensor network models
can reproduce correlation functions and entropy of a three-
dimensional black hole geometry see [181].

4.2.3 Tensor network toy model for bulk reconstruction

While the operator algebra QEC framework provided an
abstract proof of existence of bulk reconstruction in the
AdS/CFT correspondence, in this section we review the con-
crete tensor network based toy model of holography from
[176]. A tensor network can be visualised as a graph with a
set of vertices {Vx , x = 1, 2, . . . , N }, with a quantum state
|Vx 〉 ∈ Hx associated with each vertex. An isometric tensor is
any linear map T : Hx → Hy such that T †T = Ix , the iden-
tity operator on Hx . Specifically, T : |xi 〉 → ∑

j Ti j |y j 〉,
where {|xi 〉} and {|y j 〉} denote compete orthonormal bases
for Hx and Hy respectively. The local Hilbert space Hx

at each vertex could admit a tensor product decomposition
of the form Hx = ⊗nx

k=1Hk . The number of tensor indices
depends on the factorization structure of the input and out-
put spaces. For instance, the action of the isometric map
T : H1 ⊗ H2 → Hy on the basis states can be represented
as

|i1i2〉 →
∑

j

Tji2i1 |y j 〉. (67)

An interesting property of such isometric tensors is that it is
possible to reinterpret an input factor as an output factor, up
to a rescaling. Thus, the tensor map in Eq. (67) can be recast
as as a map T̃ : HA1 → HB ⊗ HA2 as,

|i1〉 →
∑

j,i2

Tji2i1 |y j i2〉.

In general, a tensor T with n indices, ranging over d values
represents a quantum state in an n-fold tensor product space
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Fig. 14 The 5-qubit code visualised as a tensor network [176]. The
white dots represent uncontracted indices on the boundary and the red
dots represent the contracted tensor legs in the bulk

of d-dimensional quantum systems.

|ψ〉 =
∑

i1,i2,...,in

Ti1i2...in |i1i2 . . . in〉.

A special class of tensors called perfect tensors lead to
encoding isometries for quantum error correcting codes in the
following sense. A perfect tensor with 2n indices describes
a pure state of 2n quantum systems with the property that
any subset of n systems is maximally entangled with the
complementary set of n systems.12 Such a tensor can then be
thought of as a linear map from 1 (d-dimensional) system to
2n − 1 (d-dimensional) systems, encoding a single quantum
system is such a way that it is protected against the erasure
of any n − 1 subsystems. In QEC terminology, a perfect
tensor with 2n indices corresponds to a [[2n−1, 1, n]] code,
as exemplified by the well known [[5, 1, 3]] stabilizer code
[182].

In the context of holography, a tensor network can be inter-
preted as a map from the bulk to the boundary in the follow-
ing sense. If we imagine the quantum states associated with
the vertices of a graph to correspond to perfect tensors, the
edges of the graph are associated with contractions of the ten-
sor “legs”. Contracted tensor indices can then be associated
with bulk degrees of freedom and uncontracted vertices are
associated with the boundary degrees of freedom, as depicted
in Fig. 14.

12 Such states are called Absolutely Maximally Entangled (AME)
states.

The holographic pentagon code shown in Fig. 14 is the
simplest example of a tensor network based holographic
code, and provides a nice demonstration of exact bulk recon-
struction. The code geometry comprises of a uniform tiling
of a hyperbolic disc by pentagons, with four pentagons adja-
cent at each vertex. A perfect tensor with six legs is placed
at the center of each pentagon, so that each tensor has one
uncontracted index, indicated by the red dot in Fig. 14. All
other interior legs are contracted. The uncontracted leg in the
interior can be interpreted as an encoded input in the bulk to
the tensor isometry and the uncontracted legs at the boundary
(the white dots at the boundary in Fig. 14) interpreted as the
physical outputs at the boundary. The entire system can thus
be viewed as a tensor network that maps the input legs in the
bulk to the output legs at the boundary.

We refer to [176] for a detailed discussion of the error
correction properties of the pentagon code. Suffice it to note
that the erasure-correcting properties of the underlying 5-
qubit code ensure that this toy model can achieve bulk recon-
struction by accessing only a subregion of the boundary.
A full description of the operator reconstruction involves
some interesting techniques such as tensor pushing and leads
to a so-called greedy entanglement wedge reconstruction.
Finally, we note that the 3-qutrit code described in Eq. (58)
is also a perfect tensor and can be viewed as a triangular
holographic code.

Moving beyond holographic codes based on perfect ten-
sors, toy models of holography have been proposed using
random tensor networks [183]. Unlike perfect tensor codes
which are based on fixed isometric tensors, these models
involve projecting onto maximally entangled states via ran-
dom projection operations. Such random tensor networks
are known to successfully demonstrate several holographic
properties [184] and have been recently used to demon-
strate approximate bulk reconstruction [185] via the universal
recovery map described in Sect. 4.3.2 below. Infinite dimen-
sional HaPPY codes have been discussed in [186]. Here, it
has been shown that the infinite dimensional code fails to
reproduce long range correlations at the boundary, which are
necessary ingredients of a dual CFT; thus indicating limita-
tions of this model for AdS/CFT.

4.3 Bulk-boundary reconstruction via quantum recovery
maps

The original bulk reconstruction proposal presented in
Sect. 3.4 relied on an exact equivalence of the bulk and bound-
ary relative entropies, as stated in Eq. (37) (equivalently (61)).
While such an exact equivalence of the bulk and boundary
entropies maybe argued for in an asymptotic setting, in a
finite regime, within the framework of bulk effective field
theories, it is expected that these two entropies may only be
approximately equal. (This will also be a crucial issue in the
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context of establishing black hole interior reconstruction as
an universal subsystem recovery map. It will be discussed in
Sect. 5.2.) The question then arises as to whether the QEC-
based bulk reconstruction argument can be extended to this
case of approximate equivalence of the bulk and boundary
relative entropies. It turns out that the right framework to
consider in this case if that of approximate quantum error
correction (AQEC), rather than the perfect QEC situation
considered thus far. In this section, we review some recent
works [35,185,187] that formulate the bulk reconstruction
argument using ideas and techniques from approximate QEC.

4.3.1 Approximate QEC and the Petz map

As defined in Eq. (56) above, approximate QEC extends the
framework of QEC to allow for situations where the state
is not perfectly recovered, but recovered with high enough
fidelity after the action of the noise map. In the case of per-
fect QEC, code constructions rely on decomposing the noise
operators in terms of Pauli operators and then using the struc-
ture of the Pauli algebra to identify good code subspaces. The
recovery operation is a two-step process comprising error
detection, followed by application of the appropriate Pauli
operators to correct for the errors [112]. The problem of find-
ing good approximate QEC codes is in general much harder,
since it requires a search over both code spaces C and recov-
ery maps R, such that (R ◦ N )(ρ) is close in fidelity to the
density operator ρ ∈ B(C).

An important tool that emerged in this context is the idea of
a near-optimal universal recovery map, namely, the Petz map
[188], that can reverse the effect of the noise to a high degree
of fidelity. Given a noise map N with associated error opera-
tors {Ei } and a code space C, the Petz mapRρ,N correspond-
ing to any density operator ρ with support on the codespace is
defined in terms of its Kraus operators Rρ,N = {(Rρ,N )i },
as [189],

(Rρ,N )i = ρ1/2E†
i (N (ρ))−1/2, (68)

where the inverse is taken on the support of the positive oper-
ator N (ρ) = ∑

i EiρE
†
i . In other words, the action of the

Petz map Rρ,N on an arbitrary density operator σ ∈ B(C)

can be written as,

Rρ,N (σ ) = ρ1/2

(

∑

i

E†
i N (ρ)−1/2σN (ρ)−1/2Ei

)

ρ1/2

= ρ1/2N †
(

N (ρ)−1/2σN (ρ)−1/2
)

ρ1/2. (69)

Here, N † denotes the dual to the map N , with Kraus opera-
tors {E†

i }. Furthermore, it is easy to see that

Rρ,N ◦ N (ρ) = ρ.

Thus, Rρ,N is the map that reverses perfectly, the effect of
the noise map N on the state ρ.

In the context of approximate QEC, the Petz map defined
in Eq. (68) was shown to be a universal, near-optimal recov-
ery map, where optimality was characterized using the aver-
age entanglement fidelity [189]. Subsequently, a variant of
the Petz map – defined over a codespace C, rather than a
specific state ρ – has been shown to be a universal, near-
optimal recovery map in terms of the worst-case fidelity
[190]. In what follows we will survey some of the recent
works [35,185,187] that use the Petz map construction to
demonstrate a robust, universal recovery map for bulk recon-
struction.

4.3.2 Bulk reconstruction using the Petz map

The Petz map was originally conceived in the context of
understanding the monotonicity of quantum relative entropy
[180,191]. Under the action of a noise map N , the relative
entropy between two states ρ, σ can never increase, that is,

S(ρ|σ) ≥ S(N (ρ)|N (σ )). (70)

This is often referred to as Uhlmann’s theorem [113] in quan-
tum information theory. Since the relative entropy S(ρ|σ)

vanishes if and only if ρ = σ , it can be thought of as a
measure of distance between quantum states. The difference
between S(ρ|σ) and S(N (ρ)|N (σ )) can thus be used to
quantify the extent to which the noise map N corrupts the
quantum system. It was subsequently realised that the mono-
tonicity inequality also captures the extent of recoverability
of the states ρ and σ under noise N . Suppose there exists
a recovery map R that recovers the states ρ and σ perfectly
from the effects of the noiseN , namely, (R◦N )(ρ) = ρ and
(R◦N )(σ ) = σ , then, the inequality in Eq. (70) is saturated.
Interestingly, the converse is also true, and the specific form
of the recovery map that saturates monotonicity is indeed
given by the form of Petz map defined with respect to σ and
N [191]:

Rσ,N (.) = σ 1/2N †
(

N (σ )−1/2(.)N (σ )−1/2
)

σ 1/2.

Note that this form is identical to the one in Eq. (69), except
that this is the Petz map that recovers the state σ perfectly
under the action of the noise N .

The fact that saturation of Eq. (70) is a necessary and
sufficient condition for exact recoverability provides us with
a nice information theoretic interpretation of the JLMS pro-
posal for bulk construction. In essence, the JLMS condition in
Eq. (61) can be thought of as a saturation of the monotonicity
of the relative entropy between operators on the correspond-
ing bulk and boundary subregions under the action of the era-
sure noise map on the complementary boundary region. This
naturally begs the question of what happens when the mono-

123



463 Page 24 of 53 Eur. Phys. J. C (2022) 82 :463

tonicity inequality is only approximately saturated. In the
holographic context, this would imply that the bulk bound-
ary relative relative entropies are only approximately equal,
perhaps to leading order. Does there exist a universal recov-
ery map in this case, which can achieve approximate bulk
reconstruction despite having access to only a certain sub-
region of the boundary? Remarkably, it turns out that the
answer to this question is in the affirmative, and there exists
more than one construction of such a universal recovery map
for approximate bulk reconstruction, based on the Petz map.

4.3.3 The twirled Petz map

One proposal for a universal recovery map comes from a
time-averaged form of the Petz map, called the twirled Petz
map. The twirled form of the Petz map is motivated by a
recent result in quantum information theory, which relates
the difference in quantum relative entropies before and after
the action of a noise map to the fidelity between the ideal and
noisy states. Formally, for any two states ρ, σ ∈ B(H) on
some Hilbert space H and any noise map N , there exists a
recovery map R̃σ,N such that [134],

S(ρ|σ) − S(N (ρ)|N (σ )) ≥ −2 log F(ρ, (R̃σ,N ◦ N )(ρ)).

(71)

Here, F(.) is the fidelity function defined in Eq. (57) above.
For a map N that saturates monotonicity of relative entropy,
both LHS and RHS identically vanish, for in this case the
recovery map R̃σ,N is simply the Petz map which satis-
fies Rσ,N (ρ) = ρ. For a map that does not saturate the
monotonicity inequality, the LHS of Eq. (71) quantifies the
deviation from saturating monotonicity, whereas the RHS
quantifies the extent to which the recovery map R̃σ,N recov-
ers the state ρ after the action of the noise. In essence, the
above inequality states that the fidelity with which a recovery
map can correct for the action of the noise N is bounded by
how close the map N comes to saturating the monotonicity
inequality.

Furthermore, an explicit form of the universal recovery
map R̃σ,N for the case where monotonicity is not exactly
saturated was also given in [134], as,

R̃σ,N (.) =
∫

dtβ(t)

σ
1−i t

2 N †
(

[N (σ )] −1+i t
2 (.)[N (σ )] −1−i t

2

)

σ
1+i t

2 , (72)

where β(t) = (π/2)(cosh(π t) + 1)−1. This twirled form of
the Petz map then provides a natural choice for a universal
recovery map in holography, where t is interpreted as the
boundary modular time. This was formalised in the work of
[35], which we briefly review here.

The starting point for approximate bulk reconstruction
will be the approximate form of the relative entropy equiva-
lence from [30].

S(ρA|σA) = S(ρa |σa) + O
(

1

N

)

, (73)

where ρA, σA are density operators on the boundary subre-
gion A in Fig. 13 andρa ,σa are density operators on the corre-
sponding entanglement wedge region a in the bulk. In other
words, the JLMS equality conditions holds up to leading
order in the CFT gauge group rank N . Interpreting Eq. (71)
as approximate saturation of the monotonicity of the rela-
tive entropy requires the existence of a mapping ρa → ρA

of states from the entanglement wedge in the bulk to the
boundary subregion A. The AdS/CFT correspondence can
be described via an isometry V : C → H from the code
subspace to the boundary CFT H. The map N is simply the
partial trace operation, which traces out the complementary
boundary region Ā. Thus, for any ρa ∈ B(Ha), and any fixed,
full-rank state σā ∈ B(Hā), we have,

N (ρa) = Tr Ā[V(ρa ⊗ σā)V†]. (74)

Note that we only consider product density operators of the
form ρa ⊗ σā on the codespace, where σā is a fixed state on
Hā , so that the partial trace operation truly becomes a map-
ping of states ρa on the entanglement wedge region (shaded
region a in Fig. 13) to states Tr Ā[V(ρa ⊗ σā)V†] on the
boundary subregion A.

Now, consider the twirled Petz map corresponding to the
map N defined in Eq. (74), R̃σa ,N , defined using a full-
rank state σa ∈ B(Ha). This is a map of the form R̃σa ,N :
B(HA) → B(Ha). Finally, if we assume that the map N
defined in Eq. (74) approximately saturates the monotonicity
inequality, Eq. (71) implies that the twirled Petz map R̃σa ,N
recovers any ρa ∈ B(C) with a fidelity that is bounded by,

−2 log F(ρa, (R̃σa ,N ◦ N )(ρa))

≤ S(ρa |σa) − S(N (ρa)|N (σa)). (75)

This argument was then extended in [35] to show that the
map R̃σa ,N can recover for all states, extending the scope
of this result beyond states that are factorised as ρ = ρa ⊗
σā . Furthermore, since R̃σa ,N recovers states on Ha with
high fidelity, it can be shown that the adjoint R̃†

σa ,N maps
operators φa with support on the entanglement wedge region
Ha to boundary operators OA which are close in expectation
values. Finally, it was shown in [35] that an explicit formula
for operators OA can be obtained by a specific choice of the
fixed states σa and σā , namely, the maximally mixed states
on Ha and Hā .

We conclude this section by noting a few more recent
results that demonstrate bulk reconstruction using variants of
the Petz map. Moving away from the twirled Petz map which
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involves an averaging over the modular time, it was argued
in [187] that the standard form of the Petz map in Eq. (68)
suffices to achieve approximate bulk reconstruction. Their
argument is based on the original result of Barnum and Knill
[189], which shows that the Petz map is the near-optimal
universal recovery map in terms of the average entanglement
fidelity between the ideal and noisy states. We restate the
main result of [187] here, for completeness. Let Ma be a
subalgebra on the code space C with dimension dcode, and N
be any noise map. Suppose there exists an optimal recovery
map Ropt such that

‖ (Ropt ◦ N )(ρ) − ρa ‖1< δ,

for all ρ ∈ B(C) and its projection ρa onto Ma . Then, the
Petz map

Rτ,N (.) ≡ 1

dcode
N †

[

N (τ )−1/2(.)N (τ )−1/2
]

,

defined using the maximally mixed state τ on the codespace,
satisfies,

‖ (Rτ,N ) ◦ N )(ρ)|a − ρa ‖1≤ dcode
√

8δ,

where ‖ (.) ‖1 denotes the 1-norm or the trace-distance and
(.)|a denotes the projection onto the subalgebraMa . In other
words, so long as the error using the optimal recovery Rop is
non-perturbatively small (in trace-norm), the error after the
Petz map recovery will also be non-perturbatively small up
to a factor dcode.

More recently, it has been shown that a Petz-like map
can be used to demonstrate bulk reconstruction in random
tensor network toy models [52,185] of holography. From a
dynamical point of view, there appears to be an interesting
connection between the structure of the twirled Petz map
and the action of the modular Hamiltonian, as hinted in [35]
and also in sections 3.3.2 and 3.4. Exploring this connection
further might lead to further insights on the problem of bulk
reconstruction, and promises to be an exciting direction for
future investigations.

4.4 A note on holography as a renormalization group flow

Holographic renormalization scheme which defines the dic-
tionary between boundary and bulk observables already
makes it manifest that the radial direction in the holographic
bulk is dual to the energy scale/scale of resolution in the dual
field theory. Nevertheless, it does not in itself tell us how
local bulk operators such as the metric can be reconstructed
as coarse-grained operators in the dual field theory. One can
say that there is a passive and an active point of view of bulk
reconstruction. In the active point of view advocated in the
HKLL and the more refined JLMS procedures, we extrapo-
late the bulk operator to the boundary. On the other hand in

the RG flow point of view, we should coarse-grain the bound-
ary operator under a suitably defined RG flow such that it
mimics the geometric radial flow, and then demonstrate the
emergence of local bulk operators from these flowed oper-
ators. The coarse-graining is more specifically an evolution
under a sequence of CP (completely positive) unital maps
of the dual field theory operators.13 Interestingly, the real
space RG has been already discussed explicitly from the
quantum error correction perspective [192,193] and the Petz
map also naturally emerges in this context. The passive RG
flow perspective also holds an enormous promise to reveal
novel principles of bulk emergence as we discuss below. It
is not a mere reinterpretation of the active (HKLL/JLMS)
perspective since the latter is manifestly non-local while the
RG flow tames non-locality in a controlled way.

Various proposals for the RG flow have been advo-
cated [194–199] based on fundamental insights developed in
[200,201]. Here we will focus on the highly efficient RG flow
construction developed in [196,197] based on earlier works
in the context of the fluid/gravity correspondence [202,203].
For a review see [204]. In this approach bulk locality is man-
ifest especially through the Ward identities. We outline this
approach here in the language of quantum error correction.

We first choose a code subspace. Let this be the space
of all solutions of pure gravity with a negative cosmologi-
cal constant. This class of states can be characterized by the
expectation value of a specific single-trace operator, namely
the energy–momentum tensor, i.e. 〈tμν〉 since the expecta-
tion values of multi-trace operators factorize in the large N
limit and other single-trace operators have vanishing or fixed
expectation values.14

The aim is to define a sequence of CP unital maps
parametrized by a coarse-graining scale Λ under which

tμν → tμν(Λ).

Since other single-trace operators do not play a role in this
subspace, most generally we should obtain

tμν(Λ) = tμν + a1
1

Λ2 �tμν

+ 1

Λ4 (a2t
ρ

μ tρν + a3ημν tαβ t
αβ + a4�2tμν + · · · )

13 A CP unital map is the dual of a CPTP (completely positive trace
preserving) map which evolves density matrices to density matrices.
Here dual implies the map which takes us to the Heisenberg picture
from the Schrodinger picture. The unital map preserves the identity.
14 To be precise one needs to also specify initial conditions to describe
the full geometry. However, 〈tμν〉 is all we need to find the geometry in a
radial tube in Fefferman–Graham or Eddington–Finkelstein coordinates
when the boundary metric (dual to the physical metric in which the
dual field theory lives) is also specified. A better way to implement this
would be to invoke a Borel resummation of the derivative expansion at
late time in 〈tμν〉 [205]. Then the initial conditions are encoded in the
Stokes parameters.
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+O
(

1

Λ6

)

. (76)

Above ai s are appropriate numerical constants which are
determined by the specific CP unital map (the insight that
single trace operators should mix with multi-trace operators
under the RG flow even in the large N limit is from [200]).
Essentially we put in all possible multi-trace operators on
the right hand side except those which vanish due to the CFT
Ward identities:

∂μtμν = 0, ηαβ t
αβ = 0. (77)

Owing to large-N factorization of multi-trace operators, the
evolution (76) is effectively a classical equation. The point
of the highly efficient RG flow is that the coarse-graining
which generates these unital maps should be done with a
very specific choice of the complementary subspaces which
are traced out such that we can define a metric

gμν(Λ) = gμν[tαβ(Λ)]
in which we obtain a local Ward identity

∇μ

(Λ)tμν(Λ) = 0 (78)

at each scale Λ with ∇(Λ) being the covariant derivative con-
structed from gμν(Λ). The Ward identity is defined by con-
sidering tμν(Λ) as the fundamental variable and we lower
and raise indices using gμν(Λ) and its inverse respectively.
In practice, we need to then restrict ai s appearing in (76) such
that we can obtain bi s defining gμν(Λ) via the expansion

gμν(Λ) = ημν + 1

Λ4 tμν + b1
1

Λ6 �tμν

+ 1

Λ8 (b2t
ρ

μ tρν + b3ημν tαβ t
αβ

+b4�2tμν + · · · ) + O
(

1

Λ10

)

(79)

with which (78) is satisfied. This is possible only for specific
choices of ai s and hence the coarse-graining CP unital maps.
The emergence of bulk spacetime follows by considering the
D + 1-dimensional metric in the Fefferman–Graham gauge
after identifying r with Λ−1:

ds2 = dr2 + gμν(r, x)dxμdxν

r2 . (80)

The metric above satisfies the D + 1-dimensional Einstein’s
equations or appropriate classical gravity equations. We can
always choose the ai s in (76) such that we obtain gμν(Λ =
r−1) with which (78) is satisfied and the metric (80) satisfies
D+1-dimensional classical gravity equations. It was shown
in [196] that (78) is sufficient to guarantee the emergence of
a D + 1-dimensional classical gravity because without the
emergence of a gauge (diffeomorphism) symmetry (78) can-
not hold along the RG flow. In fact the RG flow has an auto-
morphism which is related to the residual gauge symmetry of

the Fefferman–Graham gauge that maps to conformal trans-
formations at the boundary. Via appropriate state-dependent
conjugations one can obtain the RG flow that reproduces
the bulk metric in other gauges. In the Fefferman–Graham
gauge, the RG flow is manifestly state-independent (except
for a subtlety which we describe below).

The key point of highly efficient RG flow is that one should
choose the complementary subspace which is projected out
such that the energy–momentum exchanges with the comple-
ment can be absorbed into a redefinition of the metric. One
can generalize this to cases where other single-trace opera-
tors have non-trivial expectation values simply by introduc-
ing sources for these operators such that a general version
of the local Ward identity (78) holds. These scale-dependent
sources then are the dual bulk fields after we identify r with
Λ−1.

This coarse-graining was implemented in the hydrody-
namic sector in [197]. To do this one assumes that 〈tμν〉 is
given in terms of constitutive relations via hydrodynamic
variables which can be expanded in the derivative expan-
sion. In this case, we need to sum to all orders in Λ−1 at
a fixed order in derivatives. The RG flow is implemented
by coarse-graining of the hydrodynamic variables with the
scale itself being a local functional of these variables (see
Fig. 15). In this case, the RG flow (76) reduces simply to
first order ODEs which evolve infinite number of transport
coefficients. This reproduces Einstein’s equations (or other
classical gravity equations). To see this we simply need to
follow the procedure in [202,203] and rewrite the gravity
equations (in the derivative expansion) as a first order flow
of transport coefficients.

This raises a profound question. In the fluid/gravity cor-
respondence [206,207], one explicitly solves the equations
of gravity in derivative expansion and obtains the transport
coefficients in the UV by requiring that the dual solution
has a regular future horizon. However in the RG flow we
do not see the metric directly but only tμν(Λ). How do we
then determine the transport coefficients? This was solved
in [203]. It was shown that there is a particular scale Λh

where there is naively a singularity in the RG flow with the
pressure and most transport coefficients blowing up – this
scale corresponds to the horizon in the dual geometry. How-
ever, if one redefines time and the scale in a universal way
(analogous to taking the near-horizon limit), then the singu-
larity actually transforms to a fixed point described by non-
relativistic incompressible Navier–Stokes equations with a
single parameter, namely the shear-viscosity. This is however
possible only if the transport coefficients do not blow up faster
than certain bounds as Λ approaches Λh . These conditions
then fix the integration constants in the ODEs describing the
RG flow of the transport coefficients, and we precisely obtain
those values of the transport coefficients (shear-viscosity at
first order and five other transport coefficients at second order
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Fig. 15 The highly efficient RG flow in the hydrodynamic sector can
be simply constructed as evolution of the velocity field uμ and the tem-
perature field T with the coarse-graining length scale (identified with
the bulk radial coordinate r ) via the constitutive relation defining the
stress-tensor. The effective background metric is evolved such that the
stress tensor is locally conserved. This implies that the scale of coarse-
graining Λ becomes dependent on uμ(r) and T (r) in a very specific
way so that the violation of the local energy–momentum conservation
can be absorbed into a re-definition of the metric. The highly efficient
RG flow simply reduces to the first order flow equations for the transport
coefficients. These have unique solutions requiring that at the end-point
corresponding to the location of the horizon we obtain an incompress-
ible non-relativistic Navier–Stokes fixed point. This leads to values of
transport coefficients at the boundary which give a dual spacetime with-
out naked singularities at the future horizon. Figure from [203]

etc) at the boundary computed in [206–208] which lead to
a regular future horizon. Essentially the regularity of space-
time is simply a consequence of the regularity of the highly
efficient RG flow which in the hydrodynamic limit is simply
the condition that it ends at the scale of the mean-free path at
a fixed point described by the non-relativistic incompressible
Navier–Stokes equations (governed just by an effective shear
viscosity).15

The highly efficient RG flow can lead to a new way to
understand bulk emergence. The RG flow can be naturally
viewed as a encoding of infrared (coarse-grained) physics
into microscopic degrees of freedom. The highly efficient
RG flow principle of preservation of effective Ward iden-
tities (78) then leads to emergence of bulk fields. It might
seem that at least in the Fefferman–Graham gauge this RG
flow (76) is manifestly state-independent. However, this is
not completely true because one needs to impose infrared
boundary conditions which depends on the code subspace.
In the case of the hydrodynamic sector this is specified by
the Navier–Stokes fixed point. However, within the code sub-
space the RG flow can be cast in a state-independent form.
This is precisely how the reconstruction of the black hole
interior in the dual field theory should be state-dependent as
we will discuss in Sect. 5.2. The boundary operator which

15 In [203], it was shown that the counterterms which remove the UV
divergences are also fixed by the Navier–Stokes fixed point.

will reconstruct the bulk operator in the black hole interior
will depend on the choice of the code subspace but not on the
specific state in this code subspace. This motivates a study
of the highly efficient RG flow beyond the hydrodynamic
sector.

5 Decoding the black hole interior

5.1 How the islands emerge from replica wormholes

The black hole interior poses the most formidable challenge
in the understanding of bulk reconstruction. If the evolution
of the black hole can be described by an unitary theory, we
should expect that after the Page time (defined below), the
information of the interior should begin to leak out into the
Hawking radiation. This is a consequence of Page’s theo-
rem [47,48] which states that for a typical pure state in a
bipartite system with one system being much smaller than
the other, the trace distance between the density matrix of
the smaller subsystem and the microcanonical ensemble is
of the order of e−S/2 with S being the number of qubits in
the larger one. At initial stages, the black hole is much larger
than its Hawking radiation, so the entanglement entropy of
the latter should grow. The Page time occurs when the black
hole and the emitted radiation have the same coarse grained
entropy.16 After the Page time, the entanglement entropy of
the radiation should decrease as it becomes the larger sub-
system. The already emitted Hawking quanta should also be
purified by the subsequently emitted Hawking quanta. Thus
its total entanglement entropy should follow the Page curve –
initially it should grow linearly in time following Hawking’s
original computation but then it should fall back to zero after
Page time as it gets purified.

The crucial question is that if the semi-classical descrip-
tion is valid for the effective field theory (EFT) observables,
then what exactly goes wrong with the semi-classical compu-
tation of the entanglement entropy of the Hawking radiation
after the Page time. The question is further sharpened by
the Almheiri–Marolf–Polchinski–Sully (AMPS) [209] para-
dox which points that such assumptions would lead to viola-
tion of the monogamy of entanglement because the Hawking
quanta are maximally entangled with their infalling counter-
parts according to the EFT computations, but they also have
to be maximally entangled with the quanta emitted before
Page time in order to purify it and validate the unitarity

16 The coarse-grained entropy is defined as follows. Consider expec-
tations values of simple operators (averaged over certain time-scales)
and construct all density matrices which reproduce them. The coarse-
grained entropy is the entropy of such a density matrix which has maxi-
mal von-Neumann entropy. Since the argument of Page uses typicality,
the Page time is appropriately defined via the coarse-grained entropy
which is determined mostly by the size of the Hilbert space.

123



463 Page 28 of 53 Eur. Phys. J. C (2022) 82 :463

of the evolution. The strong sub-additivity property of the
entanglement entropy would prevent simultaneous maximal
entanglement of a system with two other systems [210]. We
will discuss more aspects of this paradox later.17

It is to this question (paradox) that the AdS/CFT cor-
respondence has recently produced some remarkable new
insights along with a deeper understanding of which part of
the black hole interior is encoded in a given subregion of the
Hawking radiation system. The main lesson is that the EFT in
the semi-classical black hole geometry is indeed unimpeach-
able in its usual domain of validity set by an energy scale,
however there are other subleading Euclidean saddles in the
path integral for Rènyi entropies which give sufficient contri-
bution after Page time to restore unitarity. Furthermore, these
saddles imply that the fine-grained entropy18 of Hawking
radiation (obtained from the Rènyi entropies) would involve
contributions from islands (which are regions of bulk space-
time diconnected from the asymptotic boundary and includ-
ing portions of the black hole interior as already introduced in
the context of explicit models in Sect. 3.5) after Page time as
these are connected to the already emitted quanta via worm-
holes. This implies the ER= EPR mechanism [145] of reso-
lution of AMPS paradox with wormholes implying that after
Page time operators in the interior also affect this far away
radiation, and therefore the early radiation and the interior
are not separable systems. We will discuss later that if one has
to resolve this issue by explicitly following the state in real
time we will need self-averaging and complexity. The crucial
inputs in both cases would be the island reconstruction for
which the framework of operator error correction would play
an important role.

The anti-de Sitter black hole cannot evaporate unless the
boundary conditions allow the quanta of bulk matter to escape
out of the asymptotic region. The understanding of how the
black hole interior is encoded into these Hawking quanta
especially after the Page time can be achieved by coupling a
holographic system B with another larger system R living in
one higher dimension, and which may or may not be holo-
graphic. The role of R is to collect the Hawking quanta of the
evaporating black hole in the dual geometry that depicts the
evolving system B holographically. For tractability, we also

17 The AMPS paradox builds on the discussions by Mathur [55] which
introduced the strong subadditivity originally to examine if small semi-
classical corrections can restore unitarity in Hawking radiation. Many
aspects of the AMPS paradox were discussed also in [211].
18 The fine-grained entropy can be defined like the coarse-grained
entropy above but taking into account more operators that probe the
short distance structure of the density matrix. However, we should keep
in mind that we are already doing an averaging which allows a tensor
factorization between the black hole and radiation system to emerge.
A very concrete discussion on this issue can be found in [46] within
the context of the semi-classical approximation itself. We will have a
more elaborate discussion on this in the context of microstate models
in Sect. 5.3.2.

need the bulk matter to have large central charge c so that
we can ignore quantum gravity fluctuations. What has been
shown to be crucial is that, after the Page time, the entan-
glement wedge of the quantum extremal surface (QES) of
the asymptotic boundary is encoded in B, while the wedge
including the exterior of the QES called the island and con-
taining parts of the black hole interior is encoded into R as
illustrated in Fig. 16 for 0 + 1-dimensional B coupled to a
1 + 1-dimensional R. To see this, we need to consider the
(pure) state of the quantum matter fields on a Cauchy slice of
the black hole geometry and R, and consider contributions
of saddles that contribute to the Rènyi entropy of the Hawk-
ing radiation in R other than the semi-classical black hole
itself. These saddles connect the replicas of the Rènyi entropy
computation via wormholes, and are therefore called replica
wormholes. These wormholes connect the island I including
parts of the black hole interior to the Hawking quanta in R,
thus invalidating the tri-partition in the AMPS paradox and
resolving it.

We need to explain why such saddles which give expo-
nentially small contributions in the semi-classical limit to
the Rènyi entropy should be important at all. The leading
saddle is the usual ˜Mn/Zn geometry discussed in Sect. 2
denoting n copies of the semi-classical black hole geome-
try quotiented by the cyclic permutation symmetry. In the
presence of gravity, we need to take into account the other
replica wormhole saddles too. The point is that the contribu-
tion from the ˜Mn/Zn saddle decreases exponentially with
time (consistent with the linear growth of the von-Neumann
entropy in the R region) while the contribution from the other
replica wormhole saddles grow with time essentially due to
the growth of the island. Around the Page time, these effects
compete with each other, and after sufficiently long time the
replica wormholes give the leading contribution to the Rènyi
entropies, and arrest the growth of the von-Neumann entropy
of R as illustrated in Fig. 17.19

These replica wormholes are essentially codimension two
cosmic branes on the gravity side (giving rise to conical sin-
gularities in two-dimensional gravity) where the twist oper-
ators of the bulk matter theory must be inserted. See Fig. 18
for an illustration. The positions of the these branes should
be obtained by solving the gravitational equations of motion.
For the semi-infinite interval in R containing the Hawking
quanta in Fig. 16, it turns out that there is one such brane, and
in the limit n → 1 with n denoting the number of replicas, the
position of the cosmic brane is exactly that of the quantum
extremal surface which computes the entropy of B. In case
of the double interval in Fig. 17, the cosmic branes coincide

19 Note in the thermofield double setup the entanglement entropy of
the radiation should not vanish but rather saturate to be consistent with
unitarity since not all radiation escapes to the null infinities in R. The
Page curve then involves a transition from linear growth to saturation.
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Fig. 16 This figure is from [53]. It depicts the construction where a
holographic system B is coupled to a large system R without gravity.
The dynamics of B is described by the evaporating black hole with a
constant curvature which is glued to flat Minkowski space in which
R lives. R collects the Hawking quanta of the evaporating black hole.
The red regions are the entanglement wedges of the interval(s) which

contribute to the von-Neumann entropy of the Hawking quanta in R
while the green regions are those that contribute to B. a At early time,
the entropy of the matter fields in whole of the Cauchy slice contributes
to B. b After Page time, the interval exterior to the quantum extremal
surface, whose entanglement wedge is the island, contributes to the
von-Neumann entropy of the Hawking quanta in R

Fig. 17 A thermofield double version of the setup described in Fig. 16
taken from [53]. The particles with the same color (blue/green) are
entangled according to effective field theory computations. Here we
consider the entanglement entropy of the Hawking quanta in the red
intervals at time t = 0 and at t = t0 with t0 exceeding the Page time. In
(a) we see that if we do not include the island, then the von-Neumann

entropy of the red intervals (R )should grow linearly with time and with
the slope determined by the rate of Hawking pair production. We see
in (b) that if one includes the island (I ), then the matter contribution to
the von-Neumann entropy in I ∪ R cannot grow as the entangled pairs
get collected in this combined region

with the two quantum extremal surfaces in the limit n → 1
as well. For a recent pedagogical review on wormholes in
semiclassical gravity including the explicit construction of
these replica wormholes see [212].

Specifically, the island rule (54) which is now validated
by the gravitational path integral accounting for the replica
wormhole saddles, implies that

S(ρR) = S(ρ
(g)
RI ) + A(QES)

4G
. (81)

Above ρR denotes the density matrix of the interval(s) in R,
ρ

(g)
RI denotes the density matrix of the quantum fields (respon-

sible for the Hawking quanta) in R ∪ I in the semiclassical
geometry of the black hole glued to Minkowski space(s).
Note that A(QES) above refers simply to the value of the dila-
ton for the JT theory since the QES is a point (or two points
in the case of the thermofield double). We should understand
the above as a semi-classical statement only – the island is

defined with respect to the semi-classical geometry itself. On
the other hand, if D is the interval in this geometry which
is the complement of R ∪ I and connects the QES to the
boundary of the AdS2 region, then the generalization of the
HRT formula given by (53) will imply that

S(ρB) = S(ρ
(g)
D ) + A(QES)

4G
(82)

Above by B we mean its two copies in the thermofield double
case. Since, the quantum fields in the full Cauchy slice I∪D∪
R in the semiclassical description should be in a pure state,
it implies that S(ρ

(g)
RI ) = S(ρ

(g)
D ), and therefore S(ρR) =

S(ρB). This is then consistent with unitarity of the evolution
of the full (two copies of the) dual B ∪ R system.

We can also then claim that the bulk effective field the-
ory operators acting in the island can be reconstructed in
R as an extension of the entanglement wedge reconstruc-
tion described before in Sect. 3. The code subspace is the
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Fig. 18 An example of a replica wormhole from [53] for the compu-
tation of the 3rd order Rènyi entropy of the Hawking quanta in R in
the setup described in Fig. 17. Firstly, we consider three copies of the
Euclidean version of the diagrams in Fig. 17. In each copy, the shaded
blue region is the Poincaré disk denoting Euclidean AdS2 black hole
with an appropriate time-reparametrization at the boundary of the disk.
The white regions have cuts corresponding to the red intervals in Fig. 17.

In (a) we denote the covering manifold ˜M3 and in (b) the actual replica
wormhole solution which is M3 = ˜M3/Z3 which arises as a solution
to the Euclidean gravity coupled to matter. The fixed points of the Z3
action, namely w1 and w2, appear as conical singularities in the gravi-
tational solution where the bulk twist operators are inserted. Note their
positions are determined by the equations of motion also

span of states in the full (two copies of) R ∪ B which
can be constructed in the gravitational description via oper-
ator insertions in the same semi-classical geometry con-
taining the same island Ii at leading order in perturba-
tive EFT corresponding to an interval Ri in R. The code
subspace is assumed to admit a factorization of the form
Hcode = HRi ⊗ HRi

where Ri here denotes the interval(s)

in R, and Ri the complement of Ri that includes (two copies
of) B. The EFT of bulk fields in the semi-classical gravity
description including the Minkowski space region(s) imply
that Hcode = HRi ⊗HDi ⊗HIi where Di is the complement
of the island and Ri . Then (81) holds for any ρk

Ri
obtained

from any state |k〉 ∈ Hcode by tracing out Ri , and with cor-
responding ρ

(g)k
Ri Ii

on the bulk side obtained by tracing out Di .
An extension of the JLMS argument would then imply that
the relative entropies of the semi-classical bulk states and the
corresponding states in the full dual description are identical,
i.e.

S(ρm
Ri |ρn

Ri ) = S(ρ
(g)m
Ri Ii

|ρ(g)n
Ri Ii

) (83)

for two states |m〉 and |n〉 belonging to Hcode. A repeat of the
theorem of Dong, Harlow and Wall described in Sect. 4.2.1
then implies that for any bulk EFT operator OIi localized in
the island Ii and any |n〉 ∈ Hcode, we should have

1. For any any X localized in Ri

〈n|[X, OIi ]|n〉 = 0, (84)

and

2. there exists an operator ORi localized in Ri such that its
action on the code subspace is identical, i.e.

ORi |n〉 = OIi |n〉, O†
Ri

|n〉 = O†
Ii
|n〉. (85)

Although the replica wormhole saddles produce results
which are compatible with unitarity, there are crucial sub-
tleties which are explicitly brought out by the Euclidean
(Penington, Shenker, Stanford and Yang) PSSY toy model
[52] in which we can sum over the planar replica wormhole
saddles explicitly (via a Schwinger-Dyson type equation for
the resolvent matrix 1/(λI − ρR)). It also gives a simple
way to see how the replica wormhole saddles give rise to the
island which we will review below. In this Euclidean model,
we represent the state of the B ∪ R system in the maximally
entangled form

|ψ〉 = 1√
k

k
∑

i=1

|ψi 〉B |i〉R (86)

which should be a good approximation to the full state of
the Hawking quanta especially after Page time. The state of
the holographic bulk B is captured by an end of the world
(EOW) brane state i as shown in Fig. 19. The evolution of
time is captured by simply dialling k. To capture the dynamics
post Page time then we need k � eSBH where SBH is the
entropy of the bulk black hole. The bulk theory is pure JT
gravity with a dilaton and no bulk matter, while the EOW
brane has vanishing extrinsic curvature and the Neumann
boundary condition for the bulk dilaton is also imposed at
its location. Explicitly, the Euclidean action for the metric g
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and the dilation φ is

S = − S0

4π

(∫

M
√
gR + 2

∫

∂M

√
hK

)

−1

2

(∫

M
√
gφ(R + 2) + 2

∫

∂M

√
hφK

)

+μ

∫

EOW−brane
ds, (87)

with h denoting the induced metric on the boundary and
μ ≥ 0 the mass of the EOW brane. The mentioned boundary
conditions imply that on the EOW brane we should impose

K = 0, ∂nφ = μ (88)

with ∂n denoting the normal derivative. The standard asymp-
totic boundary conditions imply that at the boundary

h = 1

ε2 , φ = 1

ε
, ε → 0. (89)

The limit ε → 0 implies implementing the standard proce-
dure of holographic renormalization which extracts physical
observables of the B system from the regularized action of the
classical gravity solution. The solutions of the gravitational
theory are simply the black hole solutions. It is easy to note
that the computations of the replica wormhole saddles sim-
plify in absence of bulk matter too. The results of the compu-
tations are the same. When k � eSBH , the replica wormhole
saddles produce a dominant contribution as a result of which
the QES in the limit n → 1 is close to the bifurcate horizon
opening up an island which is the entanglement wedge of the
R system.

The subtlety is that we would naively think that if the
EOW brane states |i〉 are orthogonal, then the reduced of the
R system which follows from (86) is

ρR = 1

k

k
∑

i=1

|i〉〈i |R . (90)

Furthermore, Tr(ρ2
R) = 1/k. The latter is however not cor-

rect if we take into account the replica wormhole saddle as
illustrated in Fig. 20. Explicitly we obtain

Tr(ρ2
R) = kZ2

(1) + k2Z(2)

(kZ(1))2 = 1

k
+ Z(2)

Z2
(1)

(91)

where Z(2) is the partition function of the two-sided worm-
hole and Z(1) is the disk partition function (the denominator
comes from the appropriate normalization of the path inte-
gral). This is clearly incompatible with (90).

The reconciliation is achieved if we interpret that the
replica wormhole saddles of JT gravity are essentially com-
puting the path integrals for an ensemble average of Hamil-

tonians describing the B system, so that

ρR = 1

k

k
∑

i, j=1

|i〉〈 j |R〈Ψ j |Ψi 〉B (92)

and

Tr(ρ2
R) = 1

k2

k
∑

i, j=1

|〈Ψ j |Ψi 〉|2B . (93)

Supposing that

〈Ψ j |Ψi 〉B = δi j + e−S0/2Ri j (94)

where S0 is the entropy of the JT gravity black hole at zero
temperature and Ri j are random phases, we should obtain

〈Ψ j |Ψi 〉B = δi j , |〈Ψ j |Ψi 〉|2B = δi j + O(e−S0) (95)

where the bar on top denotes averaging over theories. Note
that e−S0 is exactly the order of magnitude of Z(2)/Z2

(1)

because of the respective topologies (two discs vs one with
each disk being O(eS0)20). Note it is easy to see from (91)
that when k � eS0 , then the replica wormhole gives the dom-
inant contribution Z(2)/Z2

(1). This in fact generalizes, and we
can readily see that

Tr(ρn
R) ≈ kn Z(n)

(kZ(1))n
= Z(n)

Zn
(1)

= O(e−(n−1)S0) (96)

so that the contribution is entirely from the simply connected
replica wormhole with n asymptotic boundaries (see Fig. 21
for an illustration in the case of n = 6). The Zn quotient of
these wormholes Z(n) can be readily analytically continued
(the Zn symmetry is simply a rotational symmetry and quo-
tienting produces a fixed point which is exactly the horizon
in the limit n → 1 in which the geometry reduces to the
original unreplicated one). It is also then easy to see that in
the limit n → 1, the von Neumann entropy is just the gen-
eralized entropy of the QES that is located at the horizon,
i.e.

Tr(ρR) = S0 + 2πφh = SBH ,

where φh is the value of the dilaton at the horizon and SBH

is the thermodynamic entropy of the black hole. The latter
equality follows from the action (87)) and note that there
is no bulk matter in this model. Thus the k → ∞ limit
indeed implies that the QES is at the bifurcate horizon in
the Lorentzian picture and the island is the full interior of
the black hole. We explicitly see that the replica wormholes
reproduce the correct QES. In the opposite limit k → ε with
fixed S0, the fully disconnected geometry dominates (see

20 The first term in the action (87) is topological and accounts for eS0

weighting of the disk.
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Fig. 19 The simplified PSSY
model with an end of the world
brane carrying a degree of
freedom. It has zero extrinsic
curvature and the Neumann
boundary condition for the JT
gravity dilaton is imposed on it.
The left and right figures
correspond to the Euclidean and
Lorentzian scenarios. Figure
from [52]

Fig. 20 The computation of Tr(ρ2
R) involves two saddles. The first

one is the product of two disconnected disks and the second one is a
two-sided replica wormhole. To compute the trace we must join the
lines dashed lines. The disconnected disks then produce a single loop

implying a factor of k while the double sided wormhole produces two
loops implying a factor of k2. Thus we obtain the numerator in Eq. (91).
Figure from [52]

Fig. 21 for an illustration in the case of n = 6) so that

Tr(ρn
R) ≈ kZn

(1)

(kZ(1))n
= 1

kn−1 . (97)

The von-Neumann entropy is then

Tr(ρR) = log k

in this limit signifying the absence of any island and that we
should trace over the entire black hole spacetime which thus
forms the entanglement wedge of B. This toy model then
reproduces features of the growth of the islands in the full
Lorentzian computation with the bulk matter fields described
earlier. The island vanishes at early time, and as the black hole
evaporates it forms and eventually encompass the original
interior. The flow of time is indeed represented in the toy
model as the growth of k as illustrated in Fig. 22.

The toy model also allows us to derive a version of the
Petz map via path integrals with replica wormhole saddles
for reconstruction of the operators acting on the island in the
R system. This makes sense if the wormholes perform an
ensemble averaging over theories describing the B system.
The replica wormholes dominate when k � dcodeeS0 where
dcode is the dimension of the code subspace, and in this limit
the mentioned Petz map produces a perfect reconstruction as
expected. Of course when k � dcodeeS0 , there is no island

and the R system should have no knowledge of the black
hole interior.

Recently, Bousso and Shahbazi–Moghaddam have revis-
ited the holographic entropy bounds discussed in the intro-
duction and have examined them in the context of islands
[213]. In particular, they have been able to find some general
conditions for the existence of islands and how holographic
entropy bounds should be revised in the context of island
rule. They have argued that such arguments could guarantee
behavior consistent with unitarity in more general contexts.
This also explains absence of islands [214] found in the con-
text of AdS-Kasner spacetimes coupled to non-gravitating
reservoirs.

The Page curve for other entanglement measures such as
entanglement negativity (which is a more suitable measure
than the von Neumann entropy in the case of mixed states) of
the Hawking radiation leaking to a bath has also been recently
reproduced in these two-dimensional setups [215,216] devel-
oping on prescriptions obtained in [215,217,218] and are
consistent with results obtained from random matrix theory
[219]. The entanglement negativity has also been studied in
the context of a generalized version of the PSSY model with
a bipartite (non-gravitating) reservoir in [220,221]. Interest-
ingly, saddles which break replica symmetry appear. The
Page curve in doubly holographic setups with the (non-
gravitating) reservoir subjected to relevant deformations have
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Fig. 21 The computation of Tr(ρ6
R) involves several saddles of which

the fully disconnected and the fully connected ones are explicitly shown
above. The first one dominates when k � eSBH while the second one

dominates when k � eSBH . The latter has a Z6 rotational symmetry
whose action has a fixed point. Figure from [52].

Fig. 22 As described in the text, the fully disconnected replica worm-
holes dominate in the limit k � eSBH implying that Tr(ρn

R) = 1/kn−1.
This is obtained by tracing over the entire black hole spacetime which
thus forms the entanglement wedge of B. In the limit k � eSBH , the
fully connected replica wormhole geometry (one single disc with n

asymptotic boundaries) dominates. So we obtain Tr(ρR) = SBH when
n → 1. This implies that the entanglement wedge of R is the interior of
the horizon which forms the island, while the black hole exterior forms
the entanglement wedge of B. Figure from [52]

been studied in [222]. In this work, it has been shown that
the coarse-graining of the reservoir generated by the RG flow
leads to an increase in the Page time.

Finally, the emergence of islands should be understood
from modular flow which is the fundamental element of
explicit entanglement wedge reconstruction as discussed in
Sect. 3. See [223] for advances made in this direction.

The fact that the replica wormhole saddles of the Euclidean
path integrals including the gravitating regions perform some
kind of averaging is a generic feature which should hold for
higher dimensional setups also. In a full unitary quantum
gravity computation in real time in which we should be able
to take into account the microstates of the black hole (such
as fuzzballs) explicitly, the averaging should emerge dynam-
ically via quantum ergodicity. The late-time self-averaging
in many-body dynamics which justifies the Euclidean com-
putation of Rènyi entropies leading to an universal approxi-

mation has been discussed in [224].21 Nevertheless, it has to
be understood from the bulk point of view.22

It is already remarkable that the replica wormholes pro-
duce results for the Page curve which are compatible with
unitarity. Nevertheless, many crucial features of the encod-
ing of the black hole interior into the Hawking quanta and
other related phenomena such as quantum information mir-
roring cannot be addressed by such an approach. We will
examine very soon if we can construct tractable microstate
models to address these fundamental issues.

21 See also [225] for a related discussion on how such equilibrium
approximationof chaotic many-body dynamics makes novel predictions
for entanglement in Hawking radiation before Page time.
22 In fact JT gravity has a full non-perturbative dual description in terms
of an ensemble of random matrices [226,227]. That such randomness eg
random couplings should be described by wormholes has been already
discussed by [228,229]. In an unitary description, such averaging should
emerge from ergodicity and then the question is to understand the dual
bulk mechanism from explicit microstate models.
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5.2 State-dependence in microstate reconstruction: Alpha
bits and Python’s lunch

The natural question to ask of course is how do we recon-
struct (microstate of) a non-evaporating black hole which
is not in contact with an auxiliary reservoir.23 This should
be formulated in the general context of entanglement wedge
reconstruction. This question was originally discussed in the
context of the resolution of the AMPS paradox. It was argued
by Papadodimas and Raju [57,230,231] that the reconstruc-
tion of the black hole interior in the dual boundary theory
has to be necessarily state-dependent and this can resolve
the AMPS and related information paradoxes. The operators
needed for the reconstruction of the interior should them-
selves be complicated and would be also microstate depen-
dent. Its consistency with the framework of quantum mechan-
ics has been debated, see [232] for an instance. We will review
these issues pertaining to the AMPS paradox in the next sec-
tion. In this section, we will present developments related to
state-dependence of black hole interior reconstruction which
has been reformulated in the framework of quantum error
correction with crucial inputs from the extremal surfaces in
[233–235] which is manifestly consistent with the basic pos-
tulates of quantum mechanics. We will also discuss how this
formulation leads to the quantification of the complexity of
the reconstruction of the interior [236,237] that is necessary
for the resolution of the AMPS and related paradoxes (more
on this later). Note this discussion relates to the properties of
the entanglement wedge and is also applicable to evaporating
black holes.

The crucial point in [233] is that state-dependence in the
(approximate) reconstruction of the interior occurs when we
consider a boundary sub-region instead of the whole dual sys-
tem. Furthermore, state dependence actually implies depen-
dence on the code subspace and not dependence on the spe-
cific bulk density matrix with support in this code subspace.
Geometrically it originates from the dependence of the entan-
glement wedge on the choice of the code subspace and it
is simply determined by the maximally mixed state in this
code subspace. To illustrate this form of state-dependence
in the reconstruction of the interior, consider a region A at
the boundary as shown in Fig. 23. There are two extremal
RT surfaces with areas A1 and A2 respectively. Here A2

is homologous to A and A1 to its complement A. If A is
larger than half the boundary, then A2 > A1. The bulk is
separated into three regions a, a′ and a where a(a) is the
region bounded by A2(A1) and A(A), while a′ is the region
between the two minimal surfaces containing the black hole
horizon with area A0 and portions of the black hole exterior

23 By non-evaporating we mean with reflecting asymptotic boundary
conditions. Note Hawking radiation is present but the black hole cannot
lose mass.

Fig. 23 In presence of a horizon, there are multiple extremal surfaces
attached to the boundary ∂A of a boundary subregion. As shown above,
there are two with areas A2 and A1. If the boundary subregion includes
more than half of the full boundary, then A2 > A1. However, A1 is
homologous to A and A2 is homologous to A. The homology constraint
implies that the entanglement wedge of A is a, the bulk region bounded
by A and A2 (and that of A is similarly a) in the thermal state dual to
a black hole. The bulk region a′ bounded by the two minimal surfaces,
which includes portion of the exterior of the black hole, cannot be
reconstructed at the boundary. As discussed in text, the situation is
different in case of a microstate. Figure from [233]

also. Furthermore, A2 − A1 < A0 and so we can define

α = A2 − A1

A0

so that 0 ≤ α ≤ 1. The code subspace is

Hcode = Ha ⊗ Ha′ ⊗ Ha .

In the semi-classical limit G → 0, the dimension of the full
code subspace is

eSBH = e
A0
4G .

Consider the thermal state dual to the actual black hole
geometry. Then the homology constraint implies that the
entanglement wedge of A is a and that of A is a. Any bulk
operator Oa′ localized in Ha′ whether it is in the interior of
the black hole or in the exterior cannot be reconstructed either
in HA or in HA. This is not surprising at all. Firstly note that
only Ha′ which contains the horizon region will have dimen-
sion O(e1/G) whereas Ha and Ha will have dimension O(1)

in the limit G → 0. This implies that none of the microstates
can be resolved as should be the case in the thermal ensem-
ble. Only in the case of a microstate, we should be able to
access (reconstruct) states in Ha′ at the boundary.

To be precise, we assume that for any typical microstate we
can consider the same semi-classical geometry up to where
the surfacesA1 andA2 are located (indeed valid for fuzzballs
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which differ from the black hole significantly only at the scale
of the horizon [238]). This assumption is however not crucial
for what follows – it is enough if the location of A1 and A2

have sub-leading state dependence. Crucially, in a microstate
(with a smooth geometry) there will be no homology con-
straint. For reasons which will be clear later, we should con-
sider a mixed state in the bulk. In order to do this, let us
entangle the black hole with a reference system R (note this
does not imply that they are in physical contact or R is acting
as a reservoir of Hawking quanta). Let |ψ〉 be a pure state in
Hcode ⊗HR . The question is then can we decode an operator
Oa′ , localized in Ha′ , in A. It will be possible if the entan-
glement wedge of A ∪ R is a ∪ a′ ∪ R. This would be so if
Sgen(A2) > Sgen(A1) implying that the quantum extremal
surface corresponding to A should be A1 instead of A2 for
all states |ψ〉 ∈ Hcode ⊗ HR . Therefore, we need (using
S(aa′)ψ = S(aR)ψ for a pure state |ψ〉):

S(a)ψ + A2

4G
> S(aa′)ψ + A1

4G
= S(aR)ψ + A1

4G
. (98)

As discussed above, in the limit G → 0, S(a)ψ isO(1). Also
the triangle inequality implies

|S(R)ψ − S(aR)ψ | ≤ S(a)ψ = O(1).

So (98) reduces to the condition that if

4GS(R)ψ < A2 − A1, (99)

then the entanglement wedge of A is a∪a′. This requires that
|ψ〉 belongs to a code subspace HS ⊆ Hcode of dimension
dS = dR such that the above inequality is satisfied for any
state in this subspace. The reconstruction criterion then arises
from the maximally mixed state in the subspace for which
S(R)ψ = log dS implying that

dS < e
A2−A1

4G = eαSBH . (100)

Irrespective of whichever state we choose in this subspace
HS , any bulk operator Oa′ localized in Ha′ can be recon-
structed via the same operator OA in HA. Nevertheless, this
operator OA will depend on the choice of the code subspace
– outside this subspace there exists states (eg. the fully entan-
gled state of the black hole interior and R) the action of Oa′
on which cannot be simulated by OA since the entanglement
wedge of A does not contain a′ for such states. The state-
dependence of OA is via the choice of this appropriate code
subspace alone. As the size of A grows, clearly α → 1.
Therefore, the code subspace involves all typical states in
the full Hilbert space and there is no state dependence in the
reconstructed operators OA which have the same action as
Oa′ acting in the interior of the black hole.

The quantum error correcting protocol which reproduces
the above desired behavior is the universal subsystem recov-
ery channel first considered in [239]. Suppose there is a quan-
tum channel that applies a Haar-random unitaryU ton qubits,

throws away a fraction of them and transmits the rest. Let the
input Hilbert space be Hin. If one retains a fraction (1+α)/2
of the qubits, then one will be able to decode (recover) any
subspace in the input Hilbert space which has αn qubits (this
subspace therefore has dimension 2αn .) The universal sub-
space recovery map however can only approximately reverse
the channel. Sometimes, there has to be an error ε > e−ηn

with η > 0. In the context of reconstruction of microstates
this implies error

ε > e−η/G

which should be typically non-perturbatively small in G.
The explicit universal recovery map is closely related to the
twirled Petz map [233] which has tantalizing connections
with the modular Hamiltonian as discussed before. The bulk
region a′ between the minimal surfaces contains the α-bits
in the language of universal subspace error correction.

Such issues in bulk reconstruction arise not only in the
case of black holes but also when such competing extremal
surfaces enclose bulk matter with high entropy – we refer the
reader to [234,240] for extensive discussions. In particular
[240] discusses how the quantum extremal surface prescrip-
tions should be refined in such generic circumstances with
information-theoretic interpretations.

Intuitively it should be hard to reconstruct operators lying
in a′ between the two minimal surfaces in Fig. 23 from
A even within the code subspace essentially due to state-
dependence. This is similar to the Hayden–Harlow conjec-
ture of exponential complexity of reconstruction of operators
in the interior of the black hole restricted to Hawking radia-
tion to be discussed in the following subsection. A remark-
able geometric way of capturing this complexity was pro-
posed in [236] based on the generic existence of non-minimal
extremal surfaces forming a Python-lunch geometry (sand-
wiched between minimal extremal surfaces or behind one
of them) and interpreting this geometry in terms of tensor
network constructions. This proposal further develops ear-
lier proposals for the holographic dictionary for complexity
[241–243]. For a recent review on quantum complexity and
its holographic description see [244].

The mechanism for nucleation for such Python lunches
was proposed in [237]. Essentially the argument in the case
of the black hole setup of Fig. 23 is that we should first con-
sider the appropriate code subspace where the interior can
be decoded in A. In the maximally mixed state in this code-
subspace the Hawking pairs will experience disentanglement
and the bulk entropy gradients will be larger than the Hartle–
Hawking state. Using results from [27,87,88], then it has
been argued that due to blueshift of the entropy gradients
when extrapolated in the past there would be nucleations of
non-minimal (highly non-classical) extremal surfaces (since
it can compete with the leading order 1/G term) behind the
horizon ensuring that they do exist also at late time (this

123



463 Page 36 of 53 Eur. Phys. J. C (2022) 82 :463

Fig. 24 In order to consider excited modes in the black hole interior,
one first needs to restrict to a code subspace where the geometry will
have a Python’s lunch – a non-minimal extremal surface γbulge behind
the outermost minimal extremal surface γaptz. The throat refers to the
asymptotic region. There can be other locally minimal surfaces behind
γbulge (not shown in figure). Figure from [237]

is somewhat similar to the existence of the transition in the
extremal surfaces we have seen before in the context of repro-
duction of the Page curve). Even if one considers the full
boundary, one needs to consider a code subspace for dis-
cussing the interior outgoing modes and then there will be
such a bulge surface γbulge behind the outermost extremal sur-
face γaptz (the appetizer of the Python’s lunch) – see Fig. 24.
The complexity of the decoding (defined below) within this
code subspace will then be half the difference in the gener-
alized entropies of γbulge and γaptz.

For the moment, let us assume that such a Python lunch
geometry is generic when one considers appropriate code
subspaces where interior modes are excited and can be
defined in terms of the macroscopic geometry correspond-
ing to the maximally mixed state in this code subspace. In
this case, one can justify the quantification of the complexity
of decoding the interior from tensor network models. Such
models were also used to derive the holographic complexity
conjectures [241–243] which need to be modified in the pres-
ence of the Python lunches. For an illustration consider such
a wormhole with a Python lunch in the two-sided thermofield
double geometry represented in the form of a tensor network
in Fig. 25. We discuss the circuit complexity of decoding
following [237].

The tensor network represents the map from the bulk rep-
resented as black dots in Fig. 25 to the tensor product of
the left and right CFT Hilbert spaces. Triangles represent
isometries and the squares involve postselection – an isom-
etry where one (or more) of the legs is projected to |0〉. In a
generic tensor network of such type, there will be two locally
minimal cuts γmin (global minimum) and γaptz (representing

the locally minimal extremal surfaces) and a γbulge locally
maximal cut in the middle. When we view the figure from
the left to right it represents an approximate isometry from
the tensor product of bulk legs and left CFT Hilbert space to
the right CFT Hilbert space. For this to be the case, we need
to assume that the bonds cut in γaptz have larger dimension
than those in the γmin cut plus the dimensions of the bulk
legs (denoted as black dots) between these two cuts. How-
ever, the problem is in the middle because the map from the
γbulge cut plus the bulk legs in between the γbulge and the
γaptz cut to the γaptz cut is not an isometry as the Hilbert
space dimension of the latter is smaller. To make it work in
practice we need to somehow implement the postselection
(which is not unitary as it involves projection) in a different
way via unitary circuits. This can be done via Grover search
algorithm in the manner discussed first in [245] – we need
to do sequential unitary transformations such that we bring
the qubits that are supposed to be postselected already in |0〉
state. The complexity of the decoding of the Python lunch is
essentially that of this Grover search algorithm. By general
arguments this complexity is

C = O(C̃2m/2)

wherem is the number of qubits which should be postselected
(equal to the difference between the bulge and appetizer cuts)
and C̃ is related to the overall size of the network.24

Now in the gravitational analogue γaptz and γmin are sur-
faces with locally minimal generalized entropies. By our ear-
lier discussion the code subspace that can be reconstructed
in the right Hilbert space has dimension

Sgen(γaptz) − Sgen(γmin)

with generalized entropies defined by considering the max-
imally mixed state in the code subspace. The condition
Sgen(γaptz) > Sgen(γmin) is the reconstructibility criterion
analogous to that for the tensor network to be an isometry to
the right Hilbert space. Furthermore, γbulge has locally max-
imal generalized entropy and for the Python lunch geometry
Sgen(γbulge) > Sgen(γaptz). Then the tensor network analogy
suggests complexity of decoding should be

C = O(C̃ exp
1

2

(

Sgen(γbulge) − Sgen(γaptz))
)

.

The exponential dependence in G−1 comes crucially only
from the difference of the generalized entropies while the
dependence on G−1 in C̃ (which is of same order in G−1

as the generalized entropies) is only linear. So the former
accounts for exponential complexity. A similar discussion
can be repeated for a single sided microstate geometry shown
in Fig. 24 also.

24 For a discussion on complexity utilizing the Petz map in the context
of a subregion see [246].
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Fig. 25 A tensor network dual to a Python’s lunch geometry such that
the map from the input state in the left Hilbert space and the black dots
representing bulk legs to the right Hilbert space is an approximate isom-
etry. It has two locally minimal cuts γaptz and γmin with γaptz > γmin.

Furthermore, there is a maximal cut γbulge between these two cuts. The
triangles denote isometries whereas the squares have one or more of
their legs projected to |0〉 state. Figure from [237]

The understanding of the mechanism for generation of
exponential complexity already alerts us towards the need for
more explicit microstate geometries that can describe appro-
priate code subspaces. We will further motivate microstate
models in the following subsection.

Interestingly a converse of the Python’s lunch conjecture
has been discussed in [247]. It has been claimed that bulk
operators between the boundary and the outermost extremal
surface should have a simple reconstruction at the bound-
ary in the sense that they can be recovered efficiently from
a dual coarse-grained state with an effective local modular
Hamiltonian. See also [248] for a related discussion. Recent
discussions of the reconstruction of the experience of a bulk
observer in the dual conformal field theory can be found
in [249] via the use of modular flow and through emergent
properties of von-Neumann algebras in [250] .

5.3 Decoding the interior in real time

5.3.1 Quantum information mirroring and the resolution of
the AMPS paradox via complexity

Quantum information theory has been applied to understand
how the black hole acts as a quantum channel with a moti-
vation to resolve the AMPS paradox. Such analyses predict
very non-trivial features of how the interior gets encoded into
the outgoing Hawking quanta in real time.

An extension of Page’s argument implies that old black
holes (past its Page time) would act as quantum information
mirrors following a thought experiment and its analysis due
to Hayden and Preskill [146] as illustrated in Fig. 26. A typi-
cal state of an old black hole would have Hawking quanta in
the exterior (E) maximally entangled with the interior modes
(B). If the black hole is a fast scrambler, then qubits (D)
thrown into it would be maximally scrambled with B (one
could understand this as an action of a random unitary opera-

torU 25) resulting in a remnant B ′ and newly radiated Hawk-
ing quanta R. For a formal statement, we consider that D is
maximally entangled with a reference system S, so that post-
scrambling an extension of Page’s arguments would imply
that S and B ′ have no mutual information (entanglement).
However, the information in D would be transferred to the
combined R ∪ E system of Hawking quanta implying infor-
mation mirroring which would essentially happen at scram-
bling time. The latter has been computed based on growth
of thermal commutators by Shenker and Stanford [252]. In
the context of black holes, it is essentially the time (from the
point of view of an asymptotic observer) it takes a light ray to
reach Planck distance close to the stretched horizon, which is
≈ rs log SBH , with SBH being the entropy of the black hole.
For a detailed review of the Hayden–Preskill protocol and
progress on experimental realization of quantum simulators
which achieves the scrambling needed to realize it see [253].

The natural question that arises is how easy it would be
to decode the qubits in D from E ∪ R. Before considering
this question we need to encounter first the most pragmatic
operational way to resolve the AMPS paradox that leads to
an additional feature of the encoding of the interior into the
Hawking quanta. In order to present this, it is useful to restate
the AMPS paradox. Once again consider the old black hole
for which the interior modes B should be maximally entan-
gled with E , the already radiated quanta. Unitarity of the
time-evolution would imply that the newly emitted quanta
R that decouples from the black hole can be purified by a
factor ER of E so that ρRER is a pure state. However, R must

25 Hayden and Preskill showed that this unitary operator need not have
exponentially large number of gates for a Page-like argument to work. It
suffices to pick the unitary randomly from a unitary two-design, which
can be achieved by a quantum circuit of depth O(log n) where n = SBH
is the total number of qubits at the horizon with S being the black hole
entropy. If each step in the circuit takes Plank time, then it should be
redshifted to rs in the time of the asymptotic observer. It then repro-
duces the scrambling time as the circuit time which is rs log SBH . This
argument was refined in [251].
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Fig. 26 An illustration of the Hayden–Preskill thought experiment
which argues for quantum information mirroring in old black holes
– figure taken from [56]. A quantum diary D entangled with a refer-
ence state S is thrown into an old black hole B which is entangled with
its radiation E . The diary D and B then gets scrambled by the unitary
evolution operator U after which we obtain the remaining black hole
B ′ and some more radiation R. If R has only a few more qubits than D,
then we can show that mutual information between S and B ′ should be
negligible given that U is random. The information in D is then in the
E ∪ R system after the scrambling time

also be maximally entangled with (a factor of) B if semi-
classical EFT holds at the horizon. A simple way to resolve
this paradox is to invoke the philosophy of black hole com-
plementarity [254,255] which postulates that the violation
cannot be observed operationally via a quantum complexity
conjecture due to Harlow and Hayden [256] (see [257] for a
nice discussion). Essentially this argument states that in order
to distill the factor ER from E needed to purify R, it would
take time which is exponential in the entropy of the black
hole (at the time when R was emitted). This conjecture can
be made more precise by evoking pseudorandom encoding
of the interior into the outgoing Hawking quanta [258] (in
microstate models we will be able to relate inherent pseu-
dorandom/chaotic dynamics with Python lunches that can
macroscopically amplify small excitations). Since the black
hole evaporates in time that is polynomial in its entropy, the
violation of monogamy of entanglement cannot be demon-
strated operationally.

This discussion raises a few fundamental questions.
Firstly, what exactly does an operational resolution mean?
Does it mean we need to modify the framework of quantum
mechanics actually to describe black holes although we can-
not operationally test violation of its postulates? Or does it
mean that somehow these Hilbert spaces, especially B (the
interior) and E (the pre-Page time Hawking quanta) are actu-
ally not separable but only in an operational sense? Then
in this operational framework would the AMPS paradox be
resolved by complexity? The Euclidean replica wormhole
saddles which connect E and B would support the latter

point of view. However, could we actually understand how
to make sense of such an operational framework in real time?
The latter is challenging as we would also need to validate
the usual semi-classical picture of the black hole (at least
from the point of view of measurements of the EFT observ-
ables). In fact, the Page curve can be computed using only the
semi-classical geometry as discussed before and therefore it
should be valid for a large class of measurements.

The second class of issues are related with the encoding
of the information in Hawking radiation. If rapid mirroring
of the information thrown in after Page time could happen
together with the complex encoding of the Hawking interior,
then which of these two possibilities could be true: (a) one
can decode the qubits D thrown into the black hole from the
Hawking quanta immediately after scrambling time without
explicit knowledge of the interior encoded in E (decoding the
latter would take time exponential in the entropy of the black
hole), or (b) we can only decode it after we actually know
the interior after an enormously long time. The discussion
on islands in the form of entanglement wedge of R would
actually prefer the first possibility. In the setups discussed in
the previous subsection, the newly emitted Hawking quanta
would be in the entanglement wedge of the holographic sys-
tem B and not yet in the bath region. The physical separation
between these regions would indicate that the mirrored infor-
mation could be readily decoded soon after the new Hawking
quanta emerges in the entanglement wedge of B. However,
one still needs to demonstrate that the decoding is possible
without the knowledge of the island (the black hole interior)
that is encoded in this new radiation since the knowledge of
how the island has been modified by the infalling bits should
eventually leak into the bath. Therefore, one needs to identify
such features of the encoding of the infalling qubits which co-
exist with the complex encoding of the interior, and explain
their physical origins. One could formulate these questions
also more generally without the setups of the previous subsec-
tion by advocating an emergent infrared holographic theory
that describes the near-horizon geometry of the black hole
and which could play the role of B.

In the next subsection, we will review a microstate model
that could be promising for finding answers to such questions.

5.3.2 Microstate dynamics: towards understanding
quantum black holes in real time

It is useful to study tractable models of black hole microstate
dynamics to gain insights into how the features of quan-
tum information mirroring and complex encoding of interior
appear in the Hawking radiation, and also for understand-
ing how the principle of black hole complementarity and
the averaging implied in replica wormholes could emerge
operationally. The fuzzball program [238], if developed to
its full potential, would be able to reveal these mysteries.
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However, at present, it will be very difficult to study the
quantum dynamics of fuzzballs in a sufficiently detailed way.
The same could be said about large N BFSS matrix models
[259], etc. We will argue that certain simplified models could
be promising for understanding many (if not all) aspects of
these issues. This class of models described in [260] essen-
tially simplify some of the otherwise untractable aspects of
quantum gravity in a suitable way, and can be studied in
the same spirit as the setups described earlier in this review.
One key aspect of this class of models is to give prominence
to hair degrees of freedom on the horizon which are essen-
tially (approximately) conserved (non-)gravitational charges
whose role in the information paradox have been emphasised
in [261,262]. The crucial and novel aspect of the hair that will
be of interest to us is how it can enable an operational defini-
tion of separability of the interior and exterior Hilbert spaces
while resolving AMPS type paradoxes that threaten black
hole complementarity, and enable mechanisms for the com-
plex encoding of interior, and quantum information mirroring
where decoding could be possible without the knowledge of
the encoding of the interior.
A class of models The setup of these microstate models can
be motivated from the fragmentation instability [263] of the
near-horizon geometry of the near-extremal black hole medi-
ated by the Brill instantons of semi-classical gravity. These
imply the fragmentation of the near-horizon geometry into
several two-dimensional throats of the type AdS2×X , where
X is a compact space that has the topology of the horizon
and AdS2 is the two-dimensional anti-de Sitter space. At the
boundaries of the instanton moduli space where the centers
of some of the throats come within Planckian distance prox-
imity to each other, there is a proliferation of soft modes.
However, quantum gravity effects also become large, so the
semi-classical computation becomes intractable. Heuristi-
cally, we can assume that these fragmented throats crys-
tallise into a stable configuration forming a lattice of AdS2

spaces as shown in Fig. 27. These throats should interact with
each other via mobile hair which are the (non-)gravitational
charges of the original unfragmented part of the geometry and
other soft modes that live here. The lattice is simply a dis-
cretization of the compact X space that has the same topology
of the horizon. Additionally, we can allow the AdS2 spaces to
join in their interiors and form complex networks. Here, we
will restrict to the simplest version where the AdS2 throats
do not join with each other and are infinitely extended in the
ingoing Eddinton–Finkelstein radial coordinate.

For further tractability and simplification, we consider that
each AdS2 throat in the lattice is described a by semiclassi-
cal JT-gravity theory with conformal bulk matter. The semi-
classical picture is thus valid for the observer infalling at any
throat, however non-local measurements will see structure
at the horizon. We will soon discuss how the energy absorb-
ing and relaxation dynamics of the semi-classical black hole

emerges from this microstate model. We begin our discussion
by first arresting Hawking radiation by enforcing the usual
reflecting boundary conditions in each AdS2 throat so that
we can study the intrinsic properties of the microstates first.
Note that we retain only a coarse-grained (effective infrared)
description of each throat which is dual to a quantum dot
in the Planckian lattice. Regardless, we should enforce total
energy conservation of this combined lattice of quantum dots
and mobile hair system in absence of Hawking radiation.
Although, we do modify the effective description of hori-
zon physics, usual statistical arguments would imply that the
results of typical measurements would be almost the same as
in a microcanonical ensemble which we will describe below.
For simplicity, we will consider the horizon to be S1, so the
lattice would be a ring (chain) with periodic boundary con-
ditions.

The state of the i-th throat (dual to the i-th quantum
dot) can then be described by ti (u) where u is the time
of the asymptotic observer. Essentially ti (u) is the time-
reparametrization mode of the i-th throat which determines
the correlation functions in the localized state in terms of the
vacuum correlation functions as in the Sachdev–Ye–Kitaev
model [264,265] which could be the (UV complete) theory
governing the quantum dots. In other words, ti (u) is the time
determining the state of the i-th throat as a function of a com-
mon vacuum state time which is identified with the time of
the vacuum observer. For ease of simulations, it is useful to
define τi (u) via

ti (u) = tanh

(

τi (u)

2

)

(101)

where τi (u) maps to the common time of a thermal state
(instead of the vacuum state) with β = 2π . In absence of cou-
pling between throats and sources for the bulk matter, each
individual throat should have conserved SL(2, R) charges
which are:
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. (102)

We denote these collectively as Qi . The Casimir of these
SL(2, R) charges is the Arnowitt–Deser–Misner (ADM)
mass Mi of the AdS2 throat, i.e.

Mi = Q0
i

2 − Q+
i Q−

i = −2 Sch(τi (u), u) + τ ′
i

2
, (103)

where Sch denotes the Schwarzian derivative

Sch( f (u), u) = f ′′′

f ′ − 3

2

f ′′2

f ′2 . (104)
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Fig. 27 An illustration of the
microstate models comprising
of a lattice of two-dimensional
AdS2 throats coupling to each
other via mobile hair carrying
gravitational charges. The lattice
is a discretization of the horizon,
a compact space. The AdS2
throats may join in the interior
forming complex networks.
Hawking evaporation occurs
due to appropriate asymptotic
boundary conditions at the
throats. This figure is from [260]

On top of these lattice SL(2, R) charges, we need to consider
additionally mobile hair charges which we can take to be
SL(2, R) charges too representing the gravitational charges
of the unfragmented geometry. These we denote as Qi which
follow discretized Klein–Gordon type equation when decou-
pled from the lattice charges. We denoteA·B as the SL(2, R)

invariant dot product of two SL(2, R) vectors A and B.26

The simplest equations of motion of this system of gravi-
tational lattice charges Qi (u) and mobile hair Qi (u), which
reproduce desired phenomenological properties of a classical
black hole, take the form:

M ′
i = −λ(Qi−1 + Qi+1 − 2Qi ) · Q′

i ,

Q′′
i = 1

σ 2 (Qi−1 + Qi+1 − 2Qi )

+ 1

λ2 (Qi−1 + Qi+1 − 2Qi ). (105)

where λ > 0 is the coupling between lattice charges and hair,
and σ determines the velocity of propagation of hair in the
continuum limit. The first equation above gives the equations
for evolution of ti (u) and the second equation determines the
evolution of the hair. These equations have unique solutions
provided we specify the initial lattice charges, and the hair
charges and their time-derivatives (we assume initial syn-
chronicity, i.e. ti (u = u0) = u0 at initial timeu0 but this is not
necessary) and can be solved numerically following [266].
Generalizations of the above equations with higher deriva-
tive corrections and desired phenomenological features are
possible but we do not discuss them here. These equations
imply a specific form of null matter in the AdS2 throats, but
alternatively we can simply think of these as the equations
determining the quantum dots and hair. Crucially, in the full

26 Explicitly,

A · B = A0B0 − 1

2
(A+B− + A−B+).

interacting system we have only one global SL(2, R) sym-
metry, namely that of the original unfragmented geometry.

Note that we should treat the lattice charges Qi semi-
classically invoking a large-N limit in each throat, but the
hair Qi should be understood as an open quantum system
interacting with the lattice. However, for present purposes it
will be sufficient to consider coherent states of the hair and
treat it classically. The equations (105) imply that the full
system has a conserved energy of the form:

E = EQ + EQ (106)

which is simply a sum of the energy in the lattice charges and
that in the hair with

EQ =
∑

i

Mi =
∑

i

Qi · Qi ,

EQ = λ3

2

∑

i

Q′
i · Q′

i

+ λ3

2σ 2

∑

i

(Qi − Qi−1) · (Qi − Qi−1). (107)

Thus EQ is simply the sum of the ADM masses of the throats
and EQ is the (discretised) kinetic energy of the hair. Note that
λ > 0 is necessary for the positivity of the average energy in
the microcanonical ensemble as we will see below.
The microstates The microstates of the black hole can be
identified with stationary solutions of (105). One can readily
prove that in such microstates, we should have

Qi = Qξ + Q⊥
i , with Q⊥

i · ξ = 0. (108)

The SL(2, R) charge vector ξ thus spontaneously breaks the
global SL(2, R) symmetry. We can set this global frame ξ

in the 0-direction without loss of generality so that Q⊥
i have

only + and − components. We also normalize ξ such that
ξ · ξ = 1. Furthermore, for stationarity we need the hair
charges to have the following configuration:

Qi (u) = Qloc
i + Qmon

i (u) + qrad
i (u)ξ (109)
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where

Qloc
i = −σ 2

λ2 Qi + K, (110)

are locked to the lattice charges,

Qmon
i = αξu (111)

is a monopole component with a homogeneous Q′
i = αξ in

the direction of the global frame, and qrad
i (u) are oscillating

hair components decoupled from the lattice and satisfying
the normal mode equations

qrad
i

′′ = 1

σ 2 (qrad
i−1 + qrad

i+1 − 2qrad
i ). (112)

To avoid redundancy, we can set
∑

i

qrad
i =

∑

i

qrad
i

′ = 0. (113)

Crucially the Fourier transform of qrad
i (u) will have support

only on the discrete normal modes with non-vanishing fre-
quencies.

It follows from (118) that
∑

i Q
′
i is conserved, and there-

fore α, the monopole charge, should not change when the
microstate is perturbed.

Finally, we can define the microcanonical ensemble as the
collection of microstate solutions subject to the constraints,
that (i) the total Mi should add up to the ADM mass of the
black hole, i.e. EQ = M , and (ii) ti (u) and hence τi (u)

should be real, continuous and have continuous first and sec-
ond derivatives at all lattice sites (necessary to define the mass
Mi that is proportional to the Schwarzian derivative). This
implies two set of possibilities. Firstly let’s set ξ0 = 1 and
ξ± = 0 without loss of generality as mentioned before. Then
the first set of possibilities which satisfy both constraints are
those which satisfy 0 ≤ Mi ≤ Q2, Q > 0,

∑

i Mi = M and

Q0
i = −Q, Q+

i = −ρi

√

Q2 − M,

Q−
i = − 1

ρi

√

Q2 − M (114)

with

√

Q − √
Mi

Q + √
Mi

≤ ρi ≤
√

Q + √
Mi

Q − √
Mi

. (115)

Remarkably, these imply that t ′i ≥ 0 (and hence τ ′
i ≥ 0), i.e.

the arrows of time of all the lattice sites should be aligned
towards the future. Thus a global arrow of time is a conse-
quence of the equations of motion! The second set of possi-
bilities lead to similar inequalities which align the global
arrow of time towards the past. We discard this set and
define the microcanonical ensemble with the mentioned set
of (in)equalities.

In the microstate solutions, the total energy of the hair EQ
further splits into three parts, i.e.

EQ = Epot
Q + Emon

Q + E rad
Q . (116)

with (setting ξ0 = 1 and ξ± = 0 without loss of generality
as mentioned before )

Epot
Q = −σ 2

2λ

∑

i

(Q+
i − Q+

i−1)(Q−
i − Q−

i ),

Emon
Q = 1

2
λ3α2,

E rad
Q = λ3

2

∑

i

qrad
i

′2 + λ3

2σ 2

∑

i

(qi − qi−1)
2. (117)

Clearly, if λ > 0, then both Emon
Q and E red

Q are positive.

Although Epot
Q need not be positive, its ensemble average

is zero. Thus the average energy is positive if λ > 0.
Both classically and quantum-mechanically, the hair can-

not be separated into interior and exterior components.
However, in microstate solutions such a split operationally
emerges since Qloc

i is locked with the lattice SL(2, R)

charges which describe the configuration of the black hole
interior, while both Qmon

i and Qrad
i do not affect the interior

and are thus decoupled from it. The potential energy term
Epot
Q is determined solely by Qloc

i , while Emon
Q and E rad

Q are
determined by Qmon

i and Qrad
i respectively. Therefore, the

total energy also splits into an interior component which is
the sum of EQ = M and Epot

Q , and the exterior component
which is the sum of Qmon

i and Qrad
i . Operationally, therefore,

the Hilbert space of the hair has the structure

HQ =
⊕

α

Hint
Qα

⊗ Hext
Qα

with α denoting microstates assuming that the evolution is
adiabatic (we can employ an adiabatically evolving basis)
with the off-diagonal terms being suppressed due to deco-
herence. Note that this would imply that the global frame ξ

which is crucial to make the distinction between the interior
and exterior would be evolving adiabatically too. We would
come back to this in the context of the Hawking evaporation
with asymptotic boundary conditions at the throats that allow
the Hawking quanta to escape.
Phenomenological viability The immediate question is that
whether the ensemble of microstates in the model behave
like a semi-classical black hole with relaxing and energy-
absorbing properties. To see this, we once again return to the
semi-classical limit in which Hawking radiation is absent,
and perturb an arbitrary microstate solution in the ensemble
by a sequence of shocks (injections of energies) ei A with i
denoting the i-th throat and A referring to the instant uA. The
equations in (105) are then modified to

M ′
i = −λ(Qi−1 + Qi+1 − 2Qi ) · Q′

i ,
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+
∑

A

ei Aδ(u − uA),

Q′′
i = 1

σ 2 (Qi−1 + Qi+1 − 2Qi )

+ 1

λ2 (Qi−1 + Qi+1 − 2Qi ). (118)

Note that the hair is not directly coupling to the shocks (this
would imply the results such as mirroring to be more non-
trivial). The shocks are localized on the lattice and cannot
directly affect the delocalized gravitational charges compris-
ing the hair. The shocks add a total energy of

ΔE =
∑

i,A

ei,A

to the system. Starting from a random microstate with the
(conserved) monopole charge α > 0 and simulating the sys-
tem via methods of [266], one finds that

1. Any microstate with or without decoupled hair oscil-
lations rapidly settles down to another microstate with
decoupled hair oscillations after the sequence of shocks.

2. The final microstate is determined by the initial microstate
in a rather complex manner. Even for a single shock, one
needs to take into account the initial states of all lattice
sites and that of the hair indicating pseudorandom dynam-
ics.

3. Almost all the energy in the shock is absorbed by the
change in the total black hole mass, i.e. EQ = M . This
statement becomes better (for a typical initial microstate)
if we increase the number of sites keeping the total initial
black hole mass and total initial energy fixed. However,
even for five lattice sites, less than 1 percent of the energy
in shocks is transferred to the hair.

See Fig. 28 for an illustration for the case of a five site lattice
suffering a single shock. The above features imply that a typ-
ical microstate with a positive monopole charge behaves like
a semi-classical black hole qualitatively as far its relaxation
dynamics and energy absorption properties are concerned,
and furthermore shows features of pseudorandom dynamics.

As a consequence of these phenomenological features,
we can argue that the effective split into interior and exterior
emerges dynamically after the relaxation time (which goes
to a finite value in the continuum limit as observed numeri-
cally).27 In very general situations, we expect such a split to
be operationally valid when the dynamics is coarse-grained

27 Hint
Q is supported at the inhomogeneous static fixed point config-

urations (or analogous adiabatic versions of these in the presence of
Hawking radiation) while Hext

Q is supported at the normal mode fre-
quencies only (or analogous adiabatic versions of these in the presence
of Hawking radiation).

over the relaxation time-scale, and can be demonstrated by
employing a suitable coherent state basis.
Classical information mirroring in hair The remarkable
aspect of these microstate models is that it has the feature
of information mirroring built into them intrinsically even
though the Hawking radiation is arrested via boundary con-
ditions at the throats. This can be demonstrated readily by
studying the dynamics of the system in response to a sequence
of shocks. As described above, a typical microstate relaxes
to another microstate demonstrating pseudorandom dynam-
ics. A part of the hair Qrad

i decouples from the interior while
another component gets locked to the interior lattice charges.
The information of the shocks is mirrored in the Qrad

i or
equivalently in qrad

i defined in (109). The crucial point is that
there are features in qrad

i which allows us to decode the infor-
mation of the shocks without the knowledge of the interior
of the initial or final microstate. Many aspects of the infor-
mation encoded in the infalling shocks can thus be decoded
by assuming that the interior is in the microcanocial ensem-
ble. The only necessary information for the decoding is the
global frame ξ in (109) which one can simply obtain from
the (decoupled) monopole component, the analogue of the
early radiation in the Hayden–Preskill thought experiment.

The Fourier transform of qrad
i (u) will be supported only

at the non-vanishing normal mode frequencies of (112). It is
sufficient to look into the phases and amplitudes of the pos-
itive normal mode frequencies since qrad

i (u) is real. It turns
out that only the differences of the phases of the two positive
normal mode frequencies at the various sites are necessary to
decode the information of the shocks. If we encode informa-
tion into the time sequence of the location of sites which are
shocked and the differences of energy injections into these
shocks are not large, then the information of the sequence can
be decoded from the ordering of the phase differences of the
positive frequency normal modes of qrad

i (u) at various lat-
tice sites. All other features of qrad

i (u) will be contaminated
with the details of the initial microstate but this ordering of
phase differences will be determined only by the specific time
sequence of the shocks.

For a non-trivial example, consider the case of five sites
and a sequence of two shocks into two sites. The decoding
protocol for which sites have been shocked and in which
sequence is illustrated in Fig. 29. This protocol is independent
of the initial microstate.

The information mirroring should carry over to the quan-
tum regime if we quantize the hair. It would be interesting to
find out if the information of the initial microstate prior to the
shock is encoded in observables which are complementary,
i.e. have large non-vanishing commutators with the phase
differences in the normal modes. This should have conse-
quences for understanding the black hole complementarity
as we comment below.
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Fig. 28 The evolution of a
randomly chosen microstate
after a single shock in a five site
model is shown above. The first
site is shocked with energy
injection e = 0.4 at u = 0. We
set λ = 1, α = 1 and σ = 0.01.
The system relaxes to another
microstate with a different
distribution of masses and
lattice charges. Almost the
entire energy of the shock is
absorbed by the total mass of the
black hole EQ. The energy in
the hair EQ remains
approximately constant. These
figures are from [260]

Encoding into the Hawking radiation Hawking radia-
tion can be readily incorporated into the microstate model
described above by simply coupling each throat to a bath
and implementing transparent boundary conditions follow-
ing [49] as for instance. These boundary conditions choose
a specific global null frame ξ (as for instance in [49] there
is a null shock when the boundary conditions are altered).
The first question to be asked is whether the information of
the interior leaks out to the Hawking radiation completely.
It is a non-trivial question because although the two dimen-
sional black holes evaporate away at all the lattice sites, the
SL(2, R)directions of the lattice chargesQi may not homog-

enize and thus there would be a remnant information in the
interior even after complete evaporation. One may need this
remnant to decode the complete information. Firstly, we see
that the SL(2, R) directions of the lattice charges Qi align
themselves with the null direction ξ set by the boundary
conditions asymptotically at late time. Nevertheless, asymp-
totically Qi → Qiξ , so that the overall magnitude Qi is
non-trivial although the Casimir (the mass of the black hole)
vanishes at each site. However, the hair (being a smaller sub-
system) will also dissipate its energy to the Hawking radia-
tion that escapes away. The evolution equations (105) would
imply that the hair charges should lock themselves with the
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Fig. 29 The decoding protocol for information mirroring when two
sites are shocked in the five site microstate model via measurements of
the phase differences between the two positive normal modes in the hair
oscillations which decouple from the interior. Note that this protocol for
decoding which sites have been shocked and in which sequence is the
same for any initial microstate. Although the absolute values of the
phase differences are somewhat sensitive to the initial microstate, the
ordering is not

lattice charges Qi ≈ Qiξ following (110) so that the poten-
tial energy vanishes (since ξ is null) and thus the hair system
reaches a fixed point. Furthermore, as discussed below the
hair should be entangled with the Hawking radiation so the
full decoding of the interior should be possible.

The AMPS paradox, of course, is not about the final
state after complete evaporation, but the system after Page
time. Here, each individual throat would have its own Page
time and therefore the Page time here refers to the average
Page time of these throats (which will have small fluctuation
about the average for a typical microstate of a large black
hole). As argued above, the full system should have an effec-
tive split into interior and exterior because the hair can be
split into HQ = ⊕

α Hint
Qα

⊗ Hext
Qα

when averaged over the
(slowly evolving) relaxation time with α denoting different
microstates. Also the outgoing Hawking radiation essentially
forms a sequence of outgoing shocks. Therefore the infor-
mation of coarse grained features of the outgoing Hawking
radiation such as the overall energy outflow from the throats
over a period commensurate with the relaxation time (which
are insufficient to fully reconstruct the interior, especially the
SL(2, R) directions of the lattice charges) will be encoded
into the radiation component of the hair which essentially
forms Hext

Q as happened in the case of mirroring of the infor-
mation of the shocks. Crucially, these low energy/ coarse-
grained features will be encoded in special observables such
as the phase differences of the normal modes in Hext

Q from
which decoding will be possible without the knowledge of
the finer structure of the microstates. The detailed knowl-
edge of the interior would be encoded in the complementary
observables of Hext

Q and also Hint
Q .28

Finally to understand encoding in the Hawking radiation,
we should decipher which observables acting on the Hawking
radiation will be strongly correlated with features ofHext

Q that
are responsible for mirroring the infalling qubits and encod-
ing the coarse-grained information carried out by the outgo-
ing Hawking radiation (these should have simple encoding in
the sense that decoding can be possible by assuming that the
interior is a microcanonical ensemble), and similarly which
features of the Hawking radiation correlate strongly withHint

Q
and the fine grained features of the black hole interior (eg. the
lattice SL(2, R) charges). The encoding of the latter should
be complex due to the underlying pseudorandom dynam-
ics of the microstates (more on the generation of complex-

28 In [267], one can find a general discussion on how effective field the-
ory observables in a semiclassical but not necessarily smooth horizon
geometry can decode the black hole interior. This discussion, cast in the
formalism of quantum error correction, can be applied in the context of
our microstate model. The crucial part of the construction of the recov-
ery map from the local operators acting on the hair and the Hawking
quanta at the horizon, is the knowledge of conditional transition matri-
ces of the black hole interior. The resolution of the AMPS paradox in
this context has been also discussed in [267].
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ity via the Python lunch mechanism below). Since the split
between the interior and the exterior is only an operational
concept that emerges after averaging over an evolving relax-
ation timescale, there is no real contradiction that the Hawk-
ing radiation is in a way entangled maximally with both Hext

Q
and Hint

Q . Furthermore, the coarse-grained and finer informa-
tion could be encoded with the best fidelity in observables
that have large mutual commutators. This could be funda-
mental to understanding why the semiclassical geometry of
the black hole emerges. Additionally, one possible way to
realize the expected near saturation (but not violation) of the
strong subadditivity property which is key to the AMPS para-
dox is that the tripartite interior, hair and outgoing Hawking
radiation system has a quantum Markov chain like structure
(see Sect. 4.2.2 for the definition of quantum Markov chain
states).

The key to the detailed understanding would be to follow
the evolution of the full tripartite system (after quantizing
the hair) and analyze it using various tools of quantum infor-
mation theory. This should reveal how black hole comple-
mentarity emerges in an operational sense free of paradoxes
along with the self-averaging properties represented by the
semi-classical black hole geometry and the Euclidean replica
wormhole saddles.
Pseudorandom dynamics crucial for Python lunches The
appearance of Python lunch geometries gives a natural quan-
tification of encoding of the interior modes into outgoing
Hawking radiation as shown in Sect. 5.2. As discussed there,
instead of the vacuum of the bulk matter in each throat, we
should consider first a small subspace of its Hilbert space
which we can identify with the code subspace, and then study
the microstate dynamics with the bulk matter in the throat
in the maximally mixed state in this (small) code subspace
(the importance of the maximally mixed state in the code
subspace has been emphasized also). Via the arguments pre-
sented in Sect. 5.2 we expect nucleation of a Python lunch
or equivalently a (non-classical) locally maximal extremal
surface in the throat. However, the inherent pseudorandom
dynamics would be needed to ensure a necessary ampli-
fication so that the Python’s lunch manifests macroscopi-
cally across a significant fraction of throats (this would be
needed in the higher dimensional setup) before the opera-
tional split of the hair Hilbert space into interior and exterior
emerges, i.e. before black hole complementarity becomes
operational. One can also similarly consider a code subspace
of the interior modes of the hair (modes with frequencies
smaller than the first non-trivial normal mode) and study
the Python lunch phenomenon. It will be also interesting to
consider code subspaces of interior modes of bulk matter
involving entanglement across several throats since it will
give insights into understanding of the complexity of encod-
ing of the entanglement of the interior. In all cases, the inher-

ent chaos in microstate dynamics should connect the Python’s
lunch geometric mechanism of generating exponential com-
plexity [236] in encoding with the pseudorandomness mech-
anism discussed in [258].
Outlook These microstate models hold many promises for
partial answers to how the encoding in Hawking radiation
happens with desired features along with the validation of
black hole complementarity, but further improvements would
be necessary. Although we find information mirroring occur-
ring at relaxation time in the microstates, it is not clear
if they have shortest possible scrambling time for typical
microstates. Furthermore, the bath region which collects the
Hawking radiation is itself fragmented into two dimensional
spaces. It would be necessary to glue these baths in a way
we can form a connected flat asymptotic spacetime region.
One way to construct more realistic models would be to
figure out how simplified scenarios with characteristics of
those discussed above can emerge from fuzzballs in string
theory. The notion of fuzzball complementarity [268,269]
which advocate emergent holographic descriptions for local
measurements by an infalling observer could be useful.

6 Discussion and outlook

One of the topics we have not been been able to discuss in this
review is the fundamental relationship between tensor net-
works and gravity. Although tensor networks do model many
aspects of holography, it is unclear if they reproduce all infor-
mation theoretic aspects beyond the Ryu-Takanayagi type
extremal surface which computes entanglement entropy. The
latter was established first [270] in the context of multiscale-
entanglement-renormalization (MERA) tensor networks.29

In [273] it has been argued that existing quantum error
correcting tensor networks in the toy models discussed in
Sect. 4.2.3 are area eigenstates of the bulk gravity theory
rather than representatives of smooth bulk geometries. A bet-
ter understanding of these issues could also come from con-
structing tensor networks which mimic the highly efficient
RG flow described in Sect. 4.4 as it is designed to repro-
duce dynamical gravity. These issues are important to under-
stand how we can simulate aspects of quantum gravity and
also strongly interacting quantum field theories in an efficient
qubit regularized way and in real time.

Another interesting direction of research would be related
to further elucidating the models of evaporating black holes in
terms of quantum thermodynamics. These models described
in this review involve coupling of a bath to a holographic

29 The correspondence between tensor networks and holography has
also been explored via continuum versions of MERA [271]. See also
[272] for a path integral formulation in which the continuum version of
the tensor network is reformulated as an optimization problem.
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system which has quantum matter in the bulk, and therefore
usual ubiquitous outcomes like monotonic growth of entropy
in classical gravity coupled to matter which satisfies the null
energy condition, can be avoided. It could be possible to
construct quantum engines in similar setups. Quantum ther-
modynamics is a rapidly emerging field which uses quantum
information to generalize the laws of thermodynamics [274–
278]. As for instance, bounds have been established for the
one-shot work cost of creating a state and also for extractable
work from the state in terms of the hypothesis testing relative
entropy with respect to the Gibbs ensemble [275]. Recently,
even within the classical approximation in the bulk (with clas-
sical bulk matter) and assuming an infinite memoryless bath,
it has been shown in [279] that for an instantaneous transition
between thermal rotating states in holography, the quantum
null energy condition [36] of the boundary theory bounds the
growth of thermodynamic entropy (temperature) for a fixed
increase in temperature (entropy) from both above and below.
Similarly, the rates of growth of entanglement can also be
bounded from both above and below. Furthermore, one can
recover the Landauer erasure principle and also understand
how to construct erasure tolerant quantum memory [280]. It
would be interesting to pursue how one can construct vari-
ous protocols by exploiting suitable quantum bulk matter in
a semi-classical black hole geometry and interacting with a
dynamical reservoir at the boundary. Also how the efficiency
and work cost of such processes can be bounded via tools
of quantum information theory especially the quantum null
energy condition and its possible generalizations.

It is quite likely that the fundamental understanding bulk
emergence and quantum black holes in holography will lead
us to more fundamental and novel connections between quan-
tum information and many-body dynamics.

Furthermore, we have restricted ourselves here to asymp-
totically anti-de Sitter space. For interesting discussions
especially on how islands (entanglement wedges) may or
may not generalize consistently for other asymptotic bound-
ary conditions see [281–283] (an explicit discussion on de-
Sitter space is in [283]). In the future, it would be of deep
interest to understand bulk emergence in the context of both
asymptotically flat and cosmological spacetimes. In the latter
context, the approach of [284], as for instance, may lead to
promising results by extrapolating our existing understand-
ing of anti-de Sitter spaces after incorporating extremal sur-
faces and consistent entanglement wedges.
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