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1 Introduction

Higher-order gravities play an important role in AdS/CFT [1–3]. Perturbative corrections

to the large-N and strong-coupling limits of holographic CFTs are encoded, from the

bulk perspective, in higher-curvature interactions which modify the semiclassical Einstein

(super)gravity action — see e.g., [4–7]. The introduction of such terms, which is in principle

fully controlled by String Theory, gives rise to holographic theories belonging to universality

classes different from the one defined by Einstein gravity [8–10] — e.g., one can construct

CFTs with a 6= c in d = 4 [11, 12]. Some care must be taken, however. As shown in [13],

higher-curvature terms making finite contributions to physical quantities in the dual CFT

can become acausal unless new higher-spin (J > 2) modes appear at the scale controlling

the couplings of such terms.

In spite of this, a great deal of non-trivial information can be still obtained by consider-

ing particular higher-curvature interactions at finite coupling — i.e., beyond a perturbative

approach. The idea is to select theories whose special properties make them amenable to

calculations — something highly nontrivial in general. The approach turns out to be very

rewarding and, in some cases, it has led to the discovery of universal properties valid for

completely general CFTs [14–18]. In other cases, higher-order gravities have served as a

proof of concept, e.g., providing counterexamples [7, 19–23] to the Kovtun-Son-Starinets

bound for the shear viscosity over entropy density ratio [24] — see discussion below. Just

like free-field theories, these holographic higher-order gravities should be regarded as toy

models for which many calculations can be explicitly performed, hence providing impor-

tant insights on physical quantities otherwise practically inaccesible for most CFTs — see

e.g., [25–28] for additional examples.

A key property one usually demands from a putative holographic model of this kind is

that it admits explicit AdS black-hole solutions. In d ≥ 4, this canonically selects Gauss-

Bonnet or, more generally, Lovelock gravities [29, 30], for which numerous holographic

studies have been performed in different contexts — see e.g., [31–39] and references therein.

The next-to-simplest example in d = 4 is Quasi-topological gravity (QTG) [40, 41], a the-

ory which includes, in addition to the Einstein gravity and Gauss-Bonnet terms, an extra

density, cubic in the Riemann tensor. Besides admitting simple generalizations of the Ein-

stein gravity AdS black holes, and having second-order linearized equations of motion on

maximally symmetric backgrounds, this theory contains three dimensionless parameters:

the ratio of the cosmological constant scale over the Newton constant, L2/G, and the new

gravitational couplings, λ and µ. These can be translated into the three parameters char-

acterizing the three-point function of the boundary stress tensor. As opposed to Lovelock

theories, for which one of such parameters, customarily denoted t4 [9], is always zero [33–

35, 42], the new QTG coupling gives rise to a nonvanishing t4 [43]. For supersymmetric

theories one also has t4 = 0 [9, 44], so QTG provides a toy model of a non-supersymmetric

CFT in four dimensions.

All studies performed so far involving finite higher-curvature couplings have been re-

stricted to d ≥ 4 — observe that all theories mentioned in the previous paragraph reduce to

Einstein gravity for d = 3. Obviously, from the CFT side, there is no fundamental reason
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to exclude holographic three-dimensional theories. In fact, there exist many interesting

CFTs in d = 3 with known holographic duals, e.g., [1, 45–49]. The actual reason for the

absence of holographic studies involving higher-curvature terms in d = 3 has been the lack

of examples admitting generalizations of Einstein gravity black holes in four bulk dimen-

sions. The situation has recently changed thanks to the discovery of Einsteinian cubic

gravity (ECG) [50], for which such generalizations are possible [51, 52] — see section 2 for

a detailed review. As we show here, ECG provides a holographic toy model of a nonsuper-

symmetric CFT in three dimensions, analogous to the one defined by QTG in four. The

main purpose of this paper is to study the behavior of several physical quantities in this

new model. Just like it occurs for Lovelock and QTG in d ≥ 4, all results can be obtained

fully nonperturbatively in the new gravitational coupling, which provides a much better

handle on the corresponding quantities than any possible perturbative calculation.

On a more general front, we propose a new method for computing Euclidean on-shell

actions for asymptotically AdS(d+1) solutions of an important class of general higher-order

gravities — those for which the linearized equations become second-order on maximally

symmetric backgrounds. Our generalized action represents a drastic simplification with

respect to standard approaches, as it utilizes the same boundary term and counterterms

as for Einstein gravity, but weighted by a universal quantity related to the entanglement

entropy across a spherical region in the boundary theory.

A more precise summary of our findings can be found next.

1.1 Summary of results

The paper is somewhat divided into two main parts. In the first, which includes sections 2, 3

and 4, we develop some preliminary results and techniques which are necessary for the

holographic computations which we perform in sections 5 to 8.

• In section 2, we start with a review of ECG and recent developments. Then, we

characterize the AdS4 vacua of the theory, and identify the range of (in principle)

allowed values of the new coupling and its relation to the existence of a critical limit

for which the effective Newton constant blows up.

• In section 3, we construct the AdS4 black holes of ECG with general horizon topology.

• In section 4, we propose a new method for computing on-shell actions of

asymptotically-AdS solutions of general higher-order gravities whose linearized spec-

trum on AdS(d+1) matches that of Einstein gravity. We claim that the corresponding

boundary term and counterterms can be chosen to be proportional to the usual Ein-

stein gravity ones. Amusingly, we find that the proportionality factor is controlled by

the charge a∗ characterizing the entanglement entropy across a spherical region S
d−2

in the dual CFT. As a first consistency check of our proposal, we use our generalized

action to prove the relation between a∗ and the on-shell gravitational Lagrangian

L|AdS for odd-dimensional holographic CFTs with higher-curvature duals.

• In section 5, we compute the charge CT controlling the correlator of the bound-

ary stress-tensor from an explicit holographic computation and show that the result

– 2 –
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agrees with the (not so) naive expectation obtained from the effective Newton con-

stant. We argue that the detailed cancellations between bulk and boundary contri-

butions giving rise to the correct answer constitute a strong check of the generalized

action proposed in the previous section.

• In section 6, we start with another check of our generalized action, consisting in

an explicit calculation of the free energy of ECG AdS4 black holes, which we show

to agree with the one obtained using Wald’s entropy approach. Then we compute

the thermal entropy charge CS, and we note that it presents notable differences

with respect to previous results for other higher-curvature holographic models in

d ≥ 4. Then, we study the thermal phase space of holographic ECG with toroidal

and spherical boundaries, respectively. In the latter case, we find that the standard

Hawking-Page transition also occurs in ECG. However, the transition temperature

increases with the ECG coupling, and actually diverges in the critical limit (for which

thermal AdS always dominates). The phase diagram presents new phenomena, like

the presence of ‘intermediate-size’ black holes, a new phase of small and stable black

holes, as well as the existence of a new critical point.

• In section 7, we compute the Renyi entropy of disk regions in holographic ECG.

In particular, we study the dependence of Sq/S1 on the CFT-charges ratio CT /a
∗.

Although the functional dependence is very complicated, we observe that the behavior

is approximately linear for most values in the allowed range. We also obtain an exact

result for the scaling dimension of twist operators, from which we are able to extract

the value of the stress-tensor three-point function charge t4, which is non-vanishing

in general.

• In section 8, we compute the shear viscosity to entropy density ratio in ECG. Unlike

all previous exact results (d ≥ 4), the result turns out to be highly nonperturbative

in the ECG coupling, as it involves a non-analytic function. Several approximations

as well as a precise numerical evaluation are accesible. We find that violations of the

KSS bound are strictly forbidden in ECG by the requirement that black holes have

positive energy. On the other hand, we show that energy-flux bounds on t4 impose a

maximum value for the ratio, given by (η/s)|max. ≃ 1.253/(4π).

• In section 9, we make a quick summary of the different universal charges computed

throughout the paper and how they compare with the analogous ones for QTG in

d = 4. Here, we also speculate on the possible implications of the generalized on-shell

action introduced in section 4 for holographic complexity.

• In appendix A, we show that the scaling dimension of twist operators can be used to

obtain the exact results for the stress-tensor three-point function parameters t2 and

t4 for holographic theories in which explicit calculations of such quantities had been

performed before. Appendix B provides an additional check of our generalized action,

in this case for a theory for which the generalized version of the Gibbons-Hawking-

York term is explicitly known, namely, Gauss-Bonnet. We show that our method

gives rise to exactly the same divergent and finite terms as the standard prescription.

Appendix C contains some intermediate calculations omitted in section 5.
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Note on conventions. We set c = ~ = 1 throughout the paper. D stands for the number

of spacetime dimensions of the bulk theory, and d ≡ D − 1 for those of the boundary one.

We use signature (−,+,+, . . . ), latin indices from the beginning of the alphabet for bulk

tensors, a, b, · · · = 0, 1, . . . , D, Greek indices for boundary tensors, µ, ν, · · · = 0, 1, . . . , d and

i, j, · · · = 1, . . . , d for spatial indices on the boundary. Our conventions for CT , t4, CS and a∗

are the same as in [14, 18, 33, 43]. Superscripts ‘E’ and ‘ECG’ mean that the corresponding

quantities are computed for Einstein and Einsteinian cubic gravities respectively, whereas

we use the subscript ‘E’ for Euclidean actions. L is the cosmological constant length-scale

(−2Λ0 ≡ (D − 1)(D − 2)/L2) whereas L̃ stands for the AdSD radius. We often use L

for intermediate calculations (including on-shell actions, etc.), but normally present final

results in terms of L̃. It is then important to keep in mind that, when expressing our

results in terms of the ECG coupling µ, there is some additional dependence hidden in

L̃ = L/
√
f∞, as f∞ is also a function of µ — see figure 1 and (2.8).

2 Einsteinian cubic gravity

Let us start with a quick review of four-dimensional Einsteinian cubic gravity (ECG)

and its most relevant properties. The D-dimensional version of the theory was presented

in [50], where it was shown to be the most general diffeomorphism-invariant metric theory

of gravity which, up to cubic order in curvature, shares the linearized spectrum of Einstein

gravity on general maximally symmetric backgrounds in general dimensions.1 This criterion

selects the Lovelock densities — cosmological constant, Einstein-Hilbert, Gauss-Bonnet and

cubic Lovelock densities — plus a new invariant, which reads

P = 12R c d
a b R

e f
c d R a b

e f +Rcd
abR

ef
cdR

ab
ef − 12RabcdR

acRbd + 8Rb
aR

c
bR

a
c . (2.1)

This invariant is neither trivial nor topological in D = 4, so the action of the theory

becomes

IECG =
1

16πG

∫

d4x
√

|g|
[

6

L2
+R− µL4

8
P
]

, (2.2)

in such a number of dimensions.2 Here, µ is a dimensionless coupling. Note also that,

for later convenience, in (2.2) we have chosen the cosmological constant to be negative,

−2Λ0 ≡ 6/L2, where L is a length scale which will coincide with the corresponding AdS4

radius for µ = 0.

It was subsequently shown [51, 52] that (2.2) admits non-trivial generalizations of

Einstein gravity’s Schwarzschild black hole characterized by a single function f(r) — see

next section. It was also observed [53–56] that, in fact, ECG belongs to a broader class

of theories — coined Generalized Quasi-topological gravities in [53] — which also includes

Lovelock [29, 30] and Quasi-topological [40, 41, 43, 57–59] gravities as particular exam-

ples, and which are characterized by: having a well-defined Einstein gravity limit; sharing

1More concretely, the theory is selected by asking it to be the ‘same’ for arbitrary D, in the sense that

the coefficients relating the various cubic invariants entering its definition do not depend on D.
2From now on, we will always be referring to the four-dimensional version of the theory when referring

to ‘ECG’, unless otherwise stated.
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the linearized spectrum of Einstein gravity on general maximally symmetric backgrounds;

admitting non-hairy single-function generalizations of Schwarzschild’s black hole. If the

action does not include derivatives of the Riemann tensor, the full non-linear equations

of a given theory belonging to this class reduce, on a general static and spherically sym-

metric ansatz, to a single (at most second-order) differential or algebraic — depending on

the case [52] — equation for f(r), which indeed can be seen to correspond to a unique

non-hairy black hole whose thermodynamic properties can be exactly obtained by solving

a system of algebraic equations without free parameters.

The thermodynamic properties of the asymptotically flat ECG black holes and its

higher-curvature generalizations are very different from their Einstein gravity counter-

parts, as they become stable below certain mass, which results in infinite evaporation

times [52, 56]. The asymptotically-AdS black brane solutions of ECG, and generalizations

above mentioned, have also been considered in [54–56] and, specially, in [60]. There, it

was shown that, as opposed to all previously considered higher-order gravities, the charged

black brane solutions of the Generalized QTG class in D ≥ 4 generically present nontrivial

thermodynamic phase spaces, containing phase transitions and critical points.

Another relevant development entailed the identification of a critical limit of ECG (for

which the effective Newton constant diverges) [61], corresponding to µ = 4/27. In that

particular case, the black holes — as well as other interesting solutions, such as bounce

universes — can be constructed analytically.

More recently, some of the possible observational implications of the theory were stud-

ied in [62]. There, an observational bound on the ECG coupling was found using Shapiro

time delay, and the effects of ECG on black-hole shadows were discussed, including possible

measurable differences with respect to Einstein gravity predictions. Comparisons between

general relativity and other theories of gravity regarding black-hole observables are highly

limited by the lack of explicit four-dimensional alternatives, which makes ECG particularly

appealing for this purpose.

Finally, from the holographic front, let us mention that a study of Rényi entropies for

spherical regions, similar to the one we perform in section 7, was carried out in [63] for

ECG in D = 5. However, it should be stressed that in dimensions greater than four, ECG

does not belong to the Generalized QTG class, in the sense that — even though it shares

the linearized spectrum of Einstein gravity — simple black hole solutions satisfying the

properties explained above do not exist for the theory and, as opposed to the D = 4 case,

one is restricted to perturbative calculations in the gravitational couplings, which makes

them less interesting.

2.1 AdS4 vacua and linearized spectrum

The AdS4 vacua of (2.2) have a curvature scale L̃ related to the action length scale L

through
1

L̃2
=

f∞
L2

, (2.3)

where f∞ is a solution to the algebraic equation

1− f∞ + µf3
∞ = 0 . (2.4)

– 5 –
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For negative values of µ, two of the roots are imaginary, and one is real and positive. For

0 < µ < 4/27, the three roots are real, one of them being negative and the other two

positive. Finally, for µ > 4/27, two of the roots are imaginary, and the remaining one is

negative. Hence, imposing f∞ > 0, constrains µ as

µ <
4

27
≃ 0.148 . (2.5)

For larger values of µ, no positive roots exist, which means that no AdS4 vacuum exists in

that case.3 However, not all real roots of (2.4) satisfying (2.5) give rise to stable vacua.

In order to see this, we can consider the linearized equations of motion of (2.2) on a

general maximally symmetric background (in particular, one of these AdS4), in the presence

of minimally coupled fields. As already mentioned, these always reduce to the linearized

equations of Einstein gravity, up to a normalization of the Newton constant [50, 64], namely

GL
ab = 8πGECG

eff Tab , (2.6)

where GL
ab is the linearized Einstein tensor, Tab is the stress tensor of the extra fields, and

GECG
eff is the effective Newton’s constant, which is given by

GECG
eff =

G

1− 3µf2∞
. (2.7)

The sign of Geff determines the sign of the graviton propagator. Whenever the denominator

in the right-hand side — which is nothing but (minus) the slope of (2.4) — is negative,

the graviton becomes a ghost, and the corresponding vacuum is unstable. This imposes

µ < 0 or f2
∞ < 1/(3µ) for positive values of µ. The condition kills one of the two positive

roots of (2.4) available for 0 < µ < 4/27, which would then correspond to unstable vacua.

Hence, we conclude that, whenever (2.5) is satisfied, there exists a single stable vacuum.

No additional vacua exist for µ < 0, whereas an additional unstable vacuum exists for

0 < µ < 4/27. Special comment deserves the f2
∞ = 1/(3µ) case, corresponding to µ = 4/27,

and for which Geff → +∞. This ‘critical’ limit of the theory was identified in [61], and gives

rise to a considerable simplification of most calculations, as we further illustrate below.

We summarize these observations in figure 1, were we also include two additional con-

straints which we derive in sections 3 and 7.3, respectively. The first comes from imposing

the existence of black holes solutions, which restricts the allowed values to 0 ≤ µ ≤ 4/27.

The second follows from the positivity of energy fluxes at null infinity which, as we can see

from the figure, produces the very stringent constraint, −0.00322 ≤ µ ≤ 0.00312.

Throughout the paper, we will assume µ to lie in the range 0 ≤ µ ≤ 4/27. From the two

positive roots of (2.4) in that range, we will be implicitly choosing the one corresponding

to a stable vacuum, which is also the one connecting to the Einstein gravity one for µ → 0.

While the positive-energy condition further limits this range, we find it convenient to also

consider values close to µ = 4/27, for which many exact results can be obtained. Let

3This analysis is analogous to the one corresponding to QTG in D ≥ 5 [40, 43], with the difference that,

in that case, the Gauss-Bonnet term is present, and the identification of the allowed stable vacua becomes

more involved.
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Figure 1. Real roots of (2.4) for different values of µ. The lower red dashed line corresponds

to f∞ < 0, whereas the upper one corresponds to unstable vacua; the blue dashed line (µ < 0)

corresponds to stable vacua which do not allow for black hole solutions — see discussion under (3.8);

the purple dot corresponds to the critical case, µ = 4/27; finally, the small green region corresponds

to the set of parameters allowed by the positive-energy constraint |t4| ≤ 4 in (7.29).

us finally point out that the solution of (2.4) corresponding to the relevant root (blue in

figure 1) can be written explicitly as

f∞ =
2√
3µ

sin

[

1

3
arcsin

(

√

27µ

4

)]

. (2.8)

3 AdS4 black holes

ECG admits static asymptotically AdS4 black holes of the form

ds2=−N2Vk(r)dt
2+

dr2

Vk(r)
+

r2

L2
dΣ2

k , where dΣ2
k =















L2dΩ2
2 , for k=+1 ,

d~x22 , for k=0 ,

L2dΞ2 , for k=−1 ,

(3.1)

corresponding to spherical, planar and hyperbolic horizons, respectively, and where Vk(r)

is determined from the second-order differential equation

1−L2(Vk−k)

r2
− 3L6µ

4r3

[

V ′3
k

3
+
kV ′2

k

r
− 2Vk(Vk−k)V ′

k

r2
−VkV

′′
k (rV

′
k−2(Vk−k))

r

]

=
ω3

r3
, (3.2)

where ω3 is an integration constant related to the ADM energy [65, 66] of the solution —

see (6.5). Also, N2 is a constant that we fix in different ways depending on the horizon

geometry, e.g., [25, 40, 43]. In particular, we will choose N2 = 1 for spherical horizons,

N2 = 1/f∞ for planar horizons, which sets the speed of light in the dual theory to one,

and N2 = L2/(f∞R2) for hyperbolic horizons, so that the boundary metric is conformally

equivalent to that of R×H
2, where R is the curvature scale of the hyperbolic slices.

– 7 –
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The fact that ECG admits static solutions of the form (3.1), characterized by a single

function Vk(r), such that the full nonlinear equations4 of the theory reduce to a single third-

order differential equation, which can in turn be integrated once to yield (3.2), is a highly

non-trivial property of ECG [51, 52]. Such property is shared by the higher-dimensional

Lovelock [67–71], QTG [40, 41, 57, 59] (for these, the equation for Vk(r) is algebraic in-

stead) and Generalized Quasi-topological [53] gravities, as well as by other higher-curvature

theories of the same class, recently discovered and characterized [55, 56]. As mentioned

before, this property is related to the absence of extra modes in the linearized spectrum

of the theory, and can be shown to lead to non-hairy black holes whose thermodynamic

properties can be computed analytically on general grounds [54].

In (3.1), it is customary to make the redefinition

Vk(r) = k +
r2

L2
f(r) , (3.3)

specially when dealing with the planar and hyperbolic cases. In terms of f(r), (3.2) reads

1− f + µ

[

f3 +
3

2
r2ff ′2 − r3

4
f ′(f ′2 − 3ff ′′) +

3

4
kL2f ′(rf ′′ + 3f ′)

]

=
ω3

r3
. (3.4)

Observe that this reduces to (2.4) for constant f(r) and ω3 = 0. In particular, asymp-

totically, we require limr→+∞ f(r) = f∞, which then makes (3.1) become the metric of

pure AdS4 with radius L̃ given by (2.3), and a different boundary geometry for each value

of k [72].

3.1 Asymptotic expansion

For general values of µ, finding analytic black hole solutions of (3.4) looks extremely chal-

lenging (if not impossible). Let us then start by exploring the asymptotic and near horizon

expansions, from which we can gain a lot of relevant information (and, in fact, argue that

non-hairy black hole solutions do really exist for general values of µ).

The first terms in the asymptotic expansion of f(r) read

f1/r(r) = f∞ − ω3

(1− 3µf2∞)r3
− 21µf∞ω6

2(1− 3µf2∞)3r6
+O(r−8) . (3.5)

Note that (3.4) is a second-order differential equation, which therefore possesses a two-

parameter family of solutions. In order to capture the asymptotic behavior of the most

general one, we write f(r) = f1/r(r) + h(r) and then expand (3.4) linearly in h. Keeping

only leading terms in 1/r, we get the following equation for h:5

h′′(r)− 4(1− 3µf2
∞)2

9f∞µω3
rh(r) = 0 . (3.6)

Leaving aside the limiting cases, corresponding to µ = 0 and µ = 4/27, we see that there

are two possibilities, depending on the sign of µ · ω3. If µ · ω3 > 0, (3.6) has the following

4These can be found explicitly e.g., in [51].
5For instance, we assume that the term h′L2r−4 is negligible compared to h′′r−1 when r → +∞.
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approximate solutions as r → +∞:6

h(r) ∼ A exp

[

4|1− 3µf2
∞|

9
√

f∞µ · ω3
r3/2

]

+B exp

[

−4|1− 3µf2
∞|

9
√

f∞µ · ω3
r3/2

]

. (3.7)

In order to obtain an asymptotically AdS4 solution, we need to kill the growing mode, which

forces us to set A = 0. Therefore, this boundary condition fixes one of the integration con-

stants required by (3.4). Now, even though the remaining exponentially decaying term is ex-

tremely subleading, in general we will have B 6= 0. In fact, this constant ends up being fixed

by the horizon-regularity condition. In particular, this implies that the solutions show a

strongly nonperturbative character, as ∼ e−1/
√
µ terms generically appear. Indeed, it is pos-

sible to show that a series expansion of the full solution in powers of µ is always divergent.

The second possibility corresponds to µ ·ω3 < 0. An approximate solution of (3.6) for

large r is then given by

h(r) ∼ A

r
cos

[

4|1− 3µf2
∞|

9
√

f∞|µ · ω3|
r3/2

]

+
B

r
sin

[

4|1− 3µf2
∞|

9
√

f∞|µ · ω3|
r3/2

]

. (3.8)

This solution is sick. Although h(r) → 0 as r → +∞, the derivatives of h diverge wildly in

this limit, which would force us to set A = B = 0 in order to get an asymptotically AdS4
solution. However, this leaves us with no additional free parameters, and regularity at the

(would-be) horizon cannot be imposed. Therefore, no regular black hole solution exists for

µ · ω3 < 0: the solution is always sick, either at the horizon or at infinity.

As shown later in (6.5), ω3 is proportional to the total energy E (or mass) of the black

hole, which leads us to impose µ ≥ 0. Hence, interestingly, the range of values of µ which

allows for positive-energy solutions, forbids the negative-energy ones, which simply do not

exist for µ ≥ 0.

3.2 Near-horizon expansion

Let us now consider the near-horizon behavior. For that, we assume that there is a value

rH of the radial coordinate for which the function Vk vanishes and is analytic. Analyticity

ensures that the solution can be maximally extended beyond the horizon using Kruskal-

Szekeres-like coordinates.

The derivative of Vk at the horizon is related to the temperature through:

V ′
k(rH) = 4πT/N so, in terms of f , the near-horizon expansion can be written as

k +
r2

L2
f(r) =

4πT

N
(r − rH) +

∞
∑

n=2

an(r − rH)
n , (3.9)

6The exact solution of (3.6) is given by the Airy functions,

h(r) = AAiryAi

[

(

4(1− 3µf2
∞)2

9f∞µω3

)1/3

r

]

+BAiryBi

[

(

4(1− 3µf2
∞)2

9f∞µω3

)1/3

r

]

,

but we only need the asymptotic behavior for the discussion.
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where the relation between f ′(r) and the temperature reads in turn

T =
N

4π

[

rH
2

L2
f ′(rH)−

2k

rH

]

. (3.10)

Note also that f(rH) = −kL2/rH
2. Now, if we plug (3.9) into (3.4) and we expand it in

powers of (r − rH), we are led to the equation

0=1+
kL2

rH2
− ω3

rH3
− 4L6π2T 2µ

N2rH3

(

3k

rH
+
4πT

N

)

+ (3.11)

[

−2kL2

rH2
+
3ω3

rH3
− 4L2πT

NrH
+
24L6π2T 2µ

N2rH3

(

k

rH
+
2πT

N

)]

(r−rH)+O
(

(r−rH)
2
)

. (3.12)

Since every coefficient must vanish independently, we get an infinite number of equations

relating the parameters in the near-horizon expansion (3.9). From the first two equations,

we can obtain TECG and ωECG as functions of rH, the result being (in order to minimize

the clutter, we often omit the ‘ECG’ superscripts throughout the text)

TECG =
N

2πrH

(

k +
3rH

2

L2

)

[

1 +

√

1 +
3kL4µ

rH4

(

k + 3
rH2

L2

)

]−1

, (3.13)

(ωECG)
3
= kL2rH + rH

3 − µL6

4

[

3k

rH

(

4πTECG

N

)2

+

(

4πTECG

N

)3
]

. (3.14)

These reduce to the usual Einstein gravity results for µ = 0, namely

TE =
N

4πrH

(

k +
3rH

2

L2

)

, (ωE)
3
= rH

3 + krHL
2 . (3.15)

The rest of equations, which we do not show here, fix all coefficients an>2 in terms of a2.

Hence, for a fixed rH, the series (3.9) contains a single free parameter, which is nothing but

the value of f ′′ at the horizon. This must be carefully chosen so that the solution has the

appropriate asymptotic behavior, i.e., so that A = 0 in (3.7).

3.3 Full solutions

Equation (3.4) can be solved analytically in two cases, namely: for Einstein gravity, µ = 0,

and in the critical limit, µ = 4/27 [61]. For those, one finds7

f(r) =

{

1− rH
3+kL2rH

r3
if µ = 0 ,

3
2 − 3rH

2+2kL2

2r2
if µ = 4/27 .

(3.18)

7A curious property of the critical-theory solutions is that they look identical to three-dimensional BTZ

black holes [73], with an additional ‘angular’ direction:

ds2ECG, crit = −3(r2 − rH
2)

2L2
dt2 − 2L2dr2

3(r2 − rH2)
+

r2

L2
dΣ2

(k) , (3.16)

ds2BTZ = − (r2 − rH
2)

L2
dt2 − L2dr2

(r2 − rH2)
+ r2dφ2 . (3.17)

We point out that an analogous behavior has been observed to occur for critical Gauss-Bonnet gravity

(λGB = 1/4), see e.g., [37] as well as for Einstein gravity coupled to an axionic field in a particular limit [74].

The connection of this phenomenon to other instaces of background-symemtry enhancement — e.g., [75]

— deserves further attention.
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Figure 2. Black hole solutions for several values of µ (we take rH = 3L/2), including the Einstein

gravity (µ = 0) and critical (µ = 4/27) cases. From top to bottom k = 1, 0,−1. For the sake

of clarity, we have made separate plots for the interior and exterior solutions. In the left column,

we plot Vk(r) = k + r2/L2f(r) for the black-hole interior range. In the right column we plot f(r)

instead for the exterior solutions.

For intermediate values of µ, the solutions can be constructed numerically. In order to do

so, we solve (3.4) setting the initial condition at the horizon, and then applying the shooting

method to obtain the value of a2 for which f(r) → f∞. The differential equation (3.4) is

very stiff when r is large but, by choosing a2 accurately, it is always possible to extend the

numerical solution well into the region in which the asymptotic expression (3.5) applies.

In all cases, there is a unique value of a2 for which this happens. Hence, for each value of

µ and each horizon geometry, there exists a unique regular black fully characterized by rH
(or, more physically, by ωECG).

In figure 2 we show a couple of these numerical solutions for rH = 1.5L. As we can see,

the corresponding curves lie between the analytic limiting solutions in (3.18). Far from the

horizon, the functions f(r) tend to the constant values f∞ which, as explained above, are

different for each value of µ — see figure 1. Besides the exterior solutions, we also show

plots of the black hole interior profiles,8 which present the curious feature of having regular

8For the sake of visual clarity, we present the interior and exterior solutions in different figures, plotting

Vk(r) for the former, and f(r) for the latter.

– 11 –



J
H
E
P
0
3
(
2
0
1
8
)
1
5
0

metrics at r = 0. However, as observed in [52] for the asymptotically flat case, curvature

invariants still diverge. For example, in the critical case, one finds

RabcdR
abcd =

4k2L4 + 54r4 − 6rH
2r2 + rH

4 − 4kL2(3r2 − rH
2)

L4r4
∼ O

(

r−4
)

, (3.19)

which is two powers of r softer than in the usual Schwarzschild case. Such behavior is

common to all solutions with µ 6= 0. This singularity-softening phenomenon appears to be

generic for higher-curvature generalizations of Einstein gravity black holes. For example,

for the Gauss-Bonnet black hole [70], one finds [76] RabcdR
abcd ∼ O(r−(D−1)), which is

in turn (D − 1) powers of r softer than the Kretschmann invariant of the D-dimensional

Schwarzschild black hole.

4 Generalized action for higher-order gravities

When performing holographic calculations with higher-curvature bulk duals, one is faced

with the challenge of identifying appropriate boundary terms which render the action

differentiable, as well as counterterms which, along with those, give rise to finite and well-

defined on-shell actions, when evaluated on stationary points of the functional. In this

section, we propose a novel prescription for computing the on-shell action of arbitrary

asymptotically AdS solutions of any D-dimensional higher-order gravity whose linearized

spectrum on a maximally symmetric background matches that of Einstein gravity.9 The

procedure represents an important simplification with respect to previous methods, as it

only makes use of the usual Gibbons-Hawking-York boundary term and the counterterms

of Einstein gravity. As we argue here — and illustrate throughout the rest of the paper

and in appendix B with various non-trivial checks of the proposal — such contributions

can be also used to produce the correct on-shell actions for this class of higher-order

theories. Interestingly, for those, the only modification with respect to the Einstein gravity

case is that such contributions appear weighted by the Lagrangian of the corresponding

theory evaluated on the AdS background, i.e., L|AdS. This quantity has been argued to be

proportional to the charge a∗ appearing in the universal contribution to the entanglement

entropy of the dual theory across a S
d−2, and our prescription can be used to actually prove

such a connection explicitly for this class of theories, as we show below.

Let us start considering a general higher-curvature theory of the form

I =

∫

M
dDx

√

|g|L(gef , Rabcd) , (4.1)

where the Lagrangian density L(gef , Rabcd) is assumed to be constructed from arbitrary

contractions of the Riemann and metric tensors. The variation of the action with respect

to the metric yields

δI =

∫

M
dDx

√

|g|Eabδgab + ǫ

∫

∂M
dD−1x

√

|h|naδv
a . (4.2)

9This property defines the ‘Einstein-like’ class in the classification of [64], and includes, in particular:

Lovelock, QTG, ECG in generalD and, more generally, all theories of the Generalized QTG type. Additional

examples of theories of this type can be found e.g., in [77–80].

– 12 –



J
H
E
P
0
3
(
2
0
1
8
)
1
5
0

In this expression we defined

Eab ≡ Pa
cdeRbcde −

1

2
gabL − 2∇c∇dPacdb , (4.3)

the equations of motion reading Eab = 0, and

δva = 2gdcP ab
ed ∇eδgbc , where P abcd ≡

[

∂L
∂Rabcd

]

gef
. (4.4)

In addition, na is the unit normal to ∂M, normalized as nana ≡ ǫ = ±1, and

hab = gab − ǫnanb is the induced metric. In order to have a well-posed variational problem,

the action must be differentiable, in the sense that δI ∝ δgab, so that δI = 0 whenever

the field equations — and the boundary conditions — are satisfied. This is not the case

of (4.2), due to the presence of the boundary contribution. In the case of Einstein grav-

ity, LE =
[

R+ (D − 1)(D − 2)/L2
]

/(16πG), this problem is solved by the addition of the

Gibbons-Hawking-York term [81, 82],

IGHY =
ǫ

8πG

∫

∂M
dD−1x

√

|h|K , (4.5)

where K = Kabg
ab is the trace of the second fundamental form of the boundary,

Kab = h c
a ∇cnb. When this term is included, the variation of the action, when we keep

gab fixed at the boundary, reads

δ(IE + IGHY)
∣

∣

∣

δgab|∂M=0
=

1

16πG

∫

M
d4x
√

|g|
[

Rab −
1

2
gabLEH

]

δgab , (4.6)

and so the action is stationary whenever the metric satisfies Einstein’s field equations.

For higher-order gravities, the situation is much more involved in general. One of the

main issues arises from the fact that these theories generally posses fourth-order equa-

tions of motion. This implies that the boundary-value problem is not fully specified by

the induced metric on ∂M, and one needs to impose additional boundary conditions on

derivatives of the metric. Furthermore, even if we know which components of the metric

and its derivatives to fix, determining what boundary term needs to be added to yield a

differentiable action for such variations is a far from trivial task. Some notable examples for

which differentiable actions have been constructed are: quadratic gravities (perturbatively

in the couplings) [83], Lovelock gravities [84, 85], which are the most general theories with

second-order covariantly-conserved field equations [29, 30] (and for which one only needs

to fix gab at the boundary), f(R) [86–88] and, more generally, f(Lovelock) gravities [78].

In these cases, it is also necessary to fix the value of some of the densities on the boundary

— e.g., δR
∣

∣

∂M = 0 for f(R) — which is related to the fact that these theories propagate

additional scalar modes. With the goal of providing a canonical formulation for arbitrary

f(Riemann) gravities, an interesting proposal for constructing satisfactory boundary terms

for such general class of theories was presented in [89] — see also [90]. Unfortunately, the

procedure involves the introduction of auxiliary fields and it is quite implicit in general,

which seems to limit its practical applicability in the holographic framework.
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The problem can be simplified if we specify the boundary structure in advance, e.g.,

by restricting the analysis to spacetimes which are maximally symmetric asymptotically.

Let us, in particular, assume that the space is asymptotically AdSD, so that the Riemann

tensor behaves as Rabcd → −L̃−2(gacgbd−gadgbc) asymptotically. Then, on general grounds,

the tensor P ab
cd appearing in the boundary term in (4.2) takes the simple form

P ab
cd → C(L̃2)δ a

[c δ
b

d] + subleading , (4.7)

where C(L̃2) is a constant which depends on the background curvature, and is in general

given by10 [64]

C(L̃2) = − L̃2

2(D − 1)
L|AdS , (4.9)

where L|AdS is the Lagrangian of the corresponding theory evaluated on the AdSD back-

ground with curvature scale L̃.

For Einstein gravity, we simply have CE = 1/(16πG) and, in fact, there are no sub-

leading terms in (4.7) for any spacetime — simply because P ab
cd only involves products of

deltas in that case. Now, asymptotically AdSD solutions of higher-order gravities will in

general produce subleading contributions in (4.7) as we move away from the asymptotic

region. However, the leading term can still be canceled out by adding a generalized GHY

term of the form

IGGHY = 2C(L̃2)ǫ

∫

∂M
dD−1x

√

|h|K . (4.10)

The question is, of course, whether or not the subleading terms for a given theory will

give additional non-vanishing contributions asymptotically, forcing us to add extra terms.

We expect this to be the case in general. In addition, one generally needs to specify

extra boundary conditions, which is related to the metric propagating additional degrees

of freedom. However, as we have mentioned, some theories — see footnote 9 — do not

propagate additional modes on general maximally symmetric backgrounds. For those, the

asymptotic dynamics is the same as for Einstein gravity, so it is reasonable to expect the

only data that we need to fix on ∂M to be gab, and also that (4.10) will be enough to make

the action stationary for solutions of the field equations.

In order to obtain finite on-shell actions, one also needs to include counterterms, which

only depend on the boundary induced metric. For asymptotically AdSD spacetimes, there

is a generic way of finding them [72]. Let us focus on Euclidean signature. In that case,

we always have ǫ = +1, and an additional global (−) with respect to Lorentzian signature

arises, e.g., [14], so we have

IE = −
∫

M
dDx

√
gL(gef , Rabcd)− 2C(L̃2)

∫

∂M
dD−1x

√

|h|K + IGCT , (4.11)

10As shown in [64], this quantity can be equivalently written as

C(L̃2) =
L̃4

D(D − 1)

dL|AdS

dL̃2
, (4.8)

the relation between both expressions being nothing but the embedding equation of AdSD in the corre-

sponding theory — e.g., (2.4) for ECG.
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where we seek to construct the generalized counterterms, IGCT. In order to identify all

possible divergences, one possibility consists in evaluating the action on pure AdSD spaces

with different boundary geometries [91]. Observe however that, whenever we evaluate the

bulk term on pure AdSD, this will produce an overall constant L|AdS, which is precisely

proportional to C(L̃2). This already appears in front of the boundary term, and the result

is that the combination of the bulk and boundary contributions reduce to those of Einstein

gravity, up to a common overall C(L̃2). Hence, the divergences are exactly the same as

for Einstein gravity, and we can use the same counterterms. For example, up to D = 5 we

find [72, 91]

IGCT = −2C(L̃2)

∫

∂M
dD−1x

√
h

[

− D − 2

L̃
− L̃Θ[D − 4]

2(D − 3)
R+ . . .

]

, (4.12)

where Θ[x] = 1 if x ≥ 0, and zero otherwise, and the dots refer to additional counterterms

arising for D ≥ 6. Combining (4.12) with (4.11), we obtain the final form of the action.

Below, we show that (4.11) successfully yields the right answers for ECG in various

highly non-trivial situations in which the corresponding on-shell actions can be deduced

from alternative considerations — e.g., it correctly computes the free energy of black holes,

in agreement with the result obtained using Wald’s entropy, as well as the holographic

stress tensor two-point charge, CT , which can be alternatively deduced from the effective

Newton constant. Besides, in appendix B we consider arbitrary radial perturbations of

AdS5 in Gauss-Bonnet gravity, and show that (4.11) produces exactly the same finite and

divergent contributions as those obtained using the standard Gauss-Bonnet boundary term

and counterterms, e.g., [72, 84, 85, 92–95].

4.1 a
∗ and generalized action

Let us momentarily switch to d ≡ D − 1 notation. As we have seen, both the boundary

term and the counterterms appearing in (4.11) have the property of being identical to

those of Einstein gravity up to an overall constant C(L̃2) proportional to the Lagrangian

of the corresponding theory evaluated on the AdS background (4.9). Now, an interesting

quantity that one would like to compute holographically is the charge a∗ appearing in the

universal contribution to the entanglement entropy (EE) across a radius-R spherical region

S
d−2 which, for a general CFTd, is given by [14, 15, 96]

SEEuniv. =

{

(−)
d−2
2 4a∗ log(R/δ) for even d ,

(−)
d−1
2 2πa∗ for odd d .

(4.13)

a∗ coincides with the a-type trace-anomaly charge in even dimensional theories. In odd

dimensions, a∗ is proportional to the free energy, F = − logZ, of the corresponding theory

evaluated on S
d [96], namely

FSd = (−)
d+1
2 2πa∗ , for odd d . (4.14)

For even-dimensional holographic theories dual to any higher-order gravity of the form (4.1)

in the bulk, a∗ is given by [97, 98]

a∗ = −πd/2L̃d+1

dΓ(d/2)
L|AdS , (4.15)
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i.e., it is precisely proportional to the charge C(L̃2) defined in (4.9), namely

C(L̃2) =
a∗

Ω(d−1)L̃d−1
, (4.16)

where Ω(d−1) ≡ 2πd/2/Γ(d/2) is the area of the unit sphere S
d−1. For odd-dimensional

theories, it was argued in [14, 15] that (4.15) also yields the right a∗ for general cubic

theories. We can readily extend this result to all theories for which (4.11) and (4.12) hold.

From (4.14), it follows that (−)
d+1
2 2πa∗ can be obtained from the on-shell action of pure

Euclidean AdS(d+1) with boundary geometry S
d. Since C(L̃2) appears as an overall factor

in (4.11) when evaluated in pure AdS, it follows that FSd matches the Einstein gravity

result up to an overall factor 16πG · C(L̃2). Then, using the result for the free energy in

Einstein gravity,

FE
Sd

= (−)
d+1
2

πd/2L̃d−1

4Γ(d/2)G
, (4.17)

it follows immediately that for any theory of the form (4.1), for which our generalized

on-shell action can be used,

FSd = 16πG · C(L̃2)FE
Sd

= (−)
d−1
2

2πd/2+1L̃d+1

dΓ(d/2)
L|AdS , (4.18)

which takes the expected general form (4.14), with a∗ precisely given by (4.15). Hence, we

have obtained the expected form of the charge a∗ from an explicit holographic calculation

of the free energy on S
d using our generalized action. The consistency between (4.11)

and (4.15) provides support for both expressions.

Reversing the logic, we can rewrite our generalized action in terms of a∗, which is way

more charismatic than C(L̃2). The result reads

IE = −
∫

M
dDx

√
gL(gef , Rabcd)−

2a∗

Ω(d−1)L̃d−1

∫

∂M
dD−1x

√

|h|
[

K− d−1

L̃
+ · · ·

]

, (4.19)

where we have omitted most of the counterterms in (4.12). The explicit appearance of a∗ in
the boundary terms is rather suggestive, and somewhat striking. In section 9 we comment

on the possible implications of (4.19) for holographic complexity.

4.2 Generalized action for Quasi-topological gravity

The QTG density in five bulk dimensions is given by [40, 41]

Z5 = R c d
a b R e f

c d R a b
e f +

1

56

(

− 72RabcdR
abc

eR
de + 21RabcdR

abcdR+ 120RabcdR
acRbd

+ 144Rb
aR

c
bR

a
c − 132RabR

abR+ 15R3
)

. (4.20)

Just like ECG in D = 4, the linearized equations of this theory on constant-curvature

backgrounds are Einstein-like [40]. Hence, the method developed in the previous subsection
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should be valid for computing Euclidean on-shell actions of AdS5 solutions of the theory.

In this case, the full generalized action (4.19) is given by

IQTG
E = − 1

16πG

∫

M
d5x

√
g

[

12

L2
+R+

L2λ

2
X4 +

7µL4

4
Z5

]

− 1− 6λf∞ + 9µf2
∞

8πG

∫

∂M
d4x

√
h

[

K − 3
√
f∞
L

− L

4
√
f∞

R
]

,

(4.21)

where we also included the Gauss-Bonnet density X4 = R2−4RabR
ab+RabcdR

abcd. In this

case, the charge a∗ reads [43]

a∗QTG =
(

1− 6λf∞ + 9µf2
∞
) πL̃3

8G
, (4.22)

while f∞ is determined by the equation [40]

1− f∞ + λf2
∞ + µf3

∞ = 0 . (4.23)

A generalized boundary term for QTG was proposed in [99]. It would be interesting

to check whether (4.21) provides the same results as those obtained using such term.

As we mentioned above, in appendix B we perform an explicit check of that kind for

Gauss-Bonnet gravity.

4.3 Generalized action for Einsteinian cubic gravity

Let us now return to ECG. In that case, the full generalized Euclidean action (4.19) becomes

IECG
E = − 1

16πG

∫

d4x
√

|g|
[

6

L2
+R− µL4

8
P
]

− 1 + 3µf2
∞

8πG

∫

∂M
d3x

√
h

[

K − 2
√
f∞
L

− L

2
√
f∞

R
]

,

(4.24)

where recall that f∞ can be obtained as a function of µ from (2.4). Observe also that the

charge a∗ reads in this case

a∗ECG = (1 + 3µf2
∞)

L̃2

4G
. (4.25)

We use (4.24) in several occasions in the remainder of the paper, finding exact agreement

with the expected results in all cases for which alternative methods can be used.

5 Stress tensor two-point function charge CT

In order to characterize the holographic dual of ECG, we must translate the two available

dimensionless parameters in (2.2), namely: L2/G and µ, into universal defining quantities

of the boundary theory. Since we are only considering the gravitational sector of the bulk

theory, the most relevant ‘charges’ to be identified in the CFT are those characterizing

the boundary stress tensor. Conformal symmetry highly constrains the structure of stress-

tensor two- and three-point functions [100]. We will deal with the three-point function
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charges in section 7.3. Let us start here with the stress-tensor correlator which, for an

arbitrary CFT3, is given by [100]

〈Tµν(x)Tρσ(x
′)〉 = CT

|x− x′|6Iµν,ρσ(x− x′) , (5.1)

where

Iµν,ρσ(x) ≡
1

2
(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))−

1

4
δµνδρσ , and Iµν(x) ≡ δµν − 2

xµxν
x2

,

(5.2)

are fixed tensorial structures. This correlator is then fully characterized by a single theory-

dependent parameter, customarily denoted CT . This quantity, which in even dimensions is

proportional to the trace anomaly charge c, also plays a relevant role in three-dimensional

CFTs — see e.g., [101–103] for recent studies. As opposed to the d = 2 case [104], CT

is not monotonous under general RG flows in three dimensional CFTs [105]. However, it

universally shows up in various contexts, including relevant quantities in entanglement and

Rényi entropies [16, 17, 25, 26, 106]; quantum critical transport — see e.g., [107, 108] and

references therein; or partition functions on deformed curved manifolds [109–111].

In AdS/CFT, the dual of Tµν(x) is the normalizable mode of the metric [2, 3]. Hence,

evaluating (5.1) entails determining the two-point boundary correlator of gravitons in the

corresponding AdS vacuum. For Einstein gravity in d = 3, the result [33, 112] reads

CE
T =

3

π3

L̃2

G
. (5.3)

Naturally, the introduction of higher curvature terms in the bulk modifies this result,

e.g., [18, 33, 43]. In general, higher order gravities give rise to equations of motion involv-

ing more than two derivatives of the metric. In those cases, the metric generically contains

additional degrees of freedom besides the usual massless graviton. From the holographic

perspective, this means that the metric couples to additional operators which are typically

nonunitary.11 This is not always the case, however. In fact, there exist families of higher

order gravities whose linearized equations around maximally symmetric backgrounds are

identical to those of Einstein gravity, up to a normalization of the Newton constant — see

footnote 9 and e.g., [64] for details. For those, the only mode is the usual spin-2 graviton, the

metric only couples to the stress tensor, and CT can be straightforwardly extracted from the

effective Newton constant. This generically reads Geff = G/α, where α is a constant which

depends on the new couplings. The appearance of α can be alternatively understood as

changing the normalization of the graviton kinetic term which, holographically, gets trans-

lated into a modification of the stress-tensor correlator charge, which then becomes α ·CE
T .

For ECG, using (2.7), we find then

CECG
T = (1− 3µf2

∞)
3

π3

L̃2

G
. (5.4)

Observe that unitarity imposes CT to be positive, which translates into 1−3µf2
∞ > 0. This

is of course equivalent to asking the effective bulk gravitational constant to be positive. It

can be seen that this constraint is automatically satisfied whenever (2.5) holds.

11See e.g., [14, 18] for more detailed discussions of this issue.
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While we have been able to compute CT for ECG using GECG
eff , it is instructive to

obtain it from an explicit holographic calculation. This will also serve as a highly-nontrivial

consistency check for the new on-shell action method introduced in the previous section.

Let us then consider a metric perturbation: gab = ḡab + hab, on the Euclidean AdS4
vacuum

ds2 =
r2

L2

[

dτ2 + dx2 + dy2
]

+
L2

r2f∞
dr2 . (5.5)

Since all components of the two-point function will be determined by CT , computing one

of them will be enough. It is then sufficient to consider a perturbation of the form

hxy = r2

L2φ(r, τ). Plugging this into the Euclidean version of (2.2) and expanding up to

quadratic order in φ, we find

IECG
E Bulk =

(1− 3µf2
∞)

32πG

∫

d3xdr

[

1√
f∞

(∂τφ)
2 +

√

f∞
r4

L4
(∂rφ)

2

]

− 1

16πG

∫

d3xΓr

∣

∣

∣

r=r∞
,

(5.6)

where Γr is a boundary term which appears after integration by parts — see (C.2). Recall

also that, in this coordinates, the boundary corresponds to limr→∞ r ≡ L2/δ, where we

introduce the UV cutoff δ ≪ 1. The equation of motion for φ follows from (5.6), and reads

∂

∂r

(

r4

L4

∂φ

∂r

)

+
1

f∞

∂2φ

∂τ2
= 0 . (5.7)

In order to solve it, we Fourier-transform the dependence on the coordinate τ ,

φ(r, τ) =
1

2π

∫

dpφ0(p)e
ipτHp(r) . (5.8)

Hp satisfies the equation

d

dr

(

r4

L4

dHp

dr

)

− p2

f∞
Hp = 0 , (5.9)

whose general solution reads

Hp(r) = c1e
− L2|p|√

f∞r

(

1 +
L2|p|√
f∞r

)

+ c2e
L2|p|√
f∞r

(

1− L2|p|√
f∞r

)

. (5.10)

In order to get a regular solution, we set c2 = 0, and we also fix c1 = 1 so that

Hp(r → L2/δ) = 1. With this solution, we evaluate the Lagrangian, which can be ex-

pressed as a total derivative. Further integrating over the r coordinate and substituting

the solution in Fourier space, we get

IECG
E Bulk =

√
f∞VR2

64π2GECG
eff

∫

dpdqφ0(p)φ0(q)δ(p+q)
L4

δ4
Hp∂rHp

∣

∣

∣

r=L2/δ
− 1

16πG

∫

d3xΓr

∣

∣

∣

r=L2/δ
,

(5.11)

where VR2 =
∫

dxdy, and where we used
∫

dτei(p+τ) = 2πδ(p+ q).

Let us now turn to the boundary contributions in the generalized action (4.24). As we

explain in appendix C, when these terms are added to (5.11), most divergences in Γr

∣

∣

∣

r=L2/δ
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disappear, and we are left with the following result for the full action:

IECG
E = IECG

E Bulk + IECG
EGGHY+GCT (5.12)

=
VR2

64π2GECG
eff

√
f∞

∫

dpdqφ0(p)φ0(q)δ(p+ q)

[

f∞
L4

δ4
Hp∂rHp

∣

∣

∣

r=L2/δ
− L2p2

δ
H2

p

]

.

Observe that, even though 1/GECG
eff and a∗ECG have a different dependence on µ— see (2.7)

and (4.25) respectively — and that it is a∗ECG the one appearing as an overall constant in

the generalized GHY term and the counterterms (4.24), everything conspires to produce a

single finite contribution which is instead proportional to 1/GECG
eff , as it must.

If we take the limit δ → 0 explicitly in (5.12), we get the simple result

IECG
E [φ0] = − VR2L̃2

64π2Geff

∫

dpdqφ0(p)φ0(q)δ(p+ q)|p|3 . (5.13)

Using the holographic dictionary [3], we can compute one of the components of the bound-

ary stress tensor two-point function in momentum space as

〈Txy(0, 0, p)Txy(0, 0, q)〉 = −(2π)2
δ2IECG

E [φ0]

δφ0(−p)δφ0(−q)
=

L̃2VR2

8Geff
δ(p+ q)|p|3 . (5.14)

Now, from the CFT side, this is given by

〈Txy(0, 0, p)Txy(0, 0, q)〉 =
∫

d3x

∫

d3x′e−ipτe−iqτ ′〈Txy(x)Txy(x
′)〉 , (5.15)

where

〈Txy(x)Txy(x
′)〉 = CT

2|x− x′|6
[

−1 + 2
(τ − τ ′)2

|x− x′|2 + 8
(x− x′)2(y − y′)2

|x− x′|4
]

. (5.16)

The integration in (5.15) can be performed without further complications and we obtain

the result

〈Txy(0, 0, p)Txy(0, 0, q)〉 =
π3CTVR2

24
δ(p+ q)|p|3 . (5.17)

Comparing this expression with (5.14), we obtain the result for CT , which agrees with the

one in (5.4), as it should. The fact that our generalized action (4.24) succeeds in providing

the right answer for this quantity, including various non-trivial cancellations between IECG
E Bulk

and IECG
EGGHY+GCT — see appendix C — provides strong evidence for the validity of the

method developed in section 4.

Note finally that, as explained at the beginning of this section, CT provides information

about many different physical quantities appearing in numerous contexts. Hence, by the

same price we computed (5.4), we gain access to all such quantities for the CFT3 dual

to ECG.
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6 Thermodynamics

In this section we study the thermodynamic properties of the ECG black holes constructed

in section 3. First, we compute the Wald entropy, ADM energy and free energy of the

solutions, and compare the result with the one obtained from an explicit on-shell action

calculation, which serves as a further check of the method proposed in section 4. Then,

focusing on the flat boundary case, k = 0, we identify the quantity CS which relates the

thermal entropy density to the temperature, and show that, in contradistinction to Einstein

gravity, it defines an independent charge with respect to CT . In subsections 6.3 and 6.4,

we study the phase space of holographic ECG on S
1
β × T

2 and S
1
β × S

2, respectively. In

the first case, we show that the standard phase transition between the ECG AdS soliton

and black brane keeps occurring at the same temperature as for Einstein gravity. In the

second, we show that depending on the value of µ, one, two or three black hole solutions

can coexist at the same temperature. The dominating phases are still thermal AdS at small

temperatures and large black holes at large temperatures, but the Hawking-Page-transition

temperature becomes arbitrarily large as we approach the critical limit µ = 4/27. Besides,

small black holes become thermodynamically stable for µ 6= 0, although their contribution

to the partition function is always subleading with respect to thermal AdS.

6.1 Entropy, energy and free energy

Let us start by computing the Wald entropy of the solutions which, for any covariant theory

of gravity is given by [113, 114]

S = −2π

∫

H

dd−1x
√
h

∂L
∂Rab

cd
εabεcd , (6.1)

where εab is the binormal to the horizon. Now, for metrics of the form (3.1), the integration

can be performed straightforwardly, yielding

S = −2πrH
2

L2
VΣ

∂LECG

∂Rab
cd
εabεcd

∣

∣

∣

∣

r=rH

, (6.2)

where VΣ is the regularized volume of S2, R2 or H2 for k = 1, 0,−1 respectively. Explicitly,

the final result for the ECG black holes reads

SECG=
rH

2VΣ

4GL2











1−
3µL4

(

k+ 3rH
2

L2

)

[

(

k+ 3rH
2

L2

)

+2k

[

1+

√

1+ 3kL4µ
rH4

(

k+3 rH2

L2

)

]]

rH4

[

1+

√

1+ 3kL4µ
rH4

(

k+3 rH2

L2

)

]2











. (6.3)

Again, this reduces to the Einstein gravity result

SE =
rH

2VΣ

4GL2
, (6.4)

when we set µ = 0. Once we have S(T ) (defined implicitly), we can use the first law,

dE = TdS, to find the energy. The result is

EECG =
(ωECG)

3
VΣN

8πGL4
. (6.5)
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As expected, this coincides with the result one would obtain for the generalized ADM

energy from the asymptotic expansion (3.5).

The entropy of the solutions can be alternatively computed from the free energy as

S = −∂F/∂T . Hence, we can perform an additional check of our generalized action (4.24),

which evaluated on the Euclidean version of the solutions — for which we identify tE ∼
tE+β — should yield the free energy as FECG = IECG

E /β. Plugging (3.1) in (4.24), we find

that the bulk term is a total derivative that can be integrated straightforwardly, namely

IECG
E Bulk =

βNVΣ

16πGL2

[

H(rH)−H(L2/δ)
]

, (6.6)

where

H(r) ≡ r3

L2

[

(2− 4f − rf ′)− µ

4

(

2f + rf ′)2 (4f − rf ′)
]

. (6.7)

Using the asymptotic expansion (3.5), we get

H(L2/δ) =
2L4

δ3
(1− 2f∞ − 2µf3

∞) +
(ωECG)

3

L2

(1 + 3µf2
∞)

(1− 3µf2∞)
+O(δ) . (6.8)

We can also evaluate the boundary contributions in (4.24). For these, we use

d3x
√
h = Ndt ∧ dΣk

(√
f∞L3

δ3
+

kL

2δ
√
f∞

− (ωECG)
3

2
√
f∞L3(1− 3µf2∞)

)

+O(δ) ,

K =
3
√
f∞
L

+
kδ2

2L3
√
f∞

+O(δ4) , R =
2kδ2

L4
.

(6.9)

Then, we find

IECG
EGGHY+GCT = −βNVΣ(1 + 3µf2

∞)

8πGL4

[

L6f∞
δ3

− (ωECG)
3

2(1− 3µf2∞)

]

+O(δ) . (6.10)

Now, if we add up both contributions we obtain the finite result

IECG
E =

βNVΣ

16πGL2
H(rH) , (6.11)

where we made use of the AdS4 embedding equation (2.4). Hence, all boundary contribu-

tions cancel out and the on-shell action is reduced to the evaluation of the function H(r) at

the horizon. Using the near-horizon expansion (3.9), we can finally write the free energy as

FECG =
NVΣ

8πGL2

[

krH +
rH

3

L2
− 2πTrH

2

N
+ µL4

(

3k

rH

(

2πT

N

)2

+

(

2πT

N

)3
)]

. (6.12)

Note that this can be also written fully in terms of rH using (3.13). When µ = 0, (6.12)

reduces to the Einstein gravity result

FE =
NVΣrH
16πGL2

(

k − rH
2

L2

)

. (6.13)

Using (6.12) and the thermodynamic identity S = −∂F/∂T , we can recompute the entropy

of the solutions. The result precisely matches (6.3), computed using Wald’s formula, which

provides another check for our generalized action.

– 22 –



J
H
E
P
0
3
(
2
0
1
8
)
1
5
0

6.2 Thermal entropy charge CS

When the boundary geometry is flat, k = 0, it is convenient to set N2 = 1/f∞, a choice

which fixes the speed of light to one in the dual CFT [33]. In that case, the thermodynamic

expressions simplify considerably. In particular, we find

T =
3rH

4πL2
√
f∞

, ω3 = rH
3

(

1− 27

4
µ

)

, (6.14)

s =
rH

2

4GL2

(

1− 27

4
µ

)

, ε =
rH

3

8πGL4
√
f∞

(

1− 27

4
µ

)

, (6.15)

where we defined the entropy and energy densities s ≡ S/VR2 , ε ≡ E/VR2 . We can explicitly

write these quantities in terms of the temperature, the result being

s =
4π2L̃2f2

∞
9G

(

1− 27

4
µ

)

T 2 , ε =
8π2L̃2f2

∞
27G

(

1− 27

4
µ

)

T 3. (6.16)

From (6.16), it immediately follows that ECG black branes satisfy

ε =
2

3
Ts , (6.17)

as expected for a thermal plasma in a general three-dimensional CFT.

The dependence on the temperature of the thermal entropy density is also fixed for

any CFT3 to take the form

s = CST
2 , (6.18)

where CS is a theory-dependent quantity. From, (6.16), it follows that

CECG
S =

(

1− 27

4
µ

)

f2
∞CE

S , where CE
S =

4π2

9

L̃2

G
, (6.19)

is the Einstein gravity result — see e.g., [33]. As we can see, in the holographic model

defined by ECG, CS is no longer proportional to CT , and therefore defines an additional

well-defined independent ‘charge’ which characterizes the theory.12 For growing values of

µ, CS monotonously decreases with respect to the Einstein gravity value and, funnily, it

vanishes for the critical case,13 µ = 4/27.

The fact that CS vanishes for certain value of the gravitational coupling is quite un-

usual, and does not occur for QTG or Lovelock black holes (in the Einstein gravity branch)

in any number of dimensions — see e.g., [33, 40, 43, 71, 115]. In fact, in those cases, the

only modification in CS with respect to Einstein gravity is an overall f
(d−1)
∞ factor, i.e.,

the result reads C
QTG/Lovelock
S = f

(d−1)
∞ CE

S , where CE
S is the Einstein gravity result written

in terms of L̃. In fact, in view of the results for those theories, one would have naively

expected all ‘(1 − 27/4µ)’ factors in (6.14)–(6.19) not to appear for ECG. This seems to

12Observe that CS can be rewritten as CECG
S = f2

∞(1 − 3µf2
∞/4)(1 − 3µf2

∞)2CE
S , which makes it more

obvious that this charge is not proportional to CECG
T .

13This would seem to suggest that the black brane has a unique microstate in that case, but it is probably

just another evidence of the problematic properties of the critical theory.
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be a simple manifestation of the fact that the theories belonging to the Generalized QTG

class (including ECG) for which f(r) is determined through a second-order differential

equation possess rather different properties from those for which f(r) is determined from

an algebraic equation — see below and [53–55, 60] for more evidence in this direction.

6.3 Toroidal boundary: black brane vs AdS4 soliton

In this subsection we study the phase space of thermal configurations when the spatial

dimensions of the boundary CFT form a torus T2. The first obvious saddle corresponds to

Euclidean AdS4 with toroidal boundary conditions, given by

ds2 =
r2

L2

[

dτ2 + dx21 + dx22
]

+
L2

r2f∞
dr2 , (6.20)

where the coordinates x1 and x2 are assumed to be periodic, x1,2 ∼ x1,2 + l1,2, where l1,2
is the period of each coordinate. Without loss of generality we assume l1 ≤ l2. As before,

τ ∼ τ + β. The next candidate is the Euclidean black brane

ds2 =
r2

L2

[

f(r)

f∞
dτ2 + dx21 + dx22

]

+
L2

r2f(r)
dr2 , (6.21)

for which the temperature is fixed in terms of the horizon radius through (6.14). Finally,

it should be evident that moving the f(r)/f∞ factor from gττ to g11 or g22 should also give

rise to solutions of ECG, e.g.,

ds2 =
r2

L2

[

dτ2 +
f(r)

f∞
dx21 + dx22

]

+
L2

r2f(r)
dr2 . (6.22)

These are the so called AdS4 ‘solitons’ [116, 117]. The crucial difference with respect

to the black brane is that, for these, regularity no longer imposes a relation between the

temperature and the horizon radius. Instead, it fixes the periodicity of x1 (or x2 if f(r)/f∞
appears in g22 instead) in terms of rH as

l1,2 =
4πL2

√
f∞

3rH
. (6.23)

Of course, τ is still periodic with period β, but, as opposed to the black-brane case, the

temperature can be now arbitrary for a given value of rH.

Now, the Euclidean action vanishes for pure Euclidean AdS4, whereas for the black

brane and the solitons we find, respectively

IbbE =−4πf∞L2

27G

(

1− 27

4
µ

)

T 2l1l2 , Isoliton1,2E =−4πf∞L2

27G

(

1− 27

4
µ

)

l1l2
T l31,2

. (6.24)

The solution which dominates the partition function is the one with the smaller on-shell

action (or free energy, βF ≡ IE). As we can see from (6.24), for the set of values of

µ for which the ECG solutions exist, the free energies of the black brane and the AdS

solitons are always negative, just like for Einstein gravity, which implies that pure AdS4
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never dominates. We observe that for (arbitrarily) small temperatures, the partition func-

tion is dominated by the soliton with the shortest periodicity, the other one being always

subleading. For large temperatures, the black brane dominates instead. At T = 1/l1,

(recall we are assuming l1 < l2), there is a first-order phase transition which connects both

phases. Hence, the phase-transition temperature is not modified with respect to Einstein

gravity. The latent heat, computed as the difference between the energy densities of both

configurations at T = 1/l1, does change and is given by

δQ =
4πf∞L2

9G

(

1− 27

4
µ

)

l2
l21

. (6.25)

Again, something unusual happens in the critical limit. In that case, the free energy of

both the black brane and the soliton — which have a simple metric function given by

f(r) = 3
2(r

2 − rH
2)/L2 — vanishes. Then, for µ = 4/27, the black brane, the two solitons

and pure AdS4 are all equally probable configurations.

6.4 Spherical boundary: Hawking-Page transitions

Let us now consider the boundary theory on S
1
β × S

2. In that case, apart from Euclidean

AdS4 foliated by spheres, the other candidate saddle of the semiclassical action corresponds

to the Euclidean spherically symmetric black hole

ds2 =

[

1 +
r2

L2
f(r)

]

dτ2 +
dr2

[

1 + r2

L2 f(r)
] + r2dΩ2

(2) , (6.26)

where we have chosen N2 = 1. Also, note that the ‘volume’ of the transverse space is,

in this case, VS2 = 4πL2. As a function of the horizon radius, the temperature of these

solutions is given by (3.13)

T (rH) =
1

2πrH

(

1 + 3
rH

2

L2

)

[

1 +

√

1 +
3µL4

rH4

(

1 + 3
rH2

L2

)

]−1

. (6.27)

The contribution coming from the cubic term in the action becomes less and less relevant

as we make rH larger, but its effect is highly nonperturbative for small radius. For example,

a non-vanishing value of µ makes the temperature vanish, instead of blowing up, as rH → 0.

More precisely, one finds T ≈ rH/(2π
√
3µL2) in that regime. This is no different from the

behavior observed for the asymptotically flat ECG black holes [51, 52, 56] — small black

holes do not care whether they are inside AdS4 or flat space.

Besides this, the introduction of the cubic term in the action leads to some additional

differences with respect to Einstein gravity — see figure 3. For the usual Schwarzschild-

AdS4 Einstein gravity black hole, the temperature is always higher than a certain value,

T > Tmin ≡
√
3/(2πL). In that case, for a given T > Tmin, there exist two black holes, one

large, and one small. There are no solutions for which T < Tmin. For ECG the situation is

quite different. On the one hand, one observes that there is no minimum temperature, this

is, as long as µ 6= 0, there always exists at least one black hole solution for a given T . We can

distinguish two qualitatively different behaviors depending on µ. For 0 < µ < µT ≡ 1/288,

– 25 –



J
H
E
P
0
3
(
2
0
1
8
)
1
5
0

�������������-���μ=������μ=�/���
μ=����μ=�/��

��� ��� ��� ��� ���
���

���

���

���

���

���

��/�

�
⨯�

Figure 3. Temperature as a function of the horizon radius for various values of µ ∈ [0, 4/27].

Depending on µ, there exist one, two, or three black holes with the same temperature.

there is an interval of temperatures (Tmin, Tmax) for which three black hole solutions with

the same temperature exist. However, if T ≥ Tmax or T < Tmin. we just have one. On the

other hand, if µ > µT , there is always a single black hole solution for each temperature. In

the critical limit, for which f(r) = 3(r2−rH
2)/(2L2), the relation (6.27) becomes linear [61],

and reads T = 3rH/(4πL
2).

In sum, at a fixed temperature T , we have several solutions with S
1
β × S

2 boundary

geometry: thermal AdS4, and one or three black holes depending on the value of µ. In order

to identify which phase dominates the holographic partition function at each temperature,

let us again compare the on-shell actions of the solutions. For thermal AdS4, one finds

a vanishing result, whereas for the black holes, the result can be obtained from (6.12),

from which we can obtain IE(T ) implicitly using (6.27). In figure 4, we plot IE for various

values of µ. At a given temperature, we always have several possible phases: a pure

thermal vacuum (radiation), and one or several black holes. The dominating phase (shown

in solid line) is the one with smaller on-shell action. Regardless of the value of µ, the

qualitative behavior is always the same: for small temperatures, the partition function

is dominated by radiation, while for large enough temperatures there is a Hawking-Page

phase transition [116, 118] to a large black hole. The temperature at which the transition

occurs depends on µ. For Einstein gravity, one finds THP = 1/(πL), while for µ ≪ 1, this

result gets corrected as

THP =
1 + 10µ

πL
+O(µ2) . (6.28)

Hence, the introduction of the ECG density increases the temperature at which the tran-

sition occurs. The black-hole radius for which the phase transition takes place also grows

if we turn on µ, and is given by rH = L(1 + 26µ+O(µ2)), and the same happens with the

latent heat, δQ = L/G ·
(

1 + 38µ+O(µ2)
)

. As we increase µ, the Hawking-Page transition
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temperature grows. In fact, it diverges in the critical limit µ = 4/27, which means that no

transition at all occurs in that case. If we define ǫ ≡ 1− 27/4µ, the transition temperature

for ǫ ≪ 1 can be seen to be given by

THP=
3

2πL
√
ǫ

[

1− ǫ

4
+O(ǫ2)

]

, which occurs for rH =
2L√
ǫ

[

1− 1

4
ǫ+O(ǫ2)

]

. (6.29)

The reason for the disappearance of the transition is that the critical black holes have a

temperature-independent on-shell action, namely14

IE =
4πL2

3G

[

1− 9 + 8π2T 2L2

18
ǫ+O(ǫ2)

]

, (6.30)

which in the ǫ = 0 limit is a positive constant, therefore greater than the thermal AdS4

value.15

Although we have seen that only radiation and large black holes can dominate the

partition function, it is worth stressing certain new features that appear in the thermal

phase space of ECG. First, we observe that a low-temperature phase of small black holes

becomes available as we turn on µ. For small T , the corresponding on-shell action is given by

ISmall BHs
E =

2πL2
√
3µ

G
. (6.31)

Hence, if µ is small enough (but not zero!), a spontaneous transition from radiation to small

black holes is likely to occur at low temperatures. However, a too small value of µ could be

outside the limits of validity of this approach. Indeed, if the cubic corrections came from

string theory, one would expect something like
√
µL2 ∼ α′, which is assumed to be much

larger than G in the holographic setup. On the other hand, the phase space has a critical

point (not to be confused with the critical limit of the theory) where the three black-hole

phases in figure 4 (top right) stop existing separately.16 This occurs for µ = µT which sepa-

rates the cases for which there are three phases, from those for which there is only one. The

phase transition is second-order, and takes place at a temperature Tc =

√
2/3

πL , correspond-

ing to the non-smooth point on the dashed orange curve in figure 4 bottom left. The critical

exponent of the specific heat at the transition turns out to be −2/3. More precisely, we find

C ≡ −T
∂2F

∂T 2
=

π54/3L2

9 · 27/3G

(

T

Tc
− 1

)−2/3

as T → Tc . (6.32)

Let us finally mention that the thermodynamic behavior of our black holes is qualita-

tively similar to the one observed for D = 5 Gauss-Bonnet black holes [70].17 Just like for

ECG, a new phase of small stable black holes appears also in that case, as a consequence

14The fact that the on-shell action of black holes does not depend on the horizon size is yet another

unusual property of the critical theory.
15As ǫ → 0, the latent heat also diverges as δQ = 4L/(G

√
ǫ) ·

(

1− 3ǫ/4 +O(ǫ2)
)

, although the entropy

increase tends to a constant value, δS = 8L2π/(3G) ·
(

1− ǫ/2 +O(ǫ2)
)

.
16We thank Robie Hennigar for pointing this out to us.
17See also [119] for the case of general quadratic gravity — the analysis becomes perturbative in that

case though.
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Figure 4. We plot IE as a function of the temperature for the different phases of holographic

ECG in S
1

β × S
2. Solid lines represent the dominant phase in each case. Blue lines correspond

to thermal AdS4, and orange lines to black holes. From left to right and top to bottom: µ =

0, 0.0001, 1/288, 0.02. For µ = 0 we get the usual Einstein gravity result, with two orange branches

corresponding to small and large black holes, and a Hawking-Page transition at THP = 1/(πL). For

0 < µ < 1/288, there exist either one or three black-hole branches, depending on the temperature,

while for µ > 1/288 there is a single black hole for every temperature. As µ approaches the critical

value, the Hawking-Page transition temperature grows as THP ∼ 3/(2πL
√

1− 27µ/4). In the limit

µ = 4/27, the on-shell action is constant (not shown in the figure), IE = 4πL2/(3G), so thermal

AdS4 always dominates, and there is no Hawking-Page transition.

of the Gauss-Bonnet term. Again, thermal AdS5 is always globally preferred over such so-

lutions. Observe also that the fact that there is no phase transition for critical ECG seems

to be related to the fact that, in that case, the solutions become ‘very similar’ to three-

dimensional BTZ black holes (see footnote 7), for which no Hawking-Page transition exists

either [120]. Finally, let us point out that more sophisticated phase transitions connecting

different AdS vacua have been identified for Lovelock gravities in various dimensions [121].

It would be interesting to explore their possible existence in ECG or, more generally, for

the class of theories introduced in [53, 55, 56].
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7 Rényi entropy

Rényi entropies [122, 123] are useful probes of the entanglement structure of quantum

systems — see e.g., [25, 124, 125], and references therein. Roughly speaking, given a state

ρ and some spatial subregion V in a QFT, Rényi entropies characterize ‘the degree of

entanglement’ between the degrees of freedom in V and those in its complement (when

such a bi-partition of the Hilbert space is possible). More precisely, they are defined as

Sq(V ) =
1

1− q
log Tr ρqV , q ≥ 0 , (7.1)

where ρV is the partial-trace density matrix obtained integrating over the degrees of free-

dom in the complement of the entangling region. Whenever (7.1) can be analytically

continued to q ∈ R, the corresponding EE can be recovered as the q → 1 limit of Sq.

In this section we use the methods developed in [25, 96] to compute the Rényi entropy

for disk regions in the ground state of holographic ECG. In subsection 7.1, we study the

dependence of Sq/S1 on µ, as well as on some of the charges characterizing the CFT. In

subsection 7.2, we compute the conformal scaling dimension of twist-operators hq for ECG

— see below for definitions — as an intermediate step to obtain in subsection 7.3, using the

results in [126], the charge t4 characterizing the three-point function of the stress tensor.

7.1 Holographic Rényi entropy

In [96], it was shown that the entanglement entropy across a radius-R spherical region S
d−2

for a generic d-dimensional CFT equals the thermal entropy of the theory at a temperature

T0 = 1/(2πR) on the hyperbolic cylinder R × H
d−1, where the curvature scale of the

hyperbolic planes is given by R. The result is particularly useful in the holographic context,

where the latter can be computed as the Wald entropy of pure AdS(d+1) foliated by R×H
d−1

slices.18 Later, in [25], it was argued that this result could be in fact extended to general

Rényi entropies, the result being

Sq =
q

(1− q)T0

∫ T0

T0/q
Sthermal(T )dT , (7.2)

where Sthermal(T ) is the corresponding thermal entropy on R × H
d−1 at temperature T .

While for T = T0, general results for the EE across a spherical region can be obtained for ar-

bitrary holographic higher-derivative theories as long as AdS(d+1) is a solution, the situation

becomes more involved for general q. In that case, (7.2) requires that we know Sthermal(T )

for arbitrary values of T . Holographically, the calculation can only be performed if the

bulk theory admits hyperbolic black-hole solutions for which we are able to compute the

corresponding thermal entropy. Examples of such theories for which Rényi entropies have

18Observe that this means, in particular, that for odd-dimensional holographic CFTs, we can in principle

access a∗ — see (4.13) — in three different ways: 1) from an explicit EE calculation using the Ryu-

Takayanagi functional [127, 128] or its generalizations, e.g., [129–131], depending on the bulk theory; 2)

from the Euclidean on-shell action of pure AdS(d+1) with S
d boundary [96]; 3) from the Wald entropy of

AdS(d+1) with R×H
d−1 boundary [96].
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been computed using this procedure include: Einstein gravity, Gauss-Bonnet, QTG [25]

and cubic Lovelock [132]. Analogous studies for theories in which the corresponding black

holes solutions were only accesible approximately — typically at leading order in the corre-

sponding gravitational couplings — have also been performed, e.g., in [63, 133, 134]. ECG

allows us to perform the first exact calculation (fully nonperturbative in the gravitational

couplings) of the holographic Rényi entropy of a disk region in d = 3 for a bulk theory

different from Einstein gravity.

Following [25], let us start by rewriting (7.2) as

Sq =
q

(q − 1)T0

[

S(x)T (x)|1xq
−
∫ 1

xq

S′(x)T (x)dx

]

, (7.3)

where we defined the variable x ≡ rH/L̃, and where S and T stand for the thermal entropy

and temperature of the hyperbolic AdS black hole of the corresponding theory. For x = 1,

one has, in general T (1) = T0, whereas xq is defined as a solution to the equation T (xq) =

T0/q. For ECG cubic gravity, the expressions for S(x) and T (x) can be extracted from (6.3)

and (3.13) respectively by setting k = −1,

S(x) =
x2L̃2VH2

4G











1−
3µf2

∞
(

3x2

f∞
− 1
)

[

(

3x2

f∞
− 1
)

− 2

[

1 +

√

1− 3f2∞µ
x4

(

3x2

f∞
− 1
)

]]

x4
[

1 +

√

1− 3f2∞µ
x4

(

3x2

f∞
− 1
)

]2











,

T (x) =
1

2πRx

(

3x2

f∞
− 1

)

[

1 +

√

1− 3f2∞µ

x4

(

3x2

f∞
− 1

)

]−1

, (7.4)

where, in addition, we have set N2 = L2/(f∞R2). This makes the boundary metric

conformally equivalent to

ds2bdy = −dt2 +R2dΞ2 , (7.5)

so that the boundary theory lives on R × H
2, with the ‘radius’ of the hyperbolic plane

given by R, as required [25]. From (7.4), it can be seen that xq corresponds to the real and

positive solution of

x2q
(

3q2x2q − q2 − 2qxq
)

= 3µf2
∞
(

q2x4q − 1
)

, (7.6)

which for Einstein gravity reduces to

xEq =
1

3q

(

1 +
√

1 + 3q2
)

. (7.7)

Observe that we have not said anything yet about the divergent nature of VH2 . Of

course, one expects the entanglement and Rényi entropies to contain (a particular set of)

divergent terms, so one could have only expected some source of divergences to appear in

the calculation. It is a remarkably feature of the procedure outlined above that all necessary

divergent terms in the Rényi entropy (and no others) are produced by the volume of the
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hyperbolic plane. In the case of interest for us, corresponding to d = 3, the regularized

volume reads [96]

VH2 = 2π

[

R

δ
− 1

]

, (7.8)

where we introduced a short-distance cut-off δ. From this expression, we shall only retain

the universal piece,19 and hence we will replace VH2 → −2π from now on, keeping in mind

that Sq also contains a cut-off dependent ‘area’ law piece. Taking this into account, after

some massaging, which includes using (2.4), we can check that

T (1) = T0 and S(1) = −2πa∗ECG , (7.9)

where a∗ECG was defined in (4.25). Hence, we obtain the same result for the EE of a disk as

the one found in section 4 from the free energy of holographic ECG on S
3. This is another

check of our proposed generalized action (4.24).

With all the above information together, we are ready to evaluate the Rényi entropy

from (7.3). The result reads

SECG
q =

q

(1− q)

πL̃2

2G

[

1− xq −
x2q
q

+ x3q − µf2
∞

(

3

q2xq
− 3− 1

q3
+ x3q

)

]

, (7.10)

which reduces to the Einstein gravity one [25] for µ = 0. In figure 5, we plot Sq/S1 as

a function of the Rényi index for various values of µ. As we increase µ, Sq/S1 becomes

smaller in the q < 1 region, but it remains larger than 1 for all values of µ. The opposite

occurs for q > 1, where Sq/S1 tends to grow as we increase µ, but Sq/S1 < 1 for all µ. In

the critical limit, there is a jump, and Sq/S1 no longer diverges near q = 0. In fact, in that

case, (7.10) reduces to a q-independent constant for q < 1, Scrit.ECG
q = −πL̃2/G. As we

approach µ → 4/27, S∞ tends to another constant, S∞ → −πL̃2/G× (1− 1/(3
√
2)). Note

also that the curve is no longer concave for µ ∼ 0.135 or larger.

Explicit Taylor expansions of SECG
q around q = {0, 1,∞} can be easily obtained. A

few terms suffice in such expansions to provide excellent approximations to the exact curve

for most values of µ. At leading order we find, respectively,

lim
q→1

SECG
q = −2πa∗ECG , (7.11)

lim
q→0

SECG
q = − 1

6πq2
CECG

S , (7.12)

lim
q→∞

SECG
q = −πL̃2

2G

[

1 + 3µf2
∞ − 2

3
√

3(1− µf2∞)

]

. (7.13)

The first result corresponds to the EE, and we have mentioned it already. As for the

second, the appearance in the q → 0 regime of the thermal entropy charge CECG
S , identified

19As stressed in [135], the universality of constant terms comes with a grain of salt. For example,

in (7.8), one could think of rescaling R by an order-δ constant, which would pollute the constant term. In

the case of EE, this issue was overcome in [135] using mutual information as a regulator. We will ignore

this problem here.
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Figure 5. We plot the ratio of the Rényi entropy and the EE, Sq/S1, as a function of the Rényi

index q for various values of the ECG coupling µ.

in section 6.2, should not come as a surprise either. The reason is the following. As shown

in [25], the Rényi entropy Sq across a S
d−2 in a general CFTd can be alternatively written as

Sq =
q

(1− q)

Rd−1VHd−1

T0
[F(T0)−F(T0/q)] , (7.14)

where F(T ) is the free energy density of the theory at temperature T on R × H
d−1. The

point is that, as q → 0, the second term in (7.14) dominates over the first. Then, one can

use the fact that, at high temperatures, the free energy density on R×H
d−1 tends to the free

energy density on R
d [136], FR×Hd−1(T ) = FRd(T )

[

1 +O(1/(RT )2)
]

, since 1/R becomes

irrelevant compared to T in that regime. Using the general relation FRd(T ) = −CST
d/d,

valid for any CFT in flat space, it follows then that20

lim
q→0

Sq =
VHd−1CS

d

(

1

2πq

)d−1

, (7.15)

which should hold for any CFTd and, in particular, precisely agrees with (7.12) for ECG.

Besides, we can readily check that

∂qS
ECG
q

∣

∣

q=1
=

π4

12
CECG

T , (7.16)

as expected from the general relation found in [106].

Let us now gain some insight on the dependence of Sq on quantities characterizing the

CFT. In order to do that, we can use the relations

L̃2

G
= a∗

π3

6

[

(CT/a
∗) +

12

π3

]

, µf2
∞ = −1

3

[

(CT/a
∗)− 12

π3

]

[

(CT/a∗) + 12
π3

] . (7.17)

20See [133, 137] for analogous arguments.
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Figure 6. We plot the ratio of the Rényi entropy and the EE, Sq/S1, as a function of the quotient

(CT/a
∗)ECG for q = {1, 2, 3, 10,∞}. The limits of the range plotted correspond to the critical

theory, (CT/a
∗)ECG = 0, and Einstein gravity (CT/a

∗)ECG = 12/π3, respectively. The dashed line

corresponds to the linear approximation to S∞/S1 in (7.19).

It is then straightforward to substitute these in (7.6) and (7.10) to obtain Sq as a function

of a∗ECG and (CT/a
∗)ECG. Observe that a∗ appears as a global factor, so that Sq/S1 is

a function of CT/a
∗ alone. We plot this ratio for several values of q in figure 6. Observe

that CT/a
∗ takes values between 0 and 12/π3 ≃ 0.3870, corresponding to the critical value,

µ = 4/27, and Einstein gravity respectively. Interestingly, even though the dependence

of Sq/S1 on CT/a
∗ is in principle highly non-linear, all curves seem to be approximately

linear in the full range. In addition, we find that

Sq

S1

∣

∣

∣

∣

(CT 1/a
∗
1)

<
Sq

S1

∣

∣

∣

∣

(CT 2/a
∗
2)

for (CT 1/a
∗
1) > (CT 2/a

∗
2) , (7.18)

i.e., Sq/S1 monotonously decreases as CT/a
∗ grows, for all values of q. These features are

very similar to the ones observed in [25] for holographic Gauss-Bonnet in d ≥ 4.

We can gain some understanding on the approximately linear behavior of Sq/S1 by

expanding S∞/S1 around the Einstein gravity value, (CT/a
∗)ECG = 12/π3. By doing so,

we obtain

S∞
S1

= 1−
π3
[

(CT/a
∗) + 12

π3

]3/2

72
[

(CT/a∗) + 6
π3

]1/2
≃
[

1− 2

3
√
3

]

− 5π3

216
√
3

[

(CT/a
∗)− 12

π3

]

+ . . . , (7.19)

where the first omitted correction is quadratic in the expansion parameter. As it turns out,

the linear approximation in (7.19) fits the exact curve very well for most values of CT/a
∗ —

see dashed line in figure 6. We suspect a similar phenomenon occurs for smaller values of q.

In spite of this ‘pseudo-linearity’, it seems clear that SECG
q does not have a simple

dependence on universal CFT quantities. This fact, which agrees with the exact d ≥ 4
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results of [25] for Gauss-Bonnet and QTG, was actually anticipated in that paper also for

d = 3, where Sq was computed at leading order in the gravitational coupling for a bulk

model consisting of Einstein gravity plus a Weyl3 correction.

7.2 Scaling dimension of twist operators

Let us now turn to the scaling dimension of twist operators. In the context of computing

Rényi entropies for some region V using the replica trick, the boundary conditions which

glue together the different copies of the replicated geometry at the entangling surface ∂V ,

can be alternatively implemented through the insertion of dimension-(d − 2) operators τq
extending over ∂V [25, 26, 138, 139]. The replicated-geometry construction is then replaced

by a path integral over the symmetric product of q copies of the theory on a single copy of

the geometry, with the τq inserted. Given V , Tr ρqV can be then obtained as the expectation

value of these ‘twist operators’, Tr ρqV = 〈τq〉q, computed in the q-fold symmetric product

CFT. A natural notion of scaling dimension, hq, can be defined for τq from the leading

singularity appearing in the correlator 〈Tµντq〉, as the stress tensor is inserted close to ∂V .

In particular [25, 26],

〈Tµντq〉q = −hq
2π

bµν
yd

, (7.20)

where bµν is a fixed tensorial structure and y is the separation between the stress-tensor

insertion and ∂V .

Our interest in the hq for ECG is mostly related to the use that we will make of them

in the following subsection, so let us just reproduce the most relevant result needed to

compute them for holographic CFTs [25, 26]. This establishes that, given some higher-

derivative bulk theory, hq can be obtained from the thermal entropy and temperature of

the corresponding hyperbolic AdS black hole as

hq =
2πRq

(d− 1)VHd−1

∫ 1

xq

T (x)S′(x)dx . (7.21)

Then, using (7.4), we find, for the universal piece,

hECG
q = −qL̃2

8G

[

x3q − xq − µf2
∞

(

x3q +
2

q3
− 3

q2xq

)]

, (7.22)

which reduces to the Einstein gravity result [25]

hEq =
qL̃2

8G
xq
(

1− x2q
)

, (7.23)

when µ = 0. It is easy to perform some checks of this result. In particular, we find

lim
q→0

hECG
q = − 1

12π2q2
CECG

S , ∂qh
ECG
q |q=1 =

π3

24
CECG

T , (7.24)

as expected from the general identities found in [137] and [26], respectively. Similarly,

using (7.10), it is possible to verify that the general relations [137]21

∂j
qhq
∣

∣

q=1
=

1

4π

[

(j + 1) ∂j
qSq

∣

∣

q=1
+ j2 ∂j−1

q Sq

∣

∣

q=1

]

, (7.25)

hold for general j and arbitrary values of µ, as they should.

21For j = 1, the second term is ignored.
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7.3 Stress tensor three-point function charge t4

For general CFTs in d = 3, the stress tensor three-point function is a combination of

fixed tensorial structures controlled by two theory-dependent quantities [100], which can

be chosen to be CT plus an additional parameter,22 t4. The latter was originally introduced

in [9], where it was shown to appear in the general formula for the energy flux reaching

null infinity in a given direction after inserting an operator of the form ǫijT
ij , where ~ǫ is

some symmetric polarization vector. For any CFT3, the result takes the general form

〈E(~n)〉 = E

2π

[

1 + t4

(

|ǫijninj |2
ǫ∗ijǫij

− 1

8

)]

, (7.26)

where E is the total energy, and ~n is the unit vector indicating the direction in which we

are measuring the flux. Hence, the only theory-dependent quantity appearing in the above

expression is t4 which, along with CT , fully characterize 〈TTT 〉 — see e.g., [33, 110] for

the explicit connection. For d ≥ 4, there is an extra parity-preserving structure weighted

by another theory-dependent constant, customarily denoted t2.

Higher-dimensional versions of (7.26) have been used to identify t4 and t2 for holo-

graphic theories dual to certain higher-order gravities in d ≥ 4, such as Lovelock [33, 34] or

QTG [43]. It is known that t4 = 0 for general supersymmetric theories [9, 44], as well as for

theories of the Lovelock class [33–35, 42], including Einstein gravity in general dimensions.

In fact, one of the original motivations for the construction of QTG in [40], was to provide

a nonperturbative holographic model with a non-vanishing t4 in d = 4. Here, we show that

ECG provides an analogous model in d = 3.

In order to determine t4 for ECG, we will use the results in [126], where it was shown

that the scaling dimension of twist operators in holographic theories is related to the

parameters controlling the stress-tensor three-point function. In particular, it was shown

that the expression

hq
CT

=
π3

24
(q − 1)− π3

11520
(420 + t4)(q − 1)2 +O(q − 1)3 , (7.27)

holds for general holographic higher-order gravities in d = 3, at least at leading order

in the couplings. Performing the corresponding expansion in the twist-operator scaling

dimension (7.22), we find

tECG
4 =

−1260µf2
∞

(1− 3µf2∞)
, (7.28)

which, as expected, vanishes for Einstein gravity. One may worry about the validity

of (7.27) beyond leading order, for which tECG
4 = −1260µ + O(µ2). However, we have

good reasons to believe that (7.28) is correct for general values of µ. First of all, observe

that (7.28) singles out µ = 4/27 as a special value of the coupling, since tECG
4 diverges in

that case. Of course, this is nothing but the critical limit of the theory, for which some sort

22In general, in d = 3, there is also a parity-violating structure [140–142], which is controlled by yet an-

other parameter. Capturing this would require introducing another bulk density involving some contraction

of curvature tensors with the Levi-Civita symbol — see e.g., [141].
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of bizarre behavior was to be expected. Secondly, in appendix A, we use the results found

in [25] for the twist-operator scaling dimensions in d-dimensional holographic Gauss-Bonnet

and d = 4 QTG, and show that the (d-dimensional versions of) (7.27) provide expressions

for t2 and t4 which exactly agree with the fully nonperturbative ones found in [33] and [43].

These observations strongly suggest that (7.28) is an exact expression.

Now, in d = 3, imposing the positivity of energy fluxes in arbitrary directions gives

rise to the constraint −4 ≤ t4 ≤ 4, which is valid for general CFTs [33], as long as the

additional parity-odd structure is absent, as in the case of ECG.23 When written in terms

of the gravitational coupling for ECG, this constraint translates into

312

313
≤ f∞ ≤ 318

317
, (7.29)

which, together with the previous constraint 1 ≤ f∞ ≤ 3/2 becomes

1 ≤ f∞ ≤ 318

317
≃ 1.00315 . (7.30)

This can in turn be explicitly written in terms of µ as

0 ≤ µ ≤ 100489

32157432
≃ 0.00312491 . (7.31)

This reduces the range of allowed values of µ quite considerably. Observe that for

f∞ = 318/317, t4 = −4, which is precisely the value corresponding to a free fermion.

The other limiting value, t4 = 4, corresponding to a free scalar, would imply a negative

value of µ, and is therefore excluded. Observe also that the bound is maximally violated

at the critical value µ = 4/27.

8 Holographic hydrodynamics

One of the paradigmatic applications of higher-order gravities in the AdS/CFT context

has been the construction of counterexamples to the famous Kovtun-Son-Starinets (KSS)

bound for the shear viscosity over entropy density bound [24]. The latter was originally

conjectured to satisfy η/s ≥ 1
4π (in natural units) for any fluid in any number of dimen-

sions, the saturation occurring for holographic plasmas dual to Einstein gravity AdS(d+1)

black branes. Violations of the bound — generically produced by finite-N effects from the

gauge-theory side — were argued to occur for holographic plasmas dual to black branes in

several higher-order theories — see, e.g., [7, 19–23] for some of the earliest works and [143]

for a review. A thorough study of various consistency conditions — such as subluminal

propagation of excitations, energy positivity or unitarity — on some of the holographic

theories for which the corresponding branes could be actually constructed — hence allow-

ing for fully nonperturbative calculations in the higher-curvature couplings — suggested

that the bound can be lowered down to η/s ∼ 0.4 · 1
4π for d = 4 [43], and arbitrarily close

23Observe, in particular, that for a CFT3 consisting of ns real conformal scalars and nf/2 Dirac fermions,

t4 = 4(ns−nf)/(ns+nf), which therefore covers the full space of allowed values of t4 [33], the limiting values

corresponding to an arbitrary number of fermions, and to an arbitrary number of scalars, respectively.
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to zero for large enough d [144]. These results give rise to three possibilities for finite-d:

(i) the parameter space which would permit violations of the KSS bound is in fact not

allowed by some other unidentified physical conditions — see below — and the KSS bound

is true after all; (ii) there exists some lower bound, but it is lower than the KSS one; (iii)

there is no bound at all. It was shown later [13] that higher-derivative theories with non-

perturbative couplings are in fact generally acausal unless the spectrum is supplemented

by higher-spin modes. While it is still unclear under what circumstances such additional

degrees of freedom play a relevant role — specially given the success of holographic higher-

curvature models in other holographic applications — the reliability of the aforementioned

conclusions regarding the fate of the bound was put in suspense by this result. The current

belief seems to be that some non-trivial bound, lower than the KSS one, does exist for

general d — see e.g., [145].

In this section we compute the shear viscosity to entropy density ratio for ECG, pro-

viding the first calculation of such a quantity for a holographic higher-curvature gravity in

d = 3 which is fully nonperturbative in the gravitational coupling. We will proceed along

the lines of [43, 146]. Let us start considering the ECG planar black hole in (3.1), i.e., we

set k = 0 and N2 = 1/f∞,

ds2 =
r2

L2

[

−f(r)

f∞
dt2 + dx21 + dx22

]

+
L2

r2f(r)
dr2 . (8.1)

Now, it is convenient to perform the change of coordinates z = 1−rH
2/r2, so that the hori-

zon corresponds to z = 0, the asymptotic boundary being at z = 1. The metric reads then

ds2 =
rH

2

L2(1− z)

(

−f(z)

f∞
dt2 + dx21 + dx22

)

+
L2

4f(z)(1− z)2
dz2 . (8.2)

On the other hand, the cubic equation that determines f(r), (3.4), reads, in terms of z

1−f(z)+µ
[

f3−3(1−z)2ff ′2−2(1−z)3f ′(f ′2−3ff ′′)
]

=

(

1− 27

4
µ

)

(1−z)3/2 , (8.3)

where now f ′ ≡ df/dz, and so on. In order to determine the shear viscosity, we will need

the near-horizon behavior of f , so let us perform a Taylor expansion of the form

f(z) = f ′
0z +

1

2
f ′′
0 z

2 +
1

6
f ′′′
0 (z)z3 + . . . , (8.4)

The coefficients in this expansion can be of course written in terms of those in the r-

expansion series (3.9), but it is easier to work directly with the variable z. Inserting (8.4)

in (8.3) and imposing it to hold order by order in z, one finds

f ′
0 =

3

2
, f ′′′

0 =
−144µf ′′2

0 + 4(135µ+ 4)f ′′
0 − 81µ+ 12

216µ
, f

(4)
0 = . . . , (8.5)

etc. All the coefficients are determined by f ′′
0 , whose value is fixed by the asymptotic condi-

tion limz→1 f(z) = f∞. Analogously to the discussion in section 3.3, there is a unique value

of this parameter for which the desired boundary condition is achieved. This defines f ′′
0 as a
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function of µ, which we denote f ′′
0 (µ). We can compute this numerically with arbitrary pre-

cision, but let us also try an analytic computation using the following logic. Observe that,

for µ = 0, the solution is simply f(z) = 1−(1−z)3/2, from where we read all the derivatives

f
(n)
0 (0) = (−1)n+1 Γ(5/2)

Γ(5/2− n)
. (8.6)

Now, since the solution for general µ should reduce to the Einstein gravity one when µ → 0,

the derivatives (8.5) should coincide with the previous ones in that limit. It turns out that

we can use this condition to determine the derivatives of f ′′
0 (µ) with respect to µ at µ = 0.

Let us see how this works. Obviously, we have limµ→0 f
′′
0 (µ) ≡ f ′′

0 (0) = −3/4. Then,

we should also have limµ→0 f
′′′
0 (µ) ≡ f ′′′

0 (0) = −3/8. If we take this limit in the second

equation of (8.5), we get the condition

lim
µ→0

[−144f ′′
0 (µ)

2 + 540f ′′
0 (µ)− 81

216
+

2

27

f ′′
0 (µ) + 3/4

µ

]

= −3

8
. (8.7)

The limit of the first term is finite and we can simply substitute f ′′
0 (0) = −3/4. However,

in the second term we have

lim
µ→0

f ′′
0 (µ) + 3/4

µ
= lim

µ→0

f ′′
0 (µ)− f ′′

0 (0)

µ
≡ df ′′

0 (µ)

dµ

∣

∣

∣

∣

µ=0

. (8.8)

Therefore, this equation is actually giving us the value of the derivative of f ′′
0 (µ) at µ = 0,

the result being 243/8. The same process can be repeated at every order and we can obtain

all derivatives of this function at µ = 0. Up to second order, we have

f ′′
0 (µ = 0) = −3

4
,

df ′′
0 (µ)

dµ

∣

∣

∣

∣

µ=0

=
243

8
,

d2f ′′
0 (µ)

dµ2

∣

∣

∣

∣

µ=0

= −115911

16
. (8.9)

Now, if the function f ′′
0 (µ) were analytic, we could in principle construct it as

f ′′
0 (µ) =

∞
∑

n=0

1

n!

dnf ′′
0 (µ)

dµn

∣

∣

∣

∣

µ=0

µn . (8.10)

However, a convergence analysis, including many terms in the expansion, reveals that this

series is actually divergent for every µ 6= 0 — in other words, the radius of convergence is 0.

The fact that the series diverges is telling us that the function does not allow for a Taylor

expansion around µ = 0. This is an example of a C∞ function which is not analytic.24

Nevertheless, the series can be used to provide an approximate result for small enough µ

if we truncate it at certain n. For example, to quadratic order we obtain

f ′′
0 (µ) ≈ −3

4
+

243

8
µ− 115911

32
µ2 , (8.11)

but the approximation is only good for rather small values of the coupling, e.g., for

µ = 0.003, the error is ∼ 3% (with respect to the numerical value) and the precision

24See e.g., [147] for another explicit example in a different context.
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is not increased by the addition of further terms. Observe also that in the critical limit,

µ = 4/27, we have fcr(z) =
3
2z, and hence f ′′

0 (4/27) = 0 in that case.

After this dissertation, which we will use to get a grasp on the small-µ behavior of η,

let us now turn to the actual computation. In order to do so, we perturb the black hole

metric (8.2) by shifting

dx1 → dx1 + εe−iωtdx2 , (8.12)

where ε is a small parameter. Then, the shear viscosity can be obtained as25 [146]

η = −8πT lim
ω,ǫ→0

Resz=0L
ω2ǫ2

, (8.13)

where L is the corresponding full gravitational Lagrangian (including the
√

|g| term)

in (2.2) evaluated on the perturbed metric. Using (8.4), we can evaluate this quantity,

and the result reads

ηECG =
3rH

2

64πGL2f ′
0

[

2 + (21f ′2
0 + 36f ′′2

0 − 114f ′
0f

′′
0 + 36f ′

0f
′′′
0 )µ

]

. (8.14)

Then, using the values of f ′
0 and f ′′′

0 in (8.5), we find

ηECG =
rH

2

32πGL2

[

5 + 27µ+ (4− 36µ)f ′′
0 (µ)

]

. (8.15)

Finally, from (6.16) it follows that the shear viscosity over entropy density ratio reads

[η

s

]ECG
=

5 + 27µ+ (4− 36µ)f ′′
0 (µ)

8π
(

1− 27
4 µ
) . (8.16)

Some comments are in order. First, note that this expression is very different from the rest

of nonperturbative results for η/s available in the literature for d ≥ 4 theories, correspond-

ing to Lovelock [20, 149–151] and QTG [43]. In those cases, it is found that η/s depends

on the gravitational couplings in a polynomial way26 — see also [153]. On the contrary,

the ECG result has a very nonpolynomial character, for two reasons. First, the presence

of the function f ′′
0 (µ), which is non-analytic, implies that η/s cannot be Taylor-expanded

around µ = 0. And second, the denominator ‘(1− 27/(4µ))’ in (8.16) is also a new feature,

which gives rise to a divergence in the critical limit. The appearance of such contribution

in the denominator is rooted in the different way in which ECG modifies the result for

the thermal entropy charge CS with respect to the other theories mentioned above — see

discussion in subsection 6.2.

Let us analyze the profile of η/s as a function of µ. When µ ≪ 1, we can use (8.11)

to obtain
[η

s

]ECG
≈ 1

4π

(

1 +
189µ

2
− 114453µ2

16

)

. (8.17)

25See [148] for a recent alternative method.
26Note however that, e.g., for Gauss-Bonnet gravity, some of the remaining second-order coefficients have

a nonpolynomial dependence on the corresponding coupling [37, 152].

– 39 –



J
H
E
P
0
3
(
2
0
1
8
)
1
5
0

� ���� ���� ���� ���� ���

�

�

�

�

�

��

μ

�
πη/�

Figure 7. Shear viscosity to entropy density ratio as a function of µ. The green line represents the

region allowed by the constraint t4 ≥ −4.

Again, remember that, strictly speaking, this is not a Taylor expansion and it only provides

a good approximation for very small µ. In any case, note that the leading correction is

positive, so η/s is increasing with µ. On the other hand, in the critical limit, we have

f ′′
0 (µ → 4/27) → 0, so the leading behavior of (8.16) can be captured analytically,

[η

s

]ECG
=

9

8π
(

1− 27
4 µ
) +O(1) , for µ → 4

27
. (8.18)

Hence, this ratio takes arbitrarily high values as we approach the critical limit.27 The full

profile of η/s can be obtained with arbitrary precision from a numerical computation of

f ′′
0 (µ). The result is shown in figure 7. The curve is monotonically increasing, and blows

up in the critical limit, µ = 4/27. Therefore, the KSS bound is not violated for any value of

µ in the dynamically allowed region, 0 ≤ µ ≤ 4/27, which is precisely a consequence of the

nonexistence of µ < 0 solutions with positive energy. In that sense, as opposed to previously

studied theories in higher dimensions, ECG simply does not allow for violations of the

bound, not even in principle. It would be interesting to find out whether this phenomenon

is common to the rest of d = 3 theories constructed in [56] and, more generally, to the new

theories belonging to the Generalized QTG class [53–55] in general dimensions.

As we explained in subsection 7.3, imposing the positivity of energy fluxes in the CFT,

gives rise to the constraint 0 ≤ µ ≤ 0.00312 — see green region in figure 7. This would

imply a maximum possible value for η/s in ECG, given by

[η

s

]ECG

max.
≃ 1.253× 1

4π
. (8.19)

27Observe that, from this point of view, the critical limit of ECG is very different from that corresponding

to its higher-dimensional cousins, such as Gauss-Bonnet. In that case, η/s diverges for λGB → −∞, while

it stays finite for the critical value λGB = 1/4.
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CT CT · t4 CS a∗

Einstein Γ(d+2)

8(d−1)Γ(d/2)π(d+2)/2
L̃d−1

G 0 Γ(d+1)π(2d−1)/22d−3

Γ( d+1
2

)Γ(d/2)dd
L̃d−1

G
π(d−2)/2

8Γ(d/2)
L̃d−1

G

ECG (d = 3) (1− 3µf2
∞)CE

T -3780µf2
∞CE

T

(

1− 27
4 µ
)

f2
∞CE

S

(

1 + 3µf2
∞
)

a∗E

QTG (d = 4) (1− 3µf2
∞)CE

T 3780µf2
∞CE

T f3
∞CE

S

(

1 + 9µf2
∞
)

a∗E

Table 1. From left to right: stress-tensor two- and three-point function charges CT and CT · t4,
thermal entropy charge CS, and universal contribution to the entanglement entropy across a spher-

ical region, a∗, for holographic theories dual to Einstein gravity in d dimensions, ECG (d = 3) and

Quasi-topological gravity (with vanishing Gauss-Bonnet coupling) in d = 4 [43].

From the results here, we can extract some general lessons regarding calculations of

η/s in higher-curvature holographic CFTs. First, we have seen that the ECG result is

highly nonperturbative in the gravitational coupling. There is in principle no reason to

expect this to be different for more general theories. The results found for Lovelock and

QTG, polynomial in the gravitational couplings, are probably less generic — for those, the

metric function f(r) is determined by an algebraic equation, which is a highly exceptional

property [54]. Besides, as we have seen, there may be regions of the parameter space for

which the corresponding black branes do not exist, even for arbitrarily small values of the

couplings. None of this is seen when working perturbatively in the gravitational couplings,

which means that the results obtained in that way must be taken carefully. This is a lesson

which extends to most calculations in higher-curvature gravities.

9 Final comments

In this paper we have studied various aspects of d = 3 holographic ECG, which, as we have

argued, is a toy model of a nonsupersymmetric CFT (t4 6= 0) analogous to QTG in d = 4.

A detailed summary of our findings can be found in subsection 1.1. We close the paper

with a few additional comments.

Throughout the paper, we have computed several universal charges characterizing the

dual CFT. In table 1 we have collected some of them, as well as their d = 4 QTG coun-

terparts (with the Gauss-Bonnet coupling set to zero). For Einstein gravity, these are all

proportional to the only dimensionless quantity present in the Lagrangian, namely, L̃2/G.

Just like for the higher-dimensional examples previously considered, including QTG, the in-

troduction of the ECG coupling breaks this degeneracy, and all charges become independent

from each other, in the sense that all possible ratios formed from them are µ-dependent.

As we can see, the stress-tensor parameters have remarkably similar numerical coefficients

in both theories when expressed in terms of the Einstein-gravity charges. The expressions

for a∗ are also similar, whereas the ones for CS are considerably different, due to the ap-

pearance of an extra factor which vanishes in the critical limit for ECG. The differences

extend to many other quantities, as we have tried to illustrate throughout the text, which

suggests that similar analyses for other members of the Generalized QTG family [53–56]
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should be performed. In particular, it would be interesting to find out whether the highly-

nonperturbative result for the shear viscosity over entropy density ratio extends to those

theories, and whether violations of the KSS bound are also forbidden for them.

9.1 Generalized action, a∗ and holographic complexity?

In section 4, we proposed a new method for evaluating Euclidean on-shell actions for higher-

order gravities whose linearized equations of motion on maximally symmetric backgrounds

are second order. Throughout the paper, we have performed several successful and highly

non-trivial checks of the proposal — see appendix B as well. It would be interesting to

perform further studies of our generalized action (4.11) for other theories, such as higher-

order Lovelock theories, QTG and its higher-order generalizations and, more generally, for

theories of the Generalized QTG type. One of the most striking aspects of (4.11) is that

it avoids the — usually very challenging — problem of determining the correct general-

ization of the Gibbons-Hawking-York boundary term. At the same time, and somewhat

surprisingly, it involves the universal charge a∗ controlling the EE of spherical regions in the

corresponding dual CFT. This acts as a weight that changes from one theory to another.

As pointed out in [154], one of the open questions in the context of holographic com-

plexity, is to determine what kind of universal information (if any) is encoded in the results

obtained using the ‘complexity=volume’ [155, 156] and ‘complexity=action’ [157, 158] pre-

scriptions. In order to do so, one possible venue would consist in studying the corresponding

quantities for holographic higher-order gravities. For those, the charge-degeneracy inherent

to Einstein gravity (where all charges are proportional to L̃2/G) is broken, and one would

hope to be able to identify the nature of possible universal quantities28 appearing in holo-

graphic complexity. Our generalized action (4.11) suggests that a∗ may appear universally

in some of these terms. Observe that complexity=action calculations require the intro-

duction of additional terms in the gravitational action when the boundary contains null

pieces and joints — see [159] and references therein. In that case one can only speculate

on whether a similar mechanism could make a∗ — or some other characteristic charge —

appear in the corresponding generalized terms for higher-order gravities.
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A 〈TTT 〉 parameters from hq

In this appendix we show that the formulas in [126] for the twist operator scaling dimensions

hq around q = 1 can be used to obtain the exact values of the parameters t2 and t4 for

holographic Gauss-Bonnet in general dimensions, and for QTG in d = 4. The general-d

version of (7.27) reads [126]

hq
CT

= 2π
d
2
+1 Γ(d/2)

Γ(d+ 2)
(q − 1) +

h′′q (1)

2CT

(q − 1)2 +O(q − 1)3 , (A.1)

where

h′′q (1)

CT

=− 2π1+d/2Γ(d/2)

(d−1)3d(d+1)Γ(d+3)

[

d
(

2d5−9d3+2d2+7d−2
)

+(d−2)(d−3)(d+1)(d+2)(2d−1)t2+(d−2)(7d3−19d2−8d+8)t4

]

.

(A.2)

This expression is valid for general holographic higher-order gravities, at least at leading

order in the gravitational couplings.

A.1 Gauss-Bonnet in arbitrary dimensions

In this case, the expression for the scaling dimension of twist operators is given by [25]

hq
CT

=
Γ(d/2)

4Γ(d+ 2)
π1+d/2qxd−4

q (x2q − 1)

[

d− 3− (d+ 1)x2q + (d− 3)
1− 2d−1

d−3λf∞
1− 2λf∞

(x2q − 1)

]

,

(A.3)

where xq satisfies the following quartic equation

x4qd−
2

q
x3q − (d− 2)x2q + λf∞

[

4
xq
q

− x4qd+ d− 4

]

= 0 . (A.4)

A Taylor expansion around q = 1 gives

xq = 1 +
1

1− d
(q − 1) +

d

(d− 1)3
−2d+ 3 + λf∞(4d− 10)

−2 + 4λf∞
(q − 1)2 +O(q − 1)3 . (A.5)

Plugging this expansion into (A.3), we find

hq
CT

=
2Γ(d/2)π1+d/2

Γ(d+2)
(q−1) (A.6)

− (d−1)Γ(d/2)π1+d/2

Γ(d+2)

[

−1+4d−2d2+λf∞(6−16d+4d2)
]

(q−1)2+O(q−1)3 .
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Comparing this with (A.1), we find that t2 and t4 should be given by

t2 =
4d(d− 1)λf∞

(d− 2)(d− 3)(1− 2λf∞)
, t4 = 0 , (A.7)

which matches the exact nonperturbative result [33].

A.2 Quasi-topological gravity

In this case, the scaling dimension hq was obtained in [25] in terms of the charges a, c and

t4 of the theory as

hq =
aq

4πx2q
(x2q − 1)

[

x4q

(

1− 5
c

a
− 10

c

a
t4

)

− x2q

(

1− c

a
− 8

c

a
t4

)

+ 2
c

a
t4

]

, (A.8)

where

c = π2 L̃3

8πG

(

1− 2λf∞ − 3µf2
∞
)

, (A.9)

a = π2 L̃3

8πG

(

1− 6λf∞ + 9µf2
∞
)

, (A.10)

t4 =
3780µf2

∞
1− 2λf∞ − 3µf2∞

, (A.11)

and where xq satisfies the following quartic equation

2x6q −
x5q
q

− x4q + 2λf∞x3q

(

1

q
− x3q

)

+ µf2
∞

(

−1 +
3xq
q

− 2x6q

)

= 0 . (A.12)

Moreover, we have [43]

t2 =
24f∞ (λ− 87µf∞)

1− 2λf∞ − 3µf2∞
, (A.13)

which properly reduces to the Gauss-Bonnet formula (A.7) for µ = 0 and d = 4. Before

computing the Taylor expansion of hq around q = 1, we invert (A.9) and find29

L̃3

8πG
=

a

2π2

(

3
c

a

(

1 +
3t4
1890

)

− 1

)

, (A.14)

λf∞ =
1

2

c
a

(

1 + 6t4
1890

)

− 1

3 c
a(1 +

3t4
1890)− 1

, (A.15)

µf2
∞ =

c
a

t4
1890

3 c
a

(

1 + 3t4
1890

)

− 1
. (A.16)

and rewrite (A.12) in terms of c/a and t4. We get

xq(q) = 1− q − 1

3
+

4 + 8t4
1890 − 2

3
a
c

9
(q − 1)2 +O(q − 1)3 , (A.17)

29There seems to be a small typo in eq. (2.58) of [25]. Note also that our convention for t4 differs by a

factor of 1890 with respect to that in [25], but agrees with the one in [43].
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and plugging it into (A.8), we find

hq
c

=
2

3π
(q − 1) +

7a
c − 24− 84t4

1890

27π
(q − 1)2 +O(q − 1)3 . (A.18)

Comparing the leading term, we notice that CT should be related to c via CT
c = 40

π4 , which

is correct. Finally, using
a

c
= 1− t2

6
− 4

45
t4 , (A.19)

we find
h′′q (1)

2CT

= −π3 102 + 7t2 + 4t4
6480

, (A.20)

which exactly agrees with the general formula (A.2) when we particularize it to d = 4.

B Generalized action for Gauss-Bonnet gravity

In this appendix we perform an additional check of the generalized action introduced in

section 4. In particular, we apply it here to a theory for which the exact generalization of

the GHY term is known, namely, D-dimensional Gauss-Bonnet gravity [84, 85]. The full

Euclidean action of the theory reads

IGB
E = − 1

16πG

∫

M
dDx

√
g

[

(D − 1)(D − 2)

L2
+R+

L2λ

(D − 3)(D − 4)
X4

]

+ IGB
GHY + IGB

CT ,

(B.1)

where the generalization of the GHY term reads

IGB
GHY = − 1

8πG

∫

∂M
dD−1x

√
h

{

K +
L2λ

(D − 3)(D − 4)
δa1a2a3b1b2b3

Kb1
a1

(

Rb2b3
a2a3 −

2

3
Kb2

a2K
b3
a3

)

}

,

(B.2)

and the counterterms can be chosen as [72, 92–95]

IGB
CT =

1

8πG

∫

∂M
dD−1x

√
h

{

(D−2)(f∞+2)

3f
1/2
∞ L

+
L(3f∞−2)

2f
3/2
∞ (D−3)

R+
L3Θ[D−6]

2f
5/2
∞ (D−3)2(D−5)

×
[

(2−f∞)

(

RabRab− D−1

4(D−2)
R2

)

− (D−3)(1−f∞)

D−4
X4(h)

]

+. . .

}

. (B.3)

With these boundary contributions, the Gauss-Bonnet action functional is differentiable

and finite in AdS spaces. Since Gauss-Bonnet gravity has an Einstein-like spectrum in

pure AdSD (in fact, in any background), our generalized GHY term should also be appli-

cable to GB gravity, as long as the boundary consists only of asymptotically AdS pieces.

The prescription in (4.11) gives the following result when applied to the Gauss-Bonnet

Lagrangian,

IGB
GGHY + IGB

GCT = −
1− 2λf∞D−2

D−4

8πG

∫

∂M
dD−1x

√
h

[

K − D − 2

L̃
− L̃

2(D − 3)
R

− L̃3Θ[D − 6]

2(D − 3)2(D − 5)

(

RabRab − D − 1

4(D − 2)
R2

)

+ . . .

]

,

(B.4)
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where we included a set of counterterms valid up to D = 7 and where L̃ = L/
√
f∞. Recall

that the coefficient in front of the integral is proportional to the universal constant a∗

appearing in the EE across a spherical region, which for GB gravity reads

a∗ =

(

1− 2λf∞
d− 1

d− 3

)

L̃d−1Ω(d−1)

16πG
. (B.5)

In order to compare both boundary terms, let us consider a metric of the form

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2dΣ2

k , (B.6)

where dΣ2
k is the metric of a maximally symmetric space of curvature k = −1, 0, 1 and

τ has period β. For f(r) = f∞r2/L2 + k, the previous metric reduces to pure Euclidean

AdSD, with the boundary at r = +∞, which we regulate as r → L2/δ. Let us now switch

on arbitrary radial perturbations

f(r) = f∞
r2

L2
+ k +

f1
r

+
f2
r2

+
f3
r3

+ . . . . (B.7)

Evaluated at r → L2/δ, the boundary terms coming from both prescriptions yield,

respectively

IGB
GHY+CT=

βπ

4G

[

(5f∞−6)L6

δ4
+
f1(5f∞−6)L2

f∞δ
+
(5f∞−6)

(

4f2f∞−3L2k2
)

8f2∞
+O(δ2)

]

,

IGB
GGHY+GCT=

βπ

4G

[

(5f∞−6)L6

δ4
+
f1(5f∞−6)L2

f∞δ
+
(5f∞−6)

(

4f2f∞−3L2k2
)

8f2∞
+O′(δ2)

]

.

This is, all divergent and finite terms are equal! The difference only appears in the decaying

terms, which of course give no contribution to the action. For the sake of simplicity, we

evaluated the above expressions for D = 5, but it is straightforward to check that the same

phenomenon happens in higher dimensions (with the expressions above we have checked

D = 6, 7). Therefore, at least from a practical point of view, our generalized boundary

term is as good as the Gauss-Bonnet one when applied to asymptotically AdS spaces. We

expect our method to work also for general Lovelock gravities, as well as for QTG, and the

rest of theories belonging to the Einstein-like class in the classification of [64].

C Boundary terms in the two-point function

In this appendix we evaluate explicitly the boundary contribution in (4.24) for the metric

perturbation considered in section 5. The sum of all boundary contributions appearing

in (5.12), which includes the one coming from IECG
E Bulk in (5.6), as well as the generalized

GHY term and the counterterms in (4.24), reads

IECG
E bdry = − 1

8πG

∫

d3x

[

1

2
Γr + (1 + 3µf2

∞)
√
h

(

K − 2
√
f∞
L

− L

2
√
f∞

R
)]

, (C.1)
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where Γr comes from integration by parts in the bulk action, and is given by

Γr =
1√
f∞

[

− 2(4f∞ − 3)r3

L4
+

4f∞ − 3

L4

(

2r4φ∂rφ+ r3φ2
)

+
(f∞ − 1)r5

L4
(∂rφ)

2 (C.2)

+ 6µf2
∞
(

−r

2
(∂τφ)

2 + r2∂rφ∂
2
τφ
)

]

. (C.3)

The rest are the boundary terms in the action (4.24). The induced metric on a hypersurface

of fixed r is

(3)ds2 =
r2

L2

(

dτ2 + dx2 + dy2 + 2dxdyφ(r, τ)
)

. (C.4)

At quadratic order in φ we have

√
h =

r3

L3

(

1− 1

2
φ2

)

, R =
L2

2r2
(

3(∂τφ)
2 + 4φ∂2

τφ
)

, K =
3
√
f∞
L

− r
√
f∞
L

φ∂rφ .

(C.5)

Then, we obtain at that order

IECG
E bdry =

1

8πG

∫

d3x

[

3r3

L4
√
f∞

(1− f∞ + µf3
∞)

(

−1 +
φ2

2
+ rφ∂rφ

)

− 3(f∞ − 1)r5

2
√
f∞L4

(∂rφ)
2

+
r√
f∞

(

(1 + 3µf2
∞)

(

3

4
(∂τφ)

2 + φ∂2
τφ

)

+
3µ

2
f2
∞(∂τφ)

2

)

− 3µf3/2
∞ r2∂rφ∂

2
τφ

]

. (C.6)

The first term vanishes because 1 − f∞ + µf3
∞ = 0 is precisely the AdS4 embedding

equation (2.4). Now it proves useful to perform the Fourier transformation of φ:

φ(r, τ) =
1

2π

∫

dpφ0(p)e
ipτHp(r) , (C.7)

with Hp(r) = e
− L2|p|√

f∞r

(

1 + L2|p|√
f∞r

)

. Then,

IECG
E bdry =

VR2

16π2G

∫

dpdqδ(q + p)φ0(p)φ0(q)

[

− 3(f∞ − 1)r5

2
√
f∞L4

(∂rHp)
2

+
rH2

p√
f∞

(

(1 + 3µf2
∞)

(

−3

4
pq − q2

)

− 3µ

2
f2
∞pq

)

+ 3µq2f3/2
∞ r2Hq∂rHp

]

.

(C.8)

Now, since ∂rHp ∼ 1/r3, the first and last terms vanish for r → ∞. Then, we are left with

the final result

IECG
E bdry = −VR2(1− 3µf2

∞)

64π2G
√
f∞

∫

dpdqδ(q + p)φ0(p)φ0(q)p
2rH2

p (r) , (C.9)

which appears in the main text.
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[73] M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
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