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1 Introduction

The AdS/CFT correspondence [1] is a very powerful method to analyze the phase structures

and phase transitions in strongly coupled quantum many-body systems. This is because

these complicated quantum problems are equivalently mapped to the study of their gravity

duals, each of which is often described by a classical Einstein gravity coupled to various

matter fields.

A rich phase diagram can appear in quantum many-body systems when there are many

competing and mutually frustrating interactions. For example, one of the richest and most

interesting phase structures has been known to appear in strongly correlated materials,

such as the cuprate high-Tc superconductors [2] (see the figure 10 in the main text), and

layered organic conductors. In the phase diagram of high-Tc, an insulator phase with the

antiferromagnetic order (called the Mott insulator) is located close to the superconductor

phase. This implies that the strong Coulomb repulsive interaction is behind the pairing

mechanism of the superconductivity: It is highly likely that superconductivity is not driven

by a conventional mechanism due to simple attractive forces. Instead the superconductivity
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emerges as the best compromise among many competing ground states. Adjacent to the

Mott insulator and superconductor phases, there appear the pseudo gap and strange metal

phases, where transport properties are highly unusual. As we increase doping x beyond

the superconductivity phase, there is the fermi-liquid phase.

The purpose of this paper is to study such a complex competition of different quan-

tum ground states in a simple setup of AdS/CFT. Following the idea of the holographic

superconductor [3–11], we consider the Einstein gravity coupled to a U(1) gauge field and

a charged scalar field. The U(1) gauge field is interpreted as an R-charge and the scalar

field is dual to an R-charged operator. An important difference from the earlier works is

that in our setup the holographic superconductor is put in the five-dimensional AdS soli-

ton background [12, 13]. As we compactify one of the space directions in this asymptotic

AdS spacetime, the AdS soliton is dual to a Scherk-Schwarz compactification of a four-

dimensional conformal gauge theory, such as the N = 4 super Yang-Mills theory. The dual

field theory is thus (2+1)-dimensional as is so in the high-Tc superconductors.

In the holographic superconductors, there is a finite temperature superconductor-metal

transition. On the other hand, the AdS soliton background decays into AdS black hole via

a Hawking-Page transition [14], which is dual to the confinement/deconfinement transi-

tion [12]. One of our main findings is that at zero temperature, as we change the chemical

potential, there is an intervening phase between the holographic superconductor phase and

the confining phase, which we call the AdS soliton superconductor phase (refer to figure 9

in the main text). While this phase is similar to the holographic superconductor phase

(labeled as the AdS BH superconductor phase in figure 9) in the sense that it is the phase

where the charged scalar condenses, this phase has a much larger gap. The confinement

phase (labeled as the AdS soliton in figure 9) is a phase with a mass gap and an analogue

of an insulator in electronic systems. Our setup thus realizes, as we change the chemical

potential, an insulator-to-superconductor quantum phase transition.

We will compare these findings with the RVB (resonating valence bond) approach to

high-Tc superconductors [15]. The RVB theory starts by taking into account the effects

of the strong Coulomb interaction which is most operative near zero doping, x ∼ 0. The

strong Coulomb repulsion forbids any site to be occupied by more than one electron, and

thus serves effectively as a constraint on the physical Hilbert space. This constraint can

be written as a gauge constraint, and therefore physics of high-Tc superconductors near

x ∼ 0 can be written in the language of an SU(2)/U(1)/Z2 gauge theory (the gauge group

depends on, at the level of the mean field theory, the choice of a saddle point.) The quasi-

particles charged under the gauge field is not an electron, but an emergent entity which

carries a fraction of the quantum number of electrons. The abnormal phases in high-Tc,

i.e., the phases which are not well-described in terms of electrons, can then be potentially

described in terms of these emergent particles when they are deconfined, whereas confine-

ment thereof gives rise to conventional phases. The high-Tc superconductor thus provides

a venue where there is a complex interplay between confinement/deconfinement physics

and superconductivity in (2+1) dimensions.

This paper is organized as follows: in section 2, we will show that an superconduc-

tor/insulator phase transition will occur in the AdS soliton background. In section 3, we
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will analyze the superconductor phase in the AdS5 black hole. In section 4, we will con-

sider the phase diagram of our system and discuss its relation to the RVB approach to the

high-Tc superconductors. In section 5 we will summarize conclusions.

2 Holographic superconductor/insulator transition at zero temperature

Let us begin with the five-dimensional Einstein-Maxwell-scalar theory:

S =

∫

d5x
√−g

(

R+
12

L2
− 1

4
FµνFµν − |∇µΨ − iqAµΨ|2 −m2|Ψ|2

)

. (2.1)

Notice that almost the same system appears in the AdS5×S5 compactification dual to

N = 4 super Yang-Mills.1 There, the Aµ and Ψ can be dual to a R-charge current and

a R-charged operator with charge q, though we will not further pursuit a string theory

interpretation in this paper. In section 4.3, we will show that we can consistently embed

our phase transition into the N = 1 superconformal field theory dual to AdS5 × T 1,1.

In this theory, our setup is defined by an asymptotically AdS spacetime which ap-

proaches to R1,2 × S1 near the boundary. In this section we only consider the case of zero

temperature. We impose the anti-periodic boundary condition for fermions (i.e. Scherk-

Schwarz boundary condition) in the S1 direction. When the gauge field is vanishing, the

most stable configuration which satisfies this property is known as the AdS soliton [12, 13]

given by the metric

ds2 = L2 dr
2

f(r)
+ r2(−dt2 + dx2 + dy2) + f(r)dχ2 , (2.2)

f(r) = r2 − r40
r2

.

This can be obtained by double Wick rotating the AdS Schwarzschild black hole. In order

to have a smooth geometry we need to impose the periodicity χ ∼ χ+ πL
r0

for the Scherk-

Schwarz circle. If we extract the coordinates (r, χ), the geometry looks like a cigar, whose

tip is given by r = r0.

Now we take into account the coupling of this system to the gauge field. We can easily

find a simple solution with the constant gauge potential At = µ.2 Notice that as opposed

to the AdS black holes which require At = 0 at the horizon, the boundary condition is

chosen so that the gauge field is non-singular at the tip.

2.1 Superconductor/Insulator in AdS5 soliton

In the presence of charged scalar field as in (2.1), the phase structure can be more non-

trivial as the scalar field can condense. We would like to analyze this below assuming that

1Though in many string theory setups there exist Chern-Simons terms, we will not consider it in this

paper as they do not change our solutions. Recently a new possibility of instability in the presence of

Chern-Simons terms has been found in [16].
2In general, it is possible that we have other solutions which look more non-trivial. However, we do not

discuss it because in this paper we are always working within the approximation where we can ignore the

backreaction of gauge field and scalar to the metric.
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the backreaction of the gauge field and scalar to the metric (2.2) is negligible. We focus on

the solutions depending on only radial coordinate as follows:

A = Φ(r)dt , Ψ = Ψ(r) . (2.3)

Moreover, we take Ψ to be real due to the Maxwell equation. We can also set L = 1

and r0 = 1 without losing generality. At zero temperature the system depends on the

parameters (q, µ,m2).

The equations of motion are

Ψ′′ +

(

f ′

f
+

3

r

)

Ψ′ +

(

−m
2

f
+
q2Φ2

r2f

)

Ψ = 0 , (2.4)

Φ′′ +

(

f ′

f
+

1

r

)

Φ′ − 2q2Ψ2

f
Φ = 0 . (2.5)

We have to impose the boundary condition at the tip r = r0 and the boundary r = ∞ to

solve the above equations. We will concentrate on the case where m2 is given by m2 = −15
4

which satisfies the BF bound m2 > −4. Though this is just for simplicity, we can still

extend our analysis to general values of m2. Near the boundary, the solutions behave as

Ψ =
Ψ(1)

r3/2
+

Ψ(2)

r5/2
+ . . . , (2.6)

Φ = µ− ρ

r2
+ . . . . (2.7)

At this value of m2, there are two alternative descriptions since both terms, proportional

to Ψ(1) and Ψ(2), respectively, become normalizable. We defined the corresponding dual

operators by O1 and O2 whose conformal dimensions are give by ∆ = 3/2 and ∆ = 5/2,

respectively.

On the other hand, at the tip these behave as

Ψ = a+ b log(r − r0) + c(r − r0) + . . . ,

Φ = A+B log(r − r0) + C(r − r0) + . . . . (2.8)

Therefore, we impose the Neumann-like boundary condition b = B = 0 to take every

physical quantities finite.

In (2.7), the constants µ and ρ are holographically dual to the chemical potential

(gauge potential) and the charge density, respectively.

As is clear from (2.5), the equations of motion have the scaling symmetry (Φ,Ψ, µ, q) →
(λΦ, λΨ, λµ, q/λ). By taking λ ≪ 1 (the probe limit), we can indeed neglect the back

reactions of Φ and Ψ to the metric as in the standard holographic superconductors [3, 8].

In other words, this probe approximation is justified when µ≪ 1 and q ≫ 1 with µq kept

finite. Once we take this probe limit, the functional form of physical quantities up to the

overall scaling only depend on the combination µq in this probe limit. Thus below we will

simply set q = 1.
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Figure 1. The condensations of the scalar operators 〈O1〉 (left) and 〈O2〉 (right).
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Figure 2. The charge density ρ plotted as a function of µ when 〈O1〉 6= 0 (left) and 〈O2〉 6= 0

(right). Its derivative jumps at the phase transition point.

In the AdS/CFT dictionary, the asymptotic behavior of Φ gives the chemical potential

µ and charge density ρ in the dual field theory. The scalar operator O coupled to the scalar

field Ψ is (up to a normalization)

〈Oi〉 = Ψ(i) , i = 1, 2 (2.9)

with the boundary condition ǫijΨ
(j) = 0. We can plot 〈Oi〉 with respect to the chemical

potential µ by numerical calculations and find that the condensation occurs if µ > µi

(µ1 = 0.84 and µ2 = 1.88) as in figure 1. Notice that for any values of q, the probe

approximation offers us exact critical values µ1,2 and behaviors near the the critical points,

where the back reactions are highly suppressed.

In this way, we find a phase transition triggered by the scalar field condensation in the

AdS soliton background. We also find that it is a second order phase transition as is clear

if we plot the charge density ρ (= ∂Ω/∂µ) as a function of µ as shown in figure 2. When

µ is small, the system is described by the AdS soliton solution itself. This is interpreted

as the insulator phase as this system has a mass gap, which is due to the confinement in

the (2+1)-dimensional gauge theory viewpoint via the Scherk-Schwarz compactification.

On the other hand, for a larger µ, it undergoes a phase transition and is expected to

reach a superconductor (or superfluid) phase. Thus we can regard this as the holographic

realization of superconductor/insulator transition.

The mechanism of this transition is similar to the standard holographic superconduc-

tors [3, 8], but is different in that our phase transition occurs even at strictly zero tem-

perature. We also give an explanation of the transition by relating it to the Schrödinger

problem in the appendix A.

– 5 –



J
H
E
P
0
3
(
2
0
1
0
)
1
3
1

If we impose the periodic boundary condition instead of the anti-periodic one for

fermions, the story will change largely because the AdS soliton phase is not available and

the confinement will not occur at zero temperature. In this case, we need to consider a

zero temperature limit of holographic superconductor in AdS black holes, which has been

analyzed in [17–20]. We will not discuss this case in this paper.

So far we only consider the zero temperature system. At finite temperature T , it

is described by compactifying the Euclidean time direction. When T is greater than a

certain value Tc, a phase transition like confinement/deconfinement transition occurs as we

will see later. Thus our argument of phase transition can equally be applied to the finite

temperature case as long as we have T < Tc and we can ignore the back reaction.

2.2 Conductivity

We can holographically calculate the conductivity σ(ω) by solving the equation of motion

of Ax ∝ e−iωt:

A′′
x +

(

f ′

f
+

1

r

)

A′
x +

(

ω2

r2f
− 2q2Ψ2

f

)

Ax = 0 , (2.10)

by requiring the Neumann boundary condition at the tip r = r0 as in (2.8). Looking at

the asymptotic behavior near the boundary r → ∞

Ax = A(0)
x +

A
(1)
x

r2
+
A

(0)
x ω2

2

log Λr

r2
+ · · · , (2.11)

the holographic conductivity is found as follows [7]

σ(ω) =
−2iA

(1)
x

ωA
(0)
x

+
iω

2
. (2.12)

First let us consider the AdS soliton background (2.2) without the scalar condensation.

Since there is no horizon, the equation of motion with the boundary condition at the tip

requires that A
(1)
x

A
(0)
x

is real. Therefore the real part of the conductivity vanishes. This means

that there is no dissipation and is consistent with the absence of horizon. The imaginary

part of σ(ω) is plotted in the left graph of figure 3. In this way, we can identify the AdS

soliton with an insulator. We also notice there are poles periodically at the points where

A
(0)
x vanishes. These correspond to normalized modes dual to vector operators. In the

paper [21], this setup has been used to realize the fractional quantum Hall effect by adding

D7-branes wrapped on S5, which is a basic example of topological insulators (see [22] for

its back reacted supergravity solution). On the other hand, if we calculate σ(ω) for the

AdS soliton with the scalar condensation by taking µ > µ1,2, then the imaginary part of

σ(ω) is obtained as in the right graph of figure 3. When ω is large, the behavior looks very

similar to the one for the AdS soliton without the scalar condensation. However, in the

present case, we can observe a pole even at ω = 0. The Kramers-Kronig relation

Imσ(ω) =
1

π
P

∫ ∞

−∞
dω′Reσ(ω′)

ω − ω′ . (2.13)
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Figure 3. The imaginary part of the conductivity for the AdS soliton without a scalar condensation

〈O1,2〉 = 0 (left) and with a scalar condensation 〈O1〉 6= 0. We employed the background with

ρ = 0.0094 and µ = 0.84 in the right graph.

argues that Reσ(ω) has a delta functional support. Thus this should be identified with

the superconductivity. Defining the superfluid density ns by Imσ(ω) ∼ ns

ω in the ω → 0

limit, we obtain the behavior ns ∼ 20µ1(µ−µ1) and ns ∼ 1.2µ2(µ−µ2) for each case near

the transition.

3 AdS5 charged black hole and superconductor

At high temperature, we expect that the AdS soliton background will decay into the AdS

black hole via a Hawking-Page transition, which is dual to the confinement/deconfinement

transition [12]. It is well expected that this should be true even in the presence of scalar con-

densations. Therefore, here we want to analyze the properties of five-dimensional charged

AdS black hole solutions and their superconductor phase transition. We start with the

Einstein-Maxwell theory given by (2.1) by setting Ψ = 0. The equations of motion look like

∂µ(
√−ggµνF ρ

ν ) = 0 , (3.1)

Rµν − R

2
gµν − 6

L2
gµν =

1

2

(

FµσF
σ
ν − 1

4
gµνFρλF

ρλ

)

. (3.2)

It is straightforward to obtain the the following solution (see e.g. [10])

ds2 = −f(r)dt2 + L2f(r)−1dr2 + r2(dx2 + dy2 + dz2) , (3.3)

At = µ

(

1 − r2+
r2

)

, (3.4)

with the function f(r) given by

f(r) = r2
(

1 − (b2 + 1)
r4+
r4

+ b2
r6+
r6

)

, (3.5)

where we defined b2 = µ2

3r2
+

. The temperature of this black hole is given by T = r+

2πL(2−b2).
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Figure 4. The real and imaginary parts of the conductivity in AdS5 charged black hole. Three

curves correspond to b = 0, 0.5 and b = 1, respectively in the unit r+ = L = 1. When we fixed ω/T ,

the real part of the conductivity decreases as b becomes large, while the imaginary part increases.

3.1 Conductivity in metallic phase

It is also interesting to calculate the conductivity in this background. In the AdS4 black

hole background, this has been done in [10]. We assume the fluctuations of Ax and gtx

have the time dependence e−iωt. We will set L = r+ = 1 as before.

The Einstein equation for (x, r) component leads to

g′tx − 2

r
gtx − 2µ

r3
Ax = 0 , (3.6)

and the equation of motion for Ax reads

(rf(r)A′
x)

′ +
ω2r

f(r)
Ax + 2µr2+

(gtx

r2

)′
= 0 . (3.7)

By combining (3.6) and (3.7), we obtain

(rf(r)A′
x)′ +

(

−12b2

r5
+
ω2r

f(r)

)

Ax = 0 . (3.8)

The real and imaginary parts of the conductivity are plotted in figure 4. The pole of

Imσ(ω) at ω = 0 for non-zero values of µ shows a delta functional contribution to Reσ(ω)

via the Kramers-Kronig relation, which should be smoothed by actual impurities [8, 10].

3.2 Holographic superconductor in AdS5 black hole

In the system in (2.1), we can write down the equations of motion for the gauge potential

Φ and the scalar field Ψ, which only take real values, as follows:

Ψ′′ +

(

f ′

f
+

3

r

)

Ψ′ +

(

q2Φ2

f2
− m2

f

)

Ψ = 0 , (3.9)

Φ′′ +
3

r
Φ′ − 2q2Ψ2

f
Φ = 0 . (3.10)

The equation of motion for Ax is given by

A′′
x +

(

f ′

f
+

1

r

)

A′
x +

(

ω2

f2
− 2q2Ψ2

f

)

Ax = 0 . (3.11)
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Figure 5. The scalar condense for O1 (left) and O2 (right).
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Figure 6. The real part of the conductivity for O1 6= 0 (left) and O2 6= 0 (right). When we fixed

ω/T , the real part of the conductivity decreases as |µ− µc| becomes large.

Now we would like to analyze the holographic superconductor phase in this system

by numerical calculations. This system has been studied in [7] for different values of m2.

Due to the same reason as before, we set m2 = −15
4 , L = r+ = q = 1 and b = 0, which

corresponds to the temperature T = 1
π . The result showing the scalar field condensation

is plotted in figure 5. It shows that the onset of the phase transition into superconductor

occurs when µ1 = 1.05 (for O1) and µ2 = 3.04 (for O2).

If we recover q and T , then we can conclude that in the probe approximation the

superconductor phase appears when T < αiqµ due to the condensation of 〈Oi〉, where

α1 = 0.30 and α2 = 0.105. The superfluid density in this case behaves like ns ∼ 40µ1(µ−µ1)

for O1 and ns ∼ 2.0µ2(µ− µ2) for O2, respectively.3

The real and imaginary part of conductivity is plotted in figure 6 and figure 7.

4 Phase structure

So far, we have studied the superconductor transition both in the AdS5 soliton and AdS5

BH.4 Here we would like to analyze the phase transition between AdS5 soliton and in AdS5

BH, which is dual to the confinement/deconfinement transition in 2 + 1 dimensional super

3For O2, the temperature is related with the chemical potential like 1−
T

Tc

= 1.65
“

µ

µ2

− 1
”

around the

critical point (T = Tc and µ = µ2). One can obtain ns ∼ 100T 2
c

“

1 −
T

Tc

”

by using these relations. This

result is consistent with that obtained in [7].
4 We can also consider the pure AdS5 spacetime with the Euclidean time and χ are compactified.

However, it has vanishing free energy Ω = 0 and is not favored.
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Figure 7. The imaginary part of the conductivity for O1 6= 0 (left) and O2 6= 0 (right). When we

fixed ω/T , the imaginary part of the conductivity increases as |µ− µc| becomes large.

Yang-Mills [12]. After we study this transition, here we would like to capture the phase

diagrams of our holographic system.

4.1 Phase transition between AdS5 soliton and AdS5 black hole

Let us analyze the phase transition between AdS5 soliton and AdS5 charged black hole in

the grand canonical ensemble. The phase boundary is given by the points where the Gibbs

Euclidean action IG of AdS5 soliton coincides with that of the AdS5 charged black hole.

In the gravity description of AdS/CFT, IG is simply related to the classical action (2.1)

evaluated for the classical solutions. Here the scalar field is vanishing. In general it is

rewritten as follows

IG = βΩ = β(E − TS − µρ) . (4.1)

First consider the AdS5 soliton. In this case, the only contribution to (4.1) is the

ADM energy E because ρ and the entropy S are vanishing. It is evaluated as follows in

our normalization5

Ωsl

V2
=
E

V2
= −π

4L3

R3
0

, (4.2)

where R0 = πL
r0

is the periodicity of χ. V2 denotes the infinite volume of (x, y) plane.

Next we turn to the AdS5 charged black hole. By employing the result in [10], we find

in our unit
Ωbh

V2
= −r

4
+

L

(

1 +
µ2

3r2+

)

R0 . (4.3)

We can now analyze the phase transition from (4.2), (4.3) and the formula of the

temperature

T =
r+
πL

(

1 − µ2

6r2+

)

. (4.4)

The smaller values of Ω among (4.2) and (4.3) are favored. It is easy to see that this phase

transition is first order.

For example, when µ is vanishing µ = 0, the phase transition occurs when T = 1
R0

. This

is obvious since the transition should be the point where the periodicity of Euclidean time

coincides with that of the χ circle. The AdS black hole and AdS soliton phase correspond

5We set the Newton constant to 16πGN = 1 in the action (2.1).
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Figure 8. The phase transition between AdS black hole and AdS soliton. The lower region

describes the AdS soliton phase, while the other the AdS charged black hole. We set R0 = 1 in this

figure.

to TR0 > 1 and TR0 < 1, respectively. On the other hand, when we increase the value of

µ at zero temperature T = 0, a phase transition occurs at µR0 = 2
1
2 3

1
4π ≃ 5.85 from the

AdS soliton to AdS charged black hole. We can also analyze the middle regions and find

the phase diagram in figure 8.

4.2 Phase diagram

Now we are prepared to write down our phase diagram in the probe approximation. We

can set L = 1 without losing generality and also assume q ≫ 1 so that we can ignore back

reactions to the metric. By the coordinate transformation, we fix the periodicity of χ such

as χ ∼ χ+ π (corresponding to r0 = 1 in AdS soliton). Thus the independent parameters

are T and µ. The probe approximation is good only when µ ≪ 1 as it corresponds to the

limit q → ∞ with µq kept finite. Therefore we can reliably write down the phase diagram

only when µ ≪ 1. However, notice that the phase boundary between the AdS soliton

and its superconductor is exact even in this approximation and we can capture important

structure of the global phase diagram as we will see below.

The basic fact is that in the probe approximation, the free energy difference due to the

superconductor phase transition is of order O(q−2) and thus is much smaller than that of

the transition between the AdS5 soliton and AdS5 BH, which is of order O(1). In this way,

first we may draw the phase boundary between the AdS5 soliton and AdS5 BH and then

later we can further take into account the superconductor transition. Finally we obtain

the phase diagram as shown in figure 9. The relative position of the superconductor curve

follows from the explicit values α1,2, µ1,2 and Tc = 1
π , which separate between various

phases as we calculated before by setting m2 = −15/4.

4.3 String theory embedding

In an actual string theory background, we can interpret the charge q as the R-charge of a

certain operator in its dual superconformal field theory. In general, q can be of order one

and then the critical chemical potential µc is also of order one. Thus µc can be greater
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Figure 9. The phase diagram of AdS soliton and AdS black hole with a charged scalar field

obtained in the large q limit.

than the confinement/deconfinement transition point µd = 2
1
2 3

1
4 ≃ 1.86 assuming r0 = 1

(or R0 = π). If this happens, the AdS soliton solution should be replaced with the AdS

black hole at µ = µc and the superconductor phase transition gets unphysical. To see

if we can avoid this problem in an explicit string theory setup, consider the AdS5 × T 1,1

spacetime dual to a four-dimensional N = 1 quiver gauge theory [23]. The R-charge R

with the standard normalization such that ∆ = 3
2R for chiral operators is proportional

to our charge via the relation q =
√

3
2LR by employing the analysis of the string theory

embedding found in [24]. Let us concentrate on the chiral operators of the form Tr[AiBj ],

which have ∆ = 3
2 and R = 1. For this operator, our previous analysis shows that the

superconductor phase transition in the AdS soliton background occurs at µc ≃ 0.97. Notice

again that the probe analysis is enough to fix the transition point even if q is not large

enough. Since this value µc is smaller than µd, we do not have the problem mentioned

before. In this way, we have found an example where we can embed our zero temperature

superconductor/insulator phase transition into string theory.

4.4 The t-J model and the slave boson approach in RVB theory

In this section, we compare the superconductor/insulator transition found in the holo-

graphic calculation with the high-Tc cuprates, in particular with the RVB scenario of

high-Tc [15] (see figure 10 for the schematic phase diagram). At the moment, there is no

single theory which is capable of explaining all features of the high-Tc cuprates for the

entire region of the phase diagram. Our focus here is on the so-called under-doped region

(the region of phase diagram close to x = 0), where the RVB scenario of high-Tc was pro-

posed. Its applicability to the cuprates, in particular, beyond the under-doped region, has

been debated. On the other hand, for the over-doped region (the region of phase diagram

x & 0.3), the Fermi-liquid ground state would be a reasonable starting point. The electron

correlation effects, in particular, antiferromagnetic spin fluctuations, can then be included

perturbatively [25–28].

For an application of the AdS/CFT to high-Tc, see [10, 29, 30, 34, 35], where in this

scenario the anomalous transport in the strange metal phase is attributed to the quantum
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Figure 10. The schematic phase diagrams of the high-Tc cuprate superconductors. The left panel

is for hole-doped cuprates (e.g. La2−xSrxCuO4), while the right is for electron-doped cuprates (e.g.

Nd2−xCexCuO4), where x measures the amount of doping. The phase AF denotes the antiferro-

magnetic phase, which is a Mott insulator; In the pseudo gap region, while it is located above the

critical temperature, an energy gap is already observed on the Fermi surface; The metallic region

above the superconducting dome near the optimal doping is called the strange metal phase, which

shows anomalous transport properties; In the Fermi liquid phase the ground state is adiabatically

connected to the free-fermion ground state with a well-defined Fermi surface.

critical transport in the quantum critical regime of the zero temperature quantum critical

point. For other approaches to high-Tc, see [2, 15, 25–28], and references therein. In the

following, we would like to suggest a connection between the AdS/CFT and the high-Tc

superconductors from a different viewpoint.

The high-Tc cuprate at x = 0 is the antiferromagnetic insulator. By doping holes,

we frustrate the antiferromagnetic order and eventually destroy it. Beyond some critical

doping xc, the superconducting ground state emerges. The physics of the under-doped

cuprates is well-described by the t-J model,

H = P



−t
∑

〈ij〉,σ
c†iσcjσ − µ

∑

i

ni + J
∑

〈ij〉

(

Si · Sj −
1

4
ninj

)



P . (4.5)

Here, c†iσ (ciσ) are an electron creation (annihilation) operator at site i on the square lattice

with spin σ =↑, ↓; ni =
∑

σ c
†
iσciσ, and Si = (1/2)

∑

σ,σ′ c
†
iσσσσ′ciσ′ are the electron number

operator, and the spin operator, respectively; t represents the kinetic energy for electron

(or hole) hopping and J is the antiferromagnetic exchange; P is the projection operator

which removes states with double occupancy at a site i from the physical subspace. The t-J

model can be derived from the Hubbard model near half-filling (x = 0) by the degenerate

perturbation theory, and faithfully captures the physics near x = 0.

The major obstacle one encounters when trying to solve the t-J model is the con-

straint (projection) P ; it is nothing but the strong Coulomb repulsion. The constraint can

be analyzed in terms of the so-called slave-boson approach (gauge theory approach); it is a

calculational tool representing the idea of the RVB, and for which we make a comparison

with our gravity calculations. In the slave-boson (SU(2) slave-boson) approach, we decom-
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pose electron operators into bosonic hi = (bi1, bi2) and fermionic ψi = (fi↑, f
†
i↓) parts as

ci↑=
1√
2
h†iψi =

1√
2

(

b†1if↑i + b†2if
†
↓i

)

,

ci↓=
1√
2
h†i ψ̄i =

1√
2

(

b†1if↓i − b†2if
†
↑i

)

. (4.6)

This splitting of electrons is designed in such a way that it captures the low-energy degrees

of freedom in the problem; the bosonic field is called holons and roughly describes the

charge degree of freedom of an electron, whereas the fermionic field is called spinons and

describes the spin degree of freedom of an electron. When holons and spinons are treated

as a free particle, the Hilbert space for them is larger than the original Hilbert space, which

is three-dimensional per site. Any physical states |phys〉 should belong to the physical sub-

space of the fictitious Hilbert space, and are subjected to the following local constraints:
(

ψ†
i τ

lψi + h†i τ
lhi

)

|phys〉 = 0 , l = 1, 2, 3, ∀i . (4.7)

The constraint can be implemented in the path integral by including a Lagrange multi-

plier al
0. The Heisenberg interaction, which takes on the form of a four fermion interaction,

can be decoupled by introducing an auxiliary field Uij defined on a link connecting site i

and j. The partition function in the imaginary time path-integral is then given by

Z=

∫

DψDψ†Dh†DhDa1
0Da2

0Da3
0DU exp

(

−
∫ β

0
dτL

)

, (4.8)

where the Lagrangian is given by

L =
3J

8

∑

〈ij〉
tr

(

U †
ijUij

)

+
3J

8

∑

〈ij〉

(

ψ†
iUijψj + h.c.

)

− t

2

∑

〈ij〉

(

ψ†
ihih

†
jψj + h.c.

)

+
∑

i

ψ†
i

(

∂τ − ial
0iτ

l
)

ψi +
∑

i

h†i

(

∂τ − ial
0iτ

l + µ
)

hi . (4.9)

Integrating over al
0 gives rise to the constraints.

So far we have just rewritten the t-J model. A typical approach to solve this model,

within this representation, is then to first look for a mean field, and then include fluctuations

around it. The field al
0 is interpreted as the time component of a SU(2) gauge field Al

µ and

its space components come from the fluctuation of Uij.

The mean field phase diagram from the SU(2) slave boson theory is shown in figure 11

(right). (A similar mean field phase diagram can be drawn from the slightly different

formalism of the slave boson theory, the U(1) slave boson theory [figure 11 (left)]). The

details of the phase diagram depend on the values of t and J , e.g., the π-flux does not

appear for large t/J , but the qualitative features do not depend too sensitively on t/J .

To go beyond the mean field theory, we need to include fluctuations around a saddle

point (mean field). For a given saddle point configuration for Uij , the low-energy gauge

field fluctuations can be described by either one of SU(2), U(1), or Z2 group, since a

meanfield configuration Uij can Higgs out partially the SU(2) gauge fluctuations. While
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Figure 11. The mean field phase diagram as a function of temperature T and doping x from

the SU(2) (left) and U(1) (right) slave boson theory [15]. The order parameter ∆ is defined by

∆ij = fi↑fj↓ − fi↓fj↑ and b represents the expectation value of the (condensed) holon field. The π

flux phase (πfL) is a spin liquid phase with the algebraic spin-spin correlation function. The localized

spin (LS) phase is the phase where there are no hopping matrix elements Uij = 0 for spinons. The

antiferromagnetic order is absent in the mean field approximation of the slave boson theory.

t/J enters, within this approach, in determining a saddle point (mean field) and types of

(emergent) gauge fluctuations around it, it does not play much role once we focus on the

fluctuations around the saddle point; this can be seen, e.g., from the fact that the temporal

component of the gauge field al
0 fluctuates without bound in (4.7), and its fluctuations are

infinitely strong, irrespective of the value of t/J . In the following discussion, we focus

on the transition triggered by doping (varying µ), rather than controlling the band width

(varying t/J).

At the mean field level, spinon and holons are treated as an independent entity, and are

deconfined. Since the gauge coupling is (infinitely) strong, and since the monopoles that

exist because of the compact nature of the gauge field could proliferate [15] we would expect

there are confined phases in the phase diagram although this issue is not completely settled.

4.5 Comparison between the holographic calculations and the slave boson

approach

The appearance of the emergent non-abelian gauge group SU(2) in the RVB theory moti-

vates us to consider its holographic dual gravity description. Indeed, here we would like to

argue that our gravity system discussed in this paper is analogous to the RVB theory of

high-Tc superconductors, though the large N limit has only a qualitative relevance to our

problem.6 Before we proceed to the comparison between them, we need to notice that the

quantum field theory dual to our gravity system does not include massless fermions, while

the RVB theory has fermionic spinons. This might be taken into account in the gravity side

by introducing another (uncharged) scalar field which is dual to a fermion bilinear ∆ that

condenses for small T and x. One possibility of string theory realization of this will be to

add a D7-brane to our D3-brane system.7 However, here we would like to leave the further

6Refer to e.g. [31] for an analysis assuming the large N limit with the gauge group Sp(N).
7A simple way to realize this is to wrap the D7-brane on t, x, y, r, χ and S3

∈ S5. It is easy to see

that the fermion bilinear, which is dual to a mass deformation, condenses in this mode as the D7-brane
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analysis for a future work and to proceed by roughly identifying the confined phase and

fermion condensed phase, as the latter is induced to the strongly coupled gauge interactions.

We first identify the confined phase (the AdS soliton phase) as a fully-gapped phase

of electrons, such as the valence bond solid (VBS) phase, or the stripe phase that exists

in La2−xBaxCuO4 at x = 1/8. In the slave boson theory, such a phase is a confined phase

where spinons and holons are completely glued together, and all excitations as well as the

ground state are well-described in terms electrons. It may also be possible to identify it

with the antiferromagnetic phase in the high-Tc cuprates, where the low-lying excitation

is antiferromagnetic magnons, which is a bound state of two spinons. This gapless anti-

ferromagnetic magnon may be interpreted as a Nambu-Goldstone boson induced by the

fermion condensation.

The chemical potential µ in the gravity theory plays the similar role as doping x in the

cuprates; the chemical potential µ destroys the confining phase (the AdS soliton phase)

just like doping x frustrates the antiferromagnetic order. The phase emerges as we increase

x in the cuprates is superconducting phase; the corresponding phase in the gravity theory

is the AdS soliton superconductor phase that emerges as we increase µ. At the mean field

level, the superconducting phase in the cuprates is the phase where holons are condensed.

In the gravity dual, this is interpreted as the condensation of the scalar field Φ. Note that

in this identification we are not viewing the scalar field Φ as the Cooper pair, but a gauge

invariant operator made from two holons.

It is then tempting to identify the deconfining phase (the AdS RN black hole phase),

lying in the high temperature region above the AdS soliton and the AdS soliton super-

conductor phases, as the pseudo gap phase and the strange metal phase in high-Tc, which

crossover with each other. Indeed, the AdS RN black hole phase, in the presence of

fermions, shows the non-Fermi liquid behavior [32–35] due to the near horizon AdS2 ge-

ometry [34–36]. In the eariler literature [37], the relevance of AdS charged black hole was

pointed out in order to construct the gravity dual of fermi surfaces. All of these are sup-

portive for our identification of the AdS RN black hole phase as the pseudo gap or the

strange metal phase, and also the AdS soliton superconductor phase as the superconductor

phase of the high-Tc cuprates.

One may notice that while the pairing symmetry of the cuprate high-Tc superconduc-

tivity is known to be d-wave, there is nothing comparable to it in our gravity calculations.

However, this is not a serious problem as our gravity calculation corresponds to a effective

field theory limit and cannot directly distinguish between s-wave and d-wave as is so in the

Ginzburg-Landau theory.

Finally, the AdS BH superconductor phase that exists for the large chemical potential

can be considered as the Fermi liquid phase in the over-doped cuprates. Even though its

gravity dual is a superconductor, the fermions do not condense in our approximation as

it is situated at the deconfined phase. Notice that the expectation value of Cooper pair

should bend due to the bubble of nothing at r = r0. In this case, the fermion condenses just at the

confinement/deconfinement transition point.
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Figure 12. A speculated phase diagram of our five dimensional Einstein-Maxwell-scalar theory

with an extra neutral scalar which is dual to a fermion bilinear. The newly added phase boundary

which signals the fermion pair condensation is written as the dotted blue curve. The other red and

green curves denote the superconductor and the deconfinement transition, respectively, as in the

same way as in figure 9.

(assuming 〈b2i〉 = 0)

〈ci↑cj↓ − ci↓cj↑〉 ≃ 〈∆ij〉〈b†1i〉〈b
†
1j〉 , (4.10)

is non-vanishing iff both the fermions and holons condense. Therefore, this system from

the viewpoint of electrons should not be regarded as a superconductor. Instead, it is an

ordinary fermi liquid as the spin and charge are tied strongly due to the holon condensation.

Now let us compare the global phase structure of our holographic system and that of the

RVB theory. At the qualitative level, they look quite similar except that our system does

not actually include the massless fermions (spinons), which makes the distinction between

the pseudo gap phase and the strange metal phase unclear. Even though we did not realize

the fermions, it is not difficult to speculate how the phase structure of our gravity system

changes, for example, by including an extra scalar field which is uncharged under the U(1)

and is dual to the fermion bilinear. We expect that the fermion pair condensation continues

slightly above the confinement/deconfinement phase boundary as in the familiar D3-D7

example [38]. This is shown in figure 12 and we filled in the corresponding phase in high-Tc.

One may notice that in hole doped high-Tc superconductors, the antiferromagnetic

phase is not exactly next to the superconductor phase (see figure 10) and the pseudo gap

phase extends between them as opposed to our holographic system. In this sense, the phase

diagram of electron doped high-Tc superconductors looks more similar to ours.

5 Conclusions

In this paper, we study a five-dimensional Einstein-Maxwell-scalar field theory with a

negative cosmological constant. We imposed that the boundary of the five-dimensional

spacetime approaches a Scherk-Schwartz compactification of AdS5. The holographic dual

should be a certain confining (2+1)-dimensional gauge theories with U(1) current, which
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includes the four-dimensional super Yang-Mills compactified on a circle. We showed that

this system undergoes a phase transition into a superconductor phase (AdS soliton su-

perconductor phase) due to the charged scalar field condensation when we increase the

chemical potential at least for specific values of the mass and charge of the scalar field.

We would like to leave a more extensive analysis for a future work. We argue that this is

a gravity dual of superconductor/insulator phase transition at zero temperature. We also

showed that we can consistently embed our phase transition into the N = 1 superconformal

field theory dual to AdS5 × T 1,1.

We further study the global phase structure of this system by taking into account

the confinement/deconfinement transition at high enough temperature. We compared our

phase diagram (figure 9) with that of high-Tc cuprates and we found a qualitative sim-

ilarity. We also explained this fact from the viewpoint of the RVB theory of high-Tc

superconductors, where an emergent non-abelian gauge field appears due to the strong

Coulomb repulsive force. This argument suggests that the AdS soliton superconductor

phase is dual to the high-Tc superconductivity phase in the RVB theory.

There are a number of future directions. First of all, since our analysis is restricted to

a probe approximation, it is very interesting to perform a full analysis with backreactions.

This should make clear the separation between the two superconductor phases. Also,

to make the comparison with the RVB theory clear, it is important to take into account

massless fermions which play the role of spinons. In order to obtain more information of the

AdS soliton superconductor, it is useful to exert a magnetic flux in this system. It may also

be intriguing to calculate the entanglement entropy via the AdS/CFT [39–41] to understand

better the phase transition between the insulator and superconductor phase because this

quantity is non-vanishing even at zero temperature (for the confinement/deconfinement

phase transition, this was done in [42, 43]). Finally, since our results depend on the values

of charges of operators and their conformal dimensions, it will be useful to perform a

systematic analysis in concrete string theory setups.
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A Schrödinger potential description

A.1 AdS soliton

The condensation of the scalar operator can be interpreted as the instability of the scalar

field around the tip of the AdS soliton solution as follows. The equation of motion of the

– 18 –



J
H
E
P
0
3
(
2
0
1
0
)
1
3
1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-100

-50

0

50

z

VHzL

Figure 13. The potential V (z) for the AdS soliton without (blue) and with (red) the scalar

operator condensation.

scalar field Ψ with a time dependence e−iωt gives

Ψ′′ +

(

f ′

f
+

3

r

)

Ψ′ +

(

−m
2

f
+

Φ2 + ω2

r2f

)

Ψ = 0 . (A.1)

This equation can be transformed to the Schrödinger equation by introducing a new radial

coordinate

z =

∫ ∞

r

ds

s
√

f(s)
=

2F1(
1
4 ,

1
2 ,

5
4 ,

1
r4 )

r
, (A.2)

and redefining the scalar field like Ψ ≡ Bψ with appropriate choice of the function B,

which is given by B(z) = r(z)−1/2|r′(z)|−1/2. The equation becomes

−∂2
zψ(z) + V (z)ψ = ω2ψ(z) , (A.3)

where the potential is calculated to be

V (z) =
(15 + 4m2)r(z)8 − 2(9 + 2m2)r(z)4 − 1

4r(z)2(r(z)4 − 1)
− q2Φ2 . (A.4)

This potential V (z) is plotted in figure 13 with and witout the scalar operator condensation,

i.e., Φ takes zero and nontrivial values, respectively. The range of z is 0 < z ≤ z∗, where

z∗ =
√

πΓ(5/4)
Γ(3/4) (≃ 1.31).

We can find the following behaviors:

V (z) ≃ m2 + 15
4

z2
(z → 0) , (A.5)

V (z) ≃ − 1

4(z − z∗)2
(z → z∗) . (A.6)

It is well-known that the Schrödinger problem for the potential V (z) = k
z2 is ill-defined

(or unstable) for k < −1/4 as this leads to infinitely many negative energy states. When

applied to (A.5), this leads to the BF bound m2 ≤ −4. On the other hand, the behavior

near the tip (A.6) shows that the system is marginally stable. In addition, the actual

potential is larger than the right-hand side of (A.6) with the high potential wall near
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Figure 14. The potentials V (z) for the AdS BH without (blue) and with (red) the scalar operator

condensation.

z = 0. Thus the ground state energy ω2 takes a finite positive value and this explains

the mass gap in the AdS soliton. The introduction of the gauge potential Φ decreases the

ground state energy and above a certain value, the system becomes unstable under the

scalar condensation in the IR region.

A.2 AdS black hole

It is also useful to analyze the AdS black hole background in a similar way. We will set

µ = 0 for simplicity. Introducing the new radial coordinate z (−∞ < z < 0)

z = −
∫ ∞

r

ds

f(s)
=

1

4
(−π − 2 coth−1(r) + 2 tanh−1(r)) , (A.7)

the equation of motion for the scalar field (3.9) is simplified to the Schrödinger equa-

tion (A.3) with B(z) = r(z)−3/2. The potential becomes

V (z) =
(r(z)4 − 1)

(

(15 + 4m2)r(z)4 + 9
)

4r(z)6
− q2Φ2 . (A.8)

This always vanishes on the horizon (f = 0) when Φ = 0 with arbitrary choice of m2.

The form of this potential is depicted in figure 14 with and without the scalar operator

condensation.
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