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1 Introduction

The Gauge/Gravity duality has provided a powerful tool to investigate many important

phenomena of strongly correlated system in condensed matter physics. One remarkable

achievement is the building of a gravitational dual model for a superconductor [1–3]. This

construction has been extensively investigated in literature and more and more evidences

in favor of this approach have been accumulated. In particular, the holographic lattice

technique proposed recently has brought this approach into a new stage to reproduce

quantitative features of realistic materials in experiments [4–6]. One remarkable achieve-

ment in this direction is the successful description of the Drude behavior of the optical

conductivity at low frequency regime [4–24] and the exhibition of a band structure with

Brillouin zones [25, 26]. Inspired by holographic lattice techniques people have also de-

veloped numerical methods to construct spatially modulated phases with a spontaneous

breaking of the translational invariance [27–35].

The original holographic lattice with full backreactions is simulated by a real scalar field

or chemical potential which has a periodic structure on the boundary of space time [4–6].

We may call these lattices as scalar lattice and ionic lattice, respectively. This framework

contains one limitation during the course of application. Namely, the numerical analysis

involves a group of partial differential equations to solve, while its accuracy heavily depends

on the temperature of the background which usually are black hole ripples. Thus, it is

very challenging to explore the lattice effects at very low or even zero temperature(for

recent progress, see [36]). Very recently, another much simpler but elegant framework for

constructing holographic lattices is proposed in [37], which is dubbed as the Q-lattice,

because of some analogies with the construction of Q-balls [38].1 In this framework, one

1Another sort of simpler holographic models with momentum relaxation can be found in [21, 22], where

a family of black hole solutions is characterized only by T and k, while the parameter representing the

lattice amplitude in Q-lattice is absent, thus no metal-insulator transition at low temperature.
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only need to solve the ordinary differential equations to compute the transport coefficients

of the system, thus numerically one may drop the temperature down to a regime which may

exhibit some new physics. Indeed, one novel feature has been observed in this framework.

It is disclosed that black hole solutions at a fairy low temperature may be dual to different

phases and a metal-insulator transition can be implemented by adjusting the parameters of

Q-lattices [37, 39–41]. Another advantage of Q-lattice framework is that the charge density

as well as the chemical potential on the boundary can still be uniformly distributed even

in the presence of the lattice background, which seems to be closer to a practical lattice

system in condensed matter physics. However, in the context of ionic lattice the presence

of the lattice structure always brings out a periodically distributed charge density and

chemical potential on the boundary, which looks peculiar from the side of the condensed

matter physics.

In this paper we intend to investigate the Q-lattice effects on holographic supercon-

ductor models. We will show that in general the presence of Q-lattices will suppress the

condensation of the scalar field and lower the critical temperature, which is in contrast to

the holographic superconductor on ionic lattices, where the critical temperature is usually

enhanced by the lattice effects [6, 42]. In particular, when the black hole background is

dual to a deep insulating phase, the condensation would never occur for some small charges.

Furthermore, we will numerically compute the optical conductivity in the superconducting

regime. It turns out that the Q-lattice does not remove the pole in the imaginary part of

the conductivity, implying the appearance of a delta function in the real part and ensuring

that the superconductivity is genuine and not due to the translational invariance. We also

evaluate the gap with a result ωg ' 9Tc in the probe limit, which is almost independent of

the parameters of Q-lattices.

We organize the paper as follows. In next section we present the holographic setup

for the superconductor model on Q-lattice, and briefly review the black hole backgrounds

which are dual to metallic phases and insulating phases, respectively. Then in section

three we will analyze the instability of these solutions and numerically compute the critical

temperature for the condensate of the charged scalar field. The optical conductivity in the

direction of the lattice will be given in section four and the gap will be evaluated as well.

We conclude with some comments in section five.

2 The holographic setup

Recently various investigations to the inhomogeneous effects or lattice effects on holographic

superconductors have been presented in literature [8, 42–50], but these effects are almost

treated perturbatively and the full backreaction on the metric is ignored. As far as we know,

the first lattice model of a holographic superconductor with full backreaction is constructed

in [6], in a framework of ionic lattice. Here, inspired by the recent work on Q-lattices

in [37], we will construct an alternative lattice model of holographic superconductor closely

following the route presented in [6]. As the first step we will construct the simplest model

with the essential ingredients in this paper, but leave all the other possible constructions

for further investigation in future. We start from a gravity model with two complex scalar
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fields plus a U(1) gauge field in four dimensions. If we work in unit in which the AdS

length scale L = 1, then action is

S =
1

2κ2

∫
d4x
√
−g
[
R+ 6− 1

2
FµνFµν + 2ΨΨ∗ − |(∇− ieA)Ψ|2 − |∇Φ|2 −m2|Φ|2

]
,

(2.1)

where Φ is neutral with respect to the Maxwell field and will be responsible for the breaking

of the translational invariance and the formation of a Q-lattice background, while Ψ is

charged under the Maxwell field and will be responsible for the spontaneous breaking of

the U(1) gauge symmetry and the formation of a superconducting phase. For convenience,

we may further rewrite the U(1) charged complex scalar field Ψ as a real scalar field η and

a Stückelberg field θ, namely Ψ = ηeiθ, such that the action reads as

S =
1

2κ2

∫
d4x
√
−g
[
R+ 6− 1

2
FµνFµν + (2− e2AµA

µ)η2 − (∂η)2 − |∂Φ|2 −m2|Φ|2
]
,

(2.2)

where we have fixed the gauge θ = 0. The equations of motion can be obtained as

Rµν − gµν
(
−3 +

m2

2
|Φ|2 − η2

)
−∂(µΦ∂ν)Φ

∗ −
(
FµλFν

λ − 1

4
gµνF

2

)
− ∂µη∂νη − e2η2AµAν = 0,

∇µFµν − e2η2Aν = 0,

(∇2 −m2)Φ = 0, (∇2 − e2A2 + 2)η = 0. (2.3)

Obviously, in the case of η = 0, the equations of motion can give rise to the elec-

tric Reissner-Nordström-AdS (RN-AdS) black hole solutions on Q-lattice which have been

constructed in [37]. This is a three-parameter family of black holes characterized by the

temperature T/µ, the lattice amplitude λ/µ3−∆ and the wave vector k/µ, where µ is the

chemical potential of the dual field theory and can be treated as the unit for the grand

canonical system. The ansatz for the Q-lattice background is

ds2 =
1

z2

[
−(1− z)p(z)Udt2 +

dz2

(1− z)p(z)U
+ V1dx

2 + V2dy
2

]
,

A = µ(1− z)ψdt,

Φ = eikxz3−∆φ, (2.4)

with p(z) = 1 + z+ z2−µ2z3/2 and ∆ = 3/2± (9/4 +m2)1/2. Notice that U, V1, V2, ψ and

φ are functions of the radial coordinate z only. Obviously if we set U = V1 = V2 = ψ = 1

and φ = 0, the solution goes back to the familiar RN-AdS metric. The non-trivial Q-lattice

solutions can be obtained by setting a non-trivial boundary condition at infinity for the

scalar field φ(0) = λ and regular boundary conditions on the horizon, which is located at

z = 1. The Hawking temperature of the black hole is T/µ = (6−µ2) U(1)/(8πµ). Through

this paper we will fix m2 = −3/2 such that the AdS2 BF bound will not be violated.

It is shown in [37] that at low temperature the system exhibits both metallic and

insulating phases. In metallic phase the conductivity in the low frequency regime is subject
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to the Drude law and the DC conductivity climbs up with the decrease of the temperature,

while in insulating phase one can observe a soft gap in the optical conductivity and the

DC conductivity goes down with the temperature. Numerically, one finds a small lattice

amplitude λ will corresponds to a metallic phase while a large one will be an insulating

phase. In next section we will discuss the condensate of the charged scalar field over

Q-lattice background.

3 Background

In this section we construct a Q-lattice background with a condensate of the charged scalar

field, namely η 6= 0. Firstly, we intend to justify when the Q-lattice background becomes

unstable by estimating the critical temperature for the formation of charged scalar hair. For

this purpose we may treat the equation of motion of η perturbatively. Namely, we intend

to find static normalizable mode of charged scalar field on a fixed Q-lattice background.

As argued in [6], it is more convenient to turn this problem into a positive self-adjoint

eigenvalue problem for e2, thus we rewrite the equation of motion as the following form

− (∇2 + 2)η = −e2A2η. (3.1)

Before solving this equation numerically, we briefly discuss the boundary condition for

η. Without loss of generality, we have set the mass of the charged scalar field as m2
η = −2

from the beginning, such that its asymptotical behavior at infinity is

η = zη1 + z2η2 + . . . . (3.2)

In the dual theory η1 is treated as the source and η2 as the expectation value. Since we

expect the condensate will turn on without being sourced, we set η1 = 0 through this

paper. Now imposing the regularity condition on the horizon and requiring the scalar field

to decay as in (3.2), one can find the critical temperature for the condensate of the scalar

field by solving the eigenvalue equation (3.1) for different values of the charge e. Our results

are shown in figure 1. There are several curves on this plot, and each of them denotes the

change of charge with the critical temperature for a fixed lattice amplitude λ. It is very

interesting to compare our results here with those obtained in the ionic lattice model [6].

• As expected, each curve shows a rise in critical temperature with charge, which is

consistent with our intuition that the increase of the charge make the condensation

easier, thus the critical temperature becomes higher. This tendency is the same as

that in [6].

• For a given charge, we find that increasing the lattice amplitude lowers the critical

temperature, which means that the condensate of the scalar field is suppressed by the

presence of the Q-lattice. Later we will find this tendency can be further confirmed by

plotting the value of the condensate as a function of temperature. Such a tendency

is contrary to what have been found in ionic lattice and striped superconductors,

where the critical temperature is enhanced by the lattice effects [6, 42]. Preliminarily
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Figure 1. The charge of the scalar field versus the critical temperature for several values of the

lattice amplitude. From top to down the lines represent λ/µ3−∆ = 2, 3/2, 1, 1/2, 0, where we have

set k/µ = 1/
√

2.

we think this discrepancy might come from the different behaviors of the chemical

potential in different lattice backgrounds, as analyzed in [6], where µ is manifestly

periodic while in Q-lattice model all the fields does not manifestly depend on x except

the scalar field Φ.

• At the zero temperature limit, not all the curves have a tendency to converge to

the same point as depicted in ionic lattices [6]. On the contrary, we find when the

amplitude of the lattice is large enough (which may correspond to an insulating phase

before the occurrence of the condensation), these lines do not converge at least at the

temperature regime that our numerical accuracy can reach (see the inset of figure 1).

It implies that for a given charge if its value is relatively small, the system with

large lattice amplitude would not undergo a phase transition no matter how low

the temperature is! For instance, if e = 1, there would be no phase transition for

superconductivity if λ/µ3−∆ ≥ 2 with k/µ = 1/
√

2, as illustrated in figure 1.

To see more details on the dependence of the critical temperature on the lattice parameters,

we may plot a 3D phase diagram on the k − λ plane. An example is shown in the middle

plot of figure 2, where we have set e = 2. From this figure one can obviously see that the

phase transition occurs more easily in the region with small lattice amplitudes but large

wavenumbers, which corresponds to the metallic phase before the transition (as is shown

in the left plot of figure 2). For a given wavenumber, the condensate becomes harder with

the increase of the lattice amplitude, as illustrated in the right plot of figure 2. While

for a given lattice amplitude, the condensate becomes harder with the decrease of the

wavenumber (or with the increase of the lattice constant).

Having found the critical temperature in a perturbative way, next we will solve all the

coupled equations of motion in eq. (2.3) to find Q-lattice solutions with a scalar hair at

– 5 –
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Figure 2. The left plot is a phase diagram for pure Q-lattice system without superconducting

setup at extremely small temperature T/µ = 0.001. The middle plot is a 3D plot for the critical

temperature as a function of the lattice parameters, with e = 2. Right plot is a phase diagram for

a given wave number k/µ = 1/
√

2.
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Figure 3. The value of the condensate as a function of temperature for various values of the lattice

amplitude. The left plot is shown in the unit of the chemical potential while the right illustrates

the same data in the unit of the critical temperature. We have set e = 2 and k/µ = 1/
√

2.

T < Tc. It involves in six ordinary differential equations with variables U, V1, V2, ψ, φ and

η, which can be numerically solved with the standard pseudo-spectral method and Newton

iteration. We plot the value of the condensate as a function of the temperature in figure 3.

From this figure it is obvious to see that the critical temperature for the condensation

goes down when the lattice amplitude increases. Such a tendency also implies that the

condensation would never occur when the amplitude is large enough and beyond some

critical value. Moreover, from the right plot in figure 3 we find the expectation value of the

condensate becomes much larger in the unit of the critical temperature, implying a larger

energy gap ωg/Tc for the superconductor, which seems also different from the results in

ionic lattices [6]. Finally, one can also fit the data around T = Tc and find the expectation

value behaves as (1− T/Tc)1/2, indicating it is the second order phase transition.

In the end of this section we address the issue of the relation between the value of

the condensate and the charge of the scalar field. It is known in literature that when the

back-reaction is taken into account, the expectation value of the condensate which may be

denoted as ωg depends on the charge of the scalar field [2]. But when e ≥ ec ' 3
√

2,2 it

is found that the condensate will remain close to ωg ∼ 8T̃c. Later this universal relation

has been testified in various Einstein gravity models with translational invariance. The

presence of the ionic lattice drops the critical charge down to a lower value and it is found

2It corresponds to e ≥ ec ' 3 in the convention adopted in [2, 3].
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Figure 4. The value of the condensate as a function of the charge of the scalar field. Left plot we

have set λ/µ3−∆ = 1/2 and k/µ = 1/
√

2, while right plot λ/µ3−∆ = 3/2 and k/µ = 1/
√

2.

that even with e ' 2, a gap with 8Tc can be reached [6]. Now for Q-lattice background,

we plot the condensate as a function of the temperature for different values of the charge

in figure 4, where we have fixed λ/µ3−∆ = 1/2, 3/2, respectively and k/µ = 1/
√

2. One

can see that the condensate will approach to ωg ∼ 9Tc when the charge e ≥ ec ' 6.3

Firstly, we have tested that this value, as found in literature, is still universal in the probe

limit (namely e → ∞) in our Q-lattice model and independent of the values of lattice

parameters. Secondly, in comparison with the previous models we find the critical value of

the charge becomes larger. As a matter of fact, for different lattice parameters λ and k, we

have a different value for the charge ec to characterize the critical region when ωg ∼ 9Tc.

Qualitatively, we find the larger the lattice amplitude is, the larger the critical charge ec.

This tendency is consistent with the fact that the presence of Q-lattice suppresses the

condensate of the scalar field.

4 The optical conductivity

Now we turn to compute the optical conductivity in the direction of lattice. It turns out

that it is enough to consider the following consistent linear perturbation over the Q-lattice

background

δgtx = htx(t, z), δAx = ax(t, z), δΦ = ieikxz3−∆ϕ(t, z). (4.1)

As stressed in [37], htx, ax and ϕ are real functions of (t, z) such that the perturbation

equations of motion will be real partial differential equations. Moreover, we suppose the

fluctuations of all the fields have a time dependent form as e−iωt. Thus again we are led

to three ordinary differential equations for htx(z), ax(z) and ϕ(z). Before solving these

equations, we also mention that besides the boundary condition ax(0) = 1, one more

3We remark that the apparent discrepancy between our result ωg ∼ 9Tc and the well-known result

ωg ∼ 8T̃c in literature comes from the fact that we have fixed the chemical potential and used it as the unit

of the system, while in previous literature one has a fixed charge density and takes its square root as the

unit. Thus Tc and T̃c have different units. We have checked that our results are consistent with those in

literature indeed once we change the units.
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boundary condition imposed at infinity is ϕ(0) = (ikλ/ω)h
(−2)
tx where h

(−2)
tx is the coefficient

of the leading order for metric expansion at infinity htx = h
(−2)
tx /z2 + · · · Such a boundary

condition is to guarantee what we extract on the boundary for the dual field is just the

current-current correlator, as investigated in [37].4 The optical conductivity is given by

σ(ω) =
∂zax(0)

iω
. (4.2)

4.1 Superconductivity over Q-lattices dual to a metallic phase

In this subsection we discuss the optical conductivity as a function of the frequency over

a Q-lattice background which is dual to a metallic phase before the phase transition. For

explicitness, we fix the lattice parameters as λ/µ3−∆ = 1/2 and k/µ = 1/
√

2 in this

subsection. We show the real and imaginary parts of the conductivity as a function of

frequency for various charges in figure 5. Our remarks on the behavior of the optical

conductivity as a function of frequency can be listed as follows.

• Superconductivity. First of all, in all plots we notice that once the temperature falls

below the critical temperature, the imaginary part of the conductivity will not be

suppressed but climb up rapidly and exhibit a pole at ω = 0. Therefore, the Q-

lattice does not remove the delta function in the real part of the conductivity below

the critical temperature, confirming that it is dual to a genuine superconductor.

• DC conductivity due to normal fluid. The real part of the conductivity will rise at

the low frequency regime as well due to the lattice effects, indicating that there is

a normal component to the conductivity such that our holographic model resembles

a two-fluid model. Moreover, we notice that the DC conductivity will go down at

first with the decrease of the temperature and then rise up to a much larger value,

which can become more transparent in a log-log plot as we show in figure 6. It means

that normal component of the electron fluid is decreasing to form the superfluid

component, but this normal component will not disappear quickly. The raise of the

DC conductivity comes from the increase of the relaxation time, as we will describe

below. In addition, when the charge becomes larger, we find that the DC conductivity

starts to rise up at much lower T/Tc.

• Low frequency behavior. In low frequency region we notice that the conductivity

exhibits a metallic behavior with a Drude peak even at much lower temperature. We

may fit the data at low frequency with the following formula

σ(ω) =
iKs

ω
+

Knτ

1− iωτ
, (4.3)

4Such a boundary condition is obtained by requiring that the non-zero quantities of htx and ϕ on

the boundary can be cancelled out by the diffeomorphism transformation generated by the vector field

ςx = εe−iωt, where ε is a small parameter. Since here the scalar field of the background η is x-independent

and invariant under this sort of diffeomorphism transformation, this boundary condition remains in the

superconducting case.
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Figure 5. The real and imaginary parts of optical conductivity as a function of the frequency with

λ/µ3−∆ = 1/2 and k/µ = 1/
√

2. From top to bottom the plots are for e = 2, 4, and 6.
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Figure 6. The Log-Log plot of the real parts of optical conductivity for Q-lattices with parameters

given in figure 5. From left to right the charge of the scalar field is taken as e = 2, 4, and 6.

where Ks and Kn are supposed to be proportional to the superfluid density ρs and

the normal fluid density ρn , respectively, and τ is the relaxation time. We present

a fit to this equation near the critical temperature in figure 7 and plot the values

of these parameters as a function of the temperature in figure 8. In figure 7 the

imaginary part of the conductivity exhibits a sudden change in low frequency region

– 9 –



J
H
E
P
0
2
(
2
0
1
5
)
0
5
9

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

T/Tc● 1■ 0.99◆ 0.95

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

2

4

6

8

10

12

14

ω/μ

R
e
(σ)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

T/Tc● 1■ 0.99◆ 0.95

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

5

10

15

ω/μ

Im
(σ)

Figure 7. The critical behavior of the optical conductivity near the critical temperature. The solid

lines are fits to eq. (4.3).
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Figure 8. The three plots are Ks/µ,Kn/µ and τµ as functions of the temperature.

when the temperature drops through the critical point. From figure 8 we find that Ks

which is related to the superfluid density increases as the temperature goes down and

becomes saturated around T/Tc ' 0.6, while Kn which is related to the normal fluid

density decreases rapidly below the critical temperature. However, the relaxation

time does not have such a monotonous behavior. As the temperature goes down from

the critical one, the relaxation time will decrease at first and then rise up quickly

in low temperature region, which looks peculiar in comparison with other lattice

models, where the relaxation time monotonously increases with the decreasing of the

temperature. In particular, when the charge of the scalar field becomes large, the

turning point moves to lower temperature region. Such a phenomenon might explain

why we have a smaller DC conductivity at lower temperature as described above,

since it is proportional to the relaxation time. But definitely, the issue of why the

relaxation time becomes smaller at lower temperature calls for further understanding

in the future. Finally, we remark that in log-log plot the Drude behavior can also be

conveniently captured by a straight line with a constant slope as shown in figure 6,

which has previously been described in p-wave superconductors as well [51, 52].

Next we are concerned with the energy gap of the superconductor in Q-lattice model,

which may be evaluated by locating the minimal value of the imaginary part of the conduc-

tivity at zero temperature limit, which may be denoted as (ω/µ)min. For Q-lattices with

parameters in figure 5, we find this value corresponds to (ω/µ)min ' 18.454Tc, 10.178Tc,

and 9.247Tc, respectively. Firstly, we find these values are comparable with the values of
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Figure 9. The first plot is the fit with eq. (4.4). The second plot is for T
Tc

(
2 + T

Tc

K′′
n

K′
n

)
versus

T/Tc, where the derivative is with respect to T/Tc. The dashed black line in the last plot is for the

holographic superconductor in the absence of the Q-lattice (Note that in this case the Drude law

is absent, Kn is identified with the DC conductivity.).

the condensate we obtained in the previous section and indeed they are close. Secondly,

for Q-lattices with lattice amplitude λ/µ3−∆ ∼ 1/2, (ω/µ)min will be saturated around 9Tc
when e > ec ' 6. Finally, we have checked that the value (ω/µ)min ' 9Tc is universal in

the probe limit e → ∞, irrespective of the lattice parameters. In general, the energy gap

in zero temperature limit does depend on the lattice parameters as well as the charge of

the scalar field. However, for a given Q-lattice with fixed λ/µ3−∆ and e, we find that there

always exists a critical value ec for the charge such that the energy gap approaches the

universal value (ω/µ)min ' 9Tc when e ≥ ec, which is consistent with our analysis in the

previous section on the condensate of the background.

In literature another way to evaluate the energy gap is to fit the temperature depen-

dence of the normal fluid density in the zero temperature limit(∆/T � 1) [6]

ρn(T ) = a+ be−∆/T . (4.4)

In this thermodynamical method one need to know the normal fluid density at first. Usually

one assumes that ρn ∝ Kn such that the normal fluid density can be obtained by fitting the

conductivity with eq. (4.3). Usually one expects that (ω/µ)min ' 2∆ in the probe limit,

which has been testified in various holographic models [2, 3, 6]. However, in the context of

Q-lattice we find such exponential behavior described by eq. (4.4) is not clearly seen. The

left plot of figure 9 is an attempt to fit Kn/µ with eq. (4.4), but obviously we notice that the

data can not be well fit in the entire region. To see if the data would have an exponential

behavior in any possible interval, we would better take an alternative plot as follows. If the

exponential behavior would present in some region, then from eq. (4.4) one would find the

quantity T
Tc

(
2 + T

Tc

K′′n
K′n

)
should be a constant with value ∆/Tc, irrespective of the value of

the parameter a, where the derivative is with respect to T/Tc. Therefore, an exponential

behavior like eq. (4.4) would be featured by a horizontal line in the plot of T
Tc

(
2 + T

Tc

K′′n
K′n

)
versus T/Tc. Our results are shown in the second plot of figure 9. In Q-lattices we do

not find such behavior in any temperature region. The value of T
Tc

(
2 + T

Tc

K′′n
K′n

)
is not a

constant but varies with the temperature and is obviously below the value for a system
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Figure 10. The plot is for 1 + ω|σ|′′/|σ|′ versus ω/µ. The segment of each curve falling into the

interval 2 ≤ ωτ ≤ 8 is plotted as a solid line.

without Q-lattice in zero temperature limit. In comparison, we notice that a holographic

superconductor without Q-lattice does exhibit such behavior in low temperature region,

which is shown as a dashed black line and points to ∆/Tc ' 4.5 as expected. Preliminarily

we think this discrepancy may imply that the factor Kn might not be related to the density

ρn simply by Kn ∝ ρn in Q-lattice background. Recall that in theory Kn = ρne
2/m∗, it

would be true when the effective mass of quasiparticles is also temperature dependent. This

issue deserves further study in the future. In the end of this subsection we briefly address

the issue of the scaling law at the mid-frequency regime. This issue has previously been

investigated in both normal phase [4, 19, 37, 41, 53] and superconducting phase [6, 24]. It

was firstly noticed in the context of scalar lattices and ionic lattices that in an intermediate

frequency regime, the magnitude of the conductivity exhibits a power law behavior as

|σ(ω)| = B

ωγ
+ C, (4.5)

with γ ' 2/3 in four dimensional spacetime, independent of the parameters of the model.

This rule has been testified in various models and in particular, its similarities with the

Cuprates in superconducting phase are disclosed. However, later it is found that such a

power law is not so robust in other lattice models. In particular, it was pointed out that

in the context of Q-lattices there is no evidence for such an intermediate scaling [37]. Now

for the holographic superconductors in Q-lattices, we may treat it in a parallel way and

our result is presented in figure 10. From this figure, we find the intermediate scaling law

is not manifest.

4.2 Superconductivity over Q-lattices dual to an insulating phase

In this subsection we briefly discuss the superconductivity over a Q-lattice which is dual

to an insulating phase before the phase transition.5 We present a typical example with

5We mean the Q-lattice would exhibit an insulating behavior in zero temperature limit in the absence

of the charged scalar field.
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Figure 11. The real and imaginary parts of optical conductivity as a function of the frequency

with λ/µ3−∆ = 3/2, k/µ = 1/
√

2 and e = 4. The last one is a log-log plot for the real part.

λ/µ3−∆ = 3/2 and k/µ = 1/
√

2. The optical conductivity for e = 4 is plotted in figure 11.

In comparison with the superconductors over the Q-lattice in metallic phase, we present

some general remarks as follows.

• With the decrease of the temperature, DC conductivity goes down at first and rises

up again, which shares the temperature-dependence behavior with the case dual to

the metallic phase.

• At low frequency, the lattice effects drive the normal electron fluid to deviate from

Drude relation and exhibit an insulating behavior. This can be seen manifestly in

the log-log plot in which the straight line with a constant slope becomes shorter at

lower temperatures, as illustrated in the last plot of figure 11.

• The energy gap has the same universal behavior in the probe limit, namely

(ω/µ)min ' 9Tc as e → ∞. For Q-lattices with parameters in figure 11, we have

(ω/µ)min ' 11.258Tc, while for e = 6, we have 9.270Tc.

5 Discussion

In this paper we have constructed a holographic superconductor model on Q-lattice back-

ground. We have found that the lattice effects will suppress the condensate of the scalar

field and thus the critical temperature becomes lower in the presence of the lattice. In par-

ticular, when the Q-lattice background is dual to a deep insulating phase, the condensate

would never occur when the charge of the scalar field is relatively small. This is in contrast

to the results obtained in the context of ionic lattice and striped phases, where the critical

temperature is enhanced by the lattice effects. In superconducting phase it is found that

the lattice does not remove the pole of the imaginary part of the conductivity, implying

the existence of a delta function in the real part. The energy gap, however, depends on

the lattice parameters and the charge of the scalar field. Nevertheless, in the probe limit,

we find that gap ωg ∼ 9Tc is universal, irrespective of the lattice parameters. This picture

is consistent with our knowledge on other sorts of holographic superconductor models.

For convenience we have only computed the optical conductivity of a superconductor

where the Q-lattice background is dual to a typical metallic phase or a typical insulat-

ing phase prior to the condensation. In practice, many interesting phenomena have been
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explored by condensed matter experiments in the critical region where metal-insulator tran-

sition occurs in zero temperature limit. From this point of view one probably shows more

interests in the superconducting behavior of the Q-lattice model with critical parameters

λc and kc. We leave this issue for investigation in future.

This simplest model of holographic superconductors on Q-lattice can be straightfor-

wardly generalized to other cases. For instance, we may consider to input Q-lattice struc-

ture in two spatial directions with anisotropy [54]. We may also construct the supercon-

ductor models on Q-lattice in other gravity theories, such as the Gauss-Bonnet gravity and

Einstein-Maxwell-Dilaton gravity. These works deserve further investigation.
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