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1 Introduction and summary

The behavior of perturbed black holes (BHs) in asymptotically anti de-Sitter (AAdS) space-

times is of central importance in both current fundamental and practical research endeav-

ors. Since these spacetimes contain a timelike boundary, exploring such behavior requires

taking into account the role of boundary conditions. Of particular relevance are physically

motivated conditions implying the absence of dissipation at infinity. This introduces new

features and challenges in the analysis of fluctuations in AAdS scenarios: generic perturba-

tions “bounce back” off infinity and come back to interact, in the core region of AdS or with

the black hole, in finite time. Such interaction dissipates the quasinormal modes (QNMs)

only at the horizon and can trigger superradiant instabilities at the linear level, and even

induce other nonlinear phenomena. Additionally, BHs in AAdS play a central role in the

formulation and applications of the AdS/CFT correspondence. This correspondence [1, 2]

provides a remarkable framework for studying certain strongly coupled gauge theories in

d dimensions by mapping them to weakly coupled quantum gravitational systems in d+ 1

dimensions. In a certain limit (namely in the large ‘t Hooft coupling and planar limit),

quantum gravity in the bulk reduces to classical general relativity. Within this holographic

framework, a black hole is dual to a thermal state and the question of thermalization in the

boundary gauge theory translates, in the gravitational bulk, to understanding the “return

to equilibrium” behavior of perturbed black holes [3–10].

Here, we will be interested in the original gauge/gravity duality, namely the AdSd+1/

CFTd correspondence (for the d = 3, 4 cases for which Super-Yang-Mills theory is dual to

string theory on AdS4 × S7 and AdS5 × S5, respectively). Moreover, we are particularly

interested in systems with a rotating chemical potential.1 This requires looking to CFTs

formulated on a sphere (since a rotational shift is a pure gauge transformation on a plane),

i.e. for bulk solutions that asymptote to global AdS (which is conformal to the static

Einstein Universe Rt × Sd−1). Henceforward, when we refer to AAdS spacetimes it is

implicitly assumed that we mean global AdS (although some of the discussions are also

valid for planar AdS i.e. the Poincaré patch of AdS that asymptotes to Rt×Rd−1). We will

often use the notation D = d + 1 for the bulk spacetime dimension; Greek indices denote

the bulk dimensions while Latin indices describe boundary coordinates.

Certainly, important headways on thermalization can be made by studying the behav-

ior of perturbed black hole spacetimes at a linearized level. Naturally, the applicability of

such analysis depends on the strength of the perturbation off the stationary black hole and

the behavior obtained can hint of possible instabilities [11–14].

The analog problem in asymptotically flat spacetimes is, to a large degree, understood.

The approach to equilibrium depends sensitively on the character of the perturbation:

massless fields (scalar, vector or tensor type) die off through their quasinormal modes

1Often, mass and angular momentum are referred to as “charges” and the angular velocity is denoted

as “rotating chemical potential”, even though they are not quantities associated to a gauge field. In this

paper we will use this common (but perhaps misleading) terminology. To be precise, the holographic stress

tensor that describes the dual field theory can be written in the form (6.5). “Presence of a rotating chemical

potential” means that Ω∞ 6= 0 in this holographic quantity.
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(QNMs), with a time dependence of the form e−iωt with Im(ω) < 0 (for a review see [15]).2

Massive fields on the other hand, have a much richer phenomenology, tied to the fact that

they can be trapped inside a cavity with size of the order of the Compton wavelength.

This trapping causes the field to decay much slower, or can even become unstable for large

black hole rotation (see [16] and references therein). The linear behavior of massive fields

around rotating black holes is not fully understood yet (and certainly not the nonlinear

regime), but it is akin to that of massless fields in AAdS backgrounds in that both can

develop trapping potentials. However, an important difference is that the height of the

potential barrier is unbounded in the AdS case while it is finite for a massive scalar in a

flat background.

Accurate expressions for the QNMs for generic black holes in the asymptotically flat

case are known for both static and stationary black holes (see the review [15]); remarkably

this is not the case in the AdS background as they are not known for the Kerr-AdS BH. This

status of affairs is, at first sight, surprising given the central role they play in holographic

dualities as well as in studies of AAdS black hole stability.

It is thus worth discussing in detail the reason for this gap in our knowledge. Since an

AAdS spacetime is a non-globally hyperbolic spacetime (i.e., spatial infinity is a timelike

boundary in the Carter-Penrose diagram and thus null rays can reach it in finite time), in

order to predict the future time evolution of the system we need to give not only initial

data but also to specify the choice of boundary conditions (BCs). At the inner boundary

(origin or horizon) regularity fixes the BC. However, at the asymptotic boundary this

choice is à priori arbitrary, being fixed by a physical motivation. From a pure gravitational

perspective it is often stated in the literature that one is interested in “reflecting BCs” which

suggests the idea that we want vanishing flux of energy and angular momentum across the

asymptotic boundary. On the other hand, in the context of the AdS/CFT duality we

typically want to choose BCs that preserve the asymptotic boundary (conformal) metric.

Next, and in appendix A, we emphasize that these two perspectives require exactly the

very same BCs. Formally, the discussion of the asymptotic BCs is more clear if we write the

total metric (background plus perturbations, if present) in Fefferman-Graham coordinates

(this frame is defined such that gzz = L2/z2 and gzb = 0, where z is the radial distance

with boundary at z = 0, and xb are the coordinates on the boundary), and looking at its

boundary expansion (see [17] and references therein). For odd boundary dimension d this

reads3

ds2 =
L2

z2
[
dz2 + gab(z, x)dx

adxb
]
,

gab
∣∣
z→0

= g
(0)
ab (x) + · · ·+ zdg

(d)
ab (x) + · · · with 〈Tab(x)〉 ≡

d

16πGN
g
(d)
ab (x) , (1.1)

2Exceptions exist however, as QNMs do not constitute a complete basis for perturbations. Nevertheless

cases where QNMs are known to fail to describe the solution in linearized perturbative regimes are either

finely-tuned or, like tails, arise after a QNM epoch can be identified.
3For even d, the asymptotic expansion (1.1) contains also a logarithmic term zd log z2g̃

(d)
ab and the

holographic stress tensor has an extra contribution proportional to the conformal anomalies of the boundary

CFT [17]. These details are not essential for the present discussion.
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where g(0)(x) and g(d)(x) are the two integration “constants” of the expansion; the first

dots include only even powers of z (smaller than d) and depend only on g(0) (thus being

the same for any solution that asymptotes to global AdSd) while the second dots depend

on the two independent terms g(0), g(d) (we will fix Newton’s constant as GN ≡ 1). Within

the AdS/CFT duality we are (typically) interested in Dirichlet BCs that do not deform the

conformal metric g(0). Indeed, this defines the gravitational background where the CFT is

formulated and we want to keep it fixed; in our case this is the static Einstein Universe.

Stated in other words, we allow perturbations in the bulk that only deform the expectation

value of holographic stress tensor 〈Tab(x)〉 (that specifies and describes the boundary CFT)4

but that preserve the asymptotic structure of the original background that we perturb.5 As

discussed in appendix A these BCs do not allow asymptotic dissipation of energy or angular

momentum. In other words, everything that hits the asymptotic boundary is reflected back

to the bulk core allowing for a non-trivial interplay between the asymptotic and inner (e.g.

horizon) boundaries. We have now growing evidence that these conditions favour the

development of instabilities. For instance, it has been shown recently that even arbitrarily

small perturbations can trigger black hole formation in global AdS [18, 19], indicating

that global AdS is nonlinearly unstable to a weak perturbative turbulent mechanism (note

however the existence of “islands” of stability [20–22]). Additionally, it has recently been

shown that turbulent behavior6 (akin to the one displayed by hydrodynamics) arises in

long-wavelength perturbations of 3+1 Kerr-AdS [23, 24].

The BCs we need to impose to study AAdS perturbations of global AdS BHs are

therefore well known. Yet, we still need to understand why the study of QNMs and

superradiant instabilities of global AdS BHs is not a closed chapter. For that, we need

to look to the perturbation equations. Studying linearized gravitational perturbations

requires solving the linearized Einstein equations for the metric perturbation. For generic

perturbations this is a coupled nonlinear system of PDEs. Solving this PDE system directly

with the above BCs is a hard problem, even numerically. In certain special cases, however,

drastic simplifications occur. Fortunately, and quite remarkably, in four dimensions it has

been shown that if we use certain gauge invariant scalar variables we can reduce the problem

of looking for the most generic perturbations of the above AAdS BHs to solving a single

PDE. Moreover, using the harmonic decomposition of the system, the later reduces to

solving two ODEs. This remarkable reformulation of the linearised perturbation problem

is known as the Regge-Wheeler-Zerilli or Kodama-Ishisbashi formalism for perturbations of

Schwarzschild BHs [25–27], and Teukolsky formalism for perturbations of Kerr BHs [28, 29].

We ask the reader to see the companion paper [30] for a detailed discussion of these two

formalisms and for the map relating them when the background rotation vanishes. Once

4Note that g(d) is an integration “constant” but not a free function; it is fixed solving the Einstein

equation in the bulk subject to regular BCs at the horizon or radial origin.
5Other BCs that might be called asymptotically globally AdS (and that promote the boundary graviton

to a dynamical field) were proposed in [97]. However, they turn out to lead to ghosts (modes with negative

kinetic energy) and thus make the energy unbounded below [98].
6As well, in planar AdS backgrounds, turbulent behavior of gravity has also been uncovered for (suffi-

ciently) long-wavelength perturbations of black holes in [23, 52].
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the solution for the gauge invariant scalars is known a simple differential map generates

the corresponding metric perturbation tensors (in a particular gauge).

At this point, to find QNMs or instability timescales of AAdS BHs we just need to

take the above BCs, discussed for the metric perturbations, and translate them to get the

corresponding BCs that need to be imposed on the gauge invariant scalars. On general

grounds we should expect the Dirichlet BCs on the metric to translate to Robin BCs (which

relate the field with its derivative) on the gauge invariant scalars. In the static background

case, this dictionary was found by [9, 10]. There are two families of perturbations: scalar

(also called even or polar) and vector (odd or axial) sectors. The associated QNMs of the

global AdS Schwarzschild BH were then computed [9, 10, 30]: vector QNMs agree with

those first computed in [31–33] (the scalar modes of [31–33] do not preserve the asymptotic

AdS structure). In the stationary case, the BC map was constructed only recently in

the companion paper [30]. With it at hand, we can finally compute the gravitational

QNM spectrum and superradiant instability growth rates of the Kerr-AdS BH. This is

one of main aims of the work here reported. (Previous work on gravitational QNMs [34]

and superradiant instability of Kerr-AdS [35] imposed BCs that do not keep the boundary

metric fixed.) While many of the methods presented here are readily applicable to arbitrary

dimensions we concentrate in dimensions d = 3 and d = 4 because of their interest for the

AdSd+1/CFTd holographic dualities.

The interest on the superradiant instability is not restricted to its growth rate. Indeed,

the onset curve of this instability (where the imaginary part of the frequency vanishes) is

an exact zero mode that is invariant under the horizon-generating Killing field of Kerr-

AdS. Therefore we will argue that, in a phase diagram of stationary solutions, this onset

curve signals a bifurcation curve to a new family of BHs that have a single Killing vector

field (KVF), i.e. that are periodic but not time dependent neither axisymmetric. A far

reaching consequence of this statement is that Kerr-AdS BHs are not the only stationary

BHs of Einstein-AdS gravity. These BHs can exist because they evade a main assumption

of the rigidity theorems [36–38]. We will give the explicit perturbative construction of

the leading order thermodynamics and properties of these BHs. These ideas were first

proposed in [39] and further developed in [19, 40]. Now that we have the precise onset

curve of superradiance, we have the opportunity to expand their discussion.

Another aim of the present work is to confirm that long wavelength gravitational QNM

frequencies agree with the hydrodynamic relaxation timescales that we obtain when we con-

sider the near-equilibrium and long wavelength effective description of the CFTd. This will

provide the first explicit confirmation that the match between the QNM spectrum and the

CFT thermalization timescales also holds in the presence of a rotating chemical poten-

tial. Incidentally, it provides the first non-trivial confirmation that the Robin boundary

conditions for the Teukolsky gauge-invariant variable derived in the companion paper [59]

are indeed the ones that we must impose if we want the perturbations to preserve the

conformal metric.

This work is divided as follows. Section 2 reviews relevant properties of D = 4 Kerr-

AdS spacetime and the equations of motion and the BCs [30] governing the behavior of

perturbations at the linear level. Section 3 describes the numerical methods employed to

– 5 –



J
H
E
P
0
4
(
2
0
1
4
)
1
8
3

solve them. One of these numerical approaches is novel and we expect it to be of interest

for other applications. Section 4 presents our results for the full spectrum of gravitational

QNMs and superradiant instability timescales of the Kerr-AdS BH. In section 5 we con-

struct and discuss the novel single Killing vector field BHs that merge with the Kerr-AdS

BH at the onset of superradiance. In section 6 we use the fluid/gravity duality to confirm

the match between the gravitational long-wavelength QNM spectrum and the CFT3 hy-

drodynamic modes even in the presence of a rotating chemical potential. Section 7 repeats

the previous section computations and discussions but this time for the D = 5 rotating

system that is of interest for the AdS5/CFT4 duality. It will also contribute to identify uni-

versal properties of systems with a rotating chemical potential. We work in a particularly

clean environment where we study perturbations around the equal angular momentum

Myers-Perry BH. Indeed, this background has enhanced symmetry — it only depends

non-trivially on the radial direction — and its perturbations have an exact harmonic de-

composition. The present study fills important gaps in our knowledge but confirms and

opens some interesting questions. In section 8 we discuss these open questions in what can

be viewed as a roadmap in the subject from our viewpoint.

2 Gravitational perturbations & boundary conditions of Kerr-AdS black

hole

In this section we review the basic properties of Kerr-AdS black holes and their gravitational

perturbations.

2.1 Kerr-AdS black hole

The Kerr-AdS geometry was originally discovered by Carter in the Boyer-Lindquist coor-

dinate system {T, r, θ, φ} [41]. For our purposes, it is convenient here, to follow Chambers

and Moss [42] and introduce the new time and polar coordinates {t, χ}, which are related

to the Boyer-Lindquist coordinates {T, θ} by

t = ΞT , χ = a cos θ , (2.1)

where a is the rotation parameter of the solution and Ξ is to be defined in (2.3). In this

coordinate system the Kerr-AdS black hole line element reads [42]

ds2 = − ∆r

(r2 + χ2)Ξ2

(
dt− a2 − χ2

a
dφ

)2
+

∆χ

(r2 + χ2)Ξ2

(
dt− a2 + r2

a
dφ

)2

+
(r2 + χ2)

∆r
dr2 +

(r2 + χ2)

∆χ
dχ2, (2.2)

where

∆r = (a2+ r2)

(
1+

r2

L2

)
−2Mr , ∆χ = (a2−χ2)

(
1− χ2

L2

)
, Ξ = 1− a2

L2
. (2.3)

The Chambers-Moss (CM) coordinate system {t, r, χ, φ} has the appealing property that

the line element treats the radial r and polar χ coordinates on an almost equal footing. This

– 6 –
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property extends to the radial and angular equations describing gravitational perturbations

in the Kerr-AdS background. In this frame, the horizon angular velocity and temperature

are given by

ΩH =
a

r2+ + a2
, TH =

1

Ξ

[
r+
2π

(
1 +

r2+
L2

)
1

r2+ + a2
− 1

4πr+

(
1− r2+

L2

)]
. (2.4)

The Kerr-AdS black hole obeys Rµν = −3L−2gµν , and asymptotically approaches global

AdS space with radius of curvature L. This asymptotic structure is not manifest in (2.2),

one of the reasons being that the coordinate frame {t, r, χ, φ} rotates at infinity with angular

velocity Ω∞ = −a/(L2Ξ). However, if we introduce the coordinate change

T =
t

Ξ
, Φ = φ+

a

L2

t

Ξ
,

R =

√
L2(a2 + r2)− (L2 + r2)χ2

L
√
Ξ

, cosΘ =
L
√
Ξ r χ

a
√
L2(a2 + r2)− (L2 + r2)χ2

, (2.5)

we find that as r → ∞ (i.e. R→ ∞), the Kerr-AdS geometry (2.2) approaches

ds2AdS = −
(
1 +

R2

L2

)
dT 2 +

dR2

1 + R2

L2

+R2(dΘ2 + sin2Θ dΦ2) , (2.6)

which we recognize as the line element of global AdS. In other words, the conformal bound-

ary of the bulk spacetime is the static Einstein universe Rt×S2: ds2∂ = limR→∞
L2

R2 ds
2
AdS =

−dT 2+ dΘ2+sin2Θ dΦ2. This is the boundary metric where the CFT lives in the context

of the AdS4/CFT3 correspondence.

The ADMmass and angular momentum of the black hole are related to the massM and

rotation a parameters through MADM =M/Ξ2 and JADM =Ma/Ξ2, respectively [43, 44].

The horizon angular velocity and temperature relevant for the thermodynamic analysis are

the ones measured with respect to the non-rotating frame at infinity [43, 44] and are given

in terms of (2.4) by Th = ΞTH and Ωh = ΞΩH + a
L2 . The event horizon is located at

r = r+ (the largest real root of ∆r), and it is a Killing horizon generated by the Killing

vector K = ∂T +Ωh∂Φ. We discuss our results in terms of the horizon radius and rotation

parameter, which uniquely determine a given Kerr-AdS black hole. The mass parameter

is given in terms of these by M = (r2+ + a2)(r2+ + L2)/(2L2r+). All regular black hole

solutions must obey TH ≥ 0 and a/L < 1. This translates into the following conditions for

r+/L and a/L:

a

L
≤ r+

L

√
L2 + 3r2+
L2 − r2+

, for
r+
L
<

1√
3
,

a

L
< 1 , for

r+
L

≥ 1√
3
.

(2.7)

The first inequality is saturated for a degenerate extremal regular horizon. On the left

panel figure 1, we show the allowable domain for a/L and r+/L. Further properties of the

Kerr-AdS spacetime are discussed in appendix A of [45].
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"h L

Figure 1. Left panel : allowable region for a/L and r+/L: the vertical dashed line is given by

r+/L = 1/
√
3, the dashed dotted lines indicate extremality, and the horizontal solid lines indicate

|a| = L. Right panel : allowable region for ΩhL and R+/L: the horizontal dashed line marks the

onset of superradiance, the dashed dotted lines indicate extremality.

We will find it useful to parametrize the black hole in variables that are naturally

related to the onset of superradiance, and that are gauge invariant. Here we choose the

pair (R+,Ωh), with R+ given by:

R+ =

√
r2+ + a2

√
Ξ

. (2.8)

Extremality is attained at

|Ωext
h | = 1

LR+

√
(L2 +R2

+)(L
2 + 3R2

+)

2L2 + 3R2
+

. (2.9)

Note that R+ is just the square root of the area of the spatial section of the event

horizon, divided by 4π, often denominated areal horizon radius. The allowed values of

R+/L and ΩhL are depicted on the right panel of figure 1.

2.2 Gravitational master equation and global AdS boundary conditions

In the Newman-Penrose-Teukolsky formalism, all the information about (non-trivial) grav-

itational perturbations with spin s = −2 is encoded in the single variable δΨ4 which de-

scribes the perturbation of the Weyl scalar Ψ4 = Cabcdn
am̄bncm̄d. The equation of motion

for this perturbation δΨ4 is described by the s = −2 Teukolsky master equation [28, 29].

Introducing the separation ansatz

δΨ4 = (r − iχ)−2 e−iω̃t eimφR
(−2)
ω̃ℓm (r)S

(−2)
ω̃ℓm (χ) , (2.10)

– 8 –
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the spin s = −2 Teukolsky master equation separates into angular and radial equa-

tions [30, 42]:

∂χ
(
∆χ∂χS

(−2)
ω̃ℓm

)
+

[
−

(Kχ +∆′
χ)

2

∆χ
+

(
6χ2

L2
+ 4K ′

χ +∆′′
χ

)
+ λ

]
S
(−2)
ω̃ℓm = 0 , (2.11)

∂r
(
∆r∂rR

(−2)
ω̃ℓm

)
+

[
(Kr − i∆′

r)
2

∆r
+

(
6r2

L2
+ 4iK ′

r +∆′′
r

)
− λ

]
R

(−2)
ω̃ℓm = 0 , (2.12)

where we have defined

Kr = Ξ
[
ma− ω̃(a2 + r2)

]
, Kχ = Ξ

[
ma− ω̃(a2 − χ2)

]
. (2.13)

The eigenfunctions S
(−2)
ω̃ℓm (χ) are the spin-weighted s = −2 AdS-spheroidal harmonics. The

positive integer ℓ specifies the number of zeros of the eigenfunction along the polar direction

which are given by ℓ − max{|m|, |s|} (so the smallest ℓ is ℓ = |s| = 2). The associated

eigenvalues λ are functions of ω̃, ℓ,m which can be computed numerically. Regularity

imposes the constraints that −ℓ ≤ m ≤ ℓ must be an integer and ℓ ≥ |s|. This equation

has been studied in [30] in the limit where the rotation vanishes.

If we solve (simultaneously) the angular and radial equations, which are coupled

through the two eigenvalues ω̃ and λ, we get information about the most general perturba-

tion of the Kerr-AdS black hole. In particular, the Teukolsky equation and its solution for

the spin s = +2 perturbations, described by the variable δΨ0 = (r−iχ)−2e−iω̃teimφR
(2)
ω̃ℓm(r)

S
(2)
ω̃ℓm(χ), follow trivially from the spin s = −2 solution. Namely, R

(2)
ω̃ℓm is the complex con-

jugate of R
(−2)
ω̃ℓm and S

(2)
ω̃ℓm(χ) = S

(−2)
ω̃ℓm (−χ). The later statement implies that the separation

constants are such that λ
(−2)
ω̃ℓm = λ

(2)
ω̃ℓm ≡ λ. The only exceptions to the above are the trivial

perturbations, the “ℓ = 0” and “ℓ = 1” modes, which shift, respectively, the mass and

angular momentum of the solution along the original Kerr-AdS family, and to which the

Teukolsky formalism is blind [27, 30, 46, 47].

Quasinormal modes and unstable modes of the Kerr-AdS black hole are solutions

of (2.11)–(2.12) obeying physically relevant boundary conditions (BCs) [30]. At the hori-

zon, the BCs must be such that only ingoing modes are allowed. A Frobenius analysis at

this boundary gives two independent solutions,

R
(−2)
ω̃ℓm ∼ Ain(r − r+)

1−i
ω̃−mΩH
4πTH [1 +O(r − r+)] +Aout(r − r+)

−1+i
ω̃−mΩH
4πTH [1 +O(r − r+)] ,

(2.14)

where Ain, Aout are arbitrary amplitudes and ΩH , TH are the angular velocity and tem-

perature defined in (2.4). To impose the correct BC, we introduce the ingoing Eddington-

Finkelstein coordinates {v, r, χ, φ̃}, which are appropriate to extend the solution through

the horizon. These are defined via

t = v − Ξ

∫
r2 + a2

∆r
dr , φ = φ̃−

∫
aΞ

∆r
dr . (2.15)

The BC is determined by the requirement that the metric perturbation is regular in these

ingoing Eddington-Finkelstein coordinates, where the metric tensor is constructed apply-

ing a differential operator to δΨ4 (this is known as the Hertz map; see the companion
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paper [30]). It follows that the metric perturbation is regular at the horizon if and only

if R(r)|H behaves as R(r)|H ∼ RIEF(r)|H(r − r+)
1−i

ω̃−mΩH
4πTH where RIEF(r)|H is a smooth

function.7 Therefore, the appropriate BC at the horizon demands we set Aout = 0 in (2.14):

R
(−2)
ω̃ℓm

∣∣
r→r+

= Ain(r − r+)
1−i̟[1 +O(r − r+)] (2.16)

where

̟ =
ω̃ −mΩH
4πTH

, (2.17)

is what we might call the superradiant factor. Less formally, but perhaps more intuitively,

when ω̃ is real and non-zero we can understand this horizon BC by noting that the wave

solution e−iω̃t(r − r+)
−i̟ = e−i(ω̃t+̟ ln(r−r+)) is the one that describes ingoing modes at

the horizon since r must decrease when t grows to keep the phase constant (classically, we

cannot have outgoing modes leaving the horizon).

Consider now the asymptotic boundary. A Frobenius analysis of the radial Teukolsky

equation (2.12) at infinity yields the two independent asymptotic decays

R
(−2)
ω̃ℓm

∣∣
r→∞

= B
(−2)
+

L

r
+B

(−2)
−

L2

r2
+O

(
L3

r3

)
, (2.18)

for arbitrary amplitudes B
(−2)
± . We want the perturbations to preserve the asymptotic

global AdS structure of the background Kerr-AdS black hole, i.e. we want the deformation

to preserve the asymptotic line element (2.6). In the companion paper [30] we found that

this requirement yields the following Robin BC,

B
(−2)
− = i βB

(−2)
+ , (2.19)

with two possible solutions for β, that we call βs and βv,

1) β = βs =
Λ0 −

√
Λ1

Λ2
, or (2.20)

2) β = βv =
Λ0 +

√
Λ1

Λ2
, (2.21)

where we have introduced

Λ0 ≡ 2a2(λ−6)− 8(λ+1)L4ω̃2Ξ2 + 8L6ω̃4Ξ4 + L2
[
λ(λ+2)− 4Ξ2aω̃[5(m−aω̃) + 2aω̃]

]
,

Λ1 ≡ 4a4(λ−6)2 + L4λ2(λ+2)2 + 48(λ+6)a3Ξ2L2ω̃(m−aω̃) + 8λ(5λ+6)(m−aω̃)L4Ξ2aω̃

+4a2L2
[
λ[−12 + (λ− 4)λ+ 24(m− aω̃)2Ξ2] + 12Ξ2L2ω̃2[2λ+ 3(m− aω̃)2Ξ2]

]
,

Λ2 ≡ 4LΞ[2am+ L2ω̃(2 + λ− 2L2ω̃2Ξ2)] . (2.22)

Perturbations obeying the BCs (2.19)–(2.20) preserve the asymptotically global AdS be-

havior of the background. These are also natural BCs in the context of the AdS/CFT

7This analysis misses the special case in which 2i ω̃−mΩH

4πTH

is a positive integer. For this special value, our

boundary conditions still allow for outgoing modes at the horizon. However, by inspecting our numerical

data we can a posteriori test if this condition is satisfied. In all our simulations, this never seems to be

the case.
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correspondence: they allow a non-zero expectation value for the CFT stress-energy tensor

while keeping fixed the boundary metric.

The BC (2.19), (2.20) generates what we might call the “rotating sector of scalar

modes”, in the sense that when the rotation vanishes, these perturbations reduce con-

tinuously to the Kodama-Ishibashi scalar modes [30].8 By a similar reasoning the

BC (2.19), (2.21) selects the “rotating vector modes” of the spectrum. Having this in

mind we will often use the nomenclature “scalar/vector” modes when discussing our re-

sults [30].

As discussed previously, the Chambers-Moss coordinate system {t, r, χ, φ} rotates at

infinity. However, the coordinate transformation (2.5) introduces the coordinate frame

{T,R,Θ,Φ} appropriate to discuss the asymptotic global AdS4 structure of the geometry

and the boundary metric where the dual CFT3 and its hydrodynamic limit are formulated.

Consider a generic linear perturbation in Kerr-AdS written in the Chambers-Moss frame

{t, r, χ, φ}. Since ∂t and ∂φ are isometries of the background geometry we can Fourier

decompose the perturbation in these directions as e−iω̃t eimφ as we did in (2.10). The

frequency ω̃ measured in the frame {t, r, χ, φ} differs from the frequency measured in the

frame {T,R,Θ,Φ}. It follows from the coordinate transformation (2.5) that they are

related by

e−iω̃t eimφ ≡ e−i ω T eimΦ, with ω ≡ ω̃ Ξ +m
a

L2
. (2.23)

The quantity ω can be viewed as the natural or fundamental frequency since it measures

the frequency with respect to a frame that does not rotate at infinity. This is also the

natural frequency measured by a CFT3 and associated fluid rest frame observer. Therefore,

although we will use the frame {t, r, χ, φ} and ω̃ to discuss many of our results, we choose

to plot our results in terms of ω. Note that the superradiant factor defined in (2.16) can

equally be written as ̟ = ω−mΩh

4πTh
where the angular velocity Ωh and temperature Th as

measured in the {T,R,Θ,Φ} frame are given below (2.6).

3 Numerical procedures

In this section we discuss the numerical procedures applied to solve for the characteristic

frequency ω and separation constant λ. We present three such methods based on: shooting,

series expansion, and Newton-Raphson. The first two methods are typically used in studies

of QNMs and the latter we introduce here and have found it to be the most robust when

exploring limiting cases. As a powerful check, we find excellent agreement between different

methods when more than one is applicable.

Shooting. The first method “shoots” for the correct answer in both the angular and

radial component. Regularity of the angular eigenfunctions require that they admit the

8The Kodama-Ishibashi vector master equation is the Regge-Wheeler master equation for odd (also

called axial) perturbations [25], and the Kodama-Ishibashi scalar master equation is the Zerilli master

equation for even (also called polar) perturbations [26].
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following expansion

S(θ) ∼ θ|m−2|
∑

n=0

BL
n (ω̃, λ)θ

n, θ ∼ 0 , (3.1)

∼ (π − θ)|m+2|
∑

n=0

BR
n (ω̃, λ)(π − θ)n, θ ∼ π , (3.2)

at the left- and right-boundaries respectively. The coefficients BL
n , B

R
n can be extracted

from the angular equation and are functions of the frequency and the separation constant.

We typically keep the first six terms in the expansion, numerically integrate the solutions

towards each other where we match the logarithmic derivative at an intermediate point.

We proceed identically with the radial equation, by imposing conditions (2.16) and (2.19)

at the boundaries. Due to well-known divergences of QNMs at the horizon (stable modes

diverge exponentially), we use an analytical, series expansion close to the horizon and a

similar expansion close to spatial infinity. An example notebook of how the radial equation

is dealt with can be found online [15]. The method gives stable, convergent results for

small black holes, but becomes less accurate for large black holes.

Series expansion. A powerful alternative is based on a series solution of the radial equa-

tion which avoids the divergent nature of QNMs at the horizon altogether by factoring the

relevant terms [3, 15]. For simplicity let us focus on non-rotating BHs in this brief descrip-

tion, the extension to rotating BHs is straightforward. Let us start by re-expressing the

boundary condition (2.19) as −r(r/LR(−2)
ω̃ℓm )′ = iβR

(−2)
ω̃ℓm , where primes denote derivative

with respect to r and all quantities are evaluated at spatial infinity. Redefine the wave-

function to R
(−2)
ω̃ℓm = ∆r

r5
e−iωr∗Z(r), with dr/dr∗ = ∆r/r

2. Then, make the variable change

z = 1/r and re-write the radial equation as

s(z)
d2Z

dz2
+

t(z)

z − z⋆

dZ

dz
+

u(z)

(z − z⋆)2
Z = 0 , (3.3)

and the boundary conditions as

Z ′/L = iZ(β − Lω) , (3.4)

where primes now denote derivative with respect to z and z⋆ = 1/r+.

The idea is now to look for a series solution, Z = an(z − z⋆)
n, where the coefficients

an are found through the recurrence relation

an = − 1

Pn

n−1∑

k=0

[k(k − 1)sn−k + k tn−k + un−k]ak , (3.5)

where Pn = n(n− 1)s0 +n t0 and where s, t, u have been expanded in Taylor series around

the horizon. The boundary condition then translates into

∑
an(−z⋆)n

[
1 +

n

h(iβ − iω)

]
= 0 , (3.6)

where β is given by either eq. (2.20) or eq. (2.21). Extension to rotating geometries is

obtained simply by replacing ω with the corresponding superradiant factor.

– 12 –



J
H
E
P
0
4
(
2
0
1
4
)
1
8
3

Newton-Raphson. We have also developed a novel numerical procedure based on the

Newton-Raphson root-finding algorithm that searches for specific quasinormal modes, once

a seed solution is given. In order to proceed we first need to recast eq. (2.11) and eq. (2.12)

in a different form. Let us introduce the following auxiliary functions:

R
(−2)
ω̃ℓm (r) =

(
1− r+

r

)1−i̟L
r
q1

(
1− r+

r

)
, (3.7)

S
(−2)
ω̃ℓm (χ) =

(
1 +

χ

a

)|m2 +1|(χ
a

)|m2 −1|
q2

(
1 +

χ

a

)
, (3.8)

where we have implicitly introduced two new compact coordinates y = 1 − r+/r and

x̃ = 1 + χ/a, which map the problem to the unit square: (x̃, y) ∈ (0, 1) × (0, 1). The

boundary conditions on the qI simply arise from regularity, and translate into four Robin

boundary conditions at each integration boundary, i.e.

q′I(0) = aI qI(0) and q′I(1) = bI qI(1) ,

where both aI and bI are constants and I = {1, 2}. For q2, both a2 and b2 are determined

by solving the equations of motion (2.11) off the singular points x̃ = {0, 1}. q1 on the

other hand, is a little more subtle. At y = 0, we still get the Robin boundary conditions

by solving eq. (2.12) off y = 0, but the condition at y = 1 is obtained directly from either

eq. (2.20) or eq. (2.21).

We are now ready to introduce the new numerical procedure that determines

{q1, q2, ω, λ}. For the sake of presentation we will only discuss below the case in which

we have a single differential equation to solve. The extension to a coupled system like the

one above is straightforward.

Consider the following “nonlinear Stürm-Liouville” problem in {f, λ̃}:

H(λ̃)f = 0 with f′(0) = a0 f(0) , f′(1) = b0 f(1) , (3.9)

where H(λ̃) is nonlinear function in λ̃, and a linear differential operator in f and both

{a0, b0} are constants. In many circumstances H takes the following simple form: H(λ̃)f =

H0f−λ̃H1f−λ̃2H2f, where each of theHi is a second order differential operator independent

of λ̃. The former differential equation is often called a quadratic eigenvalue problem, so

long as the constants {a0, b0} admit a similar expansion. The method we describe below

allows for any dependence in λ̃.

We discretize our eq. (3.9) by introducing a spatial grid {yi}, with N + 1 grid points.

Because we are solving for manifestly analytic functions qI , we can readily use a pseu-

dospectral collocation discretization scheme. We choose the Gauss-Chebyshev-Lobatto

grid as our collocation points. The nonlinear Stürm-Liouville problem (3.9) reduces to a

nonlinear eigenvalue problem of the form:

Hi,j(λ̃)fj = 0 with DN+1,ifi = a0 fN+1 , D1,ifi = b0 f1 , (3.10)

where Di,j is a Chebyshev differentiating matrix and Hi,j is the discretization of the op-

erator H. We now introduce a normalization for the eigenvector {fi}, using an auxiliary
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constant vector {vi}, such that vifi = 1. In all cases, we choose {vi} to have only one

nonzero component, which without loss of generality we choose to be the horizon and the

south pole located at y = 0 and x̃ = 0, respectively.

The procedure is now clear: we promote λ̃ to be a parameter to be determined via the

Newton-Raphson method. Recall that we have to solve

f(fj , λ̃) =

{
Ĥi,j(λ̃)fj
vifi − 1

}
= 0 ,

where Ĥi,j is obtained from Hi,j by removing its first and last lines, and substitute them

by the last two conditions in eq. (3.10). The Newton-Raphson method states that the

correction to our initial guess for ({f(0)i }, λ̃(0)) can be determined by inverting the following

linear system of equations:


 Ĥi,j(λ̃

(0))
∂Ĥi,j

∂λ̃
fj

∣∣∣
fj=f

(0)
j ,λ̃=λ̃(0)

vj 0



[
δfj
δλ̃

]
= −

[
Ĥi,j(λ̃

(0))f
(0)
j

vjf
(0)
j − 1

]
. (3.11)

We then iterate this procedure until |δfj | and |δλ̃| are below some tolerance, which in this

manuscript we take to be 10−30. All computations using this method were performed with

octuple precision, which is particularly relevant for small black holes.

Our results have been benchmarked using previous results in the literature, specifically

for scalar field perturbations of Kerr-AdS BHs [35, 48, 49]. In particular, we recover to all

significant digits the numerical results reported in ref. [49]. Furthermore, we recover all

known results from gravitational perturbations of Schwarzschild-AdS BHs with the same

boundary conditions [10, 30, 31, 50].

Finally, we note that an important symmetry of the relevant perturbation equations

and boundary conditions for QNMs is that if (ω, λ) is a solution for a givenm then (−ω∗, λ∗)

is a solution for −m. As such, we will only discuss positive real part modes, with the

understanding that they come in complex conjugate pairs.

4 QNMs and superradiance in Kerr-AdS: results

In this section we present the numerical results obtained, make contact with some analytical

results, and discuss implications with the phenomena of superradiance.

4.1 Comparison between analytical and numerical results

The angular (2.11) and radial (2.12) equations constitute a system of ordinary differential

equations coupled through the frequency ω̃ and angular λ eigenvalues that cannot be solved

analytically when M,a 6= 0. For this reason, we solve these equations using the numerical

methods outlined in section 3. There is however a regime where we can use a matched

asymptotic expansion procedure to get an approximate analytical solution for the QNM

and superradiant instability frequency spectra. This perturbative analytical computation

provides useful physical insights about the system and is valuable to check our numerical
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results. We leave the details of this analytical construction to appendix C and present here

only the main outcome of the computation and its comparison with the numerical results.

As justified in appendix C, the perturbative analytical results are valid in the regime

of parameters where

r+
L

≪ 1 ⇒ a

L
≪ 1 , aω̃ ≪ 1 , r+ω̃ ≪ 1 ;

a

r+
≪ 1 , (4.1)

i.e., for Kerr-AdS black holes with small horizon radius in AdS radius units and even

smaller rotation parameter, and for perturbations whose wavelength is much bigger than

the black hole lengthscales.

In appendix C we find that the matched asymptotic expansion analysis indicates that

the frequency spectrum is quantized by the condition (C.19), for a generic mode with

quantum numbers ℓ and m. This frequency quantization condition simplifies considerably

when we choose a particular harmonic ℓ. For instance, for the lowest harmonic ℓ = 2, the

condition (C.19) reads

i(−1)Lω̃+1L−5

(
r+ − a

r2+

)5
Lω̃(L2ω̃2 − 1)(L2ω̃2 − 4)Γ(5− 2i̟)

+5400
[
εj + (−1)Lω̃

]
Γ(−2i̟) = 0 , (4.2)

where the superradiant factor ̟ is defined in (2.17), and εj = 1 describes scalar modes with

the BC (C.14) while εj = −1 represents vector modes with the BC (C.15). We can find the

frequency that solves this transcendental equation numerically using a standard root-finder

routine (for instance Mathematica’s built-in FindRoot routine). Alternatively we can also

provide an approximate analytic solution, still in the limit of a/L ≪ r+/L ≪ 1, assuming

that the frequency has a double expansion in the rotation and in the horizon radius,

ω̃(a, r+)L =
∑n

j=0

(
a
L

)j ∑p
i=0 ω̃j,i

( r+
L

)i
, and solving progressively (4.2) in a series expansion

in a/L and r+/L. Here, ω̃0,0 is the global AdS frequency (see footnote 22). Namely, the

fundamental (no radial overtone) ℓ = 2 scalar and vector normal mode frequencies are

ω̃
(s)
0,0 = 3/L and ω̃

(v)
0,0 = 4/L, respectively. In the regime (4.1) we work in this subsection,

the correction to the real part of the frequency is very small (compared with ω̃0,0) and (4.2)

fixes the the imaginary part of the frequency for fundamental ℓ = 2 modes to be

1) Scalar modes: Im(ω̃L) ≃ 16

15π

[
− 3r6+

L6
+
mar4+
L5

(
1+15(5γ−7)

r2+
L2

)]
+ · · · , (4.3)

2) Vector modes: Im(ω̃L) ≃ 96

15π

[
− 4r6+

L6
+
mar4+
L5

(
1+

80(5γ−7)

3

r2+
L2

)]
+ · · · , (4.4)

where γ ≃ 0.577216 is the Euler-Mascheroni constant. For both scalar and vector modes

the imaginary part of the frequency starts negative for a = 0, consistent with the fact

that QNMs of Schwarzschild-AdS are always damped. However, as a/L increases, Im(ω̃L)

increases. A good check of our analytical matching analysis is that we find that at the

critical rotation where the crossover occurs, i.e. Im(ω̃L) = 0, one has Re(ω̃) −mΩH ≃ 0
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Figure 2. Imaginary part of the QNM frequency as a function of the rotation parameter a/L, for

fixed horizon radius r+/L = 0.005, for scalar (right panel) and vector modes (left panel). This is

for ℓ = 2 modes with no radial overtone. These are an example of the QNM spectrum in the regime

a/L < r+/L≪ 1 where the analytical matching analysis is valid and its approximated results can be

used to both test our numerical code (valid in any regime), and estimate more precisely the regime

of validity of the analytical approximation. The red dots are the exact results from our numerical

code. The green curve is the numerical solution of the matching transcendental equation (4.2),

while the dashed black curve is the approximated analytical solution (4.3) or (4.4) of (4.2). In both

figures there is a critical rotation where Im(ω̃L) = 0 and Re(ω̃) −mΩH ≃ 0 to within 0.01%. For

lower rotations the QNMs are damped and with Re(ω̃) −mΩH > 0, while for higher rotations we

have unstable superradiant modes with Re(ω̃)−mΩH < 0.

to within 0.01%. For smaller rotations one has Re(ω̃)−mΩH > 0 and for higher rotations

one has Re(ω̃) −mΩH < 0 and Im(ω̃L) > 0. Therefore, the instability which is triggered

at large rotation rates has a superradiant origin since the superradiant factor becomes

negative, ̟ < 0 precisely when the QNMs go from damped to unstable. These analytical

matching results provide also a good testbed check to our numerics. Indeed we find that

our analytical and numerical results have a very good agreement in the regime of validity

of the matching analysis. This is demonstrated in figure 2 where we plot our numerical and

analytical results for the fundamental ℓ = 2 scalar and vector modes. As a rough reference

we can take this to be r+/L < 5× 10−3 and a/L < 10−4. (A similar analysis that lead to

the results (4.2)–(4.4) can be repeated for any other harmonic starting from (C.19).)

4.2 Properties of superradiant unstable modes and QNMs

We are now ready to present the properties of the superradiant unstable modes and QNMs

for generic solutions in the parameter space. We use the numerical methods described in

section 3 to find the solution of the coupled ODE angular (2.11) and radial (2.12) equations

that describe the most general linear perturbation of a Kerr-AdS BH. We first present the

gravitational scalar perturbations that obey the BCs (2.20), and then the gravitational

vector perturbations that obey the BCs (2.21).
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Consider a Kerr-AdS BH parametrized by particular values of the gauge invariant

parameters {R+/L,ΩhL} described in the end of section 2.1. A generic perturbation can

have a frequency with negative, positive, or vanishing imaginary part. Quasinormal modes

are damped, Im(ω) < 0, whereas unstable modes grow exponentially in time, Im(ω) > 0.

Thus, a particularly important set of modes, if present, are the marginal modes that define

the stability boundary in a phase diagram. The marginal mode (or onset mode) curve is

defined to be the locus of points in the parameter space (R+/L,ΩhL) for which a mode

with Im(ω) = 0 exists. There will be a marginal mode curve for each distinct pair of wave

numbers {ℓ,m} resulting in an instability. To understand the nature of this instability

it is useful to look into another useful characterization of linear perturbations. It comes

from considering the difference between the real part of the frequency and mΩh, which

determines the sign of the the energy and angular momentum fluxes the perturbation

carries through the future horizon; see appendix A.9 Modes with Re(ω) > mΩh carry

positive flux through the horizon, whereas modes with Re(ω) < mΩh carry negative flux

across the horizon, and are called superradiant. Vanishing flux at the horizon requires

Re(ω) = mΩh. We find that Re(ω) = mΩh whenever Im(ω) = 0 and that Re(ω) < mΩh
when Im(ω) < 0. Therefore, unstable modes in Kerr-AdS are always associated to the

superradiant instability.

As important illustrative examples, in the left panel of figure 3 we identify the super-

radiant onset curves (OC) for ℓ = m scalar modes (with vanishing radial overtone) in the

phase diagram of Kerr-AdS BHs. The axes are given by the gauge invariant horizon radius

R+/L and the horizon angular velocity ΩhL (for the frame that does not rotate at infin-

ity), as previously introduced in figure 1. Regular Kerr-AdS BHs exist in the blue shaded

area, starting at ΩhL = 0 and all the way up towards the black curve where extremality

is attained. We identify the OC for the scalar modes with ℓ = m = 2, 3, 4, 5. BHs that are

above a particular ℓ = m OC are superradiantly unstable to modes with those particular

values of ℓ = m, while BHs below a particular OC are stable to the associated modes.

For completeness, in the right panel of figure 3 we plot the angular eigenvalue λ along

the superradiant OC. Since Im(ω) = 0 along this OC, it follows from the mathematical

structure of the coupled equations that we must also have Im(λ) = 0.

The OCs have some properties that merit a detailed discussion. First, in both plots

of figure 3 the large black points on the left at R+/L = 0 are computed analytically and

serve as additional checks for the numerical code. They describe the scalar normal mode

frequencies and the associated angular eigenvalues of global AdS given by [19, 21],

LωAdS
s = 1 + ℓ+ 2p , λ = ℓ(ℓ+ 1)− 2 , (4.5)

where p = 0, 1, 2, · · · is the radial overtone (number of radial nodes). In more detail, to

get the black points in the left panel of figure 3 we use the superradiant onset condition to

find Ωh
∣∣
R+=0

= ωAdS
s /m and we set p = 0, ℓ = m, i.e.

LΩh
∣∣
R+=0

= 1 +
1

m
. (4.6)

9Note that reflecting boundary conditions at the conformal boundary enforces the vanishing of the flux

there; see appendix A.
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Figure 3. The onset of superradiance for the first ℓ = m = 2, 3, 4, 5 scalar modes of the Kerr-AdS

BH. The left panel shows the OC in the phase diagram described by the gauge invariant parameters

(R+/L,ΩhL) (the inset plot zooms out the main plot to show an enlarged view of the parameter

space). Regular Kerr-AdS BHs exist in the blue shaded area all the way up to the black curve

where extremality is attained. In the right panel we show the value of the angular eigenvalue λ as a

function of the areal radius R+/L as we move along the OC. In both plots, the larger black points

on the left with R+/L = 0 are fixed by the properties (4.5) of scalar normal modes of global AdS.

Note that given a {ℓ,m} pair there is an OC for each radial overtone p, but p > 0 curves

always lie above the p = 0 curve, and therefore p = 0 modes are the first to go unstable as

the rotation is increased. For this reason only the p = 0 curves are plotted.

The OCs always have ΩhL > 1, monotonically approaching ΩhL → 1 (from above)

asymptotically as R+/L→ ∞, where all the scalar superradiant OCs pile up. This means

that only ΩhL > 1 BHs can be unstable to superradiance, a property that was first proven

in [51].

Finally, note that for small BHs (say with R+/L . 0.45) as ℓ = m increases the

corresponding superradiant OC lowers. This means that, e.g. we can have small BHs

(those in the triangle-like region between the ℓ = m = 2 and ℓ = m = 3 curves) that are

stable to ℓ = m = 2 modes but unstable to all other ℓ = m ≥ 3 modes, or e.g. BHs that

are stable to ℓ = m = 2 and ℓ = m = 3 but always unstable to all other ℓ = m ≥ 4 modes.

However, as the areal radius grows we find that the OCs start crossing each other. For

example, the ℓ = m = 2 curve crosses the ℓ = m = 3 curve at R+/L ∼ 0.45 and for higher

radius it crosses the ℓ = m = 4 and then the ℓ = m = 5 curve. So, e.g. at R+/L = 1 the

ℓ = m = 2 OC is below the three OCs ℓ = m = 3, 4, 5. This means that at this radius

we can have Kerr-BHs that are unstable to ℓ = m = 2 modes but not to ℓ = m = 3, 4, 5

modes.

At first sight, this is of course exciting as it seems to indicate that there is a region

of parameter space where Kerr-BHs are unstable to ℓ = m = 2 modes but stable to any

other superradiant modes, with obvious consequences for the endpoint of the superradiant
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instability. However, this is not the case. Indeed, first notice that as ℓ = m → ∞ the

corresponding OC still starts precisely at the point defined by (4.6). Thus, as ℓ = m grows

large, its threshold modes are described by an OC that progressively approaches the line

ΩhL = 1, becoming horizontal in the limit ℓ = m → +∞. Therefore as the BH rotation

is increased, the first modes that become superradiantly unstable are the m → ∞ modes.

The conclusion that m→ +∞ modes are the “first” to become unstable was first presented

in the equal angular momenta Myers-Perry BHs in [39]. Furthermore, as we shall discuss

later, all vector modes will be superradiantly unstable.

As stated previously, in the left panel of figure 3, BHs that are above a particular

ℓ = m OC are superradiant unstable to those particular ℓ = m modes. That is, their

perturbations have frequencies with Im(ω) > 0 and Re(ω) < mΩ. On the other hand, BHs

below a particular OC are damped and thus stable (when perturbed these BHs return to

equilibrium via the emission of QNMs with Im(ω) < 0 and Re(ω) > mΩ).

Having studied the OCs for scalar modes with ℓ = m, we now turn to consider one

particular mode throughout a region of the parameter space to gain more insight into the

stability properties of these black holes. A natural mode to consider is the ℓ = m = 2 one,

as this is the mode with the largest value of the growth rate Im(ω) found in our study.

The imaginary and real parts of the ℓ = m = 2 scalar mode frequencies are plotted in

figure 4, and the imaginary and real part of the associated angular eigenvalues is shown

in figure 5. These quantities are plotted as a function of the dimensionless horizon radius

r+/L and rotation a/L and they define a 2-dimensional surface. To extract more efficiently

the relevant physics, we plot in the right panel of figure 4 is the real part of the superradiant

factor Re(̟) =
(
Re(ω)−mΩh

)
/(4πTh), as introduced in (2.17). In all these plots the blue

curve is the ℓ = m = 2 OC already identified in the phase diagram of figure 3. To guide the

eye (when appropriate) we draw an auxiliary plane with a grid that intersects the physical

2-dimensional surface along the OC and that has Re(̟) = 0, Im(ω) = 0, and Im(λ) = 0.

We also plot some black curves at constant radius r+/L.

In the left panel of figure 4, modes that are above the auxiliary plane grid are super-

radiant unstable modes. In the right panel of figure 4 and in the left panel of figure 5

they correspond to the surface region below the auxiliary plane grid. Finally, in the right

panel of figure 5 these unstable modes are described by the surface region “below” the

blue line. In the four plots, the superradiant unstable surface region is a 2-dimensional

surface bounded by the superradiant OC (blue line) and by the extremality curve (where

the black curves at constant radius end).10 In all these plots, the surface region that starts

at the blue OC that is complementary to the unstable region describes the QNMs of the

Kerr-AdS BH.

An important feature of the gravitational scalar superradiant instability concerns

the order of magnitude of its timescale τ ∼ 1/ Im(ω). Inspecting the data we find

that the maximum growth rate of the instability is reached in a neighborhood of the

point {r+/L, a/L}max ≃ {0.445 ± 0.020, 0.589 ± 0.020} where the frequency is given by

10Note that in the right panel of figure 4 the shown surface would extend for smaller negative values of

Re(̟) but we stop it at Re(̟) = −4 for better visualization.
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Figure 4. Superradiant modes and QNMs for the ℓ = m = 2 scalar harmonic. The left panel

plots the imaginary part Im(ω) of the frequencies while the right panel shows the real part of the

superradiant factor, i.e.
(
Re(ωL) −mΩhL

)
/(4πTh), as a function of the horizon radius r+/L and

rotation a/L parameters. The blue curve is the superradiant OC with Im(ω) = 0 and Re(̟) = 0.

The large red point signals the Kerr-AdS BH that is most unstable to scalar superradiance described

by (4.7). The black curves have constant radius r+/L = 0.1; 0.2; 0.3; 0.4; 0.445; 0.5; 0.6; 0.7; 0.8.

These plots are discussed in more detail in the text.

Figure 5. Imaginary (left panel) and real (right panel) part of the angular eigenvalues of the

superradiant modes and QNMs of the ℓ = m = 2 scalar harmonic whose frequencies are shown in

figure 4. The color coding of the lines/points is the same as figure 4.

ωL ∼ 1.397+ 0.032 i. So, the maximum growth rate for the scalar superradiant instability

and the gauge invariant properties of the BH where it is attained are

Scalar: {R+/L,ΩhL} ∼ {0.914, 1.295} , Im(ωL) ∼ 0.032 , Re(̟L) ∼ −3.247 .

(4.7)

This maximum is denoted with a large red dot in the plots of figure 4 and figure 5. Note

that this maximum occurs close to extremality but not at it. In particular, if we plot the
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Figure 6. Onset of superradiance for the first ℓ = m = 2, 3, 4, 5 vector modes of the Kerr-AdS

BH. The left panel shows the OC in the (R+/L,ΩhL) phase diagram (the inset plot zooms out the

main plot). The right panel shows how the angular eigenvalue λ varies with R+/L along the OC.

In both plots, the larger black points on the left with R+/L = 0 are fixed by the properties (4.8)

of vector normal modes of global AdS.

instability growth rate as a function of the rotation parameter a/L at fixed radius (e.g.

r+/L = 0.445), we find that, typically, starting from the onset the instability timescale

first increases, reaches a maximum for a/L close to extremality, and then decreases as we

approach the Th = 0 Kerr-AdS BH.

Consider now the gravitational vector modes which obey the BCs (2.21). The left

panel of figure 6 displays the phase diagram of Kerr-AdS BHs with the OCs for the ℓ =

m = 2, 3, 4, 5 vector modes displayed (again, only curves with vanishing radial overtone

are shown). As in the scalar case, BHs that are above a particular ℓ = m vector OC are

superradiantly unstable to modes with those particular values of ℓ = m, while BHs below

a particular OC are stable to the associated modes. In the right panel of figure 6 we plot

the angular eigenvalue λ along the OC for vector modes.

The large black points at R+/L = 0, in both plots of figure 6, describe the vector

normal modes of global AdS, namely [19, 21],

LωAdS
v = 2 + ℓ+ 2p (p = 0, 1, 2, · · · ) , λ = ℓ(ℓ+ 1)− 2 . (4.8)

Together with the superradiant onset condition (with p = 0 and ℓ = m) these normal

modes give the black points of figure 6,

LΩh
∣∣
R+=0

= 1 +
2

m
. (4.9)

As in the scalar case, the vector OCs always have ΩhL > 1 but contrary to the scalar

case, these curves always end at extremality and the OCs for different ℓ = m never cross

each other. In particular, this means that a BH that is unstable to ℓ = m = 2 modes must
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Figure 7. Superradiant modes and QNMs for the ℓ = m = 2 vector harmonic. The left panel plots

the imaginary part Im(ω) of the frequencies while the right panel shows the real part of the superra-

diant factor, i.e.
(
Re(ωL)−mΩhL

)
/(4πTh), as a function of the horizon radius r+/L and rotation

a/L parameters. The blue curve is the superradiant OC with Im(ω) = 0 and Re(̟) = 0. The large

red point signals the Kerr-AdS BH that is most unstable to vector superradiance described by (4.10).

The black curves have constant radius r+/L = 0.1; 0.2; 0.3; 0.325; 0.4; 0.5; 0.565; 0.585; 0.6 (the

later two only in the left panel). These plot are discussed in more detail in the text.

also be unstable to all ℓ = m ≥ 3 modes. As ℓ = m grows, the curves hit extremality at

a higher areal radius R+/L and they approach the ΩL = 1 line. Modes with m → +∞
reach extremality only in the limit R+/L→ +∞.

To discuss details of the superradiant and quasinormal modes of the vector sector, we

focus again our attention in the ℓ = m = 2 case. The superradiant and QNM properties

can be read from the plots of figure 7 (imaginary and real part of the frequencies) and

in figure 8 (imaginary and real part of the angular eigenvalues). We use a similar color

coding and visualization angle as the ones used in the scalar case. Therefore, in all these

plots the blue curve is the OC already studied in figure 6; again the auxiliary plane with

a grid intersects the physical 2-dimensional surface along the OC and helps visualizing

the separation between unstable superradiant modes (Im(ω) > 0 and Re(ω) < mΩ) and

damped QNMs (Im(ω) < 0 and Re(ω) > mΩ); and we plot some black curves at constant

radius r+/L. It follows that in the left panel of figure 7 the unstable modes are in the

upper region between the blue OC and extremality, while in right panel they are in the

lower region (that we do not show it in all its extension). The upper region of the left panel

of figure 8 shows the imaginary part of the eigenvalues of the QNMs (we do not show the

upper surface in its full extension but its completion should be clear from the continuation

of the interrupted black curves with constant r+/L = 0.5 and r+/L = 0.6).

In the plots of figure 7 and figure 8 the large red point signals the region where the

gravitational vector superradiant instability reaches its maximum strength. This occurs for

a Kerr-AdS BH with {r+/L, a/L}max ≃ {0.325±0.020, 0.386±0.020} where the frequency

is given by ωL ∼ 2.667 + 0.058 i. Stated in other words, the maximum growth rate for

the vector superradiant instability and the gauge invariant properties of the BH where it
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Figure 8. Imaginary (left panel) and real (right panel) part of the angular eigenvalues of the

superradiant modes and QNMs of the ℓ = m = 2 vector harmonic whose frequencies are shown in

figure 7. The color coding of the lines/points is the same as figure 7.

is achieved are

Vector: {R+/L,ΩhL} ∼ {0.530, 1.687} , Im(ωL) ∼ 0.058 , Re(̟L) ∼ −4.451 .

(4.10)

In general, e.g. moving along a constant r+/L, we find that the maximum of the vector

superradiant instability is achieved much closer to extremality than in the scalar case. This

property is probably related to the fact that the vector OC ends at extremality, as opposed

to the scalar OC.

Comparing the properties of the maximum unstable cases (4.7) and (4.10), we see that

the instability growth rate of the scalar and vector sectors is of the same order, with the

maximum growth rate in the vector sector being approximately twice stronger than in the

scalar sector. Moreover, the most unstable case in the vector case occurs for a Kerr-AdS

BH that is smaller (i.e. with smaller gauge invariant areal radius R+/L) but rotates faster

than the Kerr-AdS BH where the scalar instability is highest.

Finally, note that the strength of the scalar or vector gravitational instabilities can

can be orders of magnitude higher than the strength of the same superradiant instability

sourced by a scalar field perturbation [48, 49].

4.3 Large AdS limit and comparison with special QNMs in asymptotically

flat cases

As we will discuss in section 6, the slowly decaying QNMs in Kerr-AdS play a key role in

the fluid/gravity correspondence. These modes have a particularly appealing interpretation

in terms of a relativistic hydrodynamic problem naturally induced at the AdS boundary.

This correspondence also indicates that rich and complex hydrodynamic phenomena have

counterparts in the gravitational theory, as recently demonstrated in [23, 24, 52]. Such

a remarkable, and previously unexpected, phenomena displayed by gravity in the AdS
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Figure 9. Left panel : imaginary part of the “shear mode” as the cosmological constant is changed.

The vertical purple line indicates where the Hawking-Page transition takes place. Right panel : abso-

lute value of the vectorial Kodama Ishibashi variable in ingoing Eddington-Finkelstein coordinates.

context raises the question of what analogues to hydrodynamic behavior arise in general

scenarios. Studying such question is beyond the scope of this work (for recent works related

to the gravity/hydro connection in AF settings see e.g. [53, 54]); however, as we here are

concerned with QNMs we can explore the connection of hydrodynamical modes in AdS with

relevant ones in AF spacetimes. To this end, we examine in particular the purely-imaginary

QNM mode (often called “shear mode”) in the limit r+/L → 0 for the non-spinning case,

see left panel of figure 9. In this limit one makes contact with its possible asymptotically

flat counterpart describing QNMs of a Schwarzschild black hole. Interestingly, we find the

result obtained coincides with the “algebraically special” QNM mode. Furthermore, we

can look at the profile of this mode, as we change the cosmological constant. It turns out

it is very localized around the horizon (becoming more and more localized as we lower the

cosmological constant), perhaps indicating that the dynamics involved here does not feel

the boundary in any special way, see right panel of figure 9. At this stage we stress this

does not necessarily imply complex hydrodynamic phenomena has a gravitational analogue

in AF cases as has been shown to be the case in the AdS case. Nevertheless this is certainly

a tantalizing observation deserving further exploration.

5 Superradiance and black holes with a single Killing field

In the previous sections we confirmed that Kerr-AdS BHs with ΩhL > 1 are unstable to

superradiance. An interesting observation is that at the onset of the superradiant instability

there is an exact zero mode with ω = mΩh and Imω = 0. This zero mode is special because

it is invariant under the horizon-generating Killing field K = ∂T + Ωh∂Φ. Consequently it

is regular on both the past (H−) and future (H+) horizons (generic perturbations can be

made regular on the future or past horizons, but not both). In these conditions and for

a given m, [39] proposed that, in a phase diagram of stationary solutions, the OC of the

instability should signal a bifurcation or merger of the Kerr-AdS BH with a new family of

BH solutions that are stable to superradiant modes with the given m and that preserve
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the same isometry of the superradiant onset mode (see also the nice discussion in [99]).

That is, these new BHs have a single Killing vector field (KVF); the helical Killing field

K = ∂T + Ωh∂Φ. In the context of superradiance of a scalar field, BHs with a similar

helical single KVF that merge with the Kerr-AdS family have scalar hair orbiting around

the central core. Examples of such hairy BHs were explicitly constructed perturbatively

and non-linearly in [40].11 Given this explicit proof of existence in the scalar field case, it is

natural to expect that a similar new family of single KVF BHs with “lumpy gravitational

hair” merge with the Kerr-AdS BH at the OC of gravitational superradiance. The existence

of such purely gravitational single KVF BHs was first proposed in [39] and contact between

these BHs and geons was made in [19]. In this section we will give the explicit construction

(omitted in [19]) that leads to the leading order thermodynamics and properties of these

BHs. Perhaps the most important consequence of this study is that Kerr-AdS BHs are not

the only stationary BHs of Einstein-AdS gravity [19, 40].12

We can discuss some of the main properties of the single KVF BHs [19, 40] in terms

of general arguments. Recall again the main properties of superradiance in global AdS. A

mode e−iωT+imΦ can increase its amplitude by scattering off a rotating BH with angular

velocity Ωh satisfying ω < mΩh. In asymptotically global AdS spacetimes, the outgoing

wave is reflected back onto the BH and scatters again further increasing its amplitude.

This multiple amplification/reflection leads to an instability. The process decreases Ωh and

eventually results in a BH with “lumpy hair” rotating around it. Such a BH is invariant

under just a single Killing field which co-rotates with the hair, K = ∂T +Ωh∂Φ. Thus, the

BH is stationary (periodic) but not time symmetric nor axisymmetric. However, it does

not violate the rigidity theorems [36–38]. Indeed, these theorems assume the existence of

a Killing vector, typically ∂T , that is not normal to the horizon, and prove that a second

Killing field ∂Φ must then be present. Such a BH is thus time symmetric and axisymmetric.

The single KVF BHs evade the primary assumption of the rigidity theorem because in this

case K = ∂T +Ωh∂Φ is normal to the Killing horizon.

As stated previously, single KVF BHs and horizonless boson star solutions of this type

with scalar hair have been constructed perturbatively as well as numerically at the full

nonlinear level in [40]. Alternatively, the leading order description of these BHs can also

be found using a thermodynamic analysis [40, 55–57] similar to the one done below. The

full nonlinear result confirms that this thermodynamic construction gives accurate leading

11Recently, a single KVF was constructed analytically in D = 3 Einstein-AdS theory [99]. (In this case

superradiance is absent.)
12The use of the word “stationary” in this context requires a comment. A solution is static if ∂t is a

KVF and the solution has the t → −t symmetry. Strickly speaking, a solution is said to be stationary if ∂t

is still a KVF but the t → −t symmetry is no longer present. In addition, ∂t must be timelike everywhere

along the asymptotic boundary of the spacetime. The single KVF BHs discussed here and in [19, 40]

certainly do not have ∂t as a KVF. Instead, they have a helical KVF. Moreover, this KVF is not timelike

everywhere at spatial infinity; indeed it is timelike in the neighbourhood of the poles but spacelike near

the equator of the sphere. Nevertheless these single KVF solutions are periodic. Now, a periodic solution

can be considered to fit in the intuitive notion we have of stationarity. For this reason we follow [19, 40]

who proposed extending the original definition of stationarity to accommodate these novel periodic BHs as

members of the stationary class of solutions.
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order results.13 For small charges the single KVF hairy BHs exist in a region of the phase

diagram that is bounded by the OC of scalar superradiance and by the boson star curve.

In the purely gravitational sector of Einstein-AdS theory that we discuss here, the

gravitational analogue of the horizonless boson stars are the geons constructed in [19]. Us-

ing the aforementioned thermodynamic model we will conclude that single KVF BHs exist

in a region of the phase diagram that is bounded by the OC of gravitational superradiance

and by the geon curve.14

We are ready to start the leading order thermodynamic construction of the single KVF

BHs. We first review the geon and Kerr-AdS solutions, then we construct the single KVF

BHs by placing a small Kerr-AdS BH on the top of a geon.

Geons are classical lumps of gravitational energy, with harmonic time dependence

e−iωT+imΦ, in which the centrifugal force balances the system against gravitational col-

lapse [19]. They are horizon-free, nonsingular, asymptotically globally AdS, and can be

viewed as gravitational analogs of boson stars. Each geon is specified by ℓ, which gives

the number of zeros of the solution along the polar direction, and azimuthal quantum

number m. It is a one-parameter family of solutions parametrized e.g. by its frequency.

At linear order, a geon is a small perturbation around the global AdS background and its

possible frequencies are given by the AdS normal modes, namely (4.5) in the scalar sector,

and (4.8) in the vector sector. The energy and angular momentum of the geon are related

by Eg = ω
m Jg + O(J2

g ); they have zero entropy Sg = 0 and undefined temperature, and

they obey the first law of thermodynamics, dEg =
ω
m dJg.

15

Consider now the Kerr-AdS BH. For small E and J (i.e. small r+/L expansion), the

leading and next-to-leading order thermodynamics of this solution is

EK ≃ r+
2

(
1+

r2+
L2

(1+Ω2
hL

2)

)
+O

(
r4+
L4

)
, JK ≃ 1

2
r3+Ωh +O

(
r4+
L4

)
,

S ≃ πr2+(1+Ω2
hr

2
+) +O

(
r5+
L5

)
, Th ≃ 1

4πr+

(
1+(3−2Ω2

hL
2)
r2+
L2

)
+O

(
r2+
L2

)
,

(5.1)

which obeys the thermodynamic first law, dEK = Ωh dJK + Th dS, up to next-to-leading

order.

We can now construct perturbatively the single KVF BH of the theory by placing a

small Kerr-AdS BH at the core of the geon. The associated single KVF of the solution

is inherited from the geon component of the system. To argue for the existence of this

solution and to find its thermodynamic properties we can use a simple thermodynamic

model where the leading order thermodynamics of the single KVF BH is modeled by a

13A similar thermodynamic model was introduced and proved to be correct, when compared with the

exact non-linear results, also in the charged superradiant systems discussed in [55–57].
14The hairy BHs of [40] could be constructed non-linearly because they depend non-trivially only on

the radial direction while the gravitational single KVF BHs we discuss here have an additional non-trivial

dependence on the polar angle. It is challenging to solve the associated coupled system of PDEs and we

leave its construction for future work.
15Back-reacting to higher order each of the individual normal modes of global AdS we approach the full

nonlinear geon, but we do not need this knowledge for our argument [19].
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non-interacting mixture of a Kerr-AdS BH and a geon Absence of interaction between the

two components of the system means that the charges E, J of the final BH are simply the

sum of the charges of its individual constituents: E = EK + Eg, J = JK + Jg.

In this mixture, the Kerr-AdS component controls the entropy and the temperature of

the final BH (since by definition the geon has no entropy and has undefined temperature).

The single KVF BH chooses the partition of its charges between the geon and the Kerr-AdS

components in such a way that the total entropy S of the system is extremized. Indeed,

maximizing S = SK(E − Eg, J − Jg) with respect to Jg and using the first laws for the

geon and for the Kerr-AdS, we find that the partition is such that the angular velocities

of the two components are the same, Ωh = ω
m , i.e. the two phases are in thermodynamic

equilibrium. Actually, there is a much simpler way to derive this result. Since the geon

has only one Killing field, K = ∂T +(ω/m)∂Φ, and we place a Kerr-AdS BH with a Killing

horizon at its centre, the geon’s Killing field must coincide with the horizon generator of

the single KVF BH.

The non-interacting and equilibrium conditions together with the leading order ther-

modynamics of the Kerr-AdS BH and of the geon yields that the final distribution of the

charges among the system’s constituents and the entropy and temperature of the single

KVF BH are, respectively,

{
Jg , Eg

}
=

{
J ,

ω

m
J

}
,

{
JK , EK

}
=

{
0 , E − ω

m
J

}
,

S = 4π

(
E − ω

m
J

)2
, Th =

1

8π

(
E − ω

m
J

)−1

. (5.2)

So, at leading order, the geon component carries all the rotation of the system and the

Kerr-AdS component stores all the entropy. By construction, these relations obey the first

law of thermodynamics dE = ThdS + ΩhdJ , up to order O(M,J) with Ωh = ω/m and ω

given by (4.5) in the scalar sector, or by (4.8) in the vector sector.

Using this simple thermodynamic model we can further predict the region in phase

space where single KVF BHs should exist. A single KVF BH merges with the Kerr-AdS

family at a curve that describes the onset of the m-mode superradiant instability. This

occurs at an angular velocity that saturates the superradiant condition, ω ≤ mΩh, where

{ω,m} are the frequency and azimuthal number of the linearized geon component of the

single KVF BH. (It suffices to consider the linearized geon since the gravitational hair

is very weak near the onset of the instability.) At the superradiant merger, the Kerr-

AdS and single KVF BH thermodynamics coincide. Thus, we can use the Kerr-AdS BH

thermodynamics (5.1) with Ωh = ω/m to determine the charges of the final system. In a

phase diagram {E, J} — see figure 10 — this determines the upper bound curve of the

region where single KVF BHs exist:

E
∣∣
merger

≃ r+
2

+
r3+
2L2

(
1 +

ω2L2

m2

)
, J

∣∣
merger

≃ 1

2

ω

m
r3+ . (5.3)

Moving down from this curve, the Kerr-AdS contribution weakens and the leading order

thermodynamics of the system is increasingly dominated by the geon component. In the
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Figure 10. Phase diagram of global AdS stationary solutions of the d = 4 Einstein-AdS theory, for

small E/L and J/L2. Non-extremal Kerr-AdS BHs exist only above the extremal black line (grey

region). The blue curve above the extremal line sets the onset of the gravitational superradiant

instability to ℓ = m = 2 scalar modes (already represented e.g. in figure 3). Kerr-AdS BHs below

these curves are unstable to the associated ℓ = m = 2 superradiant scalar modes. The dashed curve

in the bottom represents the scalar ℓ = m = 2 geon described by E = ω
m
J with ω = ωs = (1 + ℓ)

and ℓ = m = 2 (and p = 0). Single Killing field BHs with m = ℓ = 2 exist between the superradiant

OC and the geon line (blue and blue/gray regions). In the blue/gray shaded region between the

black and the upper blue line, Kerr-AdS and single KVF BHs coexist, i.e. we have non-uniqueness.

limit where r+ → 0, the lower bound curve of single KVF phase is expected to be the

geon curve. This discussion is best illustrated in figure 10, where we represent the phase

diagram associated to the ℓ = m = 2 solutions of the scalar sector with frequency ω = ωs

given by (4.5).

Note that there is a region in the phase diagram (the blue/gray shaded region in

figure 10) where the Kerr-AdS and single KVF BH families coexist, i.e. the present sys-

tem provides the first example of non-uniqueness in Einstein gravity in four dimensions.

The two families of BHs can have the same mass and angular momentum but different

entropy.

As emphasized previously, in the scalar field superradiant system of [40], and in the

charged superradiant system of [55, 57], the available full non-linear results confirm that

the thermodynamic model we use also here gives the correct leading order thermodynamic

properties of the system. We leave for the future the explicit non-linear construction of the

single KVF BHs.

We postpone for section 8 the discussion of the stability properties of the single KVF

BHs and the role they might have in the time evolution and endpoint of the superradiant

instability of the Kerr-AdS BH.
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6 Hydrodynamic thermalization timescales in the AdS4/CFT3 duality

In the context of the gauge/gravity duality, a black hole is dual to a thermal state in

the holographic quantum field theory (QFT). Moreover, QNMs are fundamental entities

in this correspondence since the QNM frequencies in the bulk black hole describe the

thermalization or relaxation timescales in the dual QFT. This map was first proposed

in [3, 4] and later it was understood and established that the QNM spectrum of a given field

perturbation coincides with the poles of retarded correlation functions of the gauge theory

operator that is dual to the perturbation at hand [5–7]. This was done in the framework of

linear response theory appropriate for describing linearized fluctuations of any wavelength

about AdS backgrounds as long as the perturbation amplitude is small. A particularly

relevant family of perturbations are the lowest QNMs, i.e. those with small frequency

whose wavelength is large compared to the thermal scale of the field theory. The relaxation

timescales of these modes have a hydrodynamic description and can be computed studying

perturbations of the Navier-Stokes equation that describes the hydrodynamic regime of the

holographic QFT [7–10]. These hydrodynamic modes are also captured by the fluid/gravity

correspondence which is a formal one-to-one map between Einstein’s equations in AdS and

non-linear hydrodynamic equations [58, 59]. It follows from a perturbation theory analysis

where the small expansion parameter is the ratio of the mean free path of the theory

(i.e. the thermal scale) over the typical variation wavelength of the fluid variables and

gravitational field. With respect to linear response theory it has the advantage that it

captures also non-linear physics but it is restricted to long wavelength physics. The two

regimes therefore complement each other and intersect in a corner of the phase space

corresponding to linearized long wavelength perturbations [59]. These are precisely the

hydrodynamic QNMs that we want to study in this section.

A particular example of a gauge/gravity duality is the AdS4/CFT3 correspondence,

whereby supergravity on the Kerr-AdS×S7 background is dual to a thermal conformal field

theory (CFT) on the holographic boundary of the global AdS geometry. In this case the

Kerr-AdS black hole is dual to a thermal state with a rotational chemical potential in the

CFT3 that is formulated on a sphere.

In this section we aim to compare the long wavelength gravitational QNMs of Kerr-

AdS with the hydrodynamic relaxation timescales of the dual CFT3. First, in section 6.1

we compute the hydrodynamic modes both perturbatively and numerically and later, in

section 6.2, we compare them with with the long wavelength gravitational QNMs. The ex-

cellent match that we find provides a further confirmation of the holographic interpretation

of the QNM spectrum, of the shear viscosity to the entropy density ratio, η/s = 1/(4π),

and ultimately of the correspondence itself. Not less importantly, it provides the first non-

trivial confirmation that the Robin boundary conditions for the Teukolsky gauge-invariant

variable derived in the companion paper [30] are indeed the ones that we must impose if

we want the perturbations to preserve the asymptotic global AdS structure of the back-

ground. Indeed, had we chosen different BCs, e.g. Dirichlet or Neumann BCs, and the

QNM spectrum would not match the hydrodynamic timescales.
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6.1 Hydrodynamic thermalization timescales

The conformal boundary of the Kerr-AdS geometry is the static Einstein universe Rt×S2

with line element that this time we write as

ds2∂ = hbc dx
bdxc = −dT 2 + L2dΩS2 , dΩS2 =

dX2

1−X2
+ (1−X2)dΦ2, (6.1)

where X is related to the standard polar angle on the sphere introduced in (2.6) by X =

cosΘ. The CFT3 is described by an holographic stress tensor 〈Tbc〉 which can be found

using, e.g. the formulation of Haro, Skenderis and Solodukhin [17].

We first introduce the Fefferman-Graham coordinate frame {T, z,X,Φ} whereby the

Kerr-AdS geometry can be recast in an asymptotic expansion around the holographic

boundary z = 0 (r = ∞) as

ds2 =
L2

z2

[
dz2 + ds2∂ +

z2

L2
h2 +

z3

L3
h3 +O(z6)

]
, (6.2)

with ds2∂ defined in (6.1). The coordinate transformation that takes Kerr-AdS in the

Chambers-Moss frame into the FG frame is obtained as an expansion in z, with the suc-

cessive terms of the expansion being fixed by requiring that gzz = L2/z2 and gzb = 0

(b = T,X,Φ) at all orders. Up to the order relevant for our analysis, this FG coordinate

transformation is explicitly given by

t=ΞT , φ = Φ− a

L2
T ,

r=
√
L2−a2(1−X2)

(
L

z
+
z

L

a4(1−X4)−L4

4[L2−a2(1−X2)]2
+
z2

L2

(r2++a
2)(r2++L

2)

6r+[L2−a2(1−X2))3/2

)
+O

(
z3

L3

)
,

χ=
aLX√

L2 − a2(1−X2)

(
1 +

z2

L2

a2(L2 − a2)(1−X2)

2[L2 − a2(1−X2)]2

)
+O

(
z4

L4

)
. (6.3)

The leading terms in these expansions are fixed by our choice of conformal frame, namely

we want the normalization where gTT = −1 and the sphere has radius L2 in the boundary

metric ds2∂ . On the other hand the azimuthal coordinate transformation guarantees that

the conformal frame does not rotate.

The holographic stress tensor can be read from the h3 contribution of the expan-

sion (6.2) via [17]

〈Tbc〉 =
3h3

16πG4
, (6.4)

where b, c run over the boundary metric coordinates {T,X,Φ}. This stress tensor has the
form of a perfect fluid with energy density ρ, pressure p, and fluid velocity u given by

〈Tbc〉(0) = (ρ+ p)ubuc + p hbc ,

ρ(0) = 2p(0) , p(0) =
(r2+ + a2)(r2+ + L2)

3r+ Lγ(X)−3
, u(0) = γ(X)

(
∂T − Ω∞∂Φ

)
, (6.5)

where Ω∞ =
a

L2
, γ(X) =

[
1− a2

L2
(1−X2)

]−1/2

,
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are the angular velocity Ω∞ of the fluid, and the ratio γ−1 = T
T between the fluid temper-

ature T and the local temperature T (this gives the redshift factor relating measurements

done in the laboratory and comoving frames), and ∂T , ∂Φ are the Killing vectors corre-

sponding to the isometries of the boundary background (6.1). Further, u2 = −1 and the

equation of state ρ = 2p follows from the fact that the holographic QFT and its fluid are

conformal which implies that the stress tensor is traceless. The stress tensor is conserved

with respect to (6.1), ∇b〈T bc〉 = 0, since there are no sources (e.g., scalar or Maxwell) in

our system. Our bulk background is stationary and therefore the boundary fluid is also in

stationary equilibrium fluid configuration with rigid roto-translational motion. Our choice

for the fluid velocity definition is such that it obeys the Landau gauge condition

ub〈T bc〉 = ρuc. (6.6)

This condition guarantees that the stress tensor components longitudinal to the velocity

give the local energy density, in the local rest frame of a fluid element [60].

A generic perturbation of the stationary fluid configuration will drive the system away

from equilibrium and dissipation must be included to study the evolution of the system.

This dissipative contribution to the total holographic stress tensor is encoded in the term

〈Πbc〉 (this follows from a gradient expansion of Einstein equations around AdS in the

regime where the thermodynamic variation lengthscales are much larger than the thermal

scale of the stationary background [58, 59]),

〈Tbc〉 = 〈Tbc〉(0) + 〈Πbc〉 〈Πbc〉 = −2ησbc (6.7)

where σbc =
1

2
(P bd∇du

c + P cd∇du
b)− 1

2
ϑP bc, ϑ = ∇cu

c, P bc ≡ hbc + ubuc,

are the shear viscosity tensor σbc, the fluid expansion ϑ, and the is the projector P bc

onto the hypersurface orthogonal to u. The quantity η is the shear viscosity. Since the

fluid is conformal, its stress energy tensor must be traceless (i.e. the conformal anomaly

is proportional to T c
c and vanishes16). Consequently the fluid must have vanishing bulk

viscosity. Also, the Landau frame condition (6.6) implies u
(0)
a Πbc = 0 which discards a

possible heat diffusion contribution to the first order dissipative stress tensor (i.e. in this

frame all the dissipative contributions are orthogonal to the velocity field) [60].

We recall that a precise statement for the validity of the hydrodynamic regime of

dual system can be made as follows. The mean free path of a theory is typically given

by the ratio of the shear viscosity to the energy density, ℓmfp ∼ η
ρ . We are working with

a conformal theory so the associated fluid equation of state is ρ = 2p and the viscosity

to entropy ratio is saturated, η = s/(4π) [61]. For any fluid we also have the Euler-

Gibbs relation ρ+ p = T s, where the local temperature is related to the fluid temperature

(dual to the black hole temperature T = Th) by the Lorentz factor. Therefore we can

write ℓmfp ∼ η
ρ ∼ 3

2
η

ρ+P ∼ 3
2
η
T s ∼ 3

8π
1
T ∼ 3

8π
γ−1

Th
. The hydrodynamic approximation is

16A CFT is invariant under Weyl transformations hbc → hbce
−2λ(x) which requires that its stress tensor

is traceless. In a curved background the Weyl anomaly breaks in general the conformal symmetry and

yields T ∝ R2, but this breaking occurs only at fourth order in a gradient expansion and the bulk viscosity

appears at first order [60].
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valid for when the thermodynamic quantities of the fluid and of its perturbations vary on

lengthscales that are much larger than ℓmfp, namely

r+
L

≫ 1 , and
a

L
≪ 1 , (6.8)

where to get the first relation we used the fact that 0 < γ−1 ≤ 1 and that the temperature

scales as Th ∼ r+ for large radius black holes — see (2.4) — while the second relation

follows from the fact that the background pressure p(0) is not a constant and its gradient

scales with the rotation parameter in AdS units.

According to the holographic dictionary, the fluid temperature is identified with the

Hawking temperature Th of the black hole and it follows from the previous discussion that

the angular velocity of fluid Ω∞ = a/L2 is precisely the shift in the azimuthal coordinate

such that the (non-dynamical) background on which the fluid flows is static. On the other

hand, the viscosity is given in terms of the horizon radius of the bulk black hole as

η =
1

3
Lr2+ . (6.9)

This is a universal relation for any fluid that is holographically dual to a black hole of

Einstein-AdS4 theory. It follows from the celebrated viscosity to entropy density ratio of

the theory namely η = s/(4π) [61]. This is a constitutive relation that is independent of

the rotation of the fluid since it follows from measuring quantities in the rest frame of the

fluid. Namely we can write the entropy density as s = S/V = Sρ(0)/E = 2p(0)S/E which

yields (6.9) after using the relations for the static black hole entropy and energy, S = πr2+
and E = r+(1 + r2+/L

2)/2, and taking the hydrodynamic limit r+/L→ ∞.

The hydrodynamic equations of motion for the perturbed fluid, that will ultimately

quantize the relaxation timescales of the system, follow from the conservation of the total

stress tensor,

∇b

(
〈T bc〉(0) + 〈Πbc〉

)
= 0 . (6.10)

These equations can be written as a set of two family of equations, namely the relativistic

continuity and Navier-Stokes equations,17

uc∇cρ+ (ρ+ p)ϑ = 2ησbc∇buc ,

(ρ+ p)ub∇bu
c = −P bc∇bp+ 2η(∇bσ

bc − ucσbd∇bud) . (6.11)

To study the perturbations of these fluid equations, we use the fact that ∂T and ∂Φ
are isometries of the background to write the most general perturbations for a conformal

fluid as a sum of the following Fourier modes

ρ = 2p , p = p(0) + e−iωT eimΦδp(X) ,

u = u(0) + e−iωT eimΦδuc(X) dxc. (6.12)

17The continuity equation follows from projecting (6.7) along the fluid velocity. Plugging it into (6.7)

then yields the Navier-Stokes equation, which is the projection of (6.7) in the hypersurface orthogonal to

the velocity.
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The velocity normalization u2 = −1 requires u(0) · δu = 0 i.e.

δuT = − a

L2
δuΦ (6.13)

Plugging these fluctuations in the linearized version of the hydrodynamic equations (6.11)

we get the equations of motion (EoM) that the fluid perturbations {δP, δuX , δuΦ} have

to obey. We solve these equations exactly using numerical methods like those we use to

solve the gravitational equations. In addition, to get extra physical insight and check the

numerics, we also find a perturbative explicit analytical expression for the fluid quantities

of interest.

To solve the linearized hydrodynamic equations using a perturbative method [40, 55–

57], we assume a double expansion in the shear viscosity and in the rotation, both

for the fluid perturbations introduced in (6.12), {Q(f)(X)} = {Q(1), Q(2), Q(3)} ≡
{δP/L, δuX , δuΦ}, and for the perturbation frequency ω:

Q(f)(η, a;X) =
1∑

j=0

Q
(f)
j (a;X)

(
η

L3

)j
and Q

(f)
j (a;X) =

p∑

i=0

Q
(f)
j,i (X)

(
a

L

)i
,

ω(η, a) =

1∑

j=0

ωj(a)

(
η

L3

)j
, and ωj(a) =

p∑

i=0

ωj,i

(
a

L

)i
, (6.14)

and solve progressively (6.10) or (6.11) in a series expansion in η/L3 and a/L. For our

purpose it will be enough to go up to third order (p = 3) in the rotation expansion.

Inspecting the EoM at leading order O(η0, a0), we immediately conclude that we have

to split our analysis into two family of modes, namely the scalar and vector modes. The

latter have ω0,0 = 0 and perturb the fluid velocity but not the pressure, while the former

have ω0,0 6= 0 and perturb all fluid variables. At this order rotation is absent and the

hydrodynamic modes have an expansion in terms of the scalar Si and vector Vi Kodama-

Ishibashi harmonics (which are both related to the associated Legendre polynomials [10,

27, 30]). This is in agreement with the fact that the gravitational QNMs split also into

two families as dictated by the two possible global AdS boundary conditions (2.19)–(2.21).

As rotation and/or viscosity are turned on these two families naturally continue to follow

different paths.

Our main goal is to find the characteristic damped oscillation frequencies of the fluid.

We leave the details of our computation to appendix B and give here only its relevant

outcome, namely the hydrodynamic CFT thermalization frequencies that can propagate in
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the CFT3. The frequencies of the hydrodynamic scalar modes are:18

ωL
∣∣
s
=

[
±

√
ℓ(ℓ+ 1)√

2
+
a

L

m(ℓ+ 2)(ℓ− 1)

2ℓ(ℓ+ 1)
∓ a2

L2

(ℓ+ 2)(ℓ− 1)

4
√
2(2ℓ− 1)(2ℓ+ 3)[ℓ(ℓ+ 1)]5/2

×
(
2(ℓ− 3)(ℓ+ 4)ℓ2(ℓ+ 1)2 + 3m2(6 + ℓ+ ℓ2)(1 + 2ℓ+ 2ℓ2)

)

+
a3

L3

m

2ℓ4(ℓ+1)4(2ℓ−1)(2ℓ+3)

(
ℓ2(ℓ+1)2(ℓ6+3ℓ5+6ℓ4+7ℓ3−53ℓ2−56ℓ−48)

+m2(ℓ8 + 4ℓ7 − 6ℓ6 − 32ℓ5 + 37ℓ4 + 132ℓ3 + 224ℓ2 + 152ℓ+ 48)
)
+O

(
a4

L4

)]

+i
η

r3+
(ℓ− 1)(ℓ+ 2)

[
− 1

2
± a

L

m(2 + 3ℓ+ 3ℓ2)

2
√
2[ℓ(ℓ+ 1)]3/2

+
a2

L2

1

2ℓ3(ℓ+ 1)3(2ℓ− 1)(2ℓ+ 3)

(
ℓ2(ℓ+ 1)2(8 + ℓ+ ℓ2)(3 + 2ℓ+ 2ℓ2)

−2m2[12 + ℓ(ℓ+ 1)(32 + 14ℓ+ 15ℓ2 + 2ℓ3 + ℓ4)]
)

± a3

L3

m

8
√
2ℓ9/2(ℓ+ 1)9/2(2ℓ− 1)(2ℓ+ 3)(ℓ− 1)(ℓ+ 2)

×
{
m2(−34ℓ10 − 170ℓ9 − 387ℓ8 − 528ℓ7 + 164ℓ6 + 1626ℓ5 + 7009ℓ4

+11032ℓ3 + 11608ℓ2 + 6400ℓ+ 1680)− 2ℓ2(ℓ+ 1)2(15ℓ8 + 60ℓ7

+8ℓ6 − 186ℓ5 + 113ℓ4 + 606ℓ3 + 1832ℓ2 + 1488ℓ+ 864)
}
+O

(
a4

L4

)]
, (6.15)

while the frequencies of the hydrodynamic vector modes are:

ωL
∣∣
v
=
ma

L

[
(ℓ+ 2)(ℓ− 1)

ℓ(ℓ+ 1)
+ 4

a2

L2

(
12 + ℓ(ℓ+ 1)(2 + ℓ+ ℓ2)

ℓ2(ℓ+ 1)2(2ℓ− 1)(2ℓ+ 3)

− m2[12 + ℓ(ℓ+ 1)(26− 2ℓ+ ℓ2 + 6ℓ3 + 3ℓ4)]

ℓ4(ℓ+ 1)4(2ℓ− 1)(2ℓ+ 3)

)
+O

(
a3

L3

)]

+i
η

r3+
(ℓ− 1)(ℓ+ 2)

[
− 1 +

a2

L2

(
24 + ℓ(ℓ+ 1)(4ℓ2 + 4ℓ− 5)

ℓ(ℓ+ 1)(2ℓ− 1)(2ℓ+ 3)

+
8m2[ℓ(ℓ+ 1)(ℓ4 + 2ℓ3 + ℓ2 − 5)− 3]

ℓ3(ℓ+ 1)3(2ℓ− 1)(2ℓ+ 3)

)
+O

(
a3

L3

)]
.

(6.16)

In these expansions (and associated figures 11, 12 below) we assume the relation (6.9) for

the viscosity. When the rotation vanishes, (6.15) and (6.16) reduce to the hydrodynamic

frequencies first computed in [10].

As illustrative examples, figures 11 and 12 show the regime of validity of the perturba-

tive expressions (6.15) and (6.16) by comparing them against the exact numerical solutions

of the linearized hydrodynamic equations (6.11) for the ℓ = m = 2 and ℓ = m = 3 har-

monics in both the scalar and vector sectors. As is evident from the figures, the match is

excellent in the small rotation regime as expected.

18In (6.15) and (6.16) we discard terms of order O(ηL2/r5+).
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Figure 11. Real and Imaginary part of the frequency for the scalar hydrodynamic modes as

a function of the adimensional rotation parameter. The disks (squares) are the exact numerical

solutions of the hydrodynamic equations for the ℓ = m = 2 (ℓ = m = 3) harmonics. On the other

hand the dashed line (ℓ = 2) and the dashed-dotted line (ℓ = 3) are the curves dictated by the

perturbative analytical expression (6.15). In the right panel the upper (lower) branches of each

harmonic pair describe the imaginary part of the modes with positive (negative) real part.
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Figure 12. Real and Imaginary part of the frequency for the vector hydrodynamic modes as a

function of the adimensional rotation parameter. The disks (squares) describe the exact numerical

solution of the hydrodynamic equations for the ℓ = m = 2 (ℓ = m = 3) harmonics. On the other

hand the dashed line (ℓ = 2) and the dashed-dotted line (ℓ = 3) are the curves predicted by the

perturbative analytical expression (6.16).
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Figure 13. Comparison between the long wavelength gravitational QNMs and the hydrodynamic

modes (for the later we use the exact numerical results) for r+/L = 100. The brown (disks) curve

describes the scalar modes while the green (squares) curve is for the vector modes.

Figure 11 describes the hydrodynamic scalar modes. For each harmonic ℓ there is a

pair of solutions, one with positive and the other with negative real part of the frequency.

At zero rotation and only in this case, the background has the t − φ symmetry and thus

the two solutions are physically the same: they form a pair {ω,−ω∗} related by complex

conjugation. Rotation breaks this degeneracy but for each rotation there is still a pair

of frequencies allowed. Figure 12 describes the hydrodynamic vector modes. These are

characterized by having vanishing frequency real part when the rotation vanishes, so there

is only one family of solutions for each harmonic.

6.2 Long wavelength QNMs and hydrodynamic modes

In the last subsection we computed analytically and numerically the hydrodynamic relax-

ation timescales. In this section we compare these timescales with the long wavelength

gravitational QNMs. In this comparison, it is important to stress that the computation of

the hydrodynamical relaxation timescales has been performed to first order in the gradient

expansion, thus their intrinsic error is of order O(L2/r2+). Moreover they are valid to order

O(a4/L4). The precise regime of validity can be read from (6.8), (6.9), (6.15) and (6.16).

To perform the comparison we recall that the hydrodynamic and gravitational modes

are expected to match in the regime of parameters (6.8), namely r+/L≫ 1 and a/L≪ 1.

We thus consider a Kerr-AdS black hole with radius parameter r+/L = 100 to do the

comparison. A measure of the deviation between the numerical hydrodynamic frequencies

(call them ωhydro) and the numerical gravitational QNM frequencies (call them ω) is given

by |1− ωhydro/ω|. In figure 13 we plot this deviation measure as a function of the rotation

parameter a/L (a/L < 1 for regular black holes) for a Kerr-AdS BH with r+/L = 100 ≫ 1.

The brown curve (disks) is for scalar modes, while the green curve (squares) is for vector

modes. We see that the match between the hydrodynamic and long wavelength QNM
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frequencies is very good even when the rotation grows large and thus moves away from the

hydrodynamic validity regime a/L≪ 1: for scalar (vector) modes the maximum deviation

is below 0.01% (0.2%).

This perfect match when the rotating chemical potential is present is a further confir-

mation of the holographic interpretation of the QNM spectrum, of the shear viscosity to

the entropy density ratio, η/s = 1/(4π), and ultimately of the AdS/CFT correspondence

itself.

7 QNMs and superradiance in 5 dimensions

In this section we extend the study of thermalization, quasinormal modes, and superradi-

ance to five dimensions. There are many motivations for doing so. Firstly, there is currently

a general interest in studying gravity in higher dimensions, for a modern review see [62].

It is interesting to ask how the solutions to the Einstein equations and their properties

vary with D. As the dimension increases, the types of black hole solutions increase dra-

matically. Some examples of the non-standard black holes possible in higher dimensions

are black rings, black Saturns, and black branes. Many of these solutions challenge the

intuition gained from studying four dimensions by exhibiting non-uniqueness and a variety

of interesting instabilities, some of which likely lead to topology-changing transitions once

quantum effects are included. In addition to this very general motivation, we shall see that

superradiance in five dimensions is qualitatively very similar to four dimensional Kerr-AdS

case. Thus we expect that the intuition we gain from studying superradiance in four and

five dimensions will be useful for thinking about other dimensions. Additionally, because

of the properties of the particular class of black holes we chose to study, certain aspects of

the problem will turn out to be more tractable than the Kerr-AdS case.

A second motivation for studying five dimensional asymptotically AdS black holes is

that they play an important role in understanding strongly coupled field theories in four

dimensions via gauge/gravity duality. In particular, the most well-developed example of

this duality is Type IIB string theory on AdS5 × S5 spacetimes, which is dual to N = 4

Supersymmetric Yang-Mills. The physics of five dimensional AdS black holes can thus

lead to an improved understanding of this specific duality, and more generally about the

physics of four dimensional field theories at finite temperature. As in the Kerr-AdS case,

large black holes will be particularly interesting in this regard as they will be dual to field

theories admitting a hydrodynamic description.

7.1 Myers-Perry-AdS black holes with equal angular momenta

The generalization of the Kerr metric to higher dimensions was found by Myers and

Perry [63]. It was then further generalized to include negative cosmological constant for

the case of five dimensions in [64], and then to arbitrary dimensions by [65, 66]. Although

our numerical results are for five dimensions only, in the presentation that follows we will

keep the dimension general whenever possible. We therefore refer to these black holes as

Myers-Perry-AdS (MP-AdS) black holes.
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In higher dimensions there are more planes for an object to rotate in than in four

dimensions, and therefore these black holes are described by n = ⌊(D − 1)/2⌋ angular

momenta parameters. For generic choices of the angular momenta, the symmetry of the

MP-AdS black hole is R × U(1)n. The first factor is due to time translations, and the

n U(1)’s are due to the n independent planes of rotation. For certain choices of the

angular momenta, this symmetry can be increased. For odd dimensions, a particularly

dramatic enhancement occurs when all angular momenta are equal. In this case, the

isometry becomes R×U(1)×SU(N+1), where D = 2N+3. For this case, the line element

becomes cohomogeneity-1, which is to say that it depends non-trivially only on the radial

coordinate. This feature makes the study of linear stability particularly tractable for these

black holes, as the linearized perturbation equations can be easily separated and reduced

to ODE’s. Therefore, in what follows, we shall restrict ourselves to odd dimensions and

the equal angular momenta sector of the full parameter space.

Here we introduce the MP-AdS black holes for odd dimension D = 2N + 3 and with

all angular momenta equal. The line element is

ds2 = −f(r)2dt2 + g(r)2dr2 + h(r)2
(
dψ +Aadx

a − Ω(r)dt
)2

+ r2ĝabdx
adxb, (7.1)

with the metric functions defined as follows:

g(r)2 =

(
1 +

r2

L2
− r2NM
r2N

+
r2NM
r2N

a2

L2
+
r2NM a2

r2N+2

)−1

, h(r)2 = r2
(
1 +

r2NM a2

r2N+2

)
, (7.2)

Ω(r) =
r2NM a

r2Nh(r)2
, f(r) =

r

g(r)h(r)
. (7.3)

Here ĝab is the Fubini-Study metric on CP
N . We will adopt the convention that lowercase

latin indices run over CP
N coordinates, and that hatted tensors are associated with this

space. The Fubini-Study metric is Einstein, with the following proportionality constant

R̂ab = 2(N + 1)ĝab . (7.4)

When the angular momenta are set to zero, this metric reduces to the usual Schwarzschild-

AdS metric with the unit sphere written in terms of the Hopf fibration:

dΩ2
2N+1 = (dψ +Aadx

a)2 + ĝabdx
adxb, (7.5)

where here A is related to the Kähler form by 2J = dA. Constant t, r slices have the

geometry of homogeneously squashed spheres, with the amount of squashing determined

by h(r).

The energy, angular momenta, and angular velocity of the horizon are [44]:

E =
A2N+1

8πG
r2NM

(
N +

1

2
+

a2

2L2

)
, J =

A2N+1

8πG
(N + 1)r2NM a (7.6)

ΩH =
r2NM a

r2N+2
+ + r2NM a2

. (7.7)
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Figure 14. The parameter space for 5D equal angular momenta black holes. Below the line

ΩHL = 1 the black holes are expected to be stable, and above they can potentially be unstable.

Black holes to the right of the line r+/L = 1 are thermodynamically preferred in the grand canonical

ensemble, whereas black holes to the left are not. Note that the domain extends infinitely in both

directions.

The horizon-generating Killing field is K = ∂t+ΩH∂ψ. The physics of perturbations of this

black hole will depend crucially on ΩH . For ΩHL < 1, K is timelike everywhere outside

the horizon. If ΩHL > 1, then it becomes spacelike sufficiently far away from the horizon,

and in particular is spacelike at the conformal boundary. For ΩHL = 1, K is exactly null

at the conformal boundary.

The metric is described by three dimensional parameters, (L, rM , a). We will find it

useful to use instead the parameters (L, r+,ΩH), where r+ is the horizon radius, to describe

the solution. Note that these parameters are defined independently of the parameters that

appear in the Kerr-AdS case, and also note that the boundary metric is not rotating in

these coordinates.

For these equal angular momenta black holes the angular velocity cannot be arbitrarily

large and must obey the extremal bound

ΩHL ≤
√
1 +

N

N + 1

L2

r2+
. (7.8)

In figure 14 we plot the domain of the parameter space for the case D = 5. We also plot

the lines ΩHL = 1 and r+/L = 1. These divide the sub-extremal parameter space into four

distinct regions. This division comes from the analysis of Hawking and Reall [51]. The

importance of the line ΩHL = 1 is that black holes with ΩHL < 1 are expected to be stable,

whereas those with ΩHL > 1 are expected to be susceptible to instabilities. Additionally,

the partition function of these black holes in a grand canonical ensemble becomes ill-

defined for ΩHL ≥ 1, as the dual CFT will be rotating faster than the speed of light.

The importance of r+/L = 1 is that black holes larger than this are thermodynamically

preferred over thermal, rotating AdS in the grand canonical ensemble, whereas smaller

black holes are not.
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7.2 Scalar-gravitational perturbations

We now review the problem of linear perturbations of the above metric. The decomposition

we employ was first utilized in [67], where scalar-gravitational perturbations of asymptoti-

cally flat MP black holes with equal angular momenta were studied. Metric perturbations

may be decomposed according to how they transform under the isometries of the CP
N

base space. There are three sectors of perturbations to consider: scalar, vector, and tensor.

Tensor and scalar field perturbations of the MP-AdS black holes were studied in [39]. A

major simplifying feature of five dimensions is that vector and tensor perturbations do not

exist, because the associated vector and tensor harmonics do not exist on CP
1 [39, 68].

Thus, we need only consider the scalar sector of perturbations in five dimensions. We

now briefly review charged scalar harmonics on CP
N following [67, 69]. First, introduce a

charged covariant derivative:

Da ≡ ∇̂a − imAa . (7.9)

That this is the natural derivative operator to consider can be seen from the dimensional

reduction of the fibre coordinate in the Hopf fibration. Charged scalar harmonics (with

charge m) are then those functions of the CP
N coordinates that satisfy

(D2 + λ)Y = 0 . (7.10)

Here the eigenvalue is a function of two quantized parameters, (κ,m):

λ = l(l + 2N)−m2, l = 2κ+ |m| , (7.11)

where κ = 0, 1, 2 . . ., and m ∈ Z. Charged scalar-derived vectors can be obtained by

differentiating,

Ya = − 1√
λ
DaY . (7.12)

These can be further decomposed into Hermitian and anti-Hermitian parts

JbaY
±
b = ∓iY±

a . (7.13)

Lastly, the scalar-derived tensors are given by

Y
++
ab = D+

(aY
+
b) , Y

−−
ab = D−

(aY
−
b) , Y

+−
ab = D+

(aY
−
b) +D−

(aY
+
b) −

1

2N
ĝabD ·Y . (7.14)

In order to implement the harmonic decomposition of the perturbation, it will be useful

to introduce the 1-forms,

e0 = f(r)dt , e1 = g(r)dr , e2 = h(r)
(
dψ +Aadx

a − Ω(r)dt
)
. (7.15)

The CP
N scalar sector of metric perturbations can then be written as

hAB = fABY , (7.16)

hAa = r(f+AY
+
a + f−AY

−
a ) , (7.17)

hab = − r2

λ1/2
(H++

Y
++
ab +H−−

Y
−−
ab +H+−

Y
+−
ab ) + r2HLĝabY , (7.18)
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where upper case latin indices run over 0,1,2, and lower case latin letters run over the CPN

coordinates. Adopting the traceless transverse gauge,

h = gµνhµν = 0 , ∇µhµν = 0 , (7.19)

the linearized Einstein equations are then

∇2hµν + 2Rµρνσh
ρσ = 0 . (7.20)

With the above parametrization, the CP
N dependence in the Einstein equations will sep-

arate, resulting in a system of coupled ODE’s. These equations are rather lengthy, and

depend non-trivially on the particular harmonic (κ,m) under consideration, and we there-

fore omit their presentation here. The non-trivial way in which the equations depend on the

CP
N harmonic in question is as follows: for certain values of (κ,m), some of the harmonic

tensors do not exist and therefore their coefficient functions are zero. As an example, for

N = 1 (D = 5), and m > 0, Y+
a = Y

++
ab = Y

+−
ab = 0, and so therefore the functions f+A ,

H++, H+− do not enter into the perturbation.

7.3 Boundary conditions

We now turn to a discussion of the boundary conditions. Boundary conditions must be

supplied at the horizon and at the conformal boundary. The appropriate boundary con-

ditions for quasinormal modes are those that correspond to an ingoing perturbation on

the future horizon H+, and a normalizable perturbation at the boundary. For the case of

asymptotically flat equal angular momenta MP black holes, the requirement of being ingo-

ing at the horizon was translated into boundary conditions in ref. [67]. The same method

applies here, and so we omit a detailed discussion of the horizon boundary conditions.

The boundary conditions at infinity are less straightforward. Here we describe a general

method for finding the boundary conditions of a normalizable gravitational perturbation of

asymptotically locally AdS spacetimes. Recall that in the Kerr-AdS case the perturbation

equations were reduced to a single gauge invariant equation, the Teukolsky equation. There

were two steps in the process of finding the boundary conditions at infinity. First, a

Frobenius expansion analysis yielded the allowed fall-off’s, and then the requiring that

the perturbation be normalizable fixed a certain linear combination of the two solution

branches.

We wish to generalize this method to a system of n 2nd order ODE’s for n functions fi.

In will be convenient to convert to a new radial coordinate, z = 1/r. First we demonstrate

that z = 0 is a regular singular point of the equations. To do so, change to a new basis of

functions qi = zαifi, and write the equations as

Aij(z)z
2∂2zqj +Bij(z)z∂zqj + Cij(z)qj = 0 . (7.21)

If some choice of the αi and overall multiplicative factors can be made such that the

coefficient matrices approach finite and non-zero constant matrices in the limit z → 0,

then we will have demonstrated that z = 0 is a regular singular point of this system of

equations. We do not know of an algorithmic way to determine the α’s, but for the problem
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at hand we have demonstrated that the equations can be put into this form. Then, after

changing coordinates to ∂t = z∂z, the equations become:

Aij(0)∂
2
t qj +

(
Bij(0)−Aij(0)

)
∂tqj + Cij(0)qj = 0 .

This is a 2nd order system of ODE’s with constant coefficients, which can be solved via

the standard method of writing it as a system of coupled 1st order ODE’s:

V̇a =MabVb (7.22)

Where

Va =

[
qi
∂tqi

]
, Mab =

[
0 I

−A(0)−1.C(0) (I−A(0)−1.B(0))

]
, (7.23)

and a = 1, . . . , 2n. The generic solution (excluding possible logarithmic terms in z) is then

Va =

[
qi
∂tqi

]
=

2n∑

b=1

cb exp(tλb)v
(b)
a ,

where the λb, v
(b)
a are the eigenvalues and vectors of M . There are 2n coefficients cb, which

is expected: for n 2nd order ODE’s there should be 2n constants of integration. This is

the generalization of the first step in the Frobenius method, in which the two independent

branches of a solution to an ODE around a regular singular point are determined. The

next and last step is to use physical considerations to determine the cb that correspond

to the type of perturbation being studied. For normalizable metric perturbations, the

boundary metric is held fixed and the boundary stress tensor is varied. For the purpose

of translating this condition into choices of the constants of integration cb, it is useful to

put the full metric (background plus perturbation) into Fefferman-Graham gauge. In this

gauge the metric takes the form

ds2 =
L2

z2
(
dz2 + gab(z, x)dx

adxb
)
, (7.24)

gab(z, x) = g0(x) + . . .+ zdgd(x) + zd log(z2)hd(x) + . . . (7.25)

Here D = d + 1 and the lower case Latin indices run over all but the radial coordinate.

In order to make the perturbation normalizable we require that it only affects the terms

gd and higher in the above expansion. This corresponds to holding fixed the boundary

metric and only allowing the metric perturbation to affect the expectation value of the

stress tensor of the dual field theory. This requirement will fix n of the constants cb. This

method generalizes the usual Frobenius method for finding normalizable fall-off’s for fields

in AdS.

As an explicit example, we display the fall-off’s for D = 5 and for the (0,m) harmonic

(for m > 0. For this mode, the non-zero perturbation functions are

(f00, f01, f02, f11, f12, f22, f
−
0 , f

−
1 , f

−
2 , H

−−, HL) , (7.26)
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and the gauge conditions can be used to algebraically solve for the functions

(f00, f
−
0 , f

−
1 , f

−
2 , H

−−). Then a new auxiliary set of functions qi(r) can be defined which

are finite and non-zero at both boundaries via:

f01(r) =

(
1− r+

r

)−iα(ω−mΩH)−1(r+
r

)5
q1(r) (7.27)

f02(r) =

(
1− r+

r

)−iα(ω−mΩH)−1/2(r+
r

)4
q2(r) (7.28)

f11(r) =

(
1− r+

r

)−iα(ω−mΩH)−1(r+
r

)6
q3(r) (7.29)

f12(r) =

(
1− r+

r

)−iα(ω−mΩH)−1/2(r+
r

)5
q4(r) (7.30)

f22(r) =

(
1− r+

r

)−iα(ω−mΩH)(r+
r

)4
q5(r) (7.31)

HL(r) =

(
1− r+

r

)−iα(ω−mΩH)(r+
r

)4
q6(r) . (7.32)

Here we have introduced the quantities

α =
h(r+)

r+∆′(r+)
, ∆(r) = g(r)−2. (7.33)

Once these qi functions are known, one can easily find the boundary conditions by expand-

ing the equations near the endpoints.

7.4 Numerical results

Here we present our numerical results. We calculated scalar-gravitational QNM frequencies

for the five dimensional, equal angular momenta MP-AdS black hole. The possible per-

turbations are parametrized by two integers (κ,m). We are particularly interested in the

onset of superradiant instabilities, which was discussed earlier in section 4.2. We remind

the reader that superradiant modes are characterized by the condition Re(ω) < mΩH ,

and linear instabilities by the condition that Im(ω) > 0. For superradiant instabilities

in AdS, these two conditions are satisfied simultaneously as the mode becomes unsta-

ble. In considering the onset of these instabilities, we will find it useful to consider the

function ΩH,onset(r+/L), which for a given (κ,m), is the value of the rotation such that

ω = mΩH,onset.

Before presenting our results on scalar perturbations, we briefly review the results for

tensor perturbations [39], which exist for D odd and D ≥ 7. There an infinite number of

superradiant instabilities were found, all for ΩHL > 1. Lower m modes become unstable

for larger values of the rotation, and in the limit m→ ∞, the critical rotation approaches

ΩH,onset → 1. Also, ΩH,onset depends only very weakly on the size of the black hole, and in

particular the ordering of ΩH,onset’s for different m’s is independent of the size of the black

hole. For a given m the instability terminates once the black hole is taken to be sufficiently
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Figure 15. The onset of superradiance for (0,m) modes. The dashed horizonal lines are the

analytic prediction for small black holes, discussed above. We extend the curves past r+/L = 0 to

emphasize the fact that the onset curves are all monotonically decreasing. Two major features of

the plot are 1) the crossing of the onset curves, and 2) that as m→ ∞ the onset curve approaches

ΩHL = 1. Inset : a zoomed-out plot showing an enlarged view of the parameter space.

large. We will find that some scalar perturbations behave qualitatively differently than

these tensor perturbations.

In figure 15 we plot the onset of the superradiant instability for (0,m) modes, for a

range of m. We calculated these threshold unstable modes using the Newton-Raphson

method presented in section 3. As a check on our results, it is useful to first consider small

black holes. For small black holes, the onset of the instability can be very easily predicted

by first setting ω = mΩH for the onset of superradiance, and then also setting ω = ωAdS,

where ωAdS is the normal mode frequency of AdS. For (0,m) modes, this results in

ΩH,onsetL = 1 +
2

m
. (7.34)

Notice that for m → ∞, ΩH,onset → 1. As the size of the black hole is increased, the

onset curves for different m begin to cross. This behaviour was also observed for scalar

perturbations of Kerr-AdS in section 4.2, and is qualitatively different from the behavior

of the tensor instabilities discussed above. Although the onset curves cross as the size

is increased, the fact that the m → ∞ instability hugs the line ΩHL = 1 indicates that

the “m = ∞ mode will never be crossed”, i.e. arbitrarily large m-modes will be the first

ones to go unstable as ΩHL is increased, even for arbitrarily large black holes. This same

phenomenon occurs for scalar perturbations of Kerr-AdS, and is discussed in more detail

in section 4.2. Another difference between these scalar instabilities and the tensor ones is

– 44 –



J
H
E
P
0
4
(
2
0
1
4
)
1
8
3

æ æ æ æ æ æ æ æ æ æ æ æ
æ

æ

à à à à à à à à à à à à à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì

0.0 0.1 0.2 0.3 0.4

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

r+�L

WHL 0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

r+�L

WHL

æ H1,1L

à H1,2L

ì H1,3L

Figure 16. The onset of superradiance for (1,m) modes. The dashed horizonal lines are the

analytic prediction for small black holes, which we extend pass r+/L = 0 to emphasize the fact that

the onset curves are monotonically decreasing. Notice that these curves do not cross each other

and terminate at finite ΩH , in contrast to the (0,m) modes. Inset : a zoomed-out plot showing an

enlarged view of the parameter space. Due to numerical limitations, the onset curves do not extend

all the way to r+/L = 0.

that, for a given m, the scalar onset curves extend for arbitrarily large black holes, whereas

the tensor curves terminate. For very large black holes, we can examine the approach of

the onset curve to it’s limiting value of ΩHL→ 1. Interestingly, the approach is power-law,

with the exponent independent of m:

ΩH,onsetL ∼ 1 + const

(
L

r+

)4
. (7.35)

In figure 16 we plot the onset of the superradiant instability for (1,m) modes. These

instabilities are evidently qualitatively different from the (0,m) instabilities in that a) the

onset curves do not cross, and b) for a givenm, the instabilities do not persist for arbitrarily

large black holes. In fact, these modes appear to be qualitatively very similar to the tensor

modes on CP
N for N ≥ 2.

In figure 17 we plot contour plots of the real and imaginary parts of ω for the (0, 2)

mode. The black dashed line corresponds to the onset mode, ω = mΩH , and the black dot

corresponds to the data point with the largest positive value of Im(ω). This point is near

the extremality bound, and lies at the end of the grid used to scan the parameter space,

and so it is likely that true maximum either lies along or very near the extremality curve.
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Figure 17. Contour plots of Re(ω) (left plot), and Im(ω) (right plot). Above the solid black line

the black hole is nakedly singular. The dashed lines correspond to the onset of the superradiant

instability, ω = mΩH . The isolated black dots correspond to the data point with the largest positive

value of Im(ω) found in our scan of the parameter space.

This point is given by

(r+/L,ΩHL) = (0.579, 1.548) , ωL = 2.481 + 0.039i . (7.36)

Lastly, we remark on the importance of the onset modes, ω = mΩH , on the phase

diagram of black hole solutions in five dimensions. In section 5 it was discussed how

threshold unstable modes with ω = mΩH signified new branches of single KVF black hole

solutions. We expect much of this analysis to carry over to five dimensions. It would be

interesting to study these putative solutions further. Also, as in the Kerr-AdS case, the

endpoint of the superradiant instability remains a very interesting open question, especially

given the crossing of the onset curves observed in the (0,m) scalar sector of perturbations.

7.5 Hydrodynamic thermalization timescales in the AdS5/CFT4 duality

We now turn to study the hydrodynamic QNM’s of the five dimensional MP-AdS black hole.

As discussed in section 6, this serves as a powerful check on our numerics, the hydrodynamic

approximation, and more generally, gauge/gravity duality itself. Compared to the Kerr-

AdS case, the hydrodynamic approximation for the cohomogeneity-1 MP-AdS black holes

is conceptually simpler and has a wider range of validity. Recall that in the Kerr-AdS

case, the pressure was a function of the angular coordinate θ, and this introduced another

length scale into the approximation which limited it’s domain of applicability (although

the agreement turned out to be excellent even for large rotations). In contrast, the pressure

for these five dimensional black holes is constant, and the approximation is valid for all

rotations ΩHL < 1. As is often the case, we will find that the hydrodynamic approximation

agrees excellently with our numerical for reasonably large black holes.
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The general theory of hydrodynamic modes was reviewed in section 6, and so here we

only remark on the differences that occur for these five dimensional equal angular momenta

MP-AdS black holes. The boundary metric is now

hµνdx
µdxν = −dt2 + L2

(
(dψ +Aadx

a)2 + ĝabdx
adxb

)
. (7.37)

The energy density, pressure, and fluid velocity are related to the black hole parameters via

ρ = (D−2)p , p =
r2NM
2L

(
1− a2

L2

)
, uµdx

µ =

(
1− a2

L2

)−1/2(
−dt+a(dψ+Aadx

a)
)
.

(7.38)

We will also need to use the viscosity to entropy relation, η = s/4π, which in our conventions

yields η = r3+/(2L).

Hydrodynamic modes are obtained through perturbations of the stress tensor that

are traceless and divergenceless. The CP
N dependence of these equations can again be

separated using the charged harmonics introduced above. Since our numerical data is for

scalar perturbations, we will restrict our attention to hydrodynamic scalar modes. The

decomposition of the fluid variables is:

δρ = (D − 2)δp , δp = δp̂Ye−i(ωt−mψ), (7.39)

δuµdx
µ =

(
(δutdt+ δuψdψ)Y+ (δu+Y

+
a + δu−Y

−
a )dx

a
)
e−i(ωt−mψ). (7.40)

The perturbed quantities {δp̂, δut, δuψ, δu+δu−} and ω can then be solved for by using the

conservation of the stress tensor. As the expressions are rather lengthy, and depend non-

trivially on the harmonic under consideration, we omit their full presentation here. Given

the difficulty of obtaining analytic predictions for black hole QNM’s, we will however include

the expressions in an expansion about ΩH = 0. For D = 5 and the (0,m), harmonics (with

m ≥ 2), and to first order in both L/r+, ΩL = ΩHL, the hydrodynamic modes are

ω± =

(
±

√
m(m+ 2)√

3
+

2(m2 + 2m− 3)ΩL
3(m+ 2)

+O(Ω2
L)

)
(7.41)

+
L

r+

(
− 1

6
i(m2+2m−3)± i(m4+4m3+3m2−2m−6)ΩL

2
√
3m(m+2)3/2

+O(Ω2
L)

)
+O(L2/r2+) ,

ω0 =

(
m2ΩL
m+ 2

+O(Ω2
L)

)
+

L

r+

(
− 1

4
im(m+ 4) +O(Ω2

L)

)
+O(L2/r2+) . (7.42)

Next, we compare our numerical data for large black holes with the hydrodynamic ap-

proximation. In figures 18 and 19, we fix r+/L = 100 and plot the analytic prediction of

the hydro modes against our numerical data for two choices of CP1 harmonics: (0, 2) and

(1, 1). We work to leading order in L/r+ and find excellent agreement for all ΩHL < 1.

The typical error of the hydro approximation is 10−4, which is exactly what we’d expect

as the next term in the expansion comes in at O(L2/r2+) ∼ 10−4. Although we find ex-

cellent agreement between the hydrodynamic approximation and our numerical data, the

approximation fails to capture the superradiant instabilities. As mentioned earlier, all su-

perradiant instabilities necessarily have ΩHL > 1. For these black holes, the boundary is
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Figure 18. Comparision of the leading order hydrodynamic approximation for (κ,m) = (0, 2)

modes. Here r+/L = 100. Right inset : for ΩHL ≥ 1 the hydrodynamic approximation breaks

down, and despite the otherwise excellent agreement, fails to predict the superradiant instability.
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Figure 19. Comparision of the leading order hydrodynamic approximation for (κ,m) = (1, 1)

modes. Here r+/L = 100. Once again, we find excellent agreement between our data and the

hydrodynamic prediction.

rotating faster than the speed of light, and the hydrodynamic approximation shouldn’t be

expected to be valid. So, while the hydrodynamic approximation has again proven to be

an excellent approximation scheme, in this case it fails to capture the instabilities.

8 Discussion and open problems

We studied the most general linear perturbations of the Kerr-AdS BH and of the equal

angular momentum Myers-Perry-AdS BH in D = 5. We imposed asymptotic BCs that
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preserve the conformal metric [17, 30]. These BCs also guarantee that the energy and an-

gular momentum fluxes across the asymptotic boundary vanish. Using a novel numerical

approach, which we believe might also be useful for other applications, we computed the

QNM spectrum of these BHs and the growth rate of their instabilities. The only linear

instability that we find in the D = 4 and D = 5 stationary BHs have a superradiant nature

and they appear only in BHs with ΩhL > 1. We focused on these spacetimes because of

their interest for AdS4/CFT3 and AdS5/CFT4 dualities formulated on the static Einstein

Universe, i.e. on the sphere. Higher dimensional stationary BHs with D ≥ 6 were not

considered here but they should have novel features that might be worth investigating.

Indeed, it is established that D ≥ 6 stationary BHs are also unstable to the ultraspinning

instability, whose onset was identified in [70] (this instability was first studied in asymp-

totically flat stationary BHs in D ≥ 6 [67, 71–74]). However, it is still an open question

whether another instability that is present in D ≥ 6 vacuum stationary BHs, namely the

bar-mode instability [71, 75–77], is present in AAdS rotating BHs.

The onset of the superradiant instability is an exact zero mode that is invariant under

the horizon-generating Killing field of the Kerr-AdS (MP-AdS) BH. On the shoulders of an

idea originally proposed in [39], we argued that, in a phase diagram of stationary solutions,

the superradiant onset curve is a bifurcation line to a new family of BH solutions with a

single Killing field that span a region that is further limited by the geon family constructed

in [19]. We have constructed perturbatively the leading order thermodynamics of these

novel BHs using a simple thermodynamic model [40, 55–57]. In the future, it is important

to construct explicitly (numerically) these single KVF BHs and geons at full nonlinear

level to confirm the ideas here discussed (in the context of scalar superradince, similar

single KVF BHs and boson stars have already been constructed nonlinearly in [40]. Their

properties are in agreement with the thermodynamic model we use here, in the regime of

small charges). It is worth emphasizing that these single KVF BHs are periodic but not

time symmetric neither axisymmetric and their existence shows that the Kerr-AdS and

MP-AdS BHs are not the only stationary BHs of Einstein-AdS theory (as discussed in

detail before, their existence is not in conflict with the rigidity theorems).

An interesting open question concerns the time evolution and endpoint of the super-

radiant instability. Before addressing this issue for rotating systems, it is useful to discuss

first the situation for global AdS Reissner-Nordström BH (RN-AdS BH) with chemical po-

tential µ that are unstable to charged superradiance. This is the case if the RN-AdS BH is

scattered by a charged scalar wave with frequency ω and charge e that obeys ω ≤ eµ. Here,

the marginal mode with ω = eµ signals a bifurcation curve, in a phase diagram of static

solutions, to a new family of charged BHs with scalar hair that have been explicitly con-

structed (perturbatively and nonlinearly) in [55–57, 78]. When they coexist, the entropy

of the hairy BHs is always higher than the entropy of the RN-AdS BH with same mass and

charge, for fixed e. Moreover, the hairy BHs are not unstable to superradiance since for a

given mass and charge (and fixed e) the chemical potential of the hairy BH is smaller than

the chemical potential of the RN-AdS BH; therefore the would-be superradiant modes of

hairy BHs no longer fit inside the global AdS box. So far we have just discussed the phase

diagram of solutions but said nothing about the time evolution of the original RN-AdS
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BH. The expectation, to be confirmed by a full time evolution, is that the endpoint of the

charged superradiant instability in the RN-AdS BH is one of the hairy BHs constructed

in [55–57]. This follows from the fact that for a given mass and charge (and fixed scalar

charge e) the hairy BH has higher entropy and lower chemical potential than the RN-AdS

BH. Therefore a time evolution towards the hairy BH is compatible with the second law of

thermodynamics and the endpoint would be stable (to superradiant modes with the given

fixed e). Given the properties of this charged system, and the obvious similarities with the

rotating superradiant system, it is often assumed that we can use the charged system to

extrapolate on evolution properties of the rotating system. However, we next argue that

such an extrapolation for time evolution properties is not appropriate. To begin, notice a

fundamental difference between the charged and rotating systems. The charge of the scalar

field e, that enters the superradiant condition ω ≤ eµ, is fixed. However, the azimuthal

quantum number m, that enters the superradiant condition ω ≤ mΩh, is not fixed since the

nonlinearities of Einstein equation will excite other m modes during a time evolution. This

means that a given single KVF BH, constructed in association with a given m mode, can

be at most just a metastable state but never the endpoint of the superradiant instability.

This is because the single KVF BH is stable to the particular m-mode but not to other m

superradiant modes that are inevitably excited in a time evolution. Therefore the endpoint

of the superradiant instability in rotating BHs is not known at all and finding it is one of

the most interesting open questions in BH perturbation physics. Not much can be said

about it without performing the full time evolution but it is interesting to observe that,

typically, stable BHs to a given m-mode are nevertheless unstable to higher m-modes. So

one possibility is that the system will evolve to configurations with higher and higher m

structure. Another important observation is that only BHs with angular velocity ΩhL < 1

are stable to superradiance, as first proved in [51]. So a natural expectation for the end-

point of the superradiant instability would be a (single KVF) BH with ΩhL < 1. Finding

whether such a BH exists requires constructing the single KVF BHs at full nonlinear level.

However, in the similar scalar superradiant system of [40], where much of the present dis-

cussion about the time evolution also applies, the single KVF BHs of the theory have been

explicitly constructed nonlinearly but none of them has ΩhL < 1.

Within the gauge/gravity correspondence, black hole QNMs are dual to thermaliza-

tion timescales in the dual CFT. An explicit check of this statement is possible in the

regime where the CFT admits a near equilibrium, long wavelength effective hydrodynamic

description. We have explicitly checked that for BHs with radius much larger than the AdS

length (and small rotations in the four dimensional case), the long wavelength gravitational

QNMs of stationary BHs match the hydrodynamic relaxation timescales of the dual CFT.

This confirms that the holographic interpretation of the QNM spectrum extends to systems

with a rotating chemical potential. It is also a further check of the validity of the shear

viscosity to the entropy density ratio, η/s = 1/(4π), and a non-trivial confirmation that

the global AdS BCs derived in the companion paper [30] preserve the conformal boundary.

The damped QNM modes of a BH have a well defined dual CFT interpretation, but

not much is known about the holographic interpretation of the superradiant instability

(for discussions in this direction see [51]). From the gravity side it is clear that the su-
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perradiance instability has to do with a quenched cooling of the system, since increasing

the angular momentum very rapidly, cools the system down. It would be interesting to

connect this interpretation with a simple CFT model for such a phenomena, where one

could perhaps understand the final state of the system. In addition, it would also be impor-

tant to understand the novel holographic phases or states that are dual to the single KVF

BHs and geons that appear in the superradiant context. From a different perspective,

in the bulk we have discussed BHs only at the classical level. However, when quantum

effects are included, Hawking radiation is also present and it is entangled with sponta-

neous superradiant emission. These phenomena should have a microscopic or statistical

description. Within string theory, certain BHs can be described by a configuration of

D-branes. In this context, Hawking radiation can be microscopically understood as the

emission of a closed string off the D-branes as a result of the collision of two open strings

that are attached to the D-branes (see [79] and references therein). Similarly, in the con-

text of the AdS3/CFT2 duality, superradiant emission has a microscopic description in

terms of collisions of fermionic (spinning) left and right moving string excitations, and the

superradiant condition ω ≤ mΩh follows from the Fermi-Dirac statistics for the fermionic

open strings [79]. It would be interesting to extend this microscopic description to other

dualities and to systems where the BHs (like Kerr-AdS) that do not have a D-brane de-

scription.

The properties of spheroidal wavefunctions and eigenvalues are known analytically

for some time in AF spacetimes [80]. Our (numerical) analysis leaves the corresponding

analytical analysis of spheroidal harmonics in AAdS unexplored, but clearly a compelling

topic. Specially interesting is the extremal regime a = L, which might be amenable to a

full analytic treatment, both in the angular eigenvalue and in the eigenfrequency.

In a similar vein, a detailed analysis of superradiance in extremal, AF and AAdS

geometries is seemingly lacking. Quasinormal mode results for the extremal, AF Reissner-

Nordstrom geometry uncovered an interesting symmetry between different perturba-

tions [81] which might propagate to superradiant amplification factors and to other ge-

ometries. Note that our analysis does not apply to the extremal Kerr-AdS BH because it

has a double horizon and thus our BCs are not appropriate. However, as one approaches

the extremal BH, superradiance emission persists as first observed for the Kerr BH in [82].

An interesting observation is that in the AF case, when the Kerr BH is extremal and the

perturbations have a frequency that saturates the superradiant bound, i.e. ω = mΩext
h , the

radial Teukolsky equation has an exact solution in terms of hypergeometric functions [83].

However, for the Kerr-AdS BH we can no longer solve the radial equation analytically, even

in the above particular conditions [84]. Extremal Kerr(-AdS) BHs are also interesting be-

cause they have a near-horizon limit where a Kerr/CFT correspondence can be formulated

(see e.g. [84, 85] and references therein). The study of gravitational perturbations in the

Kerr(-AdS) near-horizon geometries was done in [84, 85]. It is interesting to note that all

frequencies in the near-horizon geometry correspond to the single frequency ω = mΩext
h in

the original full geometry. Probably this is the reason why no signature of superradiance

is found in the near-horizon geometry. It might be useful to explore further this system

since its radial solutions are analytical.
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We conclude this discussion section with some important general remarks concerning

perturbations of AAdS spacetimes. One might wonder whether Robin boundary conditions,

such as the ones used throughout this paper, lead to a well defined initial value problem for

fields propagating in arbitrary asymptotically AdS backgrounds. This has been shown to

be the case for the propagation of a real scalar field in [13, 86], where no assumption about

the stationarity of the background or separability of the wave equation was made. The

proof given there can be readily extended to complex of multi-component fields, including

the gravitational perturbations discussed here. In the absence of a linear instability, one

might think that linear perturbations about Kerr-AdS will decay exponentially with time,

in a manner dictated by the QNM spectrum. However, it turns out that this is not the

generic case, and indeed, depending on the smoothness of the initial data, the decay might

be a lot slower than that. A simple argument suggest logarithmic decay: modes with

very large angular momentum have a very large timescale, their growth rate can be shown

(using for instance the WKB approximation) to decay exponentially with increasing angular

quantum number ℓ, i.e. τ ≡ Im(ω)−1 ∼ exp(αℓ), where α is independent of ℓ. This suggests

that very long timescales can be achieved if the initial data contains support in very large

angular momentum quantum numbers, that is to say ℓ ∼ log τ . Since the initial data has

to live in a Sobolev space of sufficiently high order, we conclude that ||ψ|| ∼ (log τ)−p,

where p is related to the Sobolev norm we are considering. Note that even real analytic

data might not decay exponentially, this would correspond to taking the limit p → +∞,

which would lead to ||ψ|| ∼ τ−β , for some constant β. The logarithmic behavior has been

rigorously shown to be sharp in [12, 14]. Perhaps more worrying, the long time behavior

of generic perturbations about black hole in global AdS might not even be related with

quasinormal modes at all! In [87], it was shown, by counterexample, that quasinormal

modes do not form a complete basis and that some perturbations can never be described

by their dynamics. However, we should stress that in the presence of a linearly unstable

mode, such as a superradiant instability, the linear spectrum of perturbations does provide

an accurate description of the dynamics at early times.
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A Fluxes across the horizon and asymptotic boundary

In this appendix we explicitly show that the energy and angular momentum fluxes across

the asymptotic boundary vanish if we impose boundary conditions (BCs) that preserve the

conformal metric. We also review why the flux across the horizon is proportional to the

superradiant factor.

The energy and angular momentum fluxes of gravitational perturbations are calculated

using the Landau-Lifshitz “pseudotensor” whose definition we review next (see e.g. [85]).

Consider metric perturbations hµν around a background ḡµν up to second order in the

amplitude,

gµν = ḡµν + hµν = ḡµν + h(1)µν + h(2)µν +O(h3) . (A.1)

The linearized Einstein equation reads

G(1)
µν [h

(1)] = 0 . (A.2)

At second order, the Einstein equation relates terms linear in h(2) to terms quadratic in h(1):

G(1)
µν [h

(2)] = −G(2)
µν [h

(1)] ≡ 8πGTµν [h(1)] , (A.3)

where the r.h.s. is quadratic in h(1). Written out explicitly, for generic perturbations it

reads (here, we use the notation hµν ≡ h
(1)
µν ; if we choose the traceless-transverse gauge this

is known as the Landau-Lifshitz “pseudotensor”):

8πGNTµν = −1

2

[
1

2
(∇µhαβ)∇νh

αβ + hαβ(∇ν∇µhαβ +∇α∇βhµν −∇α∇µhνβ −∇α∇νhµβ)

+∇αh
β
µ(∇αhβν −∇βh

α
ν)−∇αh

αβ(∇µhβν +∇νhµβ −∇βhµν)

+
1

2
∇αh(∇µhβν +∇νhµβ −∇βhµν)

]

+
1

4
ḡµν

[
1

2
(∇γhαβ)∇γhαβ + hαβ(∇γ∇γhαβ − 2∇α∇γhγβ)− 2(∇αh

αβ)∇γhβγ

+∇αh
βγ(∇αhβγ −∇βh

α
γ) +

1

2
∇αh(2∇βh

αβ −∇αh)

]
. (A.4)

We can now define the fluxes associated with the first order perturbation.

Let ξ be one of the Killing vector fields ξ = ∂t or ξ = −∂φ of (Kerr-)AdS, that

are conjugate to the energy (E) and angular momentum (J) of the solution, respectively.

Conservation of the “pseudotensor” Tµν , ∇µT µν = 0, and the Killing equation, ∇(µξν) = 0,

imply that the 1-form Jµ = −Tµνξν is conserved, d ⋆ J = 0, where ⋆ is the Hodge dual.

We can then define the energy or angular momentum flux across a hypersurface Σ (like the

horizon or the asymptotic boundary) as

Φξ ≡ −
∫

Σ
⋆J = −

∫

Σ
dVΣ Tµνξµnν (A.5)

where nν is the normal vector to Σ and dVΣ is the induced volume on Σ.

– 53 –



J
H
E
P
0
4
(
2
0
1
4
)
1
8
3

Consider first the asymptotic boundary Σ = Σ∞ which is the timelike hypersurface

defined by z = 0 (where z is the FG radial coordinate). This has unit normal n = z/L dz.

As discussed in association with the FG expansion (1.1), AAdS backgrounds start differing

from each other only at order O(g(d)zd−2). This in particular also implies that the most

general perturbation of a global AdS background that preserves the asymptotic structure

of the background has an asymptotic expansion around z = 0 that starts at order O(zd−2),

i.e. hzµ = 0 and hab = e−iωteimφf(X)zd−2 + · · · (the Fourier decomposition in t, φ follows

from the fact that these directions are isometries of the background). Inserting this general

perturbation in the “pseudotensor” (A.4) and computing the fluxes (A.5) we find that they

vanish because the integrand of the fluxes has a polynomial expansion that starts at O(zd)

(for both Killing fields):

Φξ
∣∣
∞

= −
∫

Σ∞

⋆J = 0 . (A.6)

That is, perturbations that preserve the conformal metric (the static Einstein Universe)

have vanishing energy and angular momentum fluxes at the asymptotic boundary.

Take now the Killing horizon (null) hypersurface, Σ = ΣH , defined by r = r+. To find

the flux across the horizon we work with the ingoing Eddington-Finkelstein coordinates

{v, r, χ, φ̃}, introduced in (2.15), that extend the solution through the horizon. The horizon

generator is by definition normal to the horizon, i.e. n ≡ K = ∂v + Ωh∂φ̃. The metric

perturbation hµν ≡ h
(1)
µν is constructed applying a differential operator to the Teukolsky

variable δΨ4 (this is known as the Hertz map; see the companion paper [30]). This yields

long expressions for the components of hµν that are not at all illuminating. The keypoint is

that inserting them in the “pseudotensor” (A.4) we find that the fluxes across the horizon

are proportional to the superradiant factor (Cξ are positive constants if {ω > 0,m > 0}),19

Φξ
∣∣
H

= −
∫

ΣH

⋆J = −(ω −mΩh)Cξ . (A.7)

That is, these fluxes are negative (inwards the BH) if ω > mΩh for which we perturbations

are damped (QNMs); positive (outwards the BH) if ω < mΩh in which case this energy

and angular momentum fluxes feed the superradiant instability growth; and finally they

vanish when ω = mΩh, i.e. at the onset of superradiance.

B Details of the hydrodynamic QNM computation (D = 4)

In this appendix we give details of the hydrodynamic computation that leads to the fre-

quency quantization (6.15) and (6.16).

19This property is universal to scalar, electromagnetic and gravitational perturbations. A massless real

scalar field perturbation obeying the Klein-Gordon equation is the simplest case that illustrates the origin

of the superradiant factor. Indeed, inserting a scalar perturbation Ψ = e−iωveimφ̃Ψ(r, χ) + c.c. in its

energy-momentum tensor Tµν = ∂µΨ∂νΨ − (1/2)(∂Ψ)2, and computing the flux vector across the horizon

we find

−nµξνTµν = −nµ∂µΨξν∂νΨ = −(∂vΨ+Ωh∂φ̃
Ψ)ξν∂νΨ = −(ω −mΩh)cξ[Re(−iΨ)]2,

where ct = ω and c
φ̃
= m. We used n ≡ K = ∂v +Ωh∂φ̃

and ξ ·K
∣

∣

H
= 0.
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Our starting point is the double expansion (6.14) in the shear viscosity and in the rota-

tion, both for the fluid perturbations introduced in (6.12), {Q(f)(X)} = {Q(1), Q(2), Q(3)} ≡
{δP/L, δuX , δuΦ}, and for the perturbation frequency ω. These expansions are inserted in

the hydrodynamic equations of motion (6.10) or (6.11) that are then solved progressively

in a series expansion in η/L3 and a/L. For our purpose it will be enough to go up to first

order in the viscosity (n = 1) and up to second order in the rotation (p = 2) expansions.

There are two families of modes, namely the scalar and the vector modes.

B.1 Scalar modes

Consider first the scalar modes. At leading order in the aforementioned expansion, the

viscosity and rotational effects are absent, and we are interested in finding the quanti-

ties S
(f)
0,0 and ω0,0 (for scalar modes we use the notation S

(f)
j,i ≡ Q

(f)
j,i ). In these condi-

tions, the pressure perturbation is proportional to the Kodama-Ishibashi scalar harmonic

S(X,Φ) ∼ eimΦPmℓ (X), where Pmℓ (x) is the associated Legendre polynomial, while the ve-

locity perturbation is proportional to the vector derived scalar harmonics obtained by tak-

ing angular derivatives of the scalar harmonic Si ∝ DiS (where Dj is the covariant deriva-

tive associated to the unit radius metric on S2). We thus have S
(1)
0,0 e

imΦ = A1 e
imΦPmℓ (X),

S
(2)
0,1 e

imΦ = A2 e
imΦPmℓ (X)′ and S

(3)
0,1 e

imΦ = imA2 e
imΦPmℓ (X), for arbitrary amplitudes

Ak. Inserting these expressions in the equations of motion (EoM) we fix the ratio A1/A2

and quantize the frequency ω0,0. This yields (we introduce the notation z+ = r+
L )

S
(1)
0,0 = i A2 z+(1 + z2+)

√
ℓ(ℓ+ 1)√

2
Pmℓ (X) ,

S
(2)
0,0 = A2 P

m
ℓ (X)′ ,

S
(3)
0,0 = imA2 P

m
ℓ (X) , (B.1)

and ω0,0 that can be read from (6.15). This conclusion agrees with the static results first

derived in [10].

Still at leading order in the viscosity, we now consider the first order correction intro-

duced by the rotation. It follows from two of the EoM at this order that the perturbations

Q
(2)
0,1 and Q

(3)
0,1 can be algebraically expressed as a function of S

(2)
0,1 and/or its derivative.

Plugging these relations in the third EoM we fix the frequency correction ω0,1 as written

in (6.15) (this is done doing the procedure exemplified below for the ω0,2 conribution) and

the differential equation for S
(1)
0,1 that is left is the familiar associated Legendre equation.
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Altogether, the perturbation eigenfunctions at order O(η0, a1) are then

S
(1)
0,1 = B0 P

m
ℓ (X) ,

S
(2)
0,1 =

A2mz+(1 + z2+)(ℓ
2 + 5ℓ+ 2)− 2iB0ℓ(ℓ+ 1)√

2z+(1 + z2+)[ℓ(ℓ+ 1)]3/2
(ℓ+ 1)X

1−X2
Pmℓ (X)

−A2mz+(1 + z2+)(ℓ
2 + ℓ+ 2)− 2iB0ℓ(ℓ+ 1)√

2z+(1 + z2+)[ℓ(ℓ+ 1)]3/2
(ℓ+ 1−m)

1−X2
Pmℓ+1(X) ,

S
(3)
0,1 =

i A2z+(1+z
2
+)

(
m2(ℓ2+ℓ+2) + ℓ(ℓ+1)2

(
X2(ℓ+4)− ℓ

))
− 2iB0mℓ(ℓ+1)√

2z+(1 + z2+)[ℓ(ℓ+ 1)]3/2
Pmℓ (X)

+
2i
√
2A2ℓ(ℓ+ 1)(m− ℓ− 1)

[ℓ(ℓ+ 1)]3/2
XPmℓ+1(X) , (B.2)

where B0 is a new arbitrary amplitude that is introduced at this order.

We can improve our approximation by finding the correction up to second order in

the rotation (at this point still at vanishing viscosity). This requires looking to the EoM

at order O(η0, a2) that involve the unknown quantities S
(f)
0,2 and ω0,2. We use this case to

exemplify in detail how we typically solve equations of our problem to get the perturbative

frequency corrections. Two of the EoM at order O(η0, a2) yield two algebraically equations

for S
(2)
0,2 and S

(3)
0,2 in terms of S

(1)
0,2 and its derivative (in addition to Legendre polynomial

contributions sourced by the lower order solutions). Inserting these algebraic relations in

the third EoM we get a second order ODE for S
(1)
0,2 . Explicitly, the equations discussed in

this paragraph are:

S
(1)
0,2(X)′′ − 2X

1−X2
S
(1)
0,2(X)′ − m2 + (X2 − 1)ℓ(ℓ+ 1)

(1−X2)2
S
(1)
0,2(X)

+
iA2z+(1 + z2+)(5ℓ

2 + 5ℓ+ 16)√
2
√
ℓ(ℓ+ 1)

XPmℓ (X)′

+
iA2z+(1 + z2+)

2
√
2
(
ℓ(ℓ+ 1)

)3/2
Pmℓ (X)

1−X2

[
m2

[
12 + ℓ(ℓ+ 1)(ℓ2 + ℓ+ 4)

]

−ℓ2(ℓ+ 1)2
[
20− (1−X2)(ℓ2 + ℓ+ 22)− 4

√
2
√
ℓ(ℓ+ 1)Lω0,2

]]
= 0

S
(2)
0,2(X) = −

i
√
2S

(1)
0,2(X)′

z+(1+z2+)
√
ℓ(ℓ+1)

+Pmℓ (X)′
[
− iB0m(ℓ2+ℓ+2)

z+(z2++1)ℓ2(ℓ+1)2
+A2

(
m2(ℓ2+ℓ+2)2

2ℓ3(ℓ+1)3

+
2
√
2X2z2+(ℓ

2 + ℓ+ 4)−
√
2(2z2+ + 1)ℓ(ℓ+ 1)− 2ω0,2Lz

2
+

√
ℓ(ℓ+ 1)√

2z2+ℓ(ℓ+ 1)

)]

+

(
A2[4m

2(ℓ2+ℓ+2)+ℓ2(ℓ+1)2(1−X2)]

ℓ(ℓ+1)
− 4iB0m

z+(z2++1)

)
XPmℓ (X)

ℓ(ℓ+1)(1−X2)
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S
(3)
0,2 =

√
2mS

(1)
0,2(X)

z+(1 + z2+)
√
ℓ(ℓ+ 1)

+ Pmℓ (X)

(
iA2m

3(ℓ2 + ℓ+ 2)2

2ℓ3(ℓ+ 1)3
+

2iA2mX
2(ℓ2 + ℓ+ 4)

ℓ(ℓ+ 1)

− iA2m(2z2++1)

z2+
− i

√
2A2mLω0,2√
ℓ(ℓ+1)

+
B0[m

2(ℓ2+ℓ+2)+(X2−1)ℓ2(ℓ+1)2]

z+(1+z2+)ℓ
2(ℓ+1)2

)

+
4iX(1−X2)Pmℓ (X)′

z+(1 + z2+)ℓ
2(ℓ+ 1)2

[A2mz+(1 + z2+)(ℓ
2 + ℓ+ 2)− iB0ℓ(ℓ+ 1)] . (B.3)

Note that the ODE for S
(1)
0,2 is of the form f1S

(1)
0,2

′′+f2S
(1)
0,2

′+f3S
(1)
0,2+s2P

m
ℓ

′+s1P
m
ℓ = 0, with

fk and sk being functions ofX that can be read from the first equation in (B.3). Contracting

this equation with
∫
dXPmℓ we can now use the properties of integration by parts. Namely,

we can subtract the vanishing total divergence contribution
∫
dX∂X(P

m
ℓ f1S

(1)
0,2

′) to the

previous equation and integrate by parts the
∫
dXPmℓ f1S

(1)
0,2

′′ term to rewrite the “EoM”

as
∫
dXPmℓ [f̂2S

(1)
0,2

′+ f3Q
(1)
0,2+ ŝ2P

m
ℓ

′+ s1P
m
ℓ ] = 0, where we have redefined the coefficients

f2 → f̂2 and s2 → ŝ2 to absorb the new contributions arising from the integration by

parts. We use again a similar approach, namely we subtract the total divergence term∫
dX∂X(P

m
ℓ f̂2S

(1)
0,2) = 0 and use integration by parts to get

∫
dXPmℓ (s̃2P

m
ℓ

′ + s1P
m
ℓ ) = 0

where we made the redefinition ŝ → s̃2 and a would be S
(1)
0,2 contribution is absent since

f3−f̂2′ = 0. Subtracting the total divergence
∫
dX∂X [s̃2(P

m
ℓ )2] and a third final integration

by parts finally yields
∫
dXPmℓ ŝ1P

m
ℓ = 0 with ŝ1 = s̃2

′+s1. Explicitly, this final condition is

A2z+(1 + z2+)

2ℓ(ℓ+ 1)

{
[ℓ(ℓ+ 1)(ℓ2 + ℓ+ 7)− 48]

∫ 1

−1
dX X2 Pmℓ (X)2

−
[
ℓ(ℓ+ 1)

[
ℓ(ℓ+ 1)

(
4
√
2
√
ℓ(ℓ+ 1)ω0,2 + ℓ2 + ℓ− 3

)
− 16

]

+m2[ℓ(ℓ+ 1)(ℓ2 + ℓ+ 4) + 12]
]∫ 1

−1 dX Pmℓ (X)2

ℓ(ℓ+ 1)

}
= 0 . (B.4)

To proceed we use the integrals

∫
Pmℓ (X)Pmℓ (X)dX =

2

(2ℓ+ 1)

(ℓ+m)!

(ℓ−m)!
∫
X2Pmℓ (X)Pmℓ (X)dX =

2(2ℓ2 + 2ℓ− 2m2 − 1)

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)

(ℓ+m)!

(ℓ−m)!
, (B.5)

to rewrite (B.4) as

0 =
A2z+(1 + z2+)(2ℓ− 3)!!(ℓ+m)!

ℓ2(ℓ+ 1)2(2ℓ+ 3)!!(ℓ−m)!

{
3m2(ℓ− 1)(ℓ+ 2)(ℓ2 + ℓ+ 6)(2ℓ2 + 2ℓ+ 1)

+2ℓ2(ℓ+1)2
[
2
√
2
√
ℓ(ℓ+1)(2ℓ−1)(2ℓ+3)ω0,2L+(ℓ+1)ℓ3+(ℓ+1)ℓ2−14(ℓ+1)ℓ+24

]}
.

This condition finally quantizes the frequency contribution ω0,2 as

ω0,2L = −(ℓ+ 2)(ℓ− 1)[2(ℓ− 3)(ℓ+ 4)ℓ2(ℓ+ 1)2 + 3m2(6 + ℓ+ ℓ2)(1 + 2ℓ+ 2ℓ2)]

4
√
2(2ℓ− 1)(2ℓ+ 3)[ℓ(ℓ+ 1)]5/2

.

(B.6)
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To include the effects of dissipation we now consider the linear order contribution in

the viscosity, while still doing also an expansion in the (adimensional) rotation parameter,

i.e. we solve the perturbative EoM at order O(η, a0), O(η, a1), O(η, a2). The technical

analysis proceeds in a way that is very similar to the procedure already outlined for the

zero-order contribution in the viscosity so we now omit further details and just give the

final results for the frequencies ω1,i and for the perturbation eigenfunctions S
(f)
1,i (X). At

order O(η, a0) the eigenfunctions are

S
(1)
1,0 =

[
i
1√
2
K2 z+(1 + z2+)

√
ℓ(ℓ+ 1)− 1

2
A2 (ℓ+ 2)(ℓ− 1)

]
Pmℓ (X) ,

S
(2)
1,0 = K2 P

m
ℓ (X)′ ,

S
(3)
1,0 = imK2 P

m
ℓ (X) , (B.7)

where K2 is a new arbitrary amplitude, and the frequency ω1,0 is written in (6.15).

At order O(η, a1) the eigenfunctions are

S
(1)
1,1 = C0 P

m
ℓ (X) ,

S
(2)
1,1 =

iXPmℓ (X)

2
√
2(1−X2)z+(1 + z2+)ℓ

2(ℓ+ 1)

[
4
√
2A2m(ℓ+ 1)(ℓ+ 2)(2ℓ+ 1)

− 2i

z+(1 + z2+)

(
K2mz

2
+(1 + z2+)

2
√
ℓ(ℓ+ 1)(ℓ2 + 5ℓ+ 2)

− ℓ(ℓ+ 1)
[√

2B0(ℓ− 1)(ℓ+ 2) + 2iC0z+(1 + z2+)
√
ℓ(ℓ+ 1)

])]

− i(ℓ+ 1−m)Pmℓ+1(X)

2
√
2(1−X2)z2+(1 + z2+)

2ℓ2(ℓ+ 1)2

(
4
√
2A2mz+(1 + z2+)(5ℓ

2 + 5ℓ+ 2)

−2i
[
K2mz

2
+(1 + z2+)

2
√
ℓ(ℓ+ 1)(ℓ2 + ℓ+ 2)−

√
2B0(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

]

−4C0z+(z
2
+ + 1)[ℓ(ℓ+ 1)]3/2

)
,

S
(3)
1,1 =

Pmℓ (X)

2z2+(1 + z2+)
2ℓ2(ℓ+ 1)2

[
− 4X2z+(1 + z2+)ℓ(ℓ+ 1)2

×
[
2A2(ℓ

2 + ℓ+ 1)− i
√
2K2z+(1 + z2+)

√
ℓ(ℓ+ 1)

]

−A2z+(1 + z2+)
[
4m2(5ℓ2 + 5ℓ+ 2) + (1−X2)ℓ2(ℓ+ 1)2(ℓ2 + ℓ− 14)

]

+2mℓ(ℓ+ 1)
[√

2C0z+(1 + z2+)
√
ℓ(ℓ+ 1)− iB0(ℓ− 1)(ℓ+ 2)

]

+i
√
2K2z

2
+(1 + z2+)

2
√
ℓ(ℓ+ 1)

[
m2(ℓ2 + ℓ+ 2)− (1−X2)ℓ2(ℓ+ 1)2

]]

+
2(ℓ+1−m)X Pmℓ+1(X)

z+(1+z2+)ℓ(ℓ+1)

[
2A2(ℓ

2+ℓ+1)− i
√
2K2z+(1+z

2
+)

√
ℓ(ℓ+1)

]
, (B.8)

where C0 is a new arbitrary amplitude, and the frequency contribution ω1,1 can be found

in (6.15).

Finally, to get the frequency correction at order O(η, a2) we use again the integration

by parts procedure that we already described to get the O(η0, a2) contribution. Going

through this procedure we find the frequency ω1,2 that can be read from (6.15) and we
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omit here the associated long expressions for S
(f)
1,2 . The frequency contribution ω1,3 written

in (6.15) is computed in a similar way.

B.2 Vector modes

Consider now the vector modes. These distinguish from the scalar modes because at

leading order in the viscosity and rotation they have vanishing pressure perturbation and

vanishing frequency: V
(0)
0,0 = 0 and ω0,0 = 0 (for scalar modes we use the notation V

(f)
j,i ≡

Q
(f)
j,i ). In these conditions it follows from the EoM that (as it could not be otherwise) the

velocity perturbation of these modes can be expanded in terms of the Kodama-Ishisbashi

vector harmonics Vi, i = X,Φ (which can themselves be expressed as a function of the

associated Legendre polynomials Pmℓ ; see e.g. section 4.1 of [30]). Altogether, at leading

order O(η0, a0), the vector hydrodynamic modes have eigenfunctions

V
(1)
0,0 = 0 ,

V
(2)
0,0 =

imA3

1−X2
Pmℓ (X) ,

V
(3)
0,0 = A3 (1−X2)Pmℓ (X)′ , (B.9)

and ω0,0 = 0.

The EoM at O(η0, a1) and O(η0, a2) combined give the frequency corrections ω0,1 and

ω0,2 = 0.20 The eigenfunctions at order O(η0, a1) are

V
(1)
0,1 =

2A3z+(z
2
+ + 1)

ℓ(ℓ+ 1)

[
(ℓ+ 1−m)Pmℓ+1(X)− (ℓ+ 1)2XPmℓ (X)

]
,

V
(2)
0,1 =

imB0

1−X2
Pmℓ (X) ,

V
(3)
0,1 = −B0

[
(ℓ+ 1)X Pmℓ (X)− (ℓ+ 1−m)Pmℓ+1(X)

]
, (B.10)

where B0 is a new arbitrary amplitude and ω0,1 is given in (6.16).

To find the frequency contribution at order O(η0, a3) we use two of the EoM at the

previous order O(η0, a2) to find V
(1)
0,2 explicitly and an algebraic relation for V

(3)
0,2 as a

function of V
(2)
0,2 and its derivative. Then, one of the EoM at order O(η0, a3) is a second

order ODE that only involves the unknown V
(2)
0,2 and its first and second derivatives, in

addition to two source contributions proportional to the associated Legendre polynomial

and its derivative. It is used to find the frequency contribution ω0,3 as given in (6.16), after

using several integrations by parts as exemplified in the previous scalar mode treatment.

The long relations associated to this discussion are omitted here.

20To be more clarifying, the first order EoM determine ω0,1 = 0 but leave V
(2)
0,1 undetermined and V

(3)
0,1

is left just as a function of V
(2)
0,1 and its derivative. The explicit expressions for V

(2)
0,1 and V

(3)
0,1 , as written

in (B.10), are found only at second order where we also determine ω0,2. Ultimately, this technical property

of the vector modes is due to the fact that the frequency contribution of rotational odd powers vanish

when η = 0.
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We now consider the viscosity contributions. Using the EoM at order O(η, a0) and

O(η, a1) we find the eigenfunctions

V
(1)
1,0 = 0 ,

V
(2)
1,0 =

imK2

1−X2
Pmℓ (X) ,

V
(3)
1,0 = K2

[
(ℓ+ 1−m)Pmℓ+1(X)− (ℓ+ 1)XPmℓ (X)

]
, (B.11)

where K2 is an arbitrary amplitude, and fix the frequency contribution ω1,0 as written

in (6.16) and ω1,1 = 0.

The EoM at order O(η, a1) also determine V
(1)
1,1 and V

(3)
1,1 that we write below, while

EoM at order O(η, a21) find algebraic relations for V
(1)
1,2 and V

(3)
1,2 (that we do not write

here) and a second order ODE for V
(2)
1,1 . The relations just described are

V
(1)
1,1 =

2K2z+(1 + z2+)

ℓ(ℓ+ 1)

[
(ℓ+ 1)2XPmℓ (X)− (ℓ+ 1−m)Pmℓ+1(X)

]
,

V
(2)
1,1 (X)′′− 6X

1−X2
V

(2)
1,1 (X)′ +

(ℓ− 1)(ℓ+ 2)−m2 − (ℓ− 2)(ℓ+ 3)X2

(1−X2)2
V

(2)
1,1 (X)

+
2A3

(
8− ℓ(ℓ+ 1)

(
ℓ(ℓ+ 1)(ℓ2 + ℓ− 5) + 14

))

(1−X2)z+(z2+ + 1)ℓ(ℓ+ 1)
X Pmℓ (X)′

−A3 P
m
ℓ (X)

2(1−X2)2

[
2m2(3ℓ8 + 12ℓ7 + 16ℓ6 + 6ℓ5 − 25ℓ4 − 46ℓ3 + 58ℓ2 + 80ℓ− 24)

z+(z2+ + 1)ℓ(ℓ+ 1)(2ℓ− 1)(2ℓ+ 3)

− X2
(
ℓ(ℓ+ 1)

(
ℓ2(ℓ+ 1)2 − 28

)
+ 32

)

z+(z2+ + 1)
+

(ℓ− 1)ℓ2(ℓ+ 1)2(ℓ+ 2)

z3+(z
2
+ + 1)

− 2ℓ(ℓ+1)(−3ℓ6−9ℓ5+15ℓ3+10ℓ2+ℓ+6)

z+(z2++1)(2ℓ−1)(2ℓ+3)
+ iω1,2Lℓ

2(ℓ+1)2
]
= 0

V
(3)
1,1 =

i(1−X2)

m

[
(1−X2)V

(2)
1,1 (X)′ − 2XV

(2)
1,1 (X)

+
A3(ℓ− 1)(ℓ+ 2)

z+(1 + z2+)

(
4XPmℓ (X)− ℓ2 + ℓ− 4

ℓ(ℓ+ 1)
(1−X2)Pmℓ (X)′

)]
.

(B.12)

We use the ODE for V
(2)
1,1 to determine the frequency contribution ω1,2, explicitly written

in (6.16), after several integration by parts.

C QNMs and superradiance: a perturbative analytical analysis (D = 4)

In this appendix we give details of the perturbative matched asymptotic expansion that

leads to the frequency quantization (4.2) and that we compare with the numerical results in

section 4.1. This perturbative approach was introduced to study perturbations of a scalar

field in the Kerr black hole by Starobinsky [88, 89], Unruh [90] and Detweiller [91], and

later used successfully to study scalar and gravitational perturbations in rotating black
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holes in [35, 48, 92–94]. In particular, the superradiant timescales of a scalar field in the

Kerr-AdS black hole computed with this method [48] were confirmed to be accurate by the

numerical analysis of [49].21

The matched asymptotic expansion procedure allows to solve perturbatively the an-

gular (2.11) and radial (2.12) equations, and yields an approximate analytical solution for

the QNM and superradiant instability frequency spectra.

This analysis starts with the observation is that if we work in a regime of parameters

where a
L ≪ 1 and aω̃ ≪ 1 the angular equation for the spin-weighted AdS-spheroidal

harmonics reduces approximately to the standard equation for the spin-weighted spherical

harmonics [80, 95]. In particular it is independent of the mass parameterM and cosmolog-

ical radius L, and its regular solutions can be found analytically (see e.g. [30] for a detailed

construction). Here, it is important to highlight that regularity of these eigenfunctions

requires that the angular eigenvalues and quantum numbers are quantized as

λ = (ℓ−1)(ℓ+2)− 2m

ℓ

ℓ2 + ℓ+ 4

ℓ+ 1
aω̃+O

(
a2ω̃2,

a2

L2

)
, with ℓ = 2, 3, 4, · · · , |m| ≤ ℓ ,

(C.1)

where the azimuthal quantum numberm is an integer, and we have introduced the quantum

number ℓ with properties discussed after (2.13). This fixes the angular eigenvalue spectrum

and we just need to solve now the radial equation in a regime of parameters that is consistent

with the approximation where (C.1) is valid.

We follow a standard matching asymptotic expansion analysis whereby we divide the

exterior spacetime of the Kerr-AdS black hole into two regions; a near-region where r−r+ ≪
1
ω̃ and a far-region where r−r+ ≫ r+. In each of these regions, some of the terms in radial

equation make a sub-dominant contribution and can be consistently discarded. We will find

that if we further require r+
L ≪ 1, this procedure yields an equation with an (approximate)

analytical solution in both spacetime regions. The next important step is to restrict our

attention to the regime r+ω̃ ≪ 1. In this regime, the far and near regions have an overlaping

zone, r+ ≪ r − r+ ≪ 1
ω̃ , where the far and near region solutions are simultaneously valid.

In this matching region, we can then match/relate the set of independent parameters that

are generated in each of the two regions. We will also find that if we further restrict our

analysis to the regime a
r+

≪ 1, it is sufficient to work only with the the leading order

contribution for the angular eigenvalues in (C.1), λ ∼ (ℓ− 1)(ℓ+ 2).

The regime of validity of the matching analysis can be expressed in a much sim-

plified form. Indeed, the rotation parameter is constrained by the extremity condition

a ≤ r+

√
3r2++L2

L2−r2+
for r+ <

√
3L and by a < L for r+ >

√
3L (see e.g. [45]). For the regime

we are interested, r+
L ≪ 1, we thus have a ≤ r+

√
3r2++L2

L2−r2+
= r+ + O(r3+). Thus r+

L ≪ 1

automatically implies a
L ≪ 1. Moreover, for r+

L ≪ 1 the (real part) of the QNM frequencies

21Here we do not follow the alternative perturbative analysis of [40, 55–57] to find QNM and superradiant

frequencies because, in the present system, it requires going to a high order in perturbation theory — the

imaginary part of the frequency appears only at order O(r+/L)
6 — where the source terms make it difficult

to solve analytically the equations.
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of the BH do not differ much from the normal mode frequencies of global AdS that are

order ω̃L ∼ O(1). Therefore r+
L ≪ 1 also implies r+ω̃ ≪ 1 and aω̃ ≪ 1. To sum, our

analysis will be valid in the regime of parameters (4.1). We discuss the different regions

separately and discuss how to match the solutions obtained next.

C.1 Near-region equation and regular solution at the horizon

The near-region is defined by r − r+ ≪ 1
ω̃ . Introducing the wave function Φ = ∆rR

(−2)
ℓω̃m ,

the radial equation (2.12) reads

∆rΦ
′′ −∆′

rΦ
′ +

(
6r2

L2
+ 4iK ′

r +
K2
r − 2iKr∆

′
r

∆r
− λ

)
Φ = 0 . (C.2)

If we further restrict to the regime r+
L ≪ 1, the cosmological constant contribution can be

neglected. Specifically, in the radial equation (C.2) the following approximations are valid

∆r

∣∣
r∼r+

≃ r2 + a2 − 2Mr + · · · ≃ (r − r+)(r − r−) , with r− ≃ a2

r+
,

(
6r2

L2
+ 4iK ′

r

)∣∣
r∼r+

≃ 6r2+
L2

− 8ir+ω̃

(
1− a2

L2

)
∼ −8ir+ω̃ + · · · , (C.3)

K2
r − 2iKr∆

′
r

∆r

∣∣
r∼r+

≃ Ξ2(r2+ + a2)2(4πTH)
2̟(̟ + 2i)

∆r
+ 8ir+ω̃ + · · ·

≃ (r+ − r−)
2̟(̟ + 2i)

(r − r+)(r − r−)
+ 8ir+ω̃ + · · · ,

where ΩH , TH are the angular velocity and temperature defined in (2.4), and motivated by

the BC (2.16) we have introduced the superradiant factor,

̟ ≡ ω̃ −mΩH
4πTH

≃ (ω̃ −mΩH)
r2+ + a2

r+ − r−
. (C.4)

With these near-region approximations the radial equation (C.2) is then

∆rΦ
′′(r)−∆′

rΦ
′(r) +

(
(r+ − r−)

2̟(̟ + 2i)

(r − r+)(r − r−)
− (ℓ− 1)(ℓ+ 2)

)
Φ(r) ≃ 0 , (C.5)

where, in the approximation regime (4.1), we replaced the eigenvalue λ by its leading

contribution in (C.1) (the requirement a/r+ ≪ 1 is fundamental here since we neglect a

contribution proportional to msa/r+ when compared with λ ∼ (ℓ−1)(ℓ+2)). Introducing

a new radial coordinate z and wavefunction F defined as

z =
r − r+
r − r−

, 0 ≤ z ≤ 1 ; Φ = zi̟(1− z)ℓ−1 F , (C.6)

the near-region radial wave equation takes the form

z(1−z)∂2zF +
[
(−1 + i 2̟)− [1 + 2ℓ+ i 2̟] z

]
∂zF − (ℓ+ 1)[ℓ− 1 + i 2̟]F = 0 . (C.7)

This is a standard hypergeometric equation [96], z(1−z)∂2zF+[c−(a+b+1)z]∂zF−abF = 0,

whose most general solution in the neighborhood of z = 0 is Ain z
1−cF (a− c+1, b− c+1,
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2 − c, z) + Aout F (a, b, c, z). Using (C.6), one finds that the most general solution of the

near-region equation is therefore

Φ = Ain z
2−i̟(1−z)ℓ−1F (a−c+1, b−c+1, 2−c, z)+Aout z

i̟(1−z)ℓ−1F (a, b, c, z) , (C.8)

with

a = ℓ− 1 + i 2̟ , b = ℓ+ 1 , c = −1 + i 2̟ . (C.9)

The first term represents an ingoing wave at the horizon z = 0, while the second term

in (C.8) represents an outgoing wave which we set to zero, Aout = 0, to guarantee that no

perturbations come off the horizon.

For the matching we need the large r (i.e. z → 1) behavior of the ingoing near-region

solution. To get this, we use the z → 1 − z transformation law for the hypergeometric

function [96],

F (a− c+ 1, b− c+ 1, 2− c, z) =

(1−z)c−a−b Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
F (1− a, 1− b, c− a− b+ 1, 1− z)

+
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
F (a− c+ 1, b− c+ 1,−c+ a+ b+ 1, 1− z) ,

and the property F (a, b, c, 0) = 1. Finally, noting that when r → ∞ one has 1 − z =

(r+ − r−)/r, one obtains the large r behavior of the near-region wave solution that is

regular at the horizon,

Φ ∼ Ain Γ(3− 2i̟)

[
(r+−r−)−ℓ−2Γ(2ℓ+1)

Γ(ℓ+1)Γ(3+ℓ−2i̟)
rℓ+2 +

(r+−r−)ℓ−1Γ(−2ℓ−1)

Γ(−ℓ)Γ(2−ℓ−2i̟)
r1−ℓ

]
. (C.10)

C.2 Far-region wave equation and global AdS solution

The far-region is defined by r − r+ ≫ r+. In this region the effects induced by the black

hole mass and angular momentum can be neglected to leading approximation. The far-

region background where the gravitational perturbation propagate is then simply global

AdS spacetime. Our approximations then yield ∆r ≃ r2
(
1+ r2

L2

)
and, in the regime where

the eigenvalue λ is given by the leading contribution in (C.1), the radial equation (2.12)

boils down to

∂r
(
∆r∂rR

(−2)
ℓω̃m

)
+

[
(ω̃r2+i∆′

r)
2

∆r
+2

(
9r2

L2
+1

)
−8irω̃ −(ℓ−1)(ℓ+2)

]
R

(−2)
ℓω̃m ≃ 0 . (C.11)

This is again a hypergeometric equation in whose most general solution is

R
(−2)
ℓω̃m =

L

r

(
L

r
+ i

)1
2
(Lω̃−2)(L

r
− i

)− 1
2
(Lω̃+2ℓ)[

B0 F

(
ℓ− 1, ℓ+ 1 + Lω̃; 2(ℓ+ 1);

2r

r + iL

)

+B1(−2i)−(2ℓ+1)

(
L

r
− i

)2ℓ+1

F

(
− ℓ− 2, Lω̃ − ℓ;−2ℓ;

2r

r + iL

)]
, (C.12)
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where B0, B1 are at this point arbitrary amplitudes whose ratio will be constrained by the

asymptotic global AdS BC.22

Asymptotically the solution decays as

R
(−2)
ℓω̃m |r→∞ ≃ ei

π
2
(Lω̃+ℓ) ×

{
− i

L

r

[
B0 F

(
ℓ− 1, ℓ+ 1 + Lω̃; 2(ℓ+ 1); 2

)
+ 2−(2ℓ+1)B1 F (−ℓ− 2, Lω̃ − ℓ;−2ℓ; 2)

]

+
L2

r2

[
1

2

B0

ℓ+ 1

([
2(L2ω̃2 + 1) + ℓ(Lω̃ − 1)− ℓ2

]
F (ℓ, ℓ+ 2 + Lω̃; 2ℓ+ 3; 2)

+ ℓ(ℓ− 1 + Lω̃)F (ℓ+ 1, ℓ+ 2 + Lω̃; 2ℓ+ 3; 2)
)

− 2−(2ℓ+1)B1

(
Lω̃ F (−ℓ− 2, Lω̃ − ℓ;−2ℓ; 2)

− (ℓ+ 2)F (−ℓ− 1, Lω̃ − ℓ;−2ℓ; 2)
)]}

+O

(
L3

r3

)
. (C.13)

To have an asymptotically global AdS perturbation we need to match this decay with (2.18),

namely, R
(−2)
ω̃ℓm

∣∣
r→∞

∼ B
(−2)
+

L
r + B

(−2)
−

L2

r2
+ O

(
L3

r3

)
and impose the BC (2.19), B

(−2)
− =

i βB
(−2)
+ . In the regime we are working one has a ≃ 0 and the BC expressions (2.20)–(2.22)

for β simplify considerably reducing to

1) β = βs = −Lω̃
(
1 +

λ

λ− 2(L2ω̃2 − 1)

)
, (C.14)

2) β = βv =
λ

2Lω̃
− Lω̃ , (C.15)

for scalar and vector modes, respectively. Here, λ = (ℓ − 1)(ℓ + 2). Going through this

asymptotic matching we find how the amplitudes B0(B
(−2)
+ , β) and B1(B

(−2)
+ , β) must

be related to the BC parameters B
(−2)
+ and β for the perturbation to be asymptotically

global AdS.

For a later matching with the near-region solution we will need the small r behaviour

of the far-region solution Φ = ∆rR
(−2)
ℓω̃m with R

(−2)
ℓω̃m given by (C.12). This is

Φ ∼ B
(−2)
+

1

αD

[
i e−i

π
2
(ℓ+Lω̃)L−ℓ(ℓ+ 1)αN r

ℓ+2 − ei
π
2
(ℓ−Lω̃)Lℓ+1ℓ βN r

1−ℓ
]
, (C.16)

22If we were working exactly in global AdS (a = 0 and M = 0 everywhere) this solution would be exact

and extending all the way down to the origin where regularity would require setting B1 = 0. Then the

asymptotically global AdS BC imposed below instead of constraining the ratioB1/B0 would instead quantize

the frequencies that can propagate in global AdS. Indeed we can explicitly check that the expression for

B1/B0 that we get when we do the procedure described below (C.15) vanishes when we insert the global

AdS frequencies for scalar, ω̃L = 1 + ℓ + 2p, or vector modes, ω̃L = 2 + ℓ + 2p (integer p is the radial

overtone).
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where we defined

αD = (ℓ+1)(ℓ+2)(ℓ−Lω̃)F (−ℓ−1, Lω̃−ℓ+1, 1−2ℓ, 2)F
(
ℓ−1, Lω̃+ℓ+1, 2(1+ℓ), 2

)

+ℓ F (−ℓ− 2, Lω̃ − ℓ,−2ℓ, 2)
[
(ℓ+ 1)(2ℓ+ 1)F

(
ℓ− 1, Lω̃ + ℓ+ 1, 2(ℓ+ 1), 2

)
,

+ (ℓ− 1)(ℓ+ 1 + Lω̃)F (ℓ, Lω̃ + ℓ+ 2, 2ℓ+ 3, 2)
]
,

αN = ℓ(ℓ+ 2− β − Lω̃)F (−ℓ− 2, Lω̃ − ℓ,−2ℓ, 2)

+(ℓ+ 2)(ℓ− Lω̃)F (−ℓ− 1, Lω̃ − ℓ+ 1, 1− 2ℓ, 2) ,

βN = (ℓ+ 1)(Lω̃ + ℓ− 1 + β)F
(
ℓ− 1, Lω̃ + ℓ+ 1, 2(ℓ+ 1), 2

)

+(ℓ− 1)(Lω̃ + ℓ+ 1)F (ℓ, Lω̃ + ℓ+ 2, 2ℓ+ 3, 2) . (C.17)

C.3 Matching. QNM and superradiant frequencies

In the regime r+ω̃ ≪ 1, the near and far regions have an overlaping zone, r+ ≪ r−r+ ≪ 1
ω̃ ,

where both are simultaneously valid. The requirement that the solutions can be matched

across the overlapping zones related the amplitudes Ain, B
(−2)
+ and quantizes the frequency

ω̃. In particular, the frequencies that are allowed to propagate in the Kerr-AdS black hole

are found matching the large r behavior (C.10) of the near-region solution with the small

r behaviour (C.16) of the far-region solution. This yields two conditions, one following

from the matching of the rℓ+2 coefficients and the other from the matching of the r1−ℓ

coefficients. One of these constraints is used to find the ratio between the near and far

region amplitudes A0/B
(−2)
+ that is then inserted in the other constraint to finally yield

the matching condition that quantizes the frequency spectrum:23

ℓ!

(2ℓ− 1)!

i(ℓ+ 1)Γ(ℓ+ 1)Γ(ℓ+ 3− 2i̟)

4L2ℓ+1ℓ2Γ[2(ℓ+ 1)]Γ(2− ℓ− 2i̟)

(
r+ − a

r2+

)2ℓ+1

×
[
ℓ(ℓ+ 2− Lω̃ − β)F (−ℓ− 2, Lω̃ − ℓ,−2ℓ, 2)

+ (ℓ+ 2)(ℓ− Lω̃)F (−ℓ− 1, Lω̃ − ℓ+ 1, 1− 2ℓ, 2)
]

= (ℓ+ 1)(ℓ− 1 + Lω̃ + β)F
(
ℓ− 1, Lω̃ + ℓ+ 1, 2(1 + ℓ), 2

)

+ (ℓ− 1)(ℓ+ 1 + Lω̃)F (ℓ, Lω̃ + ℓ+ 2, 2ℓ+ 3, 2) , (C.19)

where the superradiant factor ̟ was introduced in (2.17), and the asymptotic BC param-

eter β is given by (C.14) for scalar, and by (C.15) for vector perturbations. Recall that

this expression is valid in the approximation regime (4.1).

This frequency quantization condition simplifies considerably when we choose a par-

ticular harmonic ℓ. In particular, for the lowest harmonic, ℓ = 2, it reduces to (4.2). We

leave the detailed discussion of the solution of this frequency quantization condition and

the comparison with the associated exact numerical results to subsection 4.1.

23To get this result, as observed in a similar context in [100], we should keep in mind that the angular

eigenvalue is an integer strictly only in the limit of zero rotation. Therefore the ratio of gamma functions

that appears in our computation should be taken as

lim
ǫ→0

Γ(−ℓ− ǫ)

Γ(−2ℓ− 2ǫ)
=

4(2ℓ− 1)!

(−1)ℓ(ℓ− 1)!
, (C.18)

after using the gamma function property Γ(−n + ǫ) ∼ (−1)n/(n!ǫ), for ǫ ≪ 1 and integer n (assuming at

the starting point that ǫ = 0 gives a result that differs from the correct one by a factor of 2).
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