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1 Introduction

The interplay between the black hole physics and quantum information has a long history.

One of the most interesting concern is on the physics of the black hole horizons. Few

years ago, L. Susskind pointed out that just considering the entanglement was not enough

to understand the horizon [1, 2]. In particular he argued that the creation of the firewall

behind the horizon was actually a problem of computational complexity in the framework of

ER=EPR [3], and furthermore proposed that the complexity could be read by the volume

of a worm hole in the bulk. Since then, the complexity in quantum field theory and gravity

has been discussed intensely.

Complexity is an important conception in the information theory. In the quantum

circuit model, it measures how many minimum simple gates are needed to complete a

given task transferring a reference state to a target state [4–6]. However, this manipulation

can not directly generalized to quantum field theory due to the ambiguity in defining

the simple operation and the reference state in a system of infinite degrees of freedom.

There have been some attempts trying to give a well-defined complexity in quantum field

theory [7–16].
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From the AdS/CFT correspondence, there have been two different proposals on holo-

graphic complexity, which are referred to as the CV (Complexity=Volume) conjecture [1,

2, 17, 18] and the CA (Complexity=Action) conjecture [19, 20] respectively. The CV con-

jecture states that the complexity of a boundary state on a time slice Σ is dual to the

extremal volume of the corresponding codimension-one hypersurface B whose boundary is

anchored at Σ:

CV = max
Σ=∂B

(
V (B)

Gd+1l

)
. (1.1)

Here Gd+1 is the gravitational constant in AdSd+1 and l is some length scale associated

with the bulk geometry, e.g. the anti-de Sitter (AdS) curvature scale or the radius of a

black hole. The ambiguity in the length scale l is unsatisfactory so that the CA conjecture

was proposed. In the CA conjecture the complexity of the boundary state is identified

holographically with the gravitational action evaluated on the Wheeler-DeWitt (WDW)

patch in the bulk:

CA =
IWDW

π~
. (1.2)

The WDW patch is the bulk domain of dependence of a bulk Cauchy slice anchored at

the boundary. It is the causal domain of the hypersurface Σ defined in the CV conjecture.

Both CV and CA satisfy important requirements on the complexity such as the Lloyd’s

bound [21–25].

Like the entanglement entropy, it is also interesting to consider the complexity of a

subregion. Instead of a pure state in the whole boundary, it is generally a mixed state pro-

duced by reducing the boundary state to a specific subregion (donated by A). Since the

mixed state is encoded in the entanglement wedge in the bulk [26, 27], the subregion com-

plexity should involve the entanglement wedge. In [28] and [29] the CA and CV proposals

have been generalized to the subregion situation respectively. For the subregion version of

the CA proposal, the complexity of subregion A equals the action of the intersection of

the WDW patch and the entanglement wedge [28]. As for the subregion CV proposal, the

complexity equals the volume of the extremal hypersurface ΓA enclosed by the boundary

subregion A and corresponding Ryu-Takayanagi(RT) surface γA [30–33]. Precisely, it can

be computed by

CA =
V (ΓA)

8πRGd+1
(1.3)

where R is the AdS radius. It has been suggested that the possible dual field theory

quantity is the fidelity susceptibility in quantum information theory [29, 34].

The subregion CV proposal can be understood intuitively from the entanglement renor-

malization [35, 36] and the tensor network [37, 38]. The entanglement entropy can be

estimated by the minimal number of bonds cut along a curve which is reminiscent of the

entanglement curve. Then the holographic complexity can be estimated by the number of

nodes in the area enclosed by the curve cutting the bonds [17]. This idea becomes more

transparent from the surface/state correspondence conjecture [39] in which the complex-

ity between two states is proportional to the number of operators enclosed by the surface

corresponding to the target state and the surface corresponding to the reference state. Ob-

viously the complexity is proportional to the volume enclosed by these two surfaces. This
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picture has been described in [14, 15] and also in [40]. For other works on the subregion

complexity, please see [41–51].

In this paper, we would like to study the subregion complexity in a time-dependent

background using the subregion CV conjecture. In particular we compute the evolution of

the subregion complexity after a global thermal quench in detail. The quenched system

has been viewed as an effective model to study thermalization both in field theory and

holography [52–56]. On the gravity side, such a quench process in a conformal field theory

(CFT) is described by the process of black hole formation due to the gravitational collapse

of a thin shell of null matter, which in turn can be described by a Vaidya metric. The pure

state complexity in the same background has been studied analytically under the condition

that the shell is pretty thin in [57]. It was found that the growth of the complexity is just

the same as that for eternal black hole at the late time.

This paper is organized as follows. In section2, we introduce the framework to eval-

uate the subregion complexity. In section3, we study holographically the evolution of the

complexity after a thermal quench in detail. We summarize our results in section4.

2 General framework

In this section, we introduce the general framework to study the subregion complexity in

the time-dependent background corresponding to a thermal-quenched CFT. A thermal

quench in a CFT can be described holographically by the collapsing of a thin shell of null

dust falling from the AdS boundary to form a black hole. This process can be modeled by

a Vaidya-AdS metric. The metric of the Vaidya-AdSd+1 spacetime with a planar horizon

can be written in terms of the Poincare coordinate

ds2 =
1

z2

[
−f(v, z)dv2 − 2dzdv + dx2 +

d−2∑
i=1

dy2
i

]
, (2.1)

f(v, z) = 1−m(v)zd.

In the present work, the AdS space radius is rescaled to be unit such that all the coordinates

are dimensionless. In (2.1) the coordinate v labels the ingoing null trajectory and coincides

with the time coordinate t on the boundary z → 0. m(v) is the mass function of the

in-falling shell. In the following, we will take it to be of the form

m(v) =
M

2

(
1 + tanh

v

v0

)
(2.2)

where v0 characterizes the thickness of the shell, or the time over which the quench occurs.

Actually the quench could be taken approximately as starting at −2v0 and ending at 2v0.

With this mass function, the Vaidya metric interpolates between a pure AdS in the limit

v → −∞ and a Schwarzschild-AdS (SAdS) black hole with mass M in the limit v → ∞.

When v0 goes to zero, the spacetime is simply the joint of a pure AdS and a SAdS at

v0 = 0. The apparent horizon in the Vaidya-AdS spacetime locates at

rh = m(v)−1/d. (2.3)
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Figure 1. The profile of the minimal surface of an infinite strip in pure AdS background.

We consider the subregion of an infinite strip A = x ∈
(
− l

2 ,
l
2

)
, yi ∈

(
−L

2 ,
L
2

)
with

L→∞ and finite l. The profile of the strip in a static AdS background is shown in figure 1.

We are going to study the evolution of the subregion complexity of the strip holographically

in the Vaidya-AdS spacetime.

As proposed in [29], the subregion complexity in a static background is proportional

to the volume of a codimension-one time slice in the bulk geometry enclosed by the bound-

ary region and the corresponding extremal codimension-two Ryu-Takayanagi (RT) surface.

This proposal can be generalized to the dynamical spacetime. For a subregion A on the

boundary, its holographic entanglement entropy (HEE) is captured by a codimension-

two bulk surface with vanishing expansion of geodesics [32], i.e., the Hubeny-Rangamani-

Takayanagi (HRT) surface γA. The corresponding subregion complexity is then propor-

tional to the volume of a codimension-one hypersurface ΓA which takes A and γA as

boundaries. Note that γA and hence ΓA do not live on a constant time slice in general for

a dynamical background. To get the corresponding subregion complexity, we need work

out the corresponding extremal codimension-two surface γA first.

2.1 Holographic entanglement entropy

Due to the symmetry of the strip, the corresponding extremal surface γA in the bulk can

be parametrized as

v = v(x), z = z(x), z(±l/2) = ε, v(±l/2) = t− ε, (2.4)

where ε is a cut-off. The induced metric on the extremal surface is

ds2 =
1

z2

[
−f(v, z)v′2 − 2z′v′ + 1

]
dx2 +

1

z2

d−2∑
i=1

dy2
i . (2.5)

The area is

Area(γA) = Ld−2

∫ l/2

−l/2

√
1− f(v, z)v′2 − 2z′v′

zd−1
dx, (2.6)

where L is the length along the spatial directions yi. Since the Lagrangian

LS =

√
1− f(v, z)v′2 − 2z′v′

zd−1
(2.7)
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does not depend on x explicitly, the Hamiltonian is conserved.

HS =
1

zd−1
√

1− f(v, z)v′2 − 2z′v′
. (2.8)

Due to the symmetry of the strip, there is a turning point of the extremal surface γA
locating at x = 0. At this point we have

v′(0) = z′(0) = 0, z(0) = z∗, v(0) = v∗, (2.9)

where z∗, v∗ are two parameters that characterize the extremal surface. The constant

Hamiltonian then gives

1− f(v, z)v′2 − 2z′v′ =
z2d−2
∗
z2d−2

. (2.10)

Taking the derivative (2.10) with respect to x and using the equation of motion for z(x),

we get

− 2(d− 1) + 2zv′′ + v′
[
2(d− 1)f(v, x)v′ + 4(d− 1)z′ − zv′∂zf(v, z)

]
= 0. (2.11)

Taking the derivative (2.10) with respect to x and using the equation of motion for v(x),

we get

0 = 2(d− 1)f(v, z)2v′2 + f(v, z)
[
−2(d− 1) + 4(d− 1)v′z′ − zv′2∂zf(v, z)

]
(2.12)

− z
[
2z′′ + v′

(
2z′∂zf(v, z) + v′∂vf(v, z)

)]
.

The extremal surface γA can be solved from (2.11), (2.12) as v = ṽ(x), z = z̃(x). Note that

the surface does not live on a constant time slice for general f(v, z). Using the conserved

Hamiltonian and the solution, we read the on-shell area of the extremal surface γA.

Area(γA) = 2Ld−2

∫ l/2

0

zd−1
∗

z̃(x)2d−2
dx. (2.13)

2.2 Subregion complexity

Now we consider the extremal codimension-one hypersurface ΓA enclosed by the extremal

surface γA and A. We find that there are two equivalent ways to describe ΓA. One way

is to parametrizes ΓA by v(z) and the other by z(v). The parametrization v(z) is more

intuitive for the static backgrounds, while the parametrization z(v) is more convenient for

the dynamical backgrounds.

2.2.1 Parametrization v(z)

The bulk region enclosed by the extremal surface v = ṽ(x), z = z̃(x) can be parametrized

by v = v(z, x) generically. However, due to the translational symmetry of the Vaidya

metric (2.1), the parametrization which characterizes the extremal surface ΓA should be

independent of the coordinate x. Thus the extremal codimension-one hypersurface ΓA can

be parametrized by

v = v(z). (2.14)
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The induced metric on ΓA is

ds2 =
1

z2

[
−
(
f(v, z)

∂v

∂z
+ 2

)
∂v

∂z
dz2 + dx2 +

d−2∑
i=1

dy2
i

]
. (2.15)

The volume is

V = 2Ld−2

∫ z∗

0
dz

∫ x̃(z)

0
dx

[
−f(v, z)

(
∂v

∂z

)2

− 2
∂v

∂z

]1/2

z−d (2.16)

where x̃(z) is the codimension-two extremal surface γA. From the reduced Lagrangian

LV =

[
−f(v, z)

(
∂v

∂z

)2

− 2
∂v

∂z

]1/2

z−d, (2.17)

one can read the equation of motion

0 = vz
[
4d+ vz

[
6df(v, z)− 3z∂zf(v, z)

+
(
2df(v, z)2 − zf(v, z)∂zf − z∂vf(v, z)

)
vz
]]

+ 2zvzz. (2.18)

This equation can be solved directly with the boundary condition determined by γA =

(ṽ(x), z̃(x)) and A. However, there is a recipe for working out the solution ΓA. In fact, we

can get a relation ṽ(z̃) from ṽ(x) and z̃(x) by eliminating the parameter x on γA. Then

the extremal codimension-one hypersurface ΓA can be obtained by dragging ṽ(z̃) along the

x direction. We have checked that ṽ(z̃) is indeed the solution of (2.18). For all x on ΓA we

have ∂v
∂z = ∂ṽ

∂x/
∂z̃
∂x . So the on-shell volume is simply

V = 2Ld−2

∫ z∗

0
dz

[
−f(v, z)

(
∂ṽ

∂x
/
∂z̃

∂x

)2

− 2
∂ṽ

∂x
/
∂z̃

∂x

]1/2

z−dx̃(z). (2.19)

This integral is more intuitive for the static background, as we will show below. However,

there are situations where z∗ is a multi-valued function of boundary time t. In this case,

ṽ(z) and x̃(z) are also multi-valued functions of z. The integral in (2.19) is then ill-defined.

In these cases, we choose another parametrization to describe the extremal codimension-one

hypersurface ΓA.

2.2.2 An alternative parametrization z(v)

The extremal bulk region ΓA enclosed by the extremal surface v = ṽ(x), z = z̃(x) can also

be parametrized by

z = z(v) (2.20)

due to the translational symmetry of the Vaidya metric. The induced metric on ΓA now is

ds2 =
1

z2

[
−
(
f(v, z) + 2

∂z

∂v

)
dv2 + dx2 +

d−2∑
i=1

dy2
i

]
, (2.21)
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with the volume

V = 2Ld−2

∫ ṽ(l/2)

v∗

dv

∫ x̃(v)

0
dx

[
−f(v, z)− 2

∂z

∂v

]1/2

z−d, (2.22)

where x̃(v) is the codimension-two extremal surface γA. The equation of motion gives

0 = 2z′′(v) +
[
f(v, z) + 3z′(v)

]
∂zf(v, z) + ∂vf(v, z). (2.23)

The boundary condition is determined by the codimension-two surface γA = (ṽ(x), z̃(x))

and A. Similar to the above subsection, the solution to eq. (2.23) can be determined by

z̃(ṽ) on the boundary γA. Then the on-shell volume reads

V = 2Ld−2

∫ ṽ(l/2)

v∗

dv

[
−f(v, z(v))− 2

∂z

∂v

]1/2

z(v)−dx̃(v). (2.24)

It turns out that z̃(ṽ) is a single-valued function of ṽ all the time. Thus the integral in

eq. (2.24) is well defined in the whole process of evolution. We will adopt this formula to

calculate the subregion complexity for the dynamical Vaidya-AdS spacetime. Definitely,

both eq. (2.19) and (2.24) give the same result when ṽ(z̃) is singly valued.

2.3 Static examples

Since the Vaidya metric interpolates between the pure AdS and the SAdS black hole

background, let us study the HEE and the holographic subregion complexity in the pure

AdS and SAdS backgrounds before we discuss the dynamical Vaidya background.

2.3.1 Pure AdS

For the pure AdS, we have f(v, z) = 1. The equations (2.11), (2.12) have a solution

v(x) = t− z(x). (2.25)

Here t is the time coordinate on the boundary. Then eq. (2.10) gives

dz

dx
= ±

√
z2d−2
∗
z2d−2

− 1 (2.26)

where the plus sign is taken for x < 0 and the minus sign for x > 0. Integrating the above

formula gives a relation between z∗ and l.

z∗

√
πΓ( d

2d−2)

Γ( 1
2d−2)

=
l

2
. (2.27)

The on-shell area of the extremal surface reads

Area(γA)AdSd+1
=

(
L

ε

)d−2 2

d− 2
−
(
L

l

)d−2 2d−1π
d−1
2

(d− 2)

(
Γ( 1

2d−2)

Γ( d
2d−2)

)1−d

. (2.28)
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The result is the same as (37) in [54]. The divergent term is proportional to the area of

the boundary of A. For AdS3, we get

Area(γA)AdS3 = 2 log

(
l

ε

)
. (2.29)

The equation of motion (2.18) or (2.23) for pure AdS can be solved directly as

v(z) = t− z. (2.30)

Here t is the time coordinate on the AdS boundary. The on-shell volume reads

V = 2Ld−2

∫ z∗

0
dzz−d

∫ z∗

z

√z2d−2
∗
ẑ2d−2

− 1

−1

dẑ (2.31)

where we have used (2.26). Integrating it directly, we get

VAdSd+1
=
Ld−2

εd−1

l

d− 1
+

√
πLd−2

zd−2
∗

(
2Γ( d

2d−2)

Γ( 1
2d−2)

−
dΓ( 1

2d−2)

(d− 1)2Γ( d
2d−2)

)
. (2.32)

Note that the divergent term is proportional to the volume of A. From (2.27), (2.32), it is

obvious that the finite term has the same dependence of l as the finite part of the HEE.

2.3.2 Schwarzschild-AdS black hole

For the Schwarzschild-AdS black hole f(v, z) = f(z) = 1−mzd. The event horizon locates

at zh = m−1/d. One can show that the solution to the equations (2.11), (2.12) is

v(x) = t+ g(z(x)), ∂z(x)g(z(x)) = − 1

f(z(x))
. (2.33)

Here t is the time coordinate on the AdS boundary. The conserved Hamiltonian leads to

a relation between l and z∗.∫ z∗

ε

[
(1−mzd)

(
z2d−2
∗
z2d−2

− 1

)]−1/2

dz =

∫ l/2

0
dx =

l

2
. (2.34)

The on-shell area of the extremal surface turns out to be

Area(γA)SAdSd+1
= 2Ld−2

∫ ε

z∗

zd−1
∗

z2d−2

[
(1 +mzd)

(
z2d−2
∗
z2d−2

− 1

)]−1/2

dz. (2.35)

These two integrals have no explicitly analytical expression.

The equation of motion (2.18) about the codimension-one extremal surface ΓA becomes

0 = vz

[
d
(

4− (2−mzd)vz(−3− (1−mzd)vz)
)]

+ 2zvzz. (2.36)

One can verify easily that the solution is

v = t+ g(z), ∂zg(z) =
1

−f(z)
, (2.37)

and read the on-shell volume of ΓA

VSAdSd+1
= 2Ld−2

∫ z∗

0
dz

1√
1−mzd

z−d
∫ z∗

z

√z2d−2
∗
s2d−2

− 1

−1

ds. (2.38)

This is the same as (2.7) in [41].
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3 Subregion complexity in Vaidya-AdS spacetime

We study the evolution of the subregion complexity after a thermal quench in this section.

The thermal quench in CFT could be described holographically by the dynamical Vaidya

spacetime, whose initial state corresponds to the pure AdS and the final state corresponds

to the SAdS black hole. As we have done for the static cases in the previous subsection,

we need first work out the evolution of the codimension-two extremal surface γA.

3.1 Evolution of holographic entanglement entropy

For the Vaidya metric (2.1) with the mass function (2.2), the equations (2.11), (2.12) for

the HEE become

0 = 2− 2d− 1

2

[
4− 4d+ (d− 2)M

(
1 + tanh(

v

v0
)

)
zd
]
v′2 + 4(d− 1)v′z′ + 2zv′′ (3.1)

0 = (d− 2)M2

(
1 + tanh

(
v

v0

))2

z2dv′2 + 2
Mzd+1v′2

v0 cosh2(v/v0)
+ 8(d− 1)(−1 + v′2 + 2v′z′),

− 2M

(
1 + tanh

(
v

v0

))
zd(2− 2d+ (3d− 4)v′2 + 2(d− 2)v′z′)− 8zz′′. (3.2)

We solve these two equations numerically by using the shooting method with the boundary

conditions,

v′(0) = z′(0) = 0, z(0) = z∗, v(0) = v∗. (3.3)

Here (v∗, z∗) is the turning point of the extremal surface γA. The targets on the AdS

boundary are

z(l/2) = ε, v(l/2) = t− ε (3.4)

where ε is a cutoff and t is the boundary time.

Once we get the solution, the HEE can be obtained from (2.13). As the HEE is

divergent, it is convenient to define subtracted HEE

ŜHEE = SHEE,Vaidya − SHEE,AdS, (3.5)

where both SHEE,Vaidya, SHEE,AdS are defined with respect to the same boundary region.

As we are discussing the strip which has a finite width but infinite length, we furthermore

define a finite quantity from the subtracted HEE

Ŝ =
4GN ŜHEE

2Ld−2
=
Area(γA)Vaidya −Area(γA)AdSd+1

2Ld−2
. (3.6)

Its evolution has two typical profiles as shown in figure 2. The first profile appears in the

AdS3 case and also in the higher AdSd+1(d ≥ 3) cases with narrow strips. In these cases,

the HEE in the Vaidya-AdS spacetime increase monotonically and reach saturation at late

time. In the left panel of figure 2, we show the evolution of Ŝ for an interval of length

l = 2 in AdS3. The other profile appears in the higher AdSd+1(d ≥ 3) cases with wide

strips. We show this profile in the right panel of figure 2, which corresponds to the strip

of width l = 5 in AdS4. Different from the first profile, this profile shows that though the
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Figure 2. The evolution of holographic entanglement entropy with respect to the boundary

time t. We fix M = 1 and v0 = 0.01 here. The transition point in the right panel locates

at t = 3.3248, Ŝ = 1.7437.
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Figure 3. The evolution of z∗ with respect to boundary time t. We fix M = 1 and v0 = 0.01 here.

The orange parts correspond to the surfaces of the minimum area. The transition point locates at

t = 3.3248 in the right panel.

HEE increases first as well, it exhibits a swallow tail before reaching the saturation. This

phenomenon was first discovered in [54]. The swallow tail implies that there are multiple

solutions to the differential equationns at a given boundary time. We should choose the

one which gives the surface of the minimum area. The solutions which correspond to the

surfaces of non-minimum area are marked in grey in the right panel of figure 2. In any

case, the HEE is always increasing continuously before reaching the saturation. For more

details on the evolution of the HEE after a thermal quench, please refer to [54–56, 58].

In figure 3 we show the corresponding evolution of z∗. It is multi-valued only when Ŝ

is multi-valued. The multi-valuedness depends on the spacetime dimension and the strip

width. In AdS3, z∗ is always singly valued no matter how large l is. However, in the

spacetime with dimension d ≥ 4, z∗ is singly valued only when l is small. When l is large

enough, z∗ becomes multi-valued. For the AdS4 we study here, the critical width is l = 1.6.

When z∗ is multi-valued, its evolution is subtle. The multi-valuedness means that there

are multiple extremal surfaces at a given time. The requirement [32] that the HRT surface

should be of the minimal area leads to the transition at some point. In the right panel

of figure 3, the evolution of z∗ follows the line in orange, which has discontinuity. The

transition point is at t = 3.3248.

The details of the corresponding evolution of the extremal surface γA are shown in

figure 4 and figure 5. In figure 4, γA evolves smoothly from the initial state to the final
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Figure 4. The evolution of extremal surface γA = (z̃(x), ṽ(x)) for AdS3 and l = 2. We fix M = 1

and v0 = 0.01 here. The left panel shows the evolution in (x, v, z). The right panel shows their

projection on to the (x, z) plane. The extremal surface evolves from left to right in the left panel

and from up to down in the right panel.
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Figure 5. The evolution of extremal surface γA = (z̃(x), ṽ(x)) for AdS4 and l = 5. We fix M = 1

and v0 = 0.01 here.

state. In figure 5, the evolution of γA has a gap marked in gray before it reaches the final

state. These gray surfaces correspond to the swallow tail in figure 2. They are not the

smallest area surfaces at the given boundary times.

More precisely, the multi-valuedness not only depends on the spacetime dimension and

the size of the strip, but also depends on the parameter v0. In the above discussion, we fix

M = 1 and v0 = 0.01. As we will show later, the swallow tail would disappear if we choose

a large enough v0, which corresponds to a slow quench.

3.2 Evolution of subregion complexity

Once we get the HRT surface γA = (ṽ(x), z̃(x)), we can determine the codimension-one

extremal surface ΓA by dragging the points on γA along the x direction, as we have stressed

in the subsection 2.2. The evolution of ΓA has the profile shown in figure 6. Similar to

the HEE, the volume of ΓA which can be obtained by (2.19) is divergent, thus we define a

normalized subtracted volume

Ĉ =
8πRGCA

2Ld−2
=
VV aidya − VAdS

2Ld−2
(3.7)
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Figure 6. The evolution of the codimension-one extremal surface ΓA which characterizes the

subregion complexity enclosed by the codimension-two extremal surface γA and A. We take

AdS4, l = 5,M = 1 and v0 = 0.01 here.
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Figure 7. The evolution of the subregion complexity density Ĉ/l with respect to the boundary

time t. We fix M = 1 and v0 = 0.01 here. The transition point in the right panel locates at

t = 3.3248.

where R is the AdS radius which has been set to 1, and the volumes are defined with respect

to the same boundary region. It is finite and can be used to characterize the evolution of

the subregion complexity.

As shown in figure 7, the evolution of the subregion complexity has a common feature:

it increases at the early stage and reaches a maximum, then it decreases and gets to

saturation in the late time.

Another important feature of the subregion complexity under a global quench is that it

may evolves discontinuously, as shown by the orange line in the right panel of figure 7. This

is due to the transition of the HRT surface shown in figure 3. As a result, the subregion

complexity exhibits a sudden drop in the evolution. The gray dashed part in figure 7

corresponds to the swallow tail in figure 2. In other words, even though the HEE always

evolves continuously, the subregion complexity does not.

3.2.1 The dependence of subregion complexity evolution on l

The evolutions of the holographic entanglement entropy and the subregion complexity for

different l are displayed in figure 8. As shown in the lower left panel for the Vaidya-AdS3

spacetime, the subregion complexity increases at the early stage and then decreases and
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Figure 8. The upper panels show the evolution of the entanglement entropy for different l. The

lower panels show the corresponding subregion complexity density Ĉ/l (thick lines) for different l.

We fix M = 1, v0 = 0.01 here.
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Figure 9. The snaps of the evolution of entanglement surface γA in the (v, z) plane. The time

flows from left to right. γAi(i = 1, 2, 3, 4, 5) are the entanglement surfaces corresponding to the

boundary times t = −0.01, 1.4660, 3.3248, 3.3248 and 3.9373, respectively. γA3 and γA4 have the

same area at boundary time t = 3.3248, which corresponds to the transition point. The red dashed

line is the apparent horizon. We fix M = 1, v0 = 0.01 here.

maintains to be a constant value at late time. The situation in the Vaidya-AdS4 spacetime

is similar except that when the size l is large enough, there is a sudden drop of the subregion

complexity in the evolution, as shown in the lower right panel. This corresponds exactly

to the kink in the evolution of HEE shown in the upper right panel. We plot the transition

point in figure 9. The entanglement surface evolves from left to right. Its profile experiences

a transition at time t = 3.3248. The corresponding surfaces γA3 and γA4 have the same

area. But the volumes they enclosed are different. This leads to a sudden drop of the

subregion complexity.
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Figure 10. The evolution of the entanglement entropy and the subregion complexity for different

l in AdS3. We fix M = 1, v0 = 0.01 here.

Remarkably, we find that the growth rate of the complexity density for different l is

almost the same at the early stage. This is very similar to the evolution of the entanglement

entropy for different l. It has been argued that for the geometry of strip, the area of the

boundary of the subregion A does not change, so the initial propagation of excitation from

the subregion A to outside which contributes to the entanglement is not affected by the strip

width [54]. Since in the early time the complexity density growth is mainly caused by the

local excitations, which is independent of l, the same rate of increasing for different l could

be expected. On the other hand, the nonlocal excitations have important contributions to

the subregion complexity at later time such that the evolutions present different behaviors.

For the cases that l is large enough, we find that the complexity density grows for a

long time before it drops down. The evolutions of the subregion complexities for different l

in AdS3 are shown in the right panel of figure 10. The complexity presents two increasing

stages: it increases faster in the early time, then it increases at a slower rate. At the second

stage, it evolves almost linearly, the larger l is, the longer it stands, with the slope being

proportional to the mass parameter,

Ĉ/l ∝Mt. (3.8)

Besides, we also notice that, the maximum value of the complexity density in the evolution

is proportional to the size l

Ĉmax/l ∝ l. (3.9)

The proportional factor is a function of spacetime dimension d and the mass parameter M .

Due to the limitation of our numerical method, the more detailed analysis on the

evolution of the complexity for different l in AdS4 is absent here. Nevertheless, from the

right panel of figure 8, we see that the linear growth in the second stage persists, and the

larger the size, the longer the complexity increases.

In fact, the linear growth of the complexity has been found in many different non-

holographic systems [1, 60] and also appears in the CV and CA conjectures at late time

limit [61, 62]. It is also reminiscent of the time evolution of the entanglement entropy from

black hole interiors [59]. In our model, if we set l→∞, we may expect that the behavior of

the complexity will turn to the behavior for whole boundary region and so the complexity
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Figure 11. The dependence of the entanglement entropy and the subregion complexity density

Ĉ/l on v0. We take v0 = 0.01, 0.3, 0.6, 0.9 and fix M = 1 here. The sudden drop in the subregion

complexity evolution disappears when v0 > 0.57.

would increase linearly at late time as well. Since the brutal numerical method is not able

to study the cases of an extremal large l, one may turn to the analytical way adopted in [56]

to study the linear growth of the subregion complexity. Actually, the recent studies of the

complexity following a global quench based on the CA and CV conjectures show that the

late time behavior of the complexity for the whole boundary region is linear [57, 63].

3.2.2 The dependence of subregion complexity evolution on v0

In this subsection, we study the effect of the parameter v0 on the evolution of the subregion

complexity. The parameter v0 characterizes the thickness of the null-dust shell in the

gravity, its inverse could be taken as the speed of the quench. The numerical results are

shown in figure 11. All the processes evolve from the pure AdS background to an identical

SAdS black hole background. It is obvious that the thinner the shell is, the sooner the

quench happens, and the earlier the system reaches equilibrium. The thicker the shell

is, the earlier the system starts to evolve, but the maximum complexity the system can

reach is smaller. Thus the subregion complexity is closely related to the change rate of a

state. Especially, the sudden drop in the complexity evolution disappears when v0 is large

enough. For the AdS4 case, the critical point is v0 = 0.57. Namely, if the quench happens

slowly enough, the subregion complexity evolves continuously.

3.2.3 The dependence of subregion complexity evolution on M

Now we study the effect of the mass parameter M on the evolution. We fix the shell

thickness v0 = 0.01 here. The numerical results are shown in figure 12. The system evolves
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Figure 12. The dependence of the entanglement entropy and the subregion complexity density

Ĉ/l on M . We fix v0 = 0.01 here. Note that there is still a sudden drop of complexity in the

evolution when M = 0.05 in the right lower panel.

from a pure AdS background to the SAdS black holes with different mass M . The maximum

complexity Ĉmax the system can reach in the evolution depends on M . For AdS3, l = 2,

we get Ĉmax/l ∝ 0.12M . For AdS4, l = 5, we get Ĉmax/l ∝ 0.62M . As we discussed above,

Ĉmax/l is also proportional to l. Thus we have

Ĉmax/l ≈ f(d)Ml (3.10)

where the coefficient f(d) is a function of spacetime dimension. Unlike the parameter v0,

the increases of M can not change the qualitative behavior of the evolution, as shown in

the lower right panel. Moreover, the larger the M is, the sooner the subregion complexity

reaches the constant value, as shown more obviously in the right lower panel.

If we zoom in the final stage of the evolution shown in the left lower panel in figure 8

and figure 12, we find that the difference of the complexity between the initial state and

the final state Ĉf decreases with M and l. Ĉf is more involved in the right lower panels in

figure 8 and figure 12. In this subsection, we study the dependence of the final subregion

complexity on M and l in detail. For AdS3 in the left upper panel of figure 13, we see that

the complexity of the final state is always smaller than the initial state. The complexity

density decreases with M linearly for different l and has almost the same rate −0.004M .

The situation is more complicated for AdS4 shown in the right upper panel of figure 13.

The complexity density decreases with almost the same rate for different l at the beginning.

Then it begins to increases with M . These coincide with the behaviors we have found in

figure 8 and figure 12.
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Figure 13. The dependence of subregion complexity density Ĉf/l on the mass parameter M . The

upper left panel is for AdS3 and l = 1, 2, 3, 4, 5. The upper right panel is for AdS4 and l = 1, 2, 3, 4, 5.

We also compare the dependence of complexity density on the spacetime dimension.

From the left lower panel, we see that the complexity always decreases with M when the

strip size l is not big enough. However, when the strip size is large, the complexity density

would decreases with M first and then increases almost linearly when M is large enough

in AdSd+1 with d ≥ 3.

4 Conclusions and discussions

In this paper, we analyzed the evolution of the subregion complexity under a global quench

by using numerical method. We considered the situation where the boundary subregion

A is an infinite strip on a time slice of the AdS boundary. We followed the subregion CV

proposal, which states that the subregion complexity is proportional to the volume of a

codimension-one surface ΓA enclosed by A and the codimension-two entanglement surface

γA corresponding to A.

We found the following qualitative picture: the subregion complexity increases at early

time after a quench, and after reaching the maximum it decreases surprisingly to a constant

value at late time. This non-trivial feature is also observed in [64] where the local quench

is used to study the subregion CV proposal. The decrease of complexity is also observed

in some space like singular bulk gravitational background [65, 66]. It was argued that the

decrease of complexity has something to with the entanglement structure. However, as

pointed out in [2], entanglement is not enough to explain the complexity change. There

should be other mechanism for this phenomenon. The evolution of complexity following a

quench in free field theory is studied recently [67]. It was found that whether the complexity
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grow or decrease depending on the quench parameters. To compare with the holographic

result, the evolution of complexity following a quench in conformal field theory is required.

Another important feature in the subregion complexity under a global quench we found

here is that when the size of the strip is large enough and the quench is fast enough, in

AdSd+1 spacetime with d ≥ 3 the evolution of the complexity is discontinuous and there is

a sudden drop due to the transition of the HRT surface.

Moreover, at the early time of the evolution, the growth rates of the subregion com-

plexity densities for the strips of different sizes are almost the same. This implies that the

complexity growth is related to the local operators excitations. On the other hand, for a

large enough strip, the subregion complexity grows linearly with time. If we set the strip

size l→∞, we may expect that the late time behavior of subregion complexity is linearly

increasing. However, the large l → ∞ limit should be considered carefully, due to the

presence of the holographic entanglement plateau [68–70]. In this limit, the HRT surface

could be the union of the black hole horizon and the HRT surface for the complementary

region. One has to take into account of this possibility in discussing the large l limit.

Actually, the complexity we considered here for strip with limit l →∞ should be reduced

to the CV proposal for one-sided black hole. This case has been studied in [57] where it

was found that the late time limit of the growth rate of the holographic complexity for the

one-sided black hole is precisely the same as that found for an eternal black hole. Thus the

complexity for strip with infinite width will not decrease and there will not be a plateau

at late time.

In asymptotic AdS3 black hole case, our results show that the complexity and the

corresponding entanglement entropy for subregion will both keep a constant approximately

if the evolutional time t & l/2. This can be understood from the thermalization of local

states. ref. [71] has shown that, for a given quench in 2D CFT, the density matrix of

subsystem will be exponentially close to a thermal density matrix if the time is lager than

l/2. Its correction to thermal state will be suppressed by e−4π∆min(t−l/2)/β . Here β is the

inverse temperature and ∆min is the smallest dimension among those operators which have

a non-zero expectation value in the initial state. Thus, we can expect that the complexity

and entanglement entropy will suddenly go to their values in corresponding thermal state

when the time t is larger than l/2. This kind of behavior has been shown clearly in our

figure 10. The similar behaviours can also be observed in higher dimensional cases, however,

the critical time is not l/2 but depends on the dimension. This sudden saturation is one

characteristic phenomenon in subregion complexity. One can easy see that the critical time

of saturation will approach to infinity if the size of subregion l approaches to infinity.

We also analyzed the dependence of the subregion complexity on various parameters,

including the quench speed, the strip size, the black hole mass and the spacetime dimension.

For slow quenches or small strip, the sudden drop in the subregion complexity evolution

disappear such that the complexity evolves continuously. The mass parameter does no

change the qualitative behavior in the evolution when other parameters are fixed.

Our study can be extended in several directions. Besides the large size limit we men-

tioned above, it would be interesting to consider the evolution of the subregion complexity

under a charge quench or in higher derivative gravity. It would be certainly interesting
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to study the subregion complexity by using the CA proposal in order to understand the

holographic complexity better.
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