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Abstract We numerically investigate the evolution of the
holographic subregion complexity during a quench process
in Einstein-Born-Infeld theory. Based on the subregion CV
conjecture, we argue that the subregion complexity can be
treated as a probe to explore the interior of the black hole.
The effects of the nonlinear parameter and the charge on
the evolution of the holographic subregion complexity are
also investigated. When the charge is sufficiently large, it not
only changes the evolution pattern of the subregion complex-
ity, but also washes out the second stage featured by linear
growth.
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1 Introduction

The holographic nature of spacetime can be manifestly dis-
closed by AdS/CFT correspondence [1–4]. Recently it has
been proposed that the exponential growth of the interior of
a black hole can be described by a quantity in the quantum
field theory on the boundary [5]. Specifically, it has been con-
jectured that the quantum computational complexity is equal
to the volume of Einstein-Rosen Bridge (ERB) (CV conjec-
ture) [5]. An outstanding model has been considered in the
AdS-Schwarzschild geometry, where the maximal volume of
codimension-one surface � bounded by the boundary time
tL and tR (where L and R label the left and the right boundary,
respectively.) is dual to the quantum computational complex-
ity of a boundary state |(tL , tR)〉 relative to the reference state
|T FD〉:

C(tL , tR) = V�(tL , tR)

GNl
,

|T FD(tL , tR)〉 = U (tL)U (tR)|T FD〉. (1)

where U (tL), U (tR) are quantum gates with U labelling the
time evolution operator in the boundary theory. GN is the
gravitational constant and l is a certain length scale.

Because of the ambiguity of choosing the radius l, it has
been further conjectured that the quantum computational
complexity is equal to the gravitational action on the Wheeler
DeWitt (WDW) patch (CA conjecture) [6]:

C(tL , tR) = AWDW (tL , tR)

π h̄
. (2)

The WDW patch is the domain of dependence of a cauchy
slice anchored at some boundary time tL and tR .

These two conjectures have been extensively testified in
literature. On the gravity side, the growth behavior of the
action as well as the maximal volume has firstly been inves-
tigated in the late time limit [7–10], and then for the full-time
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period [11–17]. See the generalizations of the conjectures to
CV 2.0 and CA2.0 in [18–20]. Others see [21–39].

On the boundary field theory side, basically there are two
ways to understand the complexity of quantum fields. The
one is “path-integral complexity” [40–44] and the other is
“geometric complexity” [45–54], based on different under-
standings on quantum gates in field theory. Currently, one
puzzle is that in most holographic work one usually focuses
on the evolution of the complexity beginning at a TFD state,
however in QFT one usually considers the evolution relative
to a vacuum state. These two processes may be different in
principle and further investigation is needed. Recently, the
complexity between the vacuum and the thermal state has
been studied by a holographic quench in Vaidya-AdS space-
time [55,56,58,86].

Above CV and CA conjectures on the complexity are orig-
inally proposed for global spacetime. Sequently they have
been generalized to be applicable for the subregion in [59]
and [60]. Given a boundary subregionAon a time slice σ , one
can construct the corresponding entanglement wedge W [A]
and the Wheeler-DeWitt patch WWDW [σ ]. Then the subre-
gion CA conjecture tells us that the complexity of a bound-
ary state (which corresponds to the subregion A) equals the
action of the intersecting region W [A] ∩ WWDW [σ ]. While
the subregion CV conjecture tells us that the complexity of
a boundary state is equal to the volume of codimension-one
extremal hypersurface �A, which is bounded by the bound-
ary subregion A and the corresponding Hubeny-Rangamani-
Takayanagi (HRT) surface γA. The formula is given by

CA = V (�A)

8πlAdSGN
(3)

where lAdS is the AdS radius. In addition, some attempts to
understand the dual complexity of mixed states are recently
suggested in [61]. (See [37,62–72] for related works on the
subregion complexity.)

The evolution of the holographic subregion complexity
has been investigated over the Vaidya-AdS spacetime in [62].
This dynamical process is dual to the thermal quench in CFT
on the boundary, and can be modelled holographically by
collapsing a thin shell of null matter from the AdS boundary
to form an AdS black brane. We intend to know more details
about this process and provide more physical understanding
on the results obtained in numerics. It is also desirable to
provide more information about the subregion complexity in
the boundary field theory.

In this paper we will explore the evolution of the subre-
gion complexity with CV conjecture over the background in
Einstein-Born-Infeld theory. The subregion we choose here
is an infinitely long strip with the width l. This evolution
process is dual to the process of a quench which is not only
thermal, but also electromagnetic in the sense that it is mod-
elled holographically by collapsing a null-like thin shell with

mass M and charge Q from the AdS boundary to form Born-
Infeld-AdS (BI-AdS) black brane [73].

Born-Infeld (BI) electrodynamics was firstly introduced
by Born and Infeld in the 1930’s [74]. They proposed a non-
linear modification to Maxwell theory to regularize the diver-
gence of self-energy of a point-like charged particle. Recently
BI electrodynamics becomes more intriguing in superstring
theory. The low energy behavior of the vector modes of open
strings and dynamics of D-branes are given by the BI action
and its similar non-Abelian version respectively.(See [75,76]
for related works.) Further, BI theory plays an important role
in the modified gravity [77] and inspires a new approach to
avoid spacetime spacetime singularities in the high energy
or highly curved regime.

Here we desire to capture more general features of the
evolution of complexity caused by BI electrodynamics that
may not appear in Einstein theory. On the one hand, in the
limit of b → 0, this framework covers Einstein-Maxwell
theory and can be applied to explore the thermalization pro-
cess of a strongly coupled system with chemical potential. In
[78], it was found that the thermalization time for the two-
point function, Wilson loop and entanglement entropy are
increased with the charge (or the chemical potential). Thus it
also deserves to find out the effect of chemical potential on
the subregion complexity. On the other hand, for non-zero
parameter b more interesting effects caused by the nonlin-
earity of electrodynamics will be disclosed. The parameter
b was found to have the opposite effect against the charge
Q. That is to say, as the parameter b grows, the thermal-
ization time for above non-local probes is decreased (see
[73]). Inspired by the former works, we intend to explore
what will happen to the subregion complexity during the
holographic quench process with nonlinear electrodynam-
ics.

We organize the paper as follows. In Section 2, we intro-
duce the general setup for the bulk geometry with Vaidya-
type black brane solutions in Einstein-Born-Infeld theory.
Then we derive the holographic entanglement entropy(HEE)
and the subregion complexity for a strip on the boundary.
In Section 3 we numerically calculate the evolution of the
holographic subregion complexity as well as the holographic
entanglement entropy. The impact of the charge Q and the
inverse of BI parameter b on the evolution is investigated.
Section 4 is the conclusions and outlooks.

2 The setup

In this section we will briefly review the Einstein-Born-Infeld
theory which contains a non-linear term of electrodynam-
ics, and then present a Vaidya-type black brane background,
which is holographically dual to the quench process from a
vacuum state to a thermal state on the boundary. Given a strip

123



Eur. Phys. J. C (2019) 79 :194 Page 3 of 12 194

on the boundary, we will derive the analytical expressions for
its HEE and the holographic subregion complexity.

2.1 Einstein-Born-Infeld theory

The action for (d + 1)-dimensional Einstein gravity min-
imally coupled to Born-Infeld electrodynamics can be
expressed as [79] (see also [80–82])

S = 1

16πG

∫
dd+1x

√−g
[
R − 2� + LBI (F)

]
, (4)

where LBI (F) is given by

LBI (F) = 4b−2

(
1 −

√
1 + FμνFμν

2
b2

)
. (5)

The constant b is the inverse of the ordinary BI parameter
(for numerical convenience). In the limit b → 0, the action
goes back to Einstein-Maxwell theory. And here we choose
16πG = 1. The metric of BI-AdS solution with a planar
horizon can be expressed as

ds2 = −U (r)dt2 + dr2

U (r)
+ r2

d−1∑
i=1

dx2
i , (6)

where

U (r) = − M

rd−2 +
[

4b−2

d(d − 1)
+ 1

]
r2

− 2
√

2b−1

d(d − 1)rd−3

√
2b−2r2d−2 + (d − 1)(d − 2)Q2

+ 2(d − 1)Q2

dr2d−4 2F1

[
d − 2

2d − 2
,

1

2
; 3d − 4

2d − 2
;

− (d − 1)(d − 2)Q2b2

2r2d−2

]
, (7)

and the AdS radius is set to 1. The event horizon is defined by
U (rh) = 0 and since the horizon is planar, we should regard
this spacetime as a black brane as mentioned in [73]. In the
next subsection we will generalize it to a time-dependent
background which is so-called the Vaiyda-BI-AdS space-
time.

2.1.1 Vaidya-BI-AdS Metric

To obtain Vaidya-BI-AdS metric, we firstly rewrite the met-
ric (6) in Eddington-Finkelstein coordinate system by the
following transformations

dv = dt + dr/U (r),

z = 1/r.

Then the metric is expressed as

ds2 = 1

z2

[
− f (z)dv2 − 2dvdz +

d−1∑
i=1

dx2
i

]
, (8)

where

f (z) = z2U

(
1

z

)
. (9)

In addition, from the metric in (6), one can derive the Hawk-
ing temperature as

T = 1

4πrh

[(
4b−2

d − 1
+ d

)
r2
h

− 2
√

2b−1

(d − 1)rd−3
h

√
2b−2r2d−2

h + (d − 1)(d − 2)Q2

]
.

(10)

In particular, when Hawking temperature T = 0, we obtain
an extremal black brane. Under this condition, the charge
takes the maximal value Q = Qext which is

Q2
ext = d

(d − 2)

[
1 + d(d − 1)b2

8

]
r2d−2
h . (11)

Now we extend it to the Vaidya-BI-AdS metric in which
both the mass and the charge of the black brane are treated
as functions of v. That is

m(v) = M

2

(
1 + tanh

v

v0

)
,

q(v) = Q

2

(
1 + tanh

v

v0

)
, (12)

where M and Q are the parameters of the BI-AdS black brane
and v0 denotes the thickness of the shell. This extension leads
to the following dynamical background

ds2 = 1

z2

[
− f (v, z)dv2 − 2dzdv + dx2 +

d−2∑
i=1

dy2
i

]
,

f (v, z) = 1 + 2(d − 1)

d
2F1

[
1

2
,
d − 2

2d − 2
,

4 − 3d

2 − 2d
,

−b2

2
(d − 2)(d − 1)q(v)2z2(d−1)

]
q(v)2z2(d−1)

+ 4

b2d(d − 1)
− m(v)zd

− 2zd−1

b(d − 1)d

√
2(2 − 3d + d2)q(v)2 + 4z2−2d

b2 .

(13)

Since in Eq. (12) we have changed mass M and charge
Q into a time-dependent form, it is obvious that the metric
in Eq. (13) is not a solution of the original action as shown
in Eq. (4). Therefore, to guarantee that Eq. (12) could be a
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solution to Einstein equations, we need add some external
source term Sex to provide a variation of M and Q. Taking
Sex into account, the equations of motion can be expressed
as

Rμν − 1

2
Rgμν − 2b−2gμν

(
1 −

√
1 + b2F2/2

)

− 2FμρFν
ρ√

1 + b2F2/2

= −8πGT (ex)
μν , (14)

∇μ

(
Fμν√

1 + b2F2/2

)
= −8πGJ ν

(ex). (15)

Here we keep the cosmological constant � and the Newton’s
constant G temporarily in the above equations. Then, the
corresponding source Tμν and J ν can be solved as

T (ex)
μν = d − 1

z1−d

[
ṁ(v)

− 2

z2−d 2F1

[
d − 2

2d − 2
; 1

2
; 3d − 4

2d − 2
; (d − 2)(d − 2)q(v)2

−2b−2z2−2d

]

× q(v)q̇(v)

]
δv
μδv

ν , (16)

J ν
(ex) =

√
(d − 1)(d − 2)

8
zd+1q̇(v)δνv, (17)

where we denote the dot as ∂v and reset 16πG = 1 as well
as the AdS radius.

2.2 Holographic description of entanglement and
complexity for a strip

In this subsection we analytically derive the integral expres-
sions of holographic entanglement entropy and complex-
ity for a (d − 1)-dimensional strip A on the boundary.
The strip can be parameterized by the boundary coordi-
nates (x, y1, ..., yd−2). We further assume that it has a width
of l along x direction such that x ∈ [−l/2, l/2], while
it has infinite length along the directions of yi such that
yi ∈ (−∞,∞), where i = 1, ..., d − 2. We will figure out
the HRT surface γA at first, and then locate the codimension-
one extremal surface �A such that the evolution of the holo-
graphic subregion complexity can be evaluated by subregion
CV conjecture.

2.2.1 Holographic entanglement entropy

Given a strip, the corresponding HRT surface can be param-
eterized by z(x) and v(x),with the boundary conditions

z(−l/2) = z(l/2) = ε, v(−l/2) = v(l/2) = t − ε, (18)

where ε is a cut-off constant. At the tip of the HRT surface
we have

z′(0) = v′(0) = 0, z(0) = zt , v(0) = vt , (19)

where (zt , vt ) label the location of the tip and also charac-
terize the HRT surface at boundary time t . As shown in [62],
the induced metric on the HRT surface has the form as

ds2 = 1

z2

[
− f (v, z)v′2 − 2z′v′ + 1

]
dx2 + 1

z2

d−2∑
i=1

dy2
i .

(20)

The area of the HRT surface γA is

At (γA) = Ld−2
∫ l/2

−l/2

√
1 − f (v, z)v′2 − 2z′v′

zd−1 dx, (21)

where t denotes the HRT surface which is anchored on a
boundary time slice with time t and Ld−2 is the infinite area
related to directions yi . Treating the area functional At (γA)

as an action we can read the Lagrangian and the correspond-
ing Hamiltonian as

LS =
√

1 − f (v, z)v′2 − 2z′v′
zd−1 , (22)

HS = 1

zd−1
√

1 − f (v, z)v′2 − 2z′v′ . (23)

Since the Hamiltonian is conserved along the direction x , we
have

1 − f (v, z)v′2 − 2z′v′ = z2d−2
t

z2d−2 . (24)

Then we take the derivative of (24) and substitute it into the
equations of motion (E.O.M) of z(x) and v(x) respectively,
leading to

0 = −2(d − 1) + 2zv′′

+ v′ [2(d − 1) f (v, z)v′ + 4(d − 1)z′ − zv′∂z f (v, z)
]
,

(25)

0 = 2(d − 1) f (v, z)2v′2

+ f (v, z)
[
−2(d − 1) + 4(d − 1)v′z′ − zv′2∂z f (v, z)

]

− z
[
2z′′ + v′ (2z′∂z f (v, z) + v′∂v f (v, z)

)]
. (26)

We numerically solve above equations for the HRT surface
γA and denote the solutions as (ṽ(x), z̃(x)), then the equation
in (21) becomes

At (γA) = 2Ld−2
∫ l/2

0

zd−1
t

z̃(x)2d−2 dx . (27)

It corresponds to the holographic entanglement entropy of
the strip on the boundary. Next we need to work out the solu-
tion of the codimension-one extremal surface �A at various
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boundary time t to study the evolution behavior of the holo-
graphic subregion complexity.

2.2.2 Holographic subregion complexity

Recall that the codimension-one extremal surface �A is
bounded by A on the boundary and the HRT surface γA
in the bulk. As suggested in [62], �A can be parameterized
by z(v, x) in general. For this model thanks to the transla-
tional invariance, the extremal surface �A is independent of
x , so the parameterization can simply be written as

z = z(v). (28)

As a result, the induced metric on the extremal surface �A is

ds2 = 1

z2

[
−

(
f (v, z) + 2

∂z

∂v

)
dv2 + dx2 +

d−2∑
i=1

dy2
i

]
,

(29)

and the volume of �A is given by

Vt (�A) = 2Ld−2
∫ ṽ(l/2)

vt

dv

×
∫ x̃(v)

0
dx

[
− f (v, z) − 2

∂z

∂v

]1/2

z−d , (30)

where x̃(v) is the x coordinate on the HRT surface γA. Then
we can write down the Lagrangian

LV =
[
− f (v, z) − 2

∂z

∂v

]1/2

z−d , (31)

and the corresponding E.O.M of1 z(v)

0 =
[
2d f (v, z)2 + 4dz′(v)2 − 3z(v)z′(v)∂z f (v, z)

+ f (v, z)(6dz′(v) − z(v)∂z f (v, z))

− z(v)(2z′′(v) + ∂v f (v, z))]/[z(v)1+d(− f (v, z)

−2z′(v))3/2
]
. (32)

In principle, one should solve E.O.M (32) for z(v), with
boundary conditions determined by γA and A. However as
proved in [62], the relation z̃(ṽ) (where z̃ and ṽ are the solu-
tions for the HRT surface γA) is just the solution of the E.O.M
(32). Thus the equation in (30) becomes

Vt (�A) = 2Ld−2
∫ ṽ(l/2)

vt

dv

×
[
− f (v, z(v)) − 2

∂z

∂v

]1/2

z(v)−d x̃(v). (33)

1 In [62], the equation contains typing errors.

So far, for a given strip on the boundary, we have fig-
ured out the integral expressions of the HRT surface γA and
the codimension-one extremal surface �A at some boundary
time t . In next section we will explore the evolution behav-
ior of holographic entanglement entropy and the subregion
complexity in numerical manner.

3 Holographic subregion complexity in
Einstein-Born-Infeld theory

The quench in CFT could be described holographically by the
evolution of the bulk geometry in Einstein-Born-Infeld the-
ory, whose initial state corresponds to the pure AdS and final
state corresponds to the BI-AdS black brane. In this section
we first work out the evolution of the holographic entangle-
ment entropy, and then explore the evolution of the subregion
complexity numerically after the global quench. Afterwards,
we study the effect of the charge Q and the parameter b on
the evolution of the subregion complexity.

3.1 Numeric setup

For numerical analysis we need to fix all free parameters and
get rid of the UV divergence. Here we take the UV cut-off zε
to be 1

20 , which turns out to be good enough for us to obtain
the cut-off independent data. The thickness of the shell v0 is
set to be 1

100 , the boundary dimension d to be 3 if without
notice(which means we mainly focus on AdS4/CFT3) and
the mass M of the final black brane to be 1. With this setup
Eqs. (10) and (11) reduce to

T = 1

4πrh

[
(2b−2 + 3)r2

h − 2b−1
√
b−2r4

h + Q2

]
(34)

and

Qext =
√

3

(
1 + 3b2

4

)
r4
h . (35)

Given the value of parameter b, we can set the charge
Q ∈ [0, Qext ] to explore the evolution of the holographic
entanglement entropy as well as subregion complexity.

Next we will solve E.O.M (26) and (25) for (ṽ(x), z̃(x))
with the boundary conditions

v′(0) = z′(0) = 0, z(0) = zt , v(0) = vt , (36)

by the shooting method.

3.2 The evolution of subregion complexity

Once we figure out the HRT surface, the corresponding HEE
can be obtained from Eq. (21). Since we are only concerned
with the change of the HEE during the quench, we may sub-
tract the vacuum HEE and define a finite quantity for HEE
as
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Two distinct patterns of the evolution of HEE and subregion complexity. The figures on the top display a continuous pattern with l = 1,
while the figures at the bottom display a discontinuous pattern with l = 5. The dashed lines denote the critical time for the transition tc = 3.7434

S = At (γA) − AAdS(γA)

2Ld−2 . (37)

Furthermore, the holographic subregion complexity can
be obtained by computing the volume of the codimension-
one surface �A from Eq. (30). In parallel, we define a nor-
malized expression for the subregion complexity as

C = Vt (�A) − VAdS(�A)

2Ld−2 . (38)

Next we present our numerical results for the time evolu-
tion of these two quantities during the course of the quench.
In Fig. 1 we demonstrate two typical patterns of evolution: the
continuous pattern and the discontinuous pattern. We choose
the same charge Q = 0.65 (which is less than the extremal
charge) and the same parameter b = 2 but different width
l = 1 and l = 5 respectively. First of all, from Fig. 1a
and Fig. 1d we learn that the tip zt of the HRT surface γA
is decreasing with the time and finally reaches a constant. In
comparison, we notice that the HRT surface with large l takes
longer time to get stable than the HRT surface with smaller
l. This phenomenon can be intuitively understood based on
the previous work in [83] and [84]. During the entanglement
tsunami, the infalling thin shell divides the spacetime into
two parts, namely the AdS-Schwarzschild and the pure AdS.
The former region is swept by the tsunami while the latter
region has not been affected by the tsunami yet. As a result,
the HRT surface is also divided into two parts. The part in
the AdS region is located on a time slice just like the static
case, while the other part in the Schwarzschild region is not.

Because the tip of the HRT surfaces with large l stretches
deeper into the bulk, the infalling shell need take longer time
to reach this location. Therefore, the location of HRT surfaces
with larger l will take longer time to get stable.

Secondly, we notice that when l is large (l = 5), the HEE
evolution will display a swallow tail before getting stable,
which is marked by the gray line. This phenomenon has pre-
viously been observed in [85] as well. It indicates that at
some given boundary time t , there exist multi solutions for
the surface γA. We only keep the solutions with minimum
area as the HEE.

In addition, the growth rate of HEE depends on the charge
Q and the parameter b, as shown in Fig. 2. Fig. 2a demon-
strates the evolution of HEE with different values of b. It is
noticed that the larger the parameter b is, the sooner the curve
saturates and the larger the maximal value is. While Fig. 2b
shows the growth curves with various values of Q. We find
that the larger the charge Q is, the later the curve saturates
and the smaller the maximal value is.

Next we turn to the evolution of the subregion complexity.
In general, we observe that it increases in the early stage of
the boundary time and then decreases after meeting a max-
imum. Finally it reaches a constant at the late time (Fig. 1).
This phenomenon is different from the evolution of entangle-
ment entropy, which never decreases during the whole stage
of the evolution. Moreover, the width of the strip also effects
the evolution of the complexity. When the strip is narrow,
the complexity evolves continuously while when the strip
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Fig. 2 The left plot is for the evolution of HEE with various values
of b, where the blue, yellow, green and red lines correspond to b = 0,
1
2 , 1, 2, respectively. The charge and the width of the strip are fixed as

Q = 0.65, l = 5. While the right plot is for the evolution of HEE with
various values of Q, where the blue, yellow and green lines correspond
to Q = 0.2, 0.4, 0.65, respectively

Fig. 3 The dependence of the
holographic subregion
complexity on the parameter b
with l = 5 (the left plot) and
l = 1 (the right plot). The blue,
yellow, green and red lines
correspond to b = 0, 1

2 , 1, and 2
respectively, with a fixed charge
Q = 0.65
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becomes wider, it evolves discontinuously at some moment
(see Fig. 1c, f respectively). This discontinuity can be under-
stood as following: The gray line in Fig. 1f corresponds to
the swallow tail in Fig. 1e. Since we only keep the solutions
with minimum area, the system does not undergo the evolu-
tion along the gray line but just dropping down vertically, as
shown in Fig. 1f.

Our above result is in agreement with the previous one
obtained in the Vaidya-AdS spacetime [62]. As argued in [5],
the growth of the complexity is measured by the growth of
the region inside the black hole. For a quench, we notice that
during the evolution the extremal surface �A stretches into
the interior of the black brane at first and then be squeezed
out. Thus we tend to interpret the above results as: during
the evolution the growth of the subregion complexity results
from the fact that the extremal surface �A starts to probe the
interior of the black brane, while finally its dropping down
at later times reflects the fact that the surface �A is being
squeezed out of the black brane.

In next subsection we will investigate the dependence of
the subregion complexity on the charge Q and the param-
eter b, and its distinct behavior from that of HEE will be
addressed.

3.2.1 Dependence on parameter b

In Fig. 3 we illustrate the evolution behavior of subregion
complexity with different values of parameter b, while the
charge Q and the width of the strip l are fixed. As we can
see, at the early stage the growth rates of the complexity are
almost the same for different b. However, at later time the
effect of b becomes important. The smaller the parameter b
is, the longer the subregion complexity grows and the larger
the stable value is. That is to say, the nonlinear feature of the
bulk theory prevents the subregion complexity from growing
in its dual CFT.

Another novel feature of complexity observed here is that
its maximal value increases with the decrease of the parame-
ter b, which is in contrast to the behavior of the entanglement
entropy. As demonstrated in (Fig. 2a), while decreasing b, the
maximal value of HEE decreases.

Finally we remark that the discrepancy of the curves in
four colors becomes more evident in the background with
large charge Q as shown in Fig. 4. This is reasonable since
the parameter b characterizes the nonlinearity of electromag-
netical field. When the value of charge Q is small, the con-
tribution of electromagnetical field becomes less important.
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Fig. 4 The dependence of the
holographic subregion
complexity on the parameter b
with Q = 0.4 (the left plot) and
Q = 0.2 (the right plot). The
blue, yellow, green and red lines
correspond to b = 0, 1

2 , 1, and 2
respectively, with a fixed width
l = 5
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Fig. 5 The dependence of the
holographic subregion
complexity on the parameter Q
with l = 5. The blue, yellow,
green lines correspond to
Q = 0.2, Q = 0.4 and
Q = 0.65, respectively. The
parameter b is fixed as b = 2, 1,
1/2 and 0 in subfigure (a) to (d),
respectively
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3.2.2 Dependence on the charge Q

In this subsection, we study the impact of the charge Q on
the evolution of subregion complexity when the parameter
b is fixed. The relevant results are plotted in Figs. 5 and 6.
At the early stage, the growth rate of complexity is almost
the same for different values of charge Q, while at later time
the effect of charge Q becomes more significant. We find the
smaller the charge Q is, the sooner the subregion complex-
ity drops down and the smaller the maximum complexity is.
We remark that this result is in contrast to the evolution of
entanglement entropy as well, where the maximum of entan-

0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

Fig. 6 The dependence of the holographic subregion complexity on
the parameter Q with l = 1. The blue, yellow, green lines correspond
to Q = 0.2, Q = 0.4 and Q = 0.65, respectively. The parameter b is
fixed as b = 0
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Fig. 7 The impact of the
charge Q on the evolution of
subregion complexity in three
dimensional RN-AdS
background (b = 0). In Fig. 7b,
the green dashed line represents
the linear growth stage at later
time when l is large enough
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glement entropy increases when decreasing the charge Q, as
shown in Fig. 2b.

In both Figs. 5 and 6, the stable values increase with the
charge Q. But in the 3-dimensional case as shown in Fig. 7,
the stable values decrease with the charge Q.

In the 3-dimensional case when the charge Q is suffi-
ciently large, the final constant value of the holographic
subregion complexity is always less than its initial value
regardless the width l, as illustrated in Fig. 7. But in the
4-dimensional case, only when the width l and the charge Q
are both very small, the final stable value could be less than
the initial value. Actually, the appearence of negative stable
value is quite common while investigating quench process
(see [62] and [86]). This fact can be interpreted as follows:
Complexity measures the “difference” between two states.
Therefore, negative stable value means that the “difference”
between the finial state and some reference state is less than
the “difference” between the initial state and the reference
state. In holographic scenario, since the reference state is
still unclear, the appearance of negative value is acceptable.

It is interesting to compare the impacts of charge Q and
parameter b on the stable value. On the one hand, we notice
the effects of the charge Q is always evident, regardless the
value of parameter b and width l, as illustrated in Figs. 5 and
6. On the other hand, in Fig. 3 we notice that only when the
width l is large and the value of charge Q is close enough to
its extremal value, then the effect of b becomes obvious.

In the remainder of this section we focus on the effects
on charge Q on the evolution pattern of the complexity. As
found in [62], the evolution of complexity density (which
means the complexity in the unit of width l) in 4-dimensional
Vaidya-AdS spacetime shows a transition from a pattern of
continuous growth into a pattern of discontinuous growth.
But in 3-dimensional case, the evolution always exhibits a
continuous growth pattern. In addition, when the width l is
large enough, the growth exhibits two distinct stages: the first
rapid growth and the second linear growth as shown in Fig.
7b. The above results are obtained in the neutral case [62].
Now when the black brane is charged, the Vaidya-RN-AdS
metric in 3-dimensional spacetime can be given as [78]

ds2 = 1

z2 (− f (z, v)dv2 − 2dvdz + dx2)

f (z, v) = 1 − m(v)z2 + q(v)2z2log(z), (39)

where m(v) and q(v) are shown in Eq. (12).
It is quite straightforward to obtain the complexity for

charged black branes, as plotted in Fig. 7a, b. Interest-
ingly enough, we find the charge Q can not only change
the growth behavior, but also change the pattern of evo-
lution. When the charge Q is large enough, the evolution
of complexity changes the pattern from continuous to dis-
continuous (Fig. 7). Moreover, the sufficiently large charge
Q will wash out two different growth stages. This result
can be read from Fig. 7b, where the blue line represents
the case of AdS-Schwarzschild background and we can see
two distinct growth stage clearly. That is to say, with suf-
ficiently large charge Q the evolution of complexity shows
a transition from the continuous pattern into the discontin-
uous pattern and forgets about its later linear growth stage
(Fig. 7a, b).

4 Conclusions and discussions

In this paper we have investigated the evolution of the subre-
gion complexity during a quench in Einstein-Born-Infeld the-
ory. The subregion A we consider here is an infinite strip on
a time slice of the boundary. Holographically the subregion
complexity can be described by a codimension-one extremal
hypersurface �A in the bulk. We have numerically analyzed
the evolution behavior of holographic entanglement entropy
and the subregion complexity, which geometrically reflect
the evolution of the HRT surface and the codimension-one
extremal hypersurface during the course of the quench. The
increasing and decreasing behavior of the subregion com-
plexity are related to the part which is stretched into the
black brane. we have also investigated the effect of vary-
ing the charge Q and the parameter b on the evolution of the
complexity. It turns out that the maximum of the complexity
drops down when we decrease the charge Q or increase the
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parameter b. Moreover, when the charge Q is large enough,
it washes out the second stage featured by linear growth. But
under the limit of l → ∞, we tend to interpret this effect as
retarding the occurrence of the second stage of linear growth
rather than washing out it directly. One should be cautious
to extend this result to the limit of l → ∞, since the width
of the strip l in numerical simulation perhaps is not large
enough to probe the whole region due to the numerical lim-
itation. When the charge Q is sufficiently large, whether the
linearly growing stage would appear should be tested analyt-
ically with the strategy as proposed in [83]. And more detail
of these results should be explored in an analytical way too.
In addition, these results should be helpful for us to further
disclose the role of subregion complexity in the direction of
understanding the holographic nature of space time.

It should be interesting to explore the evolution of com-
plexity analytically under the subregion CV or CA conjec-
ture. It is also desirable to investigate the min flow-max cut
theorem in the Vaidya-type spacetime to build the quantum
gates in the bulk. Further, we should note that the features
which can be probed by the holographic subregion complex-
ity is also sensitive to the HEE in this paper, as shown in Fig. 1.
It is quite intriguing to investigate the evolution behavior of
the complexity in the circumstance that is insensitive to the
HEE in future.
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