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1 Introduction

A central question in physics is: “What are the fundamental symmetries of nature?” One
aspect of this question motivates the search for Beyond-the-Standard-Model physics and
Unification. A second aspect, and the focus of the present work, is fully characterizing
the non-trivial symmetries inherent in the laws of physics that have already been verified
experimentally: namely, General Relativity (GR) and the Standard Model.

It is surprising that we still don’t have a complete answer to this question, or even a pre-
cise formulation of the question itself. GR has a diffeomorphism symmetry, but this is really
a redundancy of description, often referred to as a “trivial” symmetry. Of greater interest
are “non-trivial” symmetries which have, by Noether’s theorem, associated conservation
laws with measurable consequences, such as conservation of linear/angular momentum or
boost charge. One might have suspected that the Poincaré symmetries of Special Relativ-
ity — which imply these conservation laws — are the only non-trivial symmetries of GR
(in the asymptotically flat context considered here). Famously, BMS [1, 2] showed in 1962
that this could not be the case, and consequently that there is no limit in which General
reduces to Special Relativity. Only very recently [3, 4], using soft theorems from quantum
field theory, was it shown that there are an infinite number of non-trivial symmetries of
GR with associated conserved charges. These comprise a subgroup of the symmetries con-
sidered by BMS and can be measured using the gravitational memory effect [5]. However,
various developments [6–14] have made it clear that these are not all of the non-trivial
symmetries of GR. Currently, there is not even a proposal for a complete classification of
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the non-trivial symmetries of nature! For QED the situation is similarly unresolved [15–23].
There is active research on this topic from a variety of viewpoints [24–61].

There are many ways to characterize symmetries, which should ultimately all be equiv-
alent. A familiar and traditional method is the canonical construction of symmetry gener-
ators as conserved charges that commute with the Hamiltonian or the S-matrix.1 Other
methods directly derive relations among S-matrix elements, such as those given by soft
theorems, or assume falloffs and perform an asymptotic symmetry analysis. An especially
powerful, recently-developed “celestial” approach employs the holographic reformulation
of the 4D S-matrix as a 2D conformal correlator on the celestial sphere at null infinity.
In this approach, non-trivial symmetries correspond to generalized conformal currents on
the celestial sphere. Their properties and algebra can be efficiently computed using the
constraints of 2D conformal invariance. A further advantage is that one largely avoids am-
biguities associated to gauge choices, boundary terms, and falloff conditions. This paper
takes a step towards classifying the non-trivial symmetries of nature within this approach.

The symmetry-generating currents are of two types, arising from positive or negative
helicity conformally soft massless particles. Whenever two opposite-helicity soft particles
are scattered, the result can depend on the order of soft limits and a prescription of some
kind is required to define the S-matrix. In this paper we sidestep this important issue
by considering only positive helicity currents2 and working in a VirL⊗SL(2,R)R-invariant
formalism.3 Consistent with this restriction, this paper reports on a tower of higher-spin
symmetry generators forming a closed generalized current-algebra sector of the celestial
CFT2. The symmetries we find are only a subgroup of all of the symmetries in gravity and
gauge theory, but a large and interesting one.

This infinite tower of symmetries is likely related to the infinite tower of soft theorems
that have been discussed in the literature [23, 63, 64]. We will show, however, that com-
mutators of the leading, subleading, and (in gravity) subsubleading symmetries generate
the whole tower, so the new symmetries here give no new constraints on the S-matrix.

In practice our discussion is largely for tree-level Einstein-Yang-Mills theory, but the
methods are generally applicable and we anticipate that the algebra persists in some form
in the presence of quantum corrections and arbitrary higher-dimension operators coming
from UV physics. The results for gluons are affected if IR confinement occurs. The algebra
is also affected by a short list of higher-dimension operators [65, 66] which deform the
subleading soft theorems.

The pure gluon algebra is derived in section 2. In 4D nonabelian gauge theory with
group G, the leading soft theorem implies a standard closed 2D celestial G-current al-
gebra [24, 38, 43, 46, 67]. The subleading soft theorem implies two further G-valued

1We consider here the asymptotically flat approximation in which the cosmological constant vanishes
and there is an S-matrix.

2As noted in [56], this restriction arises automatically when considering the MHV sector, in which one
helicity decouples.

3Throughout this paper we treat left and right movers as independent on the celestial sphere, which
means we effectively work in (2, 2) signature, i.e. Klein space [62]. The SL(2,R)R here is the global subgroup
of the VirR superrotations.
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holomorphic currents [18, 44, 56]. We show that these form an SL(2,R)R doublet. Com-
mutators of two of these currents give yet further symmetry generators, which form an
SL(2,R)R triplet. Continuing in this manner, we construct an infinite tower of G-currents
in finite-dimensional SL(2,R)R representations and present their algebra. These currents
have integral left+right conformal dimensions ∆ = 1, 0,−1, . . . where the operator prod-
uct expansion is known to contain poles [44, 48]. Spacetime translation invariance, which
is not manifest in this presentation, combines these currents into a representation of the
Poincaré group.

In section 3, we consider the algebra of conformally soft positive helicity gravitons. Here
the ∆ = 1 SL(2,R)R-doublet current generates supertranslations. The ∆ = 0 SL(2,R)R-
triplet current closes with itself.4 At ∆ = −1 one encounters the SL(2,R)R-quadruplet
current associated to the subsubleading soft graviton theorem. These three currents then
generate an infinite tower of currents, whose algebra we present. In section 4 we couple
gluons and gravitons and determine the resulting algebra. A directly analogous result
applies to the coupling between photons and gravitons, although we do not include explicit
formulae for that case.

In section 5, we show explicitly that the OPEs we derive are encoded in four-gluon
MHV scattering amplitudes, a result that can be extended to general multiplicity using
the BCFW construction as described in [48]. Section 6 collects our results for the full
SL(2,R)R gluon and graviton algebra and we describe the straightforward application of
these results to photons. Appendix A contains details of the gluon-gluon OPE calcu-
lation, which the graviton-graviton and gluon-graviton OPE calculations closely mimic.
Appendix B presents a compact, manifestly conformally covariant formula for the contri-
bution to an OPE from a primary and all its SL(2,R)L ⊗ SL(2,R)R descendants. While
this work was in progress [55, 56] appeared with overlapping results.

2 Gluons

In this section, we find a class of positive helicity gluon operators Oa,+∆ (z, z̄) at special
conformal weights that generate symmetries of the S-matrix.5 Our starting point is the
leading OPE for two conformal primary, positive helicity gluons:

Oa,+∆1
(z1, z̄1)Ob,+∆2

(z2, z̄2) ∼ −if
ab
c

z12
B(∆1 − 1,∆2 − 1)Oc,+∆1+∆2−1(z2, z̄2), (2.1)

where z12 = z1 − z2 and B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Euler beta function. This expres-

sion was derived from a Mellin transform of the known soft collinear gluon singularities
4The shadow of this current is the VirR stress tensor in [27].
5Following the conventions of [44], Oa,±

∆ denotes an outgoing conformal primary gluon of conformal (or
boost) weight ∆ = h + h̄, adjoint group index a, and helicity s = ±1. The group structure constants obey
the Jacobi identity

fab
dfdce + f bc

dfdae + fca
dfdbe = 0.

Details of the map from the momentum-space S-matrix to celestial correlation functions are included in
section 5.
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in [38] and from symmetries in [44]. It is considerably less complicated than the gen-
eral OPE [44] that involves both helicities of gluons as well as gravitons.6 A salient feature
of (2.1) is the infinite sequence of poles in the OPE coefficient at integral conformal weights
∆1 = k = 1, 0,−1, . . .. As we shall see, the fact that the weights are typically negative leads
to some interesting and perhaps unfamiliar structures. The highest weight case with ∆ = 1
corresponds to the conformally soft gluon current and turns out to be holomorphic. Con-
tour integrals of this current on the celestial sphere generate the large gauge symmetries of
the S-matrix [67]. The case ∆ = 0 is the subleading soft current, which lies in an SL(2,R)R
doublet with negative h̄ = −1

2 .
7 Contour integrals of these currents generate subleading

soft symmetries [18, 21]. The properties of the rest of the operators with integral ∆ < 0,
which generate an infinite tower of soft theorems, have not been well understood. Here
we will construct the 2D algebra of these currents and find that it is closed. This tower
is likely not yet the complete celestial symmetry algebra, which may also include Gold-
stone currents [14, 22, 32, 60] and negative helicity gluon and graviton generators or their
shadows. However, it is an interesting and non-trivial subalgebra thereof.

A description of the algebra that is manifestly covariant under the full VirL⊗VirR
2D conformal group is challenging. Here we cut the problem down to manageable size
by presenting the algebra in a manifestly VirL⊗SL(2,R)R-covariant form. This is natural
because the positive helicity symmetry currents fall into finite (2−k)-dimensional SL(2,R)R
representations with h̄ = k−1

2 and highest (lowest) weights 1−k
2 (k−1

2 ).8 The tower starts
with (and we will see is generated by) the leading k = 1 and subleading k = 0 soft currents,
which are a singlet and doublet, respectively. Mode-expanding on the right

Oa,+k (z, z̄) =
∑
n

Oa,+k,n (z)

z̄n+ k−1
2
, (2.2)

conformally soft currents are defined by9

Rk,an (z) := lim
ε→0

εOa,+k+ε,n(z), k = 1, 0,−1,−2, . . . , k − 1
2 ≤ n ≤ 1− k

2 . (2.3)

For future notational convenience we also define

Rk,a(z, z̄) =
1−k

2∑
n= k−1

2

Rk,an (z)
z̄n+ k−1

2
, (2.4)

which has weights
(h, h̄) =

(
k + 1

2 ,
k − 1

2

)
. (2.5)

6Corrections to this OPE from higher-dimension operators are suppressed by positive powers of z12 or
z̄12 and would largely not affect the following analysis [44]. The one interesting exception is F 3, which
produces a potentially relevant term proportional z̄2

12
z12

Oa,−
∆1+∆2+1.

7The zero mode of the leading ∆ = 1 current generates global color rotations, which are a global
symmetry of the vacuum. This is the only unbroken global symmetry: all higher modes of the leading
current are spontaneously broken, as well as the all modes of the further subleading currents.

8This is equivalent to the null states found in [56].
9Outside the specified range of n, the SL(2,R)R-invariant norm vanishes. Such operators may still have

contact interactions but in this paper operators are always at distinct points.
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These values of conformal weights ∆ = k include all the conformally soft poles encountered
in the OPE (2.1). The factor of ε incorporated in (2.3) is needed to cancel these poles,
leading to finite OPEs for the rescaled Rk,a.

Using e.g. conformal blocks (see OPE blocks from [68], reviewed in appendix B) to de-
rive the contribution from SL(2,R)R descendants, the OPE (2.1) has the further expansion
in z̄12

Oa,+∆1
(z1, z̄1)Ob,+∆2

(z2, z̄2) ∼ −if
ab
c

z12

∞∑
n=0

B(∆1 − 1 + n,∆2 − 1)(z̄12)n

n! ∂̄nOc,+∆1+∆2−1(z2, z̄2).

(2.6)
The OPE of the conformally soft gluon operators (2.4) then becomes

Rk,a(z1, z̄1)Rl,b(z2, z̄2) ∼ −if
ab
c

z12

1−k∑
n=0

(
2− k − l − n

1− l

)
(z̄12)n

n! ∂̄nRk+l−1,c(z2, z̄2), (2.7)

where in truncating the sum we make use of ∂̄2−kRk,a = 0. We can consider derivatives

∂̄pRk,a(z1, z̄1)∂̄qRl,b(z2, z̄2) ∼ −if
ab
c

z12

(
2− k − l − p− q

1− l − q

)
∂̄q+pRk+l−1,c(z2, z̄2), (2.8)

where 0 ≤ p < 2 − k and 0 ≤ q < 2 − l and we now include only leading order terms in
both z12 and z̄12. Defining the commutator for holomorphic objects10

[A,B] (z) =
∮
z

dw

2πiA(w)B(z), (2.9)

and mode-expanding on the right, (2.8) can be reexpressed

[
Rk,an , Rl,bn′

]
= −ifabc

(1−k
2 − n+ 1−l

2 − n
′

1−k
2 − n

)(1−k
2 + n+ 1−l

2 + n′

1−k
2 + n

)
Rk+l−1,c
n+n′ . (2.10)

This is the general conformally soft gluon algebra. For details of the derivation, see ap-
pendix A. One may verify directly that this expression satisfies the Jacobi identity and is
translation covariant.11

The lowest-weight SL(2,R)R element Rk,ak−1
2

(z) for each k is annihilated by L̄−1 = i∂̄,
and hence is holomorphic. These operators have an especially simple chiral algebra. Define

R̂k,a(z) := ∂̄1−kRk,a(z, z̄) = (1− k)!Rk,ak−1
2

(z). (2.11)

Setting p = 1− k and q = 1− l in (2.8), we obtain the relation

R̂k,a(z1)R̂l,b(z2) ∼ −if
ab
c

z12
R̂k+l−1,c(z2). (2.12)

10Note that this is a 2D celestial commutator on a 1D circle, not to be mistaken for a 4D commutator
on a 3D slice.

11Translation covariance follows from the Jacobi identity with conformally soft gravitons which are studied
in subsequent sections. See for example (4.3).
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Equivalently, [
R̂k,a, R̂l,b

]
= −ifabcR̂k+l−1,c. (2.13)

Hence the algebra of the SL(2,R)R lowest-weight states considerably simplifies, as does
that of the SL(2,R)R highest-weight states. Most of the complexity in (2.10) arises from
the SL(2,R)R mode level structure.

3 Gravitons

The analysis for positive-helicity gravitons G+
∆(z, z̄) is analogous to that for gluons.12 De-

fine a family of conformally soft positive-helicity gravitons

Hk = lim
ε→0

εG+
k+ε, k = 2, 1, 0,−1, . . . , (3.1)

with weights
(h, h̄) =

(
k + 2

2 ,
k − 2

2

)
, (3.2)

and a consistently truncated antiholomorphic mode expansion,

Hk(z, z̄) =
2−k

2∑
n= k−2

2

Hk
n(z)

z̄n+ k−2
2
. (3.3)

The k = 1 term generates supertranslations. Expanding H1
n(z) =

∑
mH

1
m,nz

−m−3/2, the
four modes H1

± 1
2 ,±

1
2
generate the four global translations.

The OPE of two conformal primary gravitons of arbitrary weight [44], including anti-
holomorphic descendants, is

G+
∆1

(z1, z̄1)G+
∆2

(z2, z̄2)∼−κ2
1
z12

∞∑
n=0

B(∆1−1+n,∆2−1)(z̄12)n+1

n! ∂̄nG+
∆1+∆2

(z2, z̄2), (3.4)

with κ =
√

32πG. The OPE of conformally soft gravitons (3.1) becomes

Hk(z1, z̄1)H l(z2, z̄2) ∼ −κ2
1
z12

1−k∑
n=0

(
2− k − l − n

1− l

)
(z̄12)n+1

n! ∂̄nHk+l(z2, z̄2). (3.5)

After some algebra (analogous to the gluon case in appendix A) one finds the current
commutators

[
Hk
m,H

l
n

]
=−κ2 [n(2−k)−m(2−l)]

(
2−k

2 −m+ 2−l
2 −n−1

)
!(

2−k
2 −m

)
!
(

2−l
2 −n

)
!

(
2−k

2 +m+ 2−l
2 +n−1

)
!(

2−k
2 +m

)
!
(

2−l
2 +n

)
!
Hk+l
m+n.

(3.6)
As in the gauge theory case, we check that this commutator obeys the Jacobi identity with
three H operators. These imply the H operators obey the Jacobi identity with L̄0, L̄±1,
and that it is translation covariant.

12Again following [44], G±∆(z, z̄) denotes an outgoing conformal primary graviton of weight ∆ and helic-
ity s = ±2.

– 6 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
2

For the case of gluons, there is a closed subalgebra with k = 1. For gravitons, the
closed subalgebra has k = 0. Defining

J1 = −2
κ
H0

1 , J0 = 1
κ
H0

0 , J−1 = −2
κ
H0
−1, (3.7)

one finds from (3.6) the current algebra

[Jm, Jn] = (m− n)Jm+n. (3.8)

The zero modes of Jm generate self-dual Lorentz transformations in Klein space.

4 Gluons and gravitons

As in the previous sections, we begin with the OPE of conformally soft gluons and gravitons
of arbitrary weight derived in [44], and include antiholomorphic descendants:

G+
∆1

(z1, z̄1)Oa,+∆2
(z2, z̄2) ∼ −κ2

1
z12

∞∑
n=0

B(∆1 + n− 1,∆2) z̄
n+1
12
n! ∂̄nOa,+∆1+∆2

(z2, z̄2). (4.1)

In terms of the conformally soft gluons and gravitons defined above, the OPE becomes

Hk(z1, z̄1)Rl,a(z2, z̄2) ∼ −κ2
1
z12

1−k∑
n=0

(1− k − l − n)!
(1− k − n)!(−l)!

z̄n+1
12
n! ∂̄nRk+l,a(z2, z̄2), (4.2)

where we again make use of the finite SL(2,R)R representation to truncate the sum. After
a calculation analogous to that in previous sections, we derive the commutator

[
Hk
m,R

l,a
n

]
=−κ2 [n(2−k)−m(1−l)]

(
2−k

2 −m+ 1−l
2 −n−1

)
!(

2−k
2 −m

)
!
(

1−l
2 −n

)
!

(
2−k

2 +m+ 1−l
2 +n−1

)
!(

2−k
2 +m

)
!
(

1−l
2 +n

)
!
Rk+l,a
m+n .

(4.3)

5 OPE from scattering amplitudes

In order to make contact with other work on scattering amplitudes, we will show how
the previous OPEs including all antiholomorphic descendants emerge when the celestial
primaries are identified with scattering states in MHV tree amplitudes (see also [54, 69]).
In momentum space, massless n-particle amplitudes A(εiωi, zi) are labeled by energies ωi
and points zi on the celestial sphere. This follows from a parametrization of massless
momenta

pµk = εkωk√
2

(1 + zkz̄k, zk + z̄k,−i(zk − z̄k), 1− zkz̄k) , (5.1)

with εk = ±1 for outgoing and incoming momenta, respectively. Celestial amplitudes
A(∆i, zi) are defined by transforming to Mellin space (see e.g. [70, 71])

Asj (∆j , zj) =
(

n∏
i=1

∫ ∞
0

dωi
ωi

ω∆i
i

)
Asi(εiωi, zi), (5.2)
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where si are helicity labels.13 Celestial amplitudes are naturally interpreted as correlation
functions of n weight

(
hi, h̄i

)
=
(

∆i+si
2 , ∆i−si

2

)
conformal primary operators on the celestial

sphere:
Asi(∆i, zi)→ 〈Os1∆1

(z1, z̄1) · · · Osn
∆n

(zn, z̄n)〉. (5.3)

Let us consider first the case of gluons with si = ±1. Nicely, the full OPE (2.6) is encoded
even in the simplest non-trivial scattering process, namely n = 4 gluons. We start from

Aabcd
−−++({ε1ω1,z1, z̄1}, . . . ,{ε4ω4,z4, z̄4}) =δ4

( 4∑
i=1

εiλ
α
i λ̃

α̇
i

)
× (5.4)[

fadef
cbe 〈12〉3

〈23〉〈34〉〈41〉+f
ac
ef
dbe 〈12〉3

〈24〉〈43〉〈31〉

]
,

with null momenta written as pαα̇ = ελαλ̃α̇ using

λi =
√
ωi(1 zi) , λ̃i =

√
ωi

(
1
z̄i

)
, (5.5)

where 〈ij〉 = εiεjλ
α
i λ

β
j εαβ . We will consider the holomorphic collinear limit for positive-

helicity gluons 3, 4, which we take as outgoing ε3 = ε4 = +1. To study only the antiholo-
morphic descendants, using the parametrization (5.5), we can extract the leading order
behavior as z3 → z4 while keeping the exact dependence on z̄34:

δ4
( 4∑
i=1

εiλ
α
i λ̃

α̇
i

)
= 1

ω1ω2z2
12
δ
(
ε1ω1−

z24

z12
(ω3+ω4)

)
δ
(
ε2ω2−

z41

z12
(ω3+ω4)

)
δ
(
z̄14−ε1

ω3

ω1

z24

z12
z̄34
)

×δ
(
z̄24−ε2

ω3

ω2

z41

z12
z̄34
)

+O(z34) . (5.6)

Introducing ω3 = tω, ω4 = (1− t)ω with 0 ≤ t ≤ 1, this becomes

1
ω1ω2z2

12
δ

(
ε1ω1 −

z24
z12

ω

)
δ

(
ε2ω2 −

z41
z12

ω

)
δ (z̄14 − tz̄34) δ (z̄24 − tz̄34)

= δ4

 ∑
i=1,2,4

εiλ
α
i λ̃

α̇
i

∣∣∣∣∣∣
z̄4→z̄4+tz̄34, ω4→ω

, (5.7)

i.e. at leading order in z34, the n = 4 momentum conservation condition can be written as
the n = 3 condition together with the deformation

z̄4 → z̄4 + tz̄34 . (5.8)

This deformation extends trivially to the full amplitude (5.4) since the remaining factor
does not depend on the antiholomorphic coordinates. Indeed, at leading order in z34 ∼ 〈34〉
the stripped part of (5.4) becomes

fadef
cbe 〈12〉3

〈23〉〈34〉〈41〉+f
ac
ef
dbe 〈12〉3

〈24〉〈43〉〈31〉 →
f cde

z34ωt(1−t)
×
(
fabe

〈12〉3

〈24〉〈41〉

)
ω4→ω

, (5.9)

13Mellin amplitudes converge only for certain ∆i but can be defined generally by analytic continua-
tion [60, 72].
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and we can relate the full n = 4 amplitude to an n = 3 amplitude:

Aabcd
−−++({ε1ω1,z1, z̄1},{ε2ω2,z2, z̄2},{ω3,z3, z̄3},{ω4,z4, z̄4})

= −if cde
z34ωt(1−t)

Aabe
−−+({ε1ω1,z1, z̄1},{ε2ω2,z2, z̄2},{ω,z4, z̄4+tz̄34})+O(z0

34).
(5.10)

To translate the above statement into a celestial correlation function we employ (5.2)–(5.3)
and find

〈Oa,−∆1
· · ·Od,+∆4

〉

=
∫
dω1 ω

∆1−1
1 dω2 ω

∆2−1
2 dω ω∆3+∆4−1dt t∆3−1(1−t)∆4−1Aabcd

−−++

→ −if
cd
e

z34

∫
dt t∆3−2(1−t)∆4−2

×
∫
dω1 ω

∆1−1
1 dω2 ω

∆2−1
2 dω ω∆3+∆4−2Aabe

−−+({−ω1,z1, z̄1},{−ω2,z2, z̄2},{ω,z4, z̄4+tz̄34})

= −if
cd
e

z34

∫
dt t∆3−2(1−t)∆4−2〈Oa,−∆1

(z1, z̄1)Ob,−∆2
(z2, z̄2)Oe,+∆3+∆4−1(z4, z̄4+tz̄34)〉 , (5.11)

where gluons 1, 2 are incoming and 3, 4 are outgoing. The OPE of two positive helicity
gluons follows:

Oc,+∆3
(z3, z̄3)Od,+∆4

(z4, z̄4) ∼ −if
cd
e

z34

∫
dt t∆3−2(1− t)∆4−2Oe,+∆3+∆4−1(z4, z̄4 + tz̄34). (5.12)

This expression corresponds to a conformal block including all antiholomorphic descen-
dants. This connection is detailed in appendix B. To see this explicitly we perform a
Taylor expansion in z̄34:

Oc,+∆3
(z3, z̄3)Od,+∆4

(z4, z̄4)∼ −if
cd
e

z34

∞∑
n=0

∫
dt t∆3−2+n(1−t)∆4−2 z̄

n
34
n! ∂̄

nOe,+∆3+∆4−1(z4, z̄4)

∼ −if
cd
e

z34

∞∑
n=0

B(∆3−1+n,∆4−1) z̄
n
34
n! ∂̄

nOe,+∆3+∆4−1(z4, z̄4) , (5.13)

in agreement with (2.6). For gravitons, analogous computations hold for the n = 4 MHV
celestial correlators. For instance, the four-graviton amplitude in [45] leads to the conformal
block

G+
∆3

(z3, z̄3)G+
∆4

(z4, z̄4) ∼ −κ2
z̄34
z34

∫
dt t∆3−2(1− t)∆4−2G+

∆3+∆4
(z4, z̄4 + tz̄34), (5.14)

which can be Taylor expanded to obtain (3.4).
To see that the above gluon-gluon OPE is consistent with scattering amplitudes at

any multiplicity and general helicity configuration, we generalize the expression (5.10) as
follows:

A{aj}cd
{sj}++({ω1,z1, z̄1}, . . . ,{ωn+1,zn+1, z̄n+1})

∼ −if cde
zn,n+1ωt(1−t)

A{aj}e
{sj}+({ω1,z1, z̄1}, . . . ,{ω,zn, z̄n+tz̄n+1,n})

(5.15)
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where sj = ±1, j = 1, . . . , n− 1 and we have set again ωn+1 = tω, ωn = (1− t)ω. It is then
straightforward, following the steps of eq. (5.11), to show that the OPE (5.12) follows.

The formula (5.15) can be proven from the BCFW recurrence relations of gluon scat-
tering amplitudes, following the construction of [48] (see also references therein). The
n+ 1-point scattering amplitude obtained by attaching a positive helicity gluon of coordi-
nates {ωs, zs, z̄s} is written as

A{aj}as

{sj}+ ({ω1, z1, z̄1}, . . . , {ωs, zs, z̄s})

∼
n∑
i=2
−ifasai

b
z1i

z1szsiωs
(1 + αi)si(1 + βi)s1× (5.16)

A{aj ,ai→b}
{sj}

({
(1 + βi)ω1, z1,

z̄1 + βiz̄s
1 + βi

}
, . . . ,

{
(1 + αi)ωi, zi,

z̄i + αiz̄s
1 + αi

}
, . . .

)
where αi = ωsz1s

ωiz1i
, βi = ωszis

ω1zi1
and we have neglected, following [48], multiparticle factor-

izations which are regular in the OPE limit. Let us again consider the leading behaviour
as zn → zs, keeping z̄ns finite. For this we need only keep the term i = n in the above
sum and set sn = +1 for the positive helicity gluon. Introducing ωs = tω, ωn = (1 − t)ω
as anticipated we find αn → t

1−t , βn → 0 and the leading behaviour of (5.16) becomes
precisely (5.15).

6 Summary

We collect the results for the conformally soft algebra derived in the previous sections:

[
Rk,an ,Rl,bn′

]
=−ifabc

(
1−k

2 −n+ 1−l
2 −n

′
)
!(

1−k
2 −n

)
!
(

1−l
2 −n′

)
!

(
1−k

2 +n+ 1−l
2 +n′

)
!(

1−k
2 +n

)
!
(

1−l
2 +n′

)
!
Rk+l−1,c
n+n′ ,

[
Hk
n,H

l
n′

]
=−κ2

[
n′ (2−k)−n(2−l)

] (2−k
2 −n+ 2−l

2 −n
′−1

)
!(

2−k
2 −n

)
!
(

2−l
2 −n′

)
!

(
2−k

2 +n+ 2−l
2 +n′−1

)
!(

2−k
2 +n

)
!
(

2−l
2 +n′

)
!
Hk+l
n+n′ ,

[
Hk
n,R

l,a
n′

]
=−κ2

[
n′ (2−k)−n(1−l)

] (2−k
2 −n+ 1−l

2 −n
′−1

)
!(

2−k
2 −n

)
!
(

1−l
2 −n′

)
!

(
2−k

2 +n+ 1−l
2 +n′−1

)
!(

2−k
2 +n

)
!
(

1−l
2 +n′

)
!
Rk+l,a
n+n′ .

(6.1)
These results readily extend to photons. In particular, one can construct generalized con-
formally soft photon currents that are directly analogous to the generalized conformally
soft gluon currents. Unlike gluons, which carry color, photons do not carry electric charge
and as a result their generalized currents commute with one another. However, since pho-
tons couple to gravitons, the photon currents obey commutation relations with the graviton
currents that are of the same form as the gluon-graviton commutation relations.
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A Gluon OPE calculation

The OPE of generalized soft gluon operators Rk,a is derived from the OPE of conformal
primary gluons

Oa,+∆1
(z1, z̄1)Ob,+∆2

(z2, z̄2)∼ −if
ab
c

z12

∞∑
n=0

B(∆1−1+n,∆2−1) z̄
n
12
n! ∂

n
z̄2O

c,+
∆1+∆2−1(z2, z̄2), (A.1)

using the definition

Rk,a(z, z̄) = lim
ε→0

εOa,+k+ε(z, z̄), k = 1, 0,−1,−2, · · · , (A.2)

with the mode expansion

Rk,a(z, z̄) =
1−k

2∑
n= k−1

2

Rk,an (z)
z̄n+ k−1

2
. (A.3)

Taking the simultaneous limit of (A.1), we find

Rk,a(z1, z̄1)R`,b(z2, z̄2) = lim
ε→0

εOa,+k+ε(z1, z̄1)εOb,+`+ε(z2, z̄2)

∼ −if
ab
c

z12

1−k∑
m=0

1
m!

(2−k−`−m)!
(1−k−m)!(1−`)! z̄

m
12∂

m
z̄2R

k+`−1,c(z2, z̄2),
(A.4)

where the truncation in the sum over m follows from the mode expansion (A.3). (Specifi-
cally, note that the powers of z̄1 match on either side of the equation.)

To determine the algebra of modes Rk,an from the OPE (A.4), we first recall that modes
are extracted from

Rk,an (z) =
∮

dz̄

2πi z̄
n+ k−3

2 Rk,a(z, z̄). (A.5)

Here z and z̄ are treated independently, as, for example, is done in section 6.1 of [73].
Then, the algebra of modes Rk,an is obtained by taking the following contour integrals:

[
Rk,an , R`,bn′

]
(z2) =

∮
|z̄1|<ε

dz̄1
2πi z̄

n+ k−3
2

1

∮
|z̄2|<ε

dz̄2
2πi z̄

n′+ `−3
2

2

∮
|z12|<ε

dz1
2πi R

k,a(z1, z̄1)R`,b(z2, z̄2).

(A.6)

Note that since the OPE (A.4) is not singular in the antiholomorphic variables, the order
in which contour integrals in antiholomorphic variables is taken does not matter. Let’s
take the z̄1 contour first. Substituting the OPE (A.4) into the right-hand side of (A.6),
performing the z1 integral and using

∮
|z̄1|<ε

dz̄1
2πi z̄

n+ k−3
2

1 z̄m12 =


0, 0≤m< 1−k

2 −n
m!

(1−k
2 −n)!(m+n+ k−1

2 )!
(−z̄2)m+n+ k−1

2 , 1−k
2 −n≤m≤ 1−k ,

(A.7)
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to perform the z̄1 integral, (A.6) becomes

[
Rk,an ,R`,bn′

]
(z2) =−ifabc

1−k∑
m= 1−k

2 −n

(2−k−`−m)!
(1−k−m)!(1−`)!

(−1)m+n+ k−1
2(

1−k
2 −n

)
!
(
m+n+ k−1

2

)
!

×
∮
|z̄2|<ε

dz̄2
2πi z̄

m+n+ k−1
2 +n′+ `−3

2
2 ∂mz̄2R

k+`−1,c(z2, z̄2).

(A.8)

To perform the remaining contour integral, we substitute Rk+`−1,c(z2, z̄2) for its mode
expansion∮
|z̄2|<ε

dz̄2
2πi z̄

m+n+ k−1
2 +n′+ `−3

2
2 ∂mz̄2R

k+`−1,c(z2, z̄2)

=
∮
|z̄2|<ε

dz̄2
2πi z̄

m+ k−1
2 +n+n′+ `−3

2
2 ∂mz̄2

2−k−`
2∑

m′= k+`−2
2

Rk+`−1,c
m′ (z2)

z̄
m′+ k+`−2

2
2

=

(
1−k

2 −n+ 1−`
2 −n

′
)
!(

1−k
2 −n+ 1−`

2 −n′−m
)
!
Rk+`−1,c
n+n′ (z2).

(A.9)

Finally, substituting this result back in (A.8) and performing the sum in m, we find

[
Rk,an ,R`,bn′

]
(z2) =−ifabc

(
1−k

2 −n+ 1−`
2 −n

′
)
!(

1−k
2 −n

)
!
(

1−`
2 −n′

)
!

(
1−k

2 +n+ 1−`
2 +n′

)
!(

1−k
2 +n

)
!
(

1−`
2 +n′

)
!
Rk+`−1,c
n+n′ (z2). (A.10)

B The OPE conformal block

In this appendix we will derive the integral expression (5.12) encoding the contribution
from all SL(2,R)R descendants. To do so we first start with the complete expression
for SL(2,R)L ⊗ SL(2,R)R descendants as given in e.g. appendix B of [68].14 Consider
two primaries of weights (h1, h̄1), (h2, h̄2). In the shadow representation, singling out the
contribution from a single primary P and all its descendants leads to the expression

O(h1,h̄1)(z1,z̄1)O(h2,h̄2)(z2, z̄2)

∼N
∫ d2z3O(hP ,h̄P )(z3, z̄3)

z
h1+h2+hp−1
12 zh2−h1−hP +1

32 zh1−h2−hP +1
13 z̄h̄1+h̄2+h̄P−1

12 z̄h̄2−h̄1−h̄P +1
32 z̄h̄1−h̄2−h̄P +1

13

=N IO3
O1O2

,

(B.1)

where N is a normalization constant that can be fixed by comparing leading order terms
in the limit z12, z̄12 → 0. As coordinates z, z̄ are independent we will assume they both lie
on the real projective line. If z1 > z2, z̄1 > z̄2, the KLT formula15 provides a factorization

14Recall we are working with independent left and right coordinates, i.e. (2, 2) signature [62].
15To make connection with the standard four-point KLT formula as described in [74, 75], it is convenient

to set z1 = 1, z2 = 0 using SL(2,R) covariance and expand O(hP ,h̄P )(z3, z̄3) in powers of z3, z̄3.
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of the above integral into two disk integrals:

IO3
O1O2

= 2 sin(π(h2 − h1 + hP ))
∫ ∞
z1

dz3

z
h1+h2+hp−1
12 zh2−h1−hP +1

32 zh1−h2−hP +1
31

×
∫ z̄1

z̄2

dz̄3 O(hP ,h̄P )(z3, z̄3)

z̄h̄1+h̄2+h̄P−1
12 z̄h̄2−h̄1−h̄P +1

32 z̄h̄1−h̄2−h̄P +1
13

(B.2)

which has explicit SL(2,R)L⊗SL(2,R)R covariance. To recover the set of right descendants
we perform an expansion of the left factor to leading order in z12 by setting z3 = z2 + tz12.
We obtain

IO3
O1O2

= 2sin(π(h2−h1+hP ))
zh1+h2−hP

12

∫ ∞
1

dtth1+hP−h2−1(t−1)h2+hP−h1−1 (B.3)

×
∫ z̄1

z̄2

dz̄3 O(hP ,h̄P )(z2+tz12, z̄3)

z̄h̄1+h̄2+h̄P−1
12 z̄h̄2−h̄1−h̄P +1

32 z̄h̄1−h̄2−h̄P +1
13

= 2πΓ(1−2hP )
Γ(1+h2−h1−hP )Γ(1+h1−h2−hP )zh1+h2−hP

12

×
∫ z̄1

z̄2

dz̄3 O(hP ,h̄P )(z2, z̄3)

z̄h̄1+h̄2+h̄P−1
12 z̄h̄2−h̄1−h̄P +1

32 z̄h̄1−h̄2−h̄P +1
13

+O(z−h1−h2+hP +1
12 ) . (B.4)

We thus identify the remaining real integral as a conformal block for SL(2,R)R descendants.
It can be written in a more compact way by introducing z̄3 = z̄2 + tz̄12:

SL(2,R)R block =
∫ z̄1

z̄2

dz̄3 O(hP ,h̄P )(z2, z̄3)

z̄h̄1+h̄2+h̄P−1
12 z̄h̄2−h̄1−h̄P +1

32 z̄h̄1−h̄2−h̄P +1
13

= 1
z̄h̄2+h̄1−h̄P

12

∫ 1

0

dt O(hP ,h̄P )(z2, z̄2 + tz̄12)
th̄2−h̄1−h̄P +1(1− t)h̄1−h̄2−h̄P +1

. (B.5)

Let us apply this formula to the positive-helicity gluon case, for which (h, h̄) = (∆+1
2 , ∆−1

2 )
and ∆P = ∆1 + ∆2 − 1. We thus find

IO3,c
O1O2

= 2πΓ(1−∆1 −∆2)
Γ(1−∆1)Γ(1−∆2) ×

1
z12

∫ 1

0

dt Oc,+∆P
(z2, z̄2 + tz̄12)

t2−∆1(1− t)2−∆2
+O(z0

12) . (B.6)

The normalization factor N can be fixed in this case as

Oa,+∆1
Ob,+∆2

∼ −ifabc
Γ(1−∆1)Γ(1−∆2)
2π Γ(1−∆1 −∆2) I

O3,c
O1O2

= −if
ab
c

z12

∫ 1

0

dt Oc,+∆P
(z2, z̄2 + tz̄12)

t2−∆1(1− t)2−∆2
, (B.7)

in agreement with (5.12).
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