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We evaluate reflected entropy in certain anisotropic boundary theories dual to nonrelativistic geometries
using holography. It is proposed that this quantity is proportional to the minimal area of the entanglement
wedge cross section. Using this prescription, we study in detail the effect of anisotropy on reflected entropy
and other holographic entanglement measures. In particular, we study the discontinuous phase transition of
this quantity for a symmetric configuration consisting of two disjoint strips. We find that in the specific
regimes of the parameter space the critical separation is an increasing function of the anisotropy parameter
and hence the correlation between the subregions becomes more pronounced. We carefully examine how
these results are consistent with the behavior of other correlation measures including the mutual
information. Finally, we show that the structure of the universal terms of entanglement entropy is
corrected depending on the orientation of the entangling region with respect to the anisotropic direction.
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I. INTRODUCTION

In recent years, the holographic framework allows us to
quantitatively study the fascinating connections between
quantum information and quantum gravity. In this context,
different quantum information measures and their holo-
graphic counterparts have proved very useful for develop-
ing our understanding of the gauge/gravity correspondence,
e.g., entanglement entropy and computational complexity
[1,2]. In particular, the Ryu-Takayanagi (RT) prescription
has proven immensely useful for investigating this con-
nection in a robust manner, by constructing a geometrical
realization of the entanglement entropy (EE) for a spatial
subregion in the boundary field theory. Let us recall that EE
has emerged as an interesting theoretical quantity which
provides new insights into a variety of topics in physics
ranging from quantum information theory to high energy
physics (see [3,4] for reviews). Moreover, the entanglement
entropy is the unique quantity which measures the amount
of quantum entanglement between two subsystems for a

given pure state. In this case, assuming that the total Hilbert
space takes a direct product form of two Hilbert spaces of
the subsystems, i.e.,H ¼ HA ⊗ HĀ, the corresponding EE
of the subsystem A is given as follows

SA ¼ −TrAρA log ρA; ð1:1Þ

where ρA is the reduced density matrix defined as ρA ¼
TrĀjψihψ j and jψi denotes the corresponding pure state.
The holographic counterpart of Eq. (1.1) can be obtained
using RT prescription which states that EE is dual to the
area of a minimal codimension-two bulk hypersurface ΓA
which is homologous to the boundary region A, i.e., [1]

SA ¼ min ðareaΓAÞ
4GN

: ð1:2Þ

Hence, in strongly coupled quantum field theories with
holographic duals, computing EE reduces to a geometric
problem of finding minimal hypersurfaces satisfying suit-
able boundary conditions. This proposal has stimulated a
wide variety of research efforts investigating the properties
and applications of holographic entanglement entropy
(HEE), e.g., see [5,6] for reviews.
Further, EE fails to be a good measure of quantum

entanglement or correlations between the subsystems for
mixed states. A variety of correlation measures for such
classes of states have been developed, e.g., logarithmic
negativity [7], entanglement of purification [8], odd
entropy [9] and reflected entropy [10]. Much of our analysis
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in this paper will focus on studying reflected entropy in
specific holographic settings, so we proceed by reviewing
its definition. Consider a mixed state ρ ¼ P

i pijρiihρij
in HA ⊗ HB. The canonical purification is defined on a
doubled Hilbert space HA ⊗ HA0 ⊗ HB ⊗ HB0 and is
given by

j ffiffiffi
ρ

p i ¼
X
i

ffiffiffiffiffi
pi

p jρii ⊗ jρii: ð1:3Þ

Now the reflected entropy is the corresponding EE of the
subsystem AA0, i.e.,

SRðA;BÞ ¼ −TrρAA0 log ρAA0 ; ð1:4Þ

where ρAA0 ¼ TrBB0 j ffiffiffi
ρ

p ih ffiffiffi
ρ

p j. Clearly, the above definition
reduces to EE when ρ is pure. There are several interesting
inequalities which the reflected entropy satisfies generally,
e.g.,

IðA;BÞ ≤ SRðA;BÞ ≤ 2 minfSA; SBg;
IðA;BÞ þ IðA;CÞ ≤ SRðA;B ∪ CÞ; ð1:5Þ

where IðA;BÞ is the mutual information between A and B
given as follows

IðA; BÞ ¼ SA þ SB − SA∪B: ð1:6Þ

In [10] the authors provided an interesting holographic
interpretation of the canonical purification and also pro-
posed a dual counterpart for the reflected entropy which is
the minimal cross sectional area of the entanglement
wedge. Before we proceed further, let us recall that the
entanglement wedge is the bulk region corresponding to the
reduced density matrix ρA and whose boundary is A ∪ ΓA.
Considering a spatial boundary region consists of two
disjoint parts A and B and denoting the cross sectional area
of the entanglement wedge by ΣA∪B the corresponding
reflected entropy is given by

SRðA; BÞ ¼
min ðareaΣA∪BÞ

2GN
: ð1:7Þ

A key feature of the above proposal is that the holographic
reflected entropy presents a discontinuous phase transition
from zero to positive values as the two subregions get
closer. This transition is due to the competition between
a connected and a disconnected configuration for the
entanglement wedge. Indeed, for large separations where
the disconnected configuration is favored, ΣA∪B becomes
empty and the corresponding reflected entropy vanishes.
Let us recall that there exist other measures which seem to
be dual to entanglement wedge cross section (EWCS).
These proposals can be summarized as follows [9–11]

EWðA; BÞ ¼
SRðA; BÞ

2
¼ EðA;BÞ

χd
¼ SOðA;BÞ − SðA ∪ BÞ;

ð1:8Þ

where SR, E and SO are reflected entropy, logarithmic
negativity and odd entropy respectively. Here χd is a
constant which depends on the dimension of the spacetime.
These proposals has since been the subject of a large body
of work [11–31]. Further, a wide variety of recent research
efforts investigating the properties of the corresponding
measures from the perspective of the boundary theory have
also appeared in [32–41].
Our goal in this paper is to present another step in this

research program, in which we investigate the behavior of
reflected entropy in anisotropic systems with strong inter-
actions by means of holography. Let us recall that aniso-
tropic holographic models have already been extensively
studied in the context of AdS/QCD to scan the QCD phase
diagram and also to investigate different aspects of quark-
gluon plasma which is produced in relativistic heavy ion
collisions, e.g., [42–48]. On the other hand, in the context
of AdS/CMT, anisotropic holographic models appear in
many examples of quantum criticality in condensed matter
physics with nonrelativistic fixed points [49,50]. Further,
some investigations attempting to better understand the
behavior of different holographic entanglement measures
in anisotropic backgrounds have also appeared in [51–56].
In this paper, we aim to provide a detailed study of the
influence of anisotropy on the behavior of reflected
entropy. An especially interesting question concerns how
the phase transition of this quantity is affected by
anisotropy. We will also discuss how our results are
comparable with the behavior of other correlation measures
including the holographic mutual information (HMI).
The remainder of our paper is organized as follows: In

Sec. II, we give the general framework in which we are
working, establishing our notation and the general form of
the HEE and reflected entropy functionals in a static
anisotropic background. In Sec. III, we consider an
anisotropic geometry whose dual state exhibits an specific
phase transition which is similar to confinement-deconfine-
ment and study the properties of reflected entropy numeri-
cally. To get a better understanding of the results, we will
also compare the behavior of reflected entropy to other
correlation measures including HEE and HMI. In Sec. IV,
we extend our studies to a family of axion-dilaton gravity
theories underlying solution breaks isotropy while preserv-
ing translation invariance. By tuning the dilaton potential,
we study the influence of anisotropy on reflected entropy
in different backgrounds. In the latter case we present a
combination of numerical and analytic results on the
scaling of different correlation measures. Next, we study
a specific geometry with anisotropic Lifshitz scale invari-
ance in Sec. V. We review our main results and discuss their
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physical implications in Sec. VI, where we also indicate
some future directions.

II. SETUP

In this section, we briefly review some preliminaries to
construct the holographic reflected entropy functional in
generic anisotropic geometries. We focus our analysis
on the special case of a five-dimensional bulk geometry
because the interesting qualitative features of the reflected
entropy are independent of the dimensionality of the
boundary field theory. In this case, the general form of
an anisotropic background can be written as1

ds2 ¼ R2

r2
HðrÞ

�
−fðrÞbðrÞdt2 þ

X3
n¼1

GnðrÞdx2n þ
dr2

fðrÞ
�
;

ð2:1Þ

where R is the curvature radius. Without loss of generality,
we will from now on consider R ¼ 1. In order to investigate
the effect of anisotropy on the reflected entropy we
consider the simplest boundary entangling region consist-
ing of two disjoint long narrow strips with equal width l
separated by h on a constant time slice (see Fig. 1). Further,
to examine the effects of changing the direction of the strip,
we lay entangling region in some arbitrary direction using
rotation with Euler angles as follows

xiðξÞ ¼
X

j¼1;2;3

aijðα; β; γÞξj; i ¼ 1; 2; 3 ð2:2Þ

where aij is the entry of the rotation matrix and α, β, and γ
denote the angles of rotation around x, y, and z directions,
respectively. For simplicity, we will only consider rotations
around the y-axis. Considering the width of the strip along
the ξ1 direction and using Eq. (2.1), the entropy functional
is then given by the following expression

S ¼ L2

4GN

Z
H

3
2ðrÞ
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðrÞξ021 þ T ðr; βÞ

fðrÞ

s
dr; ð2:3Þ

where the prime indicates derivative with respect to r and
we have defined

T ðr; βÞ ¼ G2ðrÞðG1ðrÞsin2β þG3ðrÞcos2βÞ;
GðrÞ ¼ G1ðrÞG2ðrÞG3ðrÞ: ð2:4Þ

Further, using the equation of motion, the width of the
entangling region and HEE can be written as follows

l ¼ 2

Z
rt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðr; βÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞGðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r6t
r6

GðrÞHðrÞ3
GðrtÞHðrtÞ3 − 1

q dr: ð2:5Þ

S ¼ L2

2GN

Z
rt

ϵ

rt3
ffiffiffiffiffiffiffiffiffi
GðrÞp

HðrÞ3
r3

ffiffiffiffiffiffiffiffiffi
fðrÞp

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðr; βÞ

rt6GðrÞHðrÞ3 − r6GðrtÞHðrtÞ3
s

dr; ð2:6Þ

where rt denotes the turning point of the minimal hyper-
surface and we regulate the calculation of the entropy in the
standard way by introducing a cutoff surface at r ¼ ϵ.
Let us now turn to the computation of the reflected

entropy in this setup using Eq. (1.7). Due to the symmetry
of the configuration that we have chosen, ΣA∪B, lies entirely
on ξ1 ¼ 0 slice and as a consequence, from Eq. (2.1), we
find the reflected entropy to be

SR ¼ L2

2GN

Z
ru

rd

H
3
2ðrÞ
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðr; βÞ
fðrÞ

s
dr; ð2:7Þ

where rd and ru denote the corresponding turning points of
Γh and Γ2lþh respectively (see Fig. 1).

III. EINSTEIN-DILATON-TWO-MAXWELL
THEORIES

The first model we consider is that of an anisotropic
background in Einstein-dilaton-two-Maxwell Theories.
The corresponding metric is given as follows [57]

ds2 ¼ e−
r2
2

r2

�
−fðrÞdt2 þ dr2

fðrÞ þ dx2 þ r2−
2
νðdy2 þ dz2Þ

�
:

ð3:1Þ

The explicit forms of fðrÞ is tedious and hence we do not
explicitly show the corresponding expressions here.
Clearly, the strength of the anisotropy between boundary
spatial directions is parametrized by ν and for ν ¼ 1 we
have a isotropic background. This metric is a solution to

FIG. 1. Left: schematic minimal hypersurfaces for computing
SA∪B in connected configuration. Right: the minimal cross section
of the entanglement wedge, Σ in red. Here we only show the
connected configuration where the reflected entropy is nonzero.

1Note that using the reparameterization invariance one can fix
G1ðrÞ andG2ðrÞ in Eq. (2.1) and once this is done, bðrÞ cannot be
set to unity in general. In Sec. IV B we consider a specific
background with bðrÞ ≠ 1.
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Einstein gravity coupled to a dilaton and two Maxwell
fields with a nontrivial scalar potential. In comparing the
above expression with metric (2.1), we should identify

G1ðrÞ¼1; G2ðrÞ¼G3ðrÞ¼ r2−
2
ν; HðrÞ¼e−

r2
2 : ð3:2Þ

The corresponding expression for HEE and reflected
entropy can be obtained using Eqs. (2.6) and (2.7) and
the above identifications. Different aspects of HEE in the
dual boundary theory have been studied in [54]. Before we
proceed further, let us comment on a characteristic property
of this geometry. Indeed, as demonstrated in [54], for some
values of rh we can find several HEE for same value of l,
and based on (1.2), We have to choose the smallest ones.
The transition between different hypersurfaces shows itself
as a phase transition on HEE which gives some things
very similar to crossover transition between confinement-
deconfinement phases in the dual gauge theory. Further, the
thermodynamical properties of this gravitational back-
ground were studied in [57] and it was shown that it has
a Van der Waals-like phase transition between small and
large black holes for a specific range of the boundary
chemical potential. More explicitly, the thermal entropy
function is multivalued for 0 < μ < μcrit:ðνÞ and becomes
one-to-one for μcrit:ðνÞ < μ. Let us mention that in the large
black hole phase, the connected surface is always smaller
than the disconnected surface and the phase transition
similar to [53] does not happen. On the other hand, in the
small black hole phase, HEE becomes multivalued and a
phase transition happens. This transition is different from
the phase transition in [53] and cannot realize as a
confinement-deconfinement phase transition. In the next
subsections we will compute the holographic entanglement
measures numerically and treat these cases separately.

A. Reflected entropy for the large black hole

In this case we choose μ such that we have Van der
Waals-like phase transition. We also set rh ¼ 1 throughout
this section and hence we are in large black hole phase.
Also for simplicity, we have rescaled the holographic
measures, i.e., fS; Ig → 4GN

L2 fS; Ig and SR → 2GN
L2 SR.

In Fig. 2 we show the dependence of the HEE, HMI and
reflected entropy for specific values of ν as a function of the
rotation angle with l ¼ 0.4 and h ¼ 0.2. The dashed curve
corresponds to isotropic case with ν ¼ 1 where the mea-
sures are independent of the rotation angle. The left panel
demonstrates the dependence of the finite part of the HEE
defined as ΔS≡ S − Sdis on β. Here Sdis is the area of two
disconnected straight lines extending from the endpoints of
the boundary line segment to horizon of black hole. Note
that based on this definition the disconnected piece depends
on the temperature. The corresponding area functional can
be obtained by setting ξ01 ¼ 0 in Eq. (2.3)

Sdis ¼
L2

2GN

Z
rh

0

H
3
2ðrÞ
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðr; βÞ
fðrÞ

s
dr: ð3:3Þ

We see that I and SR have a maximum at β ¼ π=2 where
the HEE develops a minimum. This minimum becomes
deeper and sharper for larger values of ν.
We present the dependence of the turning point and the

corresponding HEE and HMI for specific values of β as a
function of the width of the subregions and separation
between them with ν ¼ 2 in Fig. 3. Again, the dashed curve
corresponds to isotropic case with ν ¼ 1. The left panel
shows that for a fixed boundary width, as ν increases from
1, rt decreases which means that the bulk potential due to
the anisotropy pushes the minimal hypersurface towards
the boundary. This behavior is enhanced by increasing the
rotation angle from 0 to π

2
. The right panel shows the HMI

as a function of the dimensionless boundary quantity h=l.
Based on these plots for fixed ν we observe that although
the HEE decreases with the rotation angle, the HMI
increases with β. This result holds for any value in the
range 0 ≤ β ≤ π=2. We must point out that in this metric
the connected surface for HEE is always smaller than the
disconnected surface and as a result, the phase transition
similar to [58] does not happen. Also the disconnected
surface here is a U shape surface which consists of two
parts, a term coming from Eq. (2.3) and another term
corresponds to a surface which lies on the horizon of the
black hole.

FIG. 2. Finite part of the HEE (left), HMI (middle), and reflected entropy (right) as a function of rotation angle for different values of ν
with l ¼ 0.4 and h ¼ 0.2. The dashed curve corresponds to isotropic case with ν ¼ 1 where the measures are independent of the
rotation angle.
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Figure 4 shows the reflected entropy as a function of h=l
for different values of ν and β. Let us make a number of
observations regarding these numerical results. First, we
note that in both plots, in the aforementioned range of the
rotation angle, the reflected entropy increases with β. Next,
the phase transition of this measure happens at larger
separations between the two subregions comparing to
β ¼ 0 case. Hence regarding the reflected entropy as a
measure of total correlation between the two subregions,
we see that decreasing the rotation angle promotes disen-
tangling between them. Moreover, despite the β ¼ 0 case
where the critical separation decreases with ν, for other
values of the rotation angles, ðhlÞcrit. increases with this
parameter. In Fig. 5 we present the critical separation as
a function of ν to allow for a meaningful comparison
between the different cases. We see that ðhlÞcrit. becomes a
monotonically increasing function of ν for large values
of the rotation angle. For example, if we choose β ¼ π=2,
then increasing the anisotropy, the critical separation
increases which means that the correlation between the
subregions becomes stronger. Also for intermediate values
of β, e.g., β ¼ π=6, the critical separation has a minimum
at ν ∼ 1.5.

B. Reflected entropy for the small black hole

As we have mentioned before, in this geometry the free
energy is multivalued and the background exhibits a Van
der Waals-like phase transition between small and large
black holes. As explained in [57] for μ < μcrit: the curves

FIG. 4. Reflected entropy as a function of hl for different values of β with ν ¼ 1.5 (left) and ν ¼ 2 (right). In both plots the dashed curve
corresponds to isotropic case with ν ¼ 1. Here we set l ¼ 0.4.

FIG. 3. Left: the turning point of the RT hypersurface as a function of the width of the boundary subregion for different values of the
rotation angle. Middle: the HEE as a function of l for the same values of β. Right: the HMI as a function of hl. The solid curves show the
anisotropic case with ν ¼ 2 and the dashed curve corresponds to isotropic case with ν ¼ 1.

FIG. 5. Critical separation between the subregions as a function
of ν for different values of β. For large values of the rotation angle
the critical separation is an increasing function of ν and hence the
correlation between the subregions becomes stronger.
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for FðTÞ form a swallow tail shape such that an increase in
μ give a decrease in size for the swallow tail region, e.g., see
the left panel in Fig. 6. In the right panel we show the same
function for different values of the anisotropy parameter
with μ ¼ 0.05. Interestingly, we see that in this case an
increase in ν give an increase in size for the swallow tail
region. We set rh ¼ 3.7 throughout this section and hence
we are in the small black hole phase. In the case of small
black hole, HEE is multivalued and we must choose the
minimum configuration. This phase transition cannot be
realized as a common confinement/deconfinement phase
transition which first investigated in [58]. This difference
comes from the fact that the connected surface is always
dominant and hence no connected/disconnected phase
transition happens. Hence, the entanglement entropy is
always of order OðN2Þ for any subsystem size [53].
Figure 7 shows the turning point of the RT hypersurface

and the HEE as a function of width of subregion for ν ¼ 2
and different values of β. As mentioned above, HEE is
multivalued for some width of the subregion and we must
choose the minimum configuration. Figure 8 shows the
HMI and the reflected entropy as a function of h

l for ν ¼ 2

and different values of β. The general behavior of these two
measures is very similar to the large black hole phase, but in
this case they also exhibit a phase transition. As can be
seen in the inset, due to HEE phase transition, there is a
discontinuity in the HMI and the reflected entropy.

IV. ANISOTROPIC EINSTEIN-AXION-DILATON
GRAVITIES

In this section we evaluate reflected entropy and some
other holographic entanglement measures for an aniso-
tropic geometry in a family of axion-dilaton gravity
theories with the following action [59–61]

I¼ 1

16πGN

Z
d5x

ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂ϕÞ2þVðϕÞ−1

2
ZðϕÞð∂χÞ2

�
:

ð4:1Þ

Here VðϕÞ is the dilaton potential and ZðϕÞ controls the
strength of the coupling between the dilaton and the axion
field. As noted in [61], assuming a linear axion ansatz, i.e.,
χ ¼ az, the equations of motion automatically satisfied

FIG. 6. The free energy as a function of temperature for different values of the chemical potential with ν ¼ 2 (left) and different values
of the anisotropy parameter with μ ¼ 0.05 (right). The dashed region indicates the instability zone and the point where any curve
intersects itself corresponds to the small/large black holes phase transition. Here we set l ¼ 0.4.

FIG. 7. The HEE (left) and the turning point of the RT hypersurface (right) as functions of l for different values of β. Here we set ν ¼ 2
and the dashed part of each curve corresponds to the parametric region where the HEE becomes multivalued.
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such that the underlying geometry breaks isotropy while
preserving translation invariance

ds2 ¼ e2AðrÞ
�
−fðrÞdt2 þ dx2 þ dy2 þ e2gðrÞdz2 þ dr2

fðrÞ
�
;

ϕ ¼ ϕðrÞ: ð4:2Þ

The above metric is asymptotically AdS near r ¼ 0 and
gðrÞ controls the degree of anisotropy between spatial
directions. Let us add that, for V ¼ 12 and Z ¼ e2ϕ the dual
field theory is conformal. Moreover, a confining boundary
theory can be obtained by considering specific dependence
for these functions. For instance, choosing

VðϕÞ ¼ 12 coshðσϕÞ þ bϕ2; ZðϕÞ ¼ e2γϕ; ð4:3Þ

with b≡ Δð4−ΔÞ
2

− 6σ2, the corresponding boundary theory

has a confined phase for σ ≥
ffiffiffiffiffiffiffiffi
2=3

p
[62]. Here Δ is the

scaling dimension of the scalar operator dual to ϕ. In the
following, we study influence of anisotropy on holographic
information measures in different backgrounds.

A. Nonconformal boundary theory

In this case we consider a marginal scalar operator with
Δ ¼ 4 at zero temperature, i.e, fðrÞ ¼ 1. A perturbative
solution for the equations of motion in the small anisotropy
limitwas found in [63]where themetric is givenby (4.2)with

AðrÞ ¼ − logðrÞ − a2r2

72
þ a4r4

1200
ð3γ2 þ 1Þð1 − 5 logðarÞÞ

þOðarÞ6; ð4:4Þ

gðrÞ ¼ a2r2

8
−

a4r4

2592
ð31þ 81γ2 − 54ð3γ2 þ 1Þ logðarÞÞ

þOðarÞ6: ð4:5Þ

Let us mention that in this background, the xy plane is
isotropic and hence the rotation of the strip around the z axis
has no effect on holographic correlationmeasures. Further, in
comparing (4.2) with metric (2.1), we should identify

HðrÞ ¼ r2e2AðrÞ; G1ðrÞ ¼G2ðrÞ ¼ 1; G3ðrÞ ¼ e2gðrÞ;

ð4:6Þ

and thus

G ¼ e2gðrÞ; T ðr; βÞ ¼ sin2β þ e2gðrÞcos2β: ð4:7Þ

The corresponding expression for HEE and reflected entropy
can be obtained using Eqs. (2.6) and (2.7) and the above
identifications. In the following, we first provide a numerical
analysis and examine the dependence of different measures
on the anisotropy parameter. Next, we carry out a perturba-
tive analysis for calculating these measures in the specific
regimes of the parameter space.

1. Numerical results

In Fig. 9 we show the turning point of the RT hyper-
surface and HEE as functions of the rotation angle for
different values of the anisotropy parameter for a fixed
extent of the boundary subregion. The left panel shows that
in a specific range of the rotation angle, i.e., π

6
≲ β ≲ 5π

6
,

increasing the anisotropy, the RT hypersurfaces reach
deeper into the bulk, so they carry more information about
the geometry. Notice that validity of the background
solution was assumed and we set the subleading terms
in Eq. (4.4) to zero. This asymptotic behavior is valid for
art ≪ 1, or equivalently, al ≪ 1, the range of anisotropy
that we shall consider in the following. The right panel
illustrates the HEE, which is regularized by subtracting the
divergent part of Eq. (2.6). This divergent term up to the
order a2 correction becomes

FIG. 8. The HMI (left) and reflected entropy (right) as functions of hl. Right: reflected entropy as a function of
h
l. Here we set ν ¼ 2 and

l ¼ 0.35. The discontinuity depicted in the inset corresponds to the region where the HEE becomes multivalued.
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Sdiv ¼
1

2GN

�
1

ϵ2
−

1

24
a2ð1þ 3 cosð2βÞÞ log ϵ

�
: ð4:8Þ

In Fig. 10 we show the HMI and reflected entropy as
functions of β for different values of a and specific values
of l and h. Clearly the qualitative behavior of these two
measures is similar as expected. As we mentioned before
both the HMI and reflected entropy are measures of total
correlation between subregions, hence the holographic
calculations reproduce the expected behavior. Moreover,
based on these figures, the corresponding correlations
develop a minimum at β ¼ π=2. In Fig. 11, we show the
phase transition point of reflected entropy as a function of
the rotation angle. Interestingly, we see that for π

6
≲ β ≲ 5π

6
,

increasing the anisotropy, the critical separation increases
which means that the correlation between the subregions
becomes stronger. We will confirm these observations as
well as some new results with a perturbative analysis below.

2. Perturbative treatment

As we mentioned before in al ≪ 1 limit the metric (4.2)
is a small deformation of pure AdS, thus we can use a

perturbative expansion to compute the variation of holo-
graphic information measures. To do so, we can perform
a change of variables in the corresponding expressions
for l; S and SR to the dimensionless coordinate u ¼ r

rt
.

FIG. 9. The turning point of the RT hypersurface (left) and HEE (right) as functions of the rotation angle for different values of the
anisotropy parameter. Here we set l ¼ 1.

FIG. 10. HMI (left) and reflected entropy (right) as functions of β for l ¼ 1, h ¼ 0.2 and different values of a.

FIG. 11. Critical separation between the subregions as a
function of β for different values of a. For β ∼ π=2 of the
rotation angle the critical separation is an increasing function of
the anisotropy parameter and hence the correlation between the
subregions becomes stronger.
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In this situation, the corresponding boundary quantities
become

l ¼ 2rt

Z
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðu; βÞp

egðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2gðuÞe6AðuÞ
e2gð1Þe6Að1Þ − 1

q du; ð4:9Þ

S ¼ L2rt
2GN

Z
1

ϵ=rt

egðuÞe6AðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðu; βÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2gðuÞe6AðuÞ − e2gð1Þe6Að1Þ

p du; ð4:10Þ

SR ¼ L2rt
2GN

Z
ru=rt

rd=rt

e3AðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðu; βÞ

p
du: ð4:11Þ

Now we expand Eq. (4.9) in the limit al ≪ 1 to find the
leading corrections to rt compared to its pure AdS value.
Note that in this case the corresponding turning point is
close to the boundary, i.e., art ≪ 1. In this limit Eq. (4.9)
can be written in terms of the following expansion

l¼2rt

Z
1

0

u3ffiffiffiffiffiffiffiffiffiffiffiffi
1−u6

p du

þ2r3t a2
Z

1

0

ð2cos2ðβÞ−ð3ðu6þu4þu2Þ−2Þsin2ðβÞÞ
24

ffiffiffiffiffiffiffiffiffiffi
1
u6−1

q
ðu4þu2þ1Þ

du:

ð4:12Þ

The above integral can be evaluated explicitly yielding

l ¼ 2rtðcþ a2r2t C1ðβÞÞ; ð4:13Þ

where

c¼
ffiffiffi
π

p
Γð2

3
Þ

Γð1
6
Þ ; C1ðβÞ¼−0.005þ0.021cos2β: ð4:14Þ

Notice that the first term in Eq. (4.13) is the pure AdS
contribution. Inverting this equation, we can represent the
turning point as a function of l

rt ¼
l
2c

�
1 − a2l2

C1ðβÞ
4c3

�
: ð4:15Þ

Let us comment on the properties of the above
result: First, we observe that the location of the turning
point is unaffected for β1 ∼ 0.66 (or equivalently
β2 ∼ π − 0.66) where C1ðβ1;2Þ ¼ 0. Moreover, for β1 ≤
β ≤ β2, C1ðβÞ is negative and therefore the correction to
rt in Eq. (4.15) is positive. Hence the RT hypersurfaces
can probe more of the bulk geometry due to the
presence of anisotropy. These results are consistent
with the previously numerical results illustrated in
the left panel of Fig. 9.

Now we proceed to examine the leading correction to
HEE from Eq. (4.10) using a similar reasoning to that
above. Let us mention that it will be more convenient to
separate the divergent piece in this integral. A simple
analysis shows that in this case the HHE takes the following
form

S ¼ 1

4GN

�
1

ϵ2
−

c
r2t

�
þ 1

2GN
a2
�
C2ðβÞ log

rt
ϵ
þ C3ðβÞ

�
þOða4Þ; ð4:16Þ

where

C2ðβÞ ¼
1

48
ð1þ 3 cos 2βÞ;

C3ðβÞ ¼ 0.021þ 0.014 cos 2β: ð4:17Þ

In principle then, we can invert the above expressions to
write our result in terms of the width of the entangling
region. Combining Eqs. (4.15) and (4.16), we obtain the
first order correction to HEE as follows

S ¼ 1

4GN

�
1

ϵ2
−
4c3

l2

�

þ 1

2GN
a2
�
C2ðβÞ log

l
2cϵ

− C1ðβÞ þ C3ðβÞ
�
: ð4:18Þ

A key feature of the above result is the appearance of
a new universal logarithmic term which depends on the
anisotropy parameter. The coefficient of this term
depends also on the rotation angle of the entangling
region such that in the β ∼ 0.955 limit where C2ðβÞ ¼ 0,
vanishes. Roughly, we can think of this universal term as
characterizing when the isotropy is broken in the under-
lying boundary theory. Similarly, as shown in [64], if
instead we choose a background which breaks the
translation invariance the structure of the universal terms
of HEE is modified. Next, the HMI can be determined
using Eqs. (1.6) and (4.18) as follows

I ¼ c3

GN

�
−

2

l2
þ 1

h2
þ 1

ð2lþ hÞ2
�

þ 1

2GN
a2C2ðβÞ log

l2

hð2lþ hÞ : ð4:19Þ

Finally expanding Eq. (4.11) we can derive the
following expression for the reflected entropy at leading
order

SR ¼ 1

4GN

�
1

r2d
−

1

r2u

�
þ 1

2GN
a2C2ðβÞ log

ru
rd

: ð4:20Þ
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We can use Eq. (4.15) to rewrite the above result
as follows

SR ¼ c2

GN

�
1

h2
−

1

ð2lþ hÞ2
�
þ 1

2GN
a2C2ðβÞ log

2lþ h
h

:

ð4:21Þ

Interestingly, we see that for C2ðβÞ ¼ 0, where the universal
term vanishes, the reflected entropy is independent of the
anisotropy parameter (see Fig. 10). In this case the
corresponding transition point of the HMI and reflected
entropy is independent of a which is consistent with the
results presented in Fig. 11.

B. Strongly coupled anisotropic plasma

In this section we extend our analysis to another five-
dimensional axion-dilaton-gravity theory which is dual to a
strongly coupled anisotropic plasma at finite temperature.
The corresponding action and dilaton potential are given by
Eqs. (4.1) and (4.3) with σ ¼ 0. Again, we consider a linear
axion ansatz, i.e., χ ¼ az. As shown in [42], in high-
temperature limit, it is possible to find analytic expressions
for the metric as follows

ds2 ¼ e−
ϕðrÞ
2

r2

�
−fðrÞbðrÞdt2 þ dx2 þ dy2

þ e−ϕðrÞdz2 þ dr2

fðrÞ
�
; ð4:22Þ

where

fðrÞ ¼ 1 −
r4

r4h
þ a2

24r2h

�
8r2ðr2h − r2Þ − 10r4 log 2

þ ð3r4h þ 7r4Þ log
�
1þ r2

r2h

��
; ð4:23Þ

bðrÞ ¼ 1 −
a2r2h
24

�
10r2

r2h þ r2
þ log

�
1þ r2

r2h

��
;

ϕðrÞ ¼ −
a2r2h
4

log

�
1þ r2

r2h

�
: ð4:24Þ

By high-temperature limit, we mean that a ≪ T which
implies that arh ≪ 1.
The corresponding analysis for evaluating the holo-

graphic measures follows similarly to the previous section,
with the obvious replacement of the metric components in
Eqs. (2.6) and (2.7). Unfortunately, it is not possible to
compute the dependence of the measures on a perturba-
tively even for certain values of the rotation angle. Thus, in
what follows we just present the numerical results. Let us
add that a simple analysis shows that in this case the
divergent term of the HEE is the same as Eq. (4.8). For
simplicity, we set rh ¼ 1 throughout the following. To
illustrate the numerical results, we show the holographic
measures as functions of the rotation angle for different
values of the anisotropy parameter in Figs. 12 and 13.
The left panel in Fig. 12 shows the turning point of the RT

hypersurface for l ¼ 1. Clearly, increasing the anisotropy,
the RT hypersurfaces reach deeper into the bulk, thus they
carry more information about the geometry. The right panel
illustrates the finite part of the HEE which is an increasing
function ofa. Figure 13 shows theHMI and reflected entropy
for specific values ofl and h. Although the reflected entropy
increases with the anisotropy parameter for all values of the
rotation angle, HMI is not a monotonic function of a.
Moreover, at β ¼ π=2 the HMI becomes maximum where
the reflected entropy develops a minimum. Interestingly,
while both HMI and reflected entropy are measures of total
correlation between subregions, they do not behave in the
same manner in this anisotropic boundary state. This
behavior contrast with the results depicted in Fig. 10, where
thesemeasures behave in the samemanner in a nonconformal
boundary theory. We do not fully understand what is the
reason for this behavior and leave it for future study.

FIG. 12. The turning point of the RT hypersurface (left) and HEE (right) as functions of the rotation angle for different values of the
anisotropy parameter. Here we set l ¼ 1.
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V. LIFSHITZ-LIKE ANISOTROPIC MODELS

In this section we extend our studies to a specific
geometry with anisotropic Lifshitz scale invariance first
studied in [65]. This geometry is a type IIB supergravity
solution and generated by intersections of D3 and D7
branes. The corresponding metric is given by

ds2 ¼ R̃2

r2

�
−fðrÞdt2 þ dr2

fðrÞ þ dx2 þ dy2 þ r
2
3dz2

�
;

fðrÞ ¼ 1 − μr
11
3 ; ð5:1Þ

where R̃2 ¼ 11
12
R2 is the curvature radius of the spacetime.

Further, μ gives the mass parameter of the black brane. This
geometry is dual to a nonrelativistic boundary theory with
the following expressions for temperature and energy
density, respectively

T ¼ 11

12π
μ

3
11; ε ¼ R̃3

6πGN
μ: ð5:2Þ

We see that for μ ¼ 0 metric (5.1) is invariant under
an anisotropic scaling transformation ðt; r; x; y; zÞ →
ðλt; λr; λx; λy; λ2=3zÞ and thus can be regarded as a gravity
dual of Lifshitz-like fixed point with dynamical exponent
ξ ¼ 3

2
. Let us recall that different aspects of holographic

probes including viscosities and HEE in this model have
been studied in [65]. Note that in this geometry, the strength
of anisotropy between spatial directions is fixed, thus we
only study the β-dependence of reflected entropy. In
comparing the above background with metric (2.1), we
should identify

G1ðrÞ ¼ G2ðrÞ ¼ HðrÞ ¼ 1; G3ðrÞ ¼ r
2
3: ð5:3Þ

The corresponding expression for HEE and reflected
entropy can be obtained using Eqs. (2.6) and (2.7) and
the above identifications. Before examining the full
β-dependence of correlation measures, we would like to
study the structure of divergent terms. Notice that because
the metric (5.1) is not asymptotically AdS, the

corresponding divergent terms that appear in HEE are
more complicated. A straightforward calculation for β > 0,
yields the following2

Sdiv¼
L2 sinβ
4GN

�
1

ϵ2
þ3cot2β

4ϵ4=3
−
3cot4β

8ϵ2=3
−
cot6β
8

logϵ

�
: ð5:4Þ

Again, we see that a new universal logarithmic term
appears, whose coefficient depends on the rotation angle.
Unfortunately, it is not possible to find the behavior of

the reflected entropy analytically for general β. In the
following, we present a combination of numerical and
analytic results on the behavior of correlation measures for
strip shaped boundary subregions. First, we provide a
numerical analysis and examine the various properties of
reflected entropy as a function of β. Next, we will show that
at zero temperature and for specific values of the rotation
angle, ΣA∪B is a geodesic whose length can be expressed
analytically in closed form, which enables us to directly
extract its scaling behavior as a function of h and l. We also
carry out a perturbative analysis to compute low temper-
ature corrections to reflected entropy at leading order.

A. Numerical results

In Fig. 14 we show the turning point and the finite part of
HEE as functions of l for several values of the rotation
angle. In the figure, the dashed curves represent the finite
temperature results and the solid curves correspond to
T ¼ 0 case. According to the left panel, for zero temper-
ature case, at lc ∼ 1.15 different curves coincide and the
location of the turning point is independent of β. Further,
we note that for small subregions, i.e., l < lc, the turning
point decreases in anisotropic case compared to its AdS
value which means that the bulk potential due to the
anisotropy pushes the RT hypersurface toward the boun-
dary. This behavior is enhanced by increasing the rotation
angle from 0 to π

2
. Moreover, from the right panel we see

FIG. 13. HMI (left) and reflected entropy (right) as functions of β for l ¼ 0.1; h ¼ 0.05; rh ¼ 1 and different values of a.

2For β ¼ 0 we have Sdiv ∼ ϵ−5=3.
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that for small subregions the finite part of the HEE is a
monotonically decreasing function of β.
Figure 15 shows the HMI and reflected entropy as

functions of h
l for different values of β. Let us make a

number of observations about these numerical results. First,
we note that both HMI and reflected entropy are mono-
tonically increasing functions of β. Next, the phase tran-
sition of the reflected entropy happens at larger separations
between the subregions comparing to β ¼ 0 case. Hence
regarding the reflected entropy as a measure of total
correlation between the subregions, we see that decreasing
the rotation angle promote disentangling between them.
Further, turning on the temperature, the phase transition of
reflected entropy happens at smaller separations between
the two subregions comparing to T ¼ 0 case. Thus the
thermal excitations decrease the total correlation between
the subregions as expected.

B. Perturbative treatment

In this subsection, we present two specific examples in
which we compute perturbatively the expression for the

reflected entropy and other correlation measures. These
two examples correspond to β ¼ 0 and β ¼ π

2
where due to

the reflection symmetry, the profile of ΣA∪B can be found
exactly at zero temperature. Using this result, we can
evaluate the thermal corrections to reflected entropy at low
temperature.

1. β= 0

In this case, the width of the entangling region lies
along the anisotropic direction. In order to investigate the
low temperature behavior of reflected entropy, we insert
Eq. (5.3) in Eqs. (2.6) and (2.7) and expand the resultant
expressions in hT ≪ lT ≪ 1 limit which corresponds to
rd ≪ ru ≪ μ−

3
11. Hence, the corresponding turning points

are close to the boundary. It is straightforward to evaluate
the leading order correction with the result

l ¼ rt

�
cþ 3

ffiffiffi
π

p
Γð11

8
Þ

14Γð7
8
Þ μr11=3t

�
; ð5:5Þ

FIG. 15. HMI (left) and reflected entropy (right) as functions of h
l for different values of β.Here we set μ ¼ 1.

FIG. 14. The turning point of the RT hypersurface (left) and HEE (right) as functions of l for different values of the rotation angle. The
dashed curves represent the finite temperature results and the solid curves correspond to T ¼ 0 case. Here we set μ ¼ 0.079 for left
figure and μ ¼ 1 for right figure.
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where c ¼ 2
ffiffi
π

p
Γð11

16
Þ

Γð 3
16
Þ > 0. Inverting the above equation, we

can represent the turning point as a function of l

rt ¼
l
c

�
1 −

3
ffiffiffi
π

p
Γð11

8
Þ

14c14=3Γð7
8
Þ μl

11
3

�
: ð5:6Þ

That is, increasing the temperature, the turning point of the
RT hypersurface decreases. In this limit, the leading order
behavior of HEE reduces to

S ¼ R̃3L2

2GN

3

5

�
1

ϵ
5
3

−
c

2r
5
3
t

þ 5
ffiffiffi
π

p
12

Γð11
8
Þ

Γð7
8
Þ μr

2
t

�
: ð5:7Þ

Now we would like to recast this result in terms of
boundary quantities. We do so by combining Eqs. (5.6)
and (5.7) which allow us to translate the first order
correction of HEE to the form

ΔS≡ S − Svac ¼ c̃L2l2ε; ð5:8Þ

where Svac is the vacuum contribution given by

Svac ¼ 3R̃3L2

10GN
ð 1
ϵ
5
3

− c
8
3

2l
5
3

Þ and c̃ ¼ 9π3=2

56c2
Γð3

8
Þ

Γð7
8
Þ. Note that c̃ > 0

and hence thermal excitations increase the HEE as
expected. These results allow us to find the variation of
HMI as follows

ΔI ≡ I − Ivac ¼ −2c̃L2ðlþ hÞ2ε; ð5:9Þ

where Ivac is the vacuum contribution given by

Ivac ¼ − 3R̃3L2c
8
3

20GN
ð 2
l
5
3

− 1

h
5
3

− 1

ð2lþhÞ53
Þ. The minus sign shows

that the thermal excitations decrease the HMI and hence
reduce the total correlation between the subregions. Finally,
we turn to the thermal corrections to the reflected entropy. It
is straightforward to carry out the perturbative analysis and
we find that

SR ¼ 3R̃3L2

10GN

�
1

r
5
3

d

−
1

r
5
3
u

�
þ R̃3L2

8GN
μðr2u − r2dÞ: ð5:10Þ

Now using Eq. (5.6) the leading contribution becomes

ΔSR ≡ SR − SRvac ¼ −CL2lðlþ hÞε; ð5:11Þ

where SRvac. is the vacuum contribution given by

SRvac ¼ 3R̃3L2c
5
3

10GN
ð 1
h
5
3

− 1

ð2lþhÞ53
Þ and C ¼ 3π

c2 ð6
ffiffi
π

p
7c

Γð11
8
Þ

Γð7
8
Þ − 1Þ. We

note again that this contribution is negative and hence the
finite temperature corrections decrease the reflected
entropy. Regarding this quantity as a measure of total
correlation between the two subregions, we see that thermal
excitations promote disentangling between them. These

results are consistent with the previously numerical results
illustrated in Fig. 15.

2. β= π=2

The analysis follows similarly to the previous case, with
the obvious replacement of the rotation angle. Hence, we
just report the final results in what follows. At leading
order, the variation of HEE becomes

ΔS≡ S − Sπ=2vac ¼ L2c̃l
5
2ε;

where c̃ ¼ 36π3=2Γð21
16
Þ

65Γð13
16
Þ ð 2

3cÞ5=2, c ¼ 2
ffiffi
π

p
Γð5

8
Þ

Γð1
8
Þ and Sπ=2vac is the

vacuum contribution in β ¼ π
2
given by

Sπ=2vac ¼ R̃3L2

8GN

�
2

ϵ2
−

c4

ð2l
3
Þ3
�
: ð5:12Þ

Equipped with the above result we can compute HMI as
follows

ΔI≡I−Iπ=2vac ¼−L2c̃ðð2lþhÞ5=2−2l5=2þh5=2Þε; ð5:13Þ

where Iπ=2vac is the vacuum contribution in β ¼ π
2
given by

Iπ=2vac ¼−
R̃3L2

12G

�
3

ffiffiffi
π

p
Γð5

8
Þ

Γð1
8
Þ

�4� 2

l3
−
1

h3
−

1

ð2lþhÞ3
�
: ð5:14Þ

Finally, the variation of reflected entropy becomes

ΔSR ≡ SR − SR
π=2
vac ¼ −C̃L2ððhþ 2lÞ5=2 − h5=2Þε; ð5:15Þ

where C̃¼ 9π
10c5=2

ð2
3
Þ5=2ð10

ffiffi
π

p
Γð21

16
Þ

13cΓð13
16
Þ −1Þ and SR

π=2
vac ¼ 27R̃3L2

32GN
×

c3ð 1h3− 1
ð2lþhÞ3Þ. Again, these agree with the results shown

in Fig. 15, where we see that thermal excitations promote
disentangling between the subregions.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we explored the behavior of reflected
entropy in certain nonrelativistic geometries dual to aniso-
tropic boundary systems. We used the holographic proposal
for computing this quantity which states that reflected
entropy is proportional to the minimal cross-sectional area
of the entanglement wedge, as in Eq. (1.7). Specifically, we
have focused on symmetric boundary configurations con-
sisting of two disjoint strips with equal width, which is the
simplest case to utilize the holographic proposal to compute
the correlation measures. In principle though, we expect
that the qualitative features of our results are independent of
the specific configuration. Although some of the inter-
mediate steps may differ, we expect that the qualitative
features of our results are hold for non symmetric

HOLOGRAPHIC STUDY OF REFLECTED ENTROPY IN … PHYS. REV. D 107, 026012 (2023)

026012-13



configurations. In addition to numerical analysis, in spe-
cific anisotropic backgrounds we evaluated the leading
order corrections to holographic correlation measures
analytically. We also compared the behavior of reflected
entropy to other correlation measures including HEE
and HMI.
Our analysis in this paper focused mainly on the effect

of anisotropy on reflected entropy and other correlation
measures. Generally, the additional contributions due to
the anisotropy parameter or rotation angle to this quantity
do not have a definite sign. For example, based on our
results in Sec. III, we found that SR is an increasing
function of the anisotropy parameter, i.e., ν, in a specific
range of rotation angle such that it develops a maximum
at β ¼ π=2. Interestingly, at the same value of the
rotation angle, the critical separation between the sub-
regions is a monotonically increasing function of ν and
hence the correlation between the subregions becomes
stronger (see Fig. 5). On the other hand, both our analytic
calculations and numerical analysis in Sec. IVA gave
evidence that the reflected entropy has a minimum at
β ¼ π=2 and is a monotonically decreasing function of
the anisotropy parameter [see the panel in Fig. 10
and Eq. (4.21)].
In addition to these differences, at a qualitative level, all

of the cases considered in this work had a number of
common features in all cases examples. First, the variation
of HMI and reflected entropy has the sign due to presence
of the anisotropy. Regarding these quantities as mea-
sures of total correlation between the subregions, this
behavior seems reasonable. Although, this result is differ-
ent from what happens for the HEE where the variation
flips its sign. This feature precisely matches with the
previous results of [56,66,67]. Another key feature which
was observed here was the appearance of a new universal
logarithmic term in HEE whose coefficient depends on the
anisotropy parameter and the rotation angle. Roughly, we
can think of this universal term as characterizing when

the isotropy is broken in the underlying boundary theory.
Similarly, as shown in [55], if instead we choose a
background which breaks the translation invariance the
structure of the universal terms of HEE is modified. This
feature is entirely expected given our experiences
from HEE in other backgrounds with broken symmetries,
e.g., see [64].
Recall that some holographic proposals consider other

candidates for the mixed state correlation measures dual to
EWCS. For example, based on [9], in holographic theories
the odd entropy can be written in terms of the reflected
entropy as follows

SOðA;BÞ ¼
SRðA; BÞ

2
þ SðA ∪ BÞ:

Using this expression we can find the odd entropy using our
previous results for reflected entropy in different aniso-
tropic boundary systems. In Fig. 16 we plot this measure in
two of our models in Secs. IVA and V. The left panel shows
that in the nonconformal boundary theory, odd entropy is
an increasing function of the anisotropy parameter and
hence the correlation between the subregions becomes
more pronounced. Clearly the β dependence of this
measure is similar to HMI and reflected entropy as
expected (see Fig. 10). In the right panel we plot odd
entropy as a function of h

l for different values of β in the
Lifshitz-like anisotropic background. The dashed curves
represent the finite temperature results and the solid curves
correspond to the zero temperature case. Regarding the odd
entropy as a measure of correlation, we see that decreasing
the rotation angle promote disentangling between the
subregions. Let us mention that the qualitative features
of the odd entropy in other anisotropic models are similar,
thus we neglect to present them.
We can extend this study to different interesting direc-

tions. In this paper we focused on symmetric configuration

FIG. 16. Left: odd entropy as a function of β for different values of the anisotropy parameter for model discussed in Sec. IVA. Right:
odd entropy as a function of hl for different values of β for model discussed in Sec. V. The dashed curves represent the finite temperature
results and the solid curves correspond to T ¼ 0 case.
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for the boundary entangling regions which significantly
simplifies the computation of the reflected entropy. It is also
interesting to look at more complicated setups where the
widths of the strips are different, using the method first
introduced in [68]. Another interesting question is if either
of these behaviors can be extracted from field theory
calculations of reflected entropy using the techniques
developed in [35,36]. We plan to explore some of these
directions in the near future.
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