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Holography, a covariant c function, and the geometry of the renormalization group

Vatche Sahakian*
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

~Received 24 November 1999; published 28 November 2000!

We propose a covariant geometrical expression for thec function for theories which admit dual gravitational
descriptions. We state ac theorem with respect to this quantity and prove it. We apply the expression to a class
of geometries, from domain walls in gauged supergravities, to extremal and near extremal Dp-branes, and the
AdS Schwarzschild black hole. In all cases, we find agreement with expectations.

PACS number~s!: 11.25.2w, 04.50.1h, 04.65.1e, 11.10.Gh

I. INTRODUCTION

The holographic encoding of information in gravitational
theories appears to be a manifestation of a fundamental
physical principle. The importance of this projection of in-
formation was realized in the context of classical general
relativity through entropy bounds and black hole thermody-
namics@1,2,3#. More recently, we have learned from string
theory that this phenomenon appears to have intriguing con-
nections with scaling and renormalization group flow in non-
gravitational theories@4,5,6,7,8,9,10,11#. A great deal re-
mains to be unraveled about this connection, but there are
already indications that this line of thought may hold the
resolution of some of the paradoxical issues arising from
black hole physics.

In this work, we investigate the connection between
renormalization group flow and holography by proposing a
covariant, geometric measure for the effective central charge
for the so-called ‘‘boundary theory’’ of Maldacena’s duality
@12,13,14#. Central charge, or the ‘‘c function,’’ is a measure
of the degrees of freedom of a theory, the number of inde-
pendent species of excitations. For theories in two dimen-
sions, Zamolodchikov@15# was able to prove a set of elegant
statements describing the central role played by this quantity
in the renormalization group flow. The effective central
charge was shown to be a function of the couplings of the
theory that is monotonically decreasing as one flows to lower
energies; fixed points described by conformal field theories
correspond to the extrema of this function, and the gradients
over coupling space are related to the beta functions of the
theory. Attempts to generalize some of these statements to
higher dimensions have been met with very limited success.
In the context of Maldacena’s duality, we acquire geometri-
cal tools to study this question in regimes where a theory is
strongly coupled.

The basic conceptual ingredient in our proposal is a re-
markably simple, yet powerful prescription proposed by
Bousso@16#. The observation is that holographic statements
should have a covariant nature. Consequently, Bousso pro-
poses to use congruences of null geodesics as probes for the
sampling of holographically encoded information. We be-
lieve that this principle is a general one. The proposal of
Maldacena in regimes where one focuses on bulk dynamics

in the nonstringy gravity sector must have a similar covariant
nature.

In the next section, we motivate and construct a covariant
expression for the central charge for the boundary theory.
We will guide ourselves by a set of intuitively driven prin-
ciples inspired by the Bousso entropy bound. We will then
prove ac theorem; Bousso’s criterion for the convergence of
the congruence and the null convergence criterion are iden-
tified as the necessary and sufficient conditions.1 We will
then proceed to apply the prescription to certain classes of
geometries: domain wall solutions in gauged supergravi-
ties, near-horizon regions of extremal and near-extremal
Dp-branes forp,5, and the anti–de Sitter~AdS! Schwarzs-
child black hole in four dimensions. In the first class, we find
exact agreement with@10#. For the second class, the scaling
of the c function is found to match onto the expected
asymptotic behaviors given by the perturbative supersym-
metric Yang-Mills ~SYM! theory, the matrix string, the
M-theory membrane, and the M-theory five-brane theories.
We also find that our expression, applied to flow along ‘‘ra-
dial congruences,’’ is insensitive to the presence of a ther-
modynamic horizon; as expected, the latter corresponds to a
thermodynamic state in the same dual theory. We end with a
discussion assessing the evidence presented.

II. COVARIANT c FUNCTION

Consider a D-dimensional spacetime with metricgab fo-
liated by a choice of constant-time surfaces. Let this vacuum
solve Einstein’s equations with a negative cosmological con-
stant. Focus on a spacelike (D22)-dimensional surfaceM
at some fixed time~see Fig. 1!. There are generally four light
sheets projected out of this surface consisting of the space-
time points visited by a congruence of null geodesics or-
thogonal toM @17#. As prescribed by Bousso@16#, we pick
a light sheet along which the congruence converges. Ifna

denotes the tangents to these geodesics, we can construct a
null vector fieldma on the light sheet such that it is orthogo-
nal toM and satisfiesmana521 @18#. ThenM admits the
metric

hab5gab1n~amb) . ~1!

*Email address: vvs@mail.lns.cornell.edu

1This is for cases involving shearless flow; a more general state-
ment can also be proved for the cases with shear.
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The second fundamental formis defined by@17,19#

Bab[¹bna5¹anb5Bba . ~2!

The symmetry property follows from Frobenius’s theorem
and the fact that the vector fieldna is surface orthogonal. We
define the (D22)-dimensional matrix

B̂b
a5gacBcb5hacBcb ~3!

and its trace

u5Tr B̂. ~4!

The condition for the convergence of the geodesics is stated
as @16#

u<0. ~5!

The geodesics are to be extended as long as this condition is
satisfied; for spacetimes curved by matter satisfying the null
convergence condition,2 these geodesics will typically end at
caustics (u→2`). We would like to think of a sense in
which information on such a light sheet is holographically
encoded onM. This is the nature of Bousso’s entropy
bound, and it is also consistent with Maldacena’s
conjecture.3

For simplicity, let us require that the spacetimes we con-
sider admit a timelike Killing vector field along which our
choice of time flows. One may propose to time-flow the
whole light sheet forward and backward, generating a
D-dimensional region of spacetime which becomes the
‘‘bulk,’’ and the ‘‘boundary’’ is the time flow ofM. The c
function we will be considering is to be accorded to the
theory that is in some sense residing on this boundary and is

dual to the bulk. We want to associate renormalization group
flow to lower energy scales with motion along the converg-
ing congruence of null geodesics. A more precise and careful
version of this statement will be postponed to future work.
For now, we will use the null geodesics described above as
tools to probe covariantly the dual theory at lower energy
scales; the success of our proposal in the examples we will
consider can be viewed as evidence to this approach.

Without claim to rigor, we next motivate the geometrical
formula for thec function. The first principle we accord to is
that the local geometrytransverse to the flow encodes the
information about the decrease of the effective central charge
due to the coarse graining of the boundary theory. This is
partly motivated by the work of@20#, where the energy mo-
mentum tensor of the boundary theory for AdS spacetimes
was written in terms of local quantities, essentially the ex-
trinsic curvature of a foliation and its trace. From the same
line of thought, we expect thec function to be proportional
to GD

21, the inverse of theD-dimensional gravitational cou-
pling. The next tool is dimensional analysis; we need a local
covariant object with dimensions lengthD22 to construct a
dimensionlessc function; motivated by the Bousso construc-
tion, we allow ourselves to use only covariant data from the
congruence. Intuitively, we also requireinvariance under
boundary diffeomorphisms; the most natural way to assure
this is through an integration over the boundary using the
proper measure constructed fromhab . Finally, we require
that the formula give the proper scaling for the central charge
in AdS spaces, i.e., a constant proportional tol D22/GD @21#,
where the cosmological constant scales as21/l 2. For AdS
spaces with metric in the Poincare´ coordinates,

ds25
l 2

z2 ~dz21dxWD22
2 2dt2!, ~6!

and a choice of constantz foliations at fixed time forM, we
have u;z/ l 2 and Ah;( l /z)D22. Putting everything to-
gether, we are left with combinations of two simple expres-
sions detB̂ andu, differing from each other only if the flow
of the congruence has shear~see definition below!; we pick a
form that appears the most natural:

c~t!.
c0

GD*Ah detB̂ut
. ~7!

Another obvious option is to replace (detB̂) by uD22. The
integral is evaluated at some proper timet along the geode-
sics;t is to be related to the energy scale of renormalization
group flow through the UV-IR relation. There are two prob-
lems with expression~7!: dependence on the scale param-
eter for the proper time and it is divergent for many relevant
geometries with noncompact boundariesM. Both problems
can be regulated by proposing that the local expression we
have can yield only a fractional decrease in the central
charge as a result of renormalization. We then propose the
cure

2The null convergence condition is discussed in detail in@17#; it is
the statement that the energy momentum tensor satisfies the condi-
tion Tabk

akb>0 for all null ka. This follows from the strong or
weak energy conditions that are believed to be satisfied by all
known forms of matter.

3The past and future history of the light sheet is causally related to
it, so that the spacelike notion of holography we may naively accord
to Maldacena’s duality is a subset of this covariant statement.

FIG. 1. An illustration of the construction of holographic duals;
the (D22)-dimensional surfaceM is shown, along with a caustic
ending the congruence of null geodesics.
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ct2

ct1

5
GD*Ah detB̂ut1

GD*Ah detB̂ut2

. ~8!

One fixes the central charge at some proper timet1 from
other data, and the formula predicts the central charge at
lower energy scales deep in the bulk att2 . The expression is
manifestly covariant, independent of the arbitrary scaling of
the proper time, in principle convergent, and invariant under
boundary diffeomorphisms. Typically, one would expect to
work in a gravitational theory with negative cosmological
constant so as to have an asymptotic AdS vacuum configu-
ration corresponding to a UV fixed point.ct1

gets fixed by

the conformal algebra in this region, andct2
predicts the

central charge of the deformed conformal theory at lower
energy scales. The product ofct1

with the numerator of the
right-hand side is a numerical coefficient times regulator fac-
tors canceling with the denominator of the right-hand side.
For pure AdS spaces, Eq.~8! gives one by construction.

In practical calculations, we will have symmetries that
allow us to write a slightly simplified formula. For the rest of
this work, we assume that the flow under consideration is
shearless; the matrixB̂ can be decomposed generally as@17#

B̂5
u

D22
11ŝ, ~9!

where the symmetric matrixŝ is referred to as shear. For all
cases under considerations, we haveŝ50, so thatB̂ is pro-
portional to a (D22)-dimensional identity matrix. We then
write

c~t!5
c0

GD*Ah detB̂ut
→

c08

GD*AhuD22ut
, ~10!

wherec0 andc08 are products of numerical coefficients, and a
factor regulating the size ofM in the cases whereM is
noncompact. As mentioned above, for shearless flow, we are
unable to discriminate between combinations of the two ex-
pressions that we were led to in the arguments above, i.e.,
detB̂;uD22. We are, however, intuitively driven to propose
that the general form for the central charge should be given
by Eq. ~8!. We expect that the flow of the central charge
should be sensitive to the phenomenon of shear.

We will next prove ac theorem for Eq.~10!. A more
general version with respect to Eq.~8! can be proved as well
~the convergence criterion gets slightly generalized and we
would require that the congruence be principal null with re-
spect to the Weyl tensor!. However, our understanding of the
physical role of shear from the renormalization group per-
spective is primitive; we defer the more general statement to
future work where we hope to explore explicitly examples
with shear.

III. c THEOREM

Theorem. Consider a congruence of null geodesics ema-
nating from a (D22)-dimensional surfaceM as defined
above; then, Eq.~10! is monotonically decreasing for in-
creasingt if the null convergence condition is satisfied and if
everywhere along the flowu<0.

The proof is straightforward. Differentiating the logarith-
mic of Eq.~10!, the derivative slices through the integral~the
congruence is orthogonal toM! and we get

d

dt
ln c52

1

*AhuD22 E d

dt
~AhuD22!. ~11!

The monotonicity follows immediately from Raychaudhuri’s
equation

du

dt
52

1

D22
u22Rabn

anb ~12!

and from

d

dt
Ah5dnAh5Ahu. ~13!

We then have

d

dt
ln c52

~D22!

*AhuuuD22 E AhuuuD23Rabn
anb<0, ~14!

where we have usedu<0. HereRabn
anb>0 follows from

the null convergence condition and Einstein’s equations in
the presence of a cosmological constant sincenana50. The
null convergence condition follows from either the weak or
strong energy conditions.

Note that Eq.~14! vanishes forD52, i.e., when the
boundary is described by quantum mechanics. This is con-
sistent with the fact that the renormalization group flow pre-
scription, in the spirit defined in field theoretical settings,
does not exist in this regime.

Let us simplify the formulas further to make a few obser-
vations. Often the metric for spacetimes of interest depends
on a single ‘‘radial’’ coordinate, and we choose the surface
M to be at constant value with respect to this coordinate.
Spacetime is therefore parametrized by time, a radial coordi-
nate, andD22 spatial coordinates residing onM. The inte-
gral in Eq.~10! can then be evaluated, canceling the potential
divergence in the numerator, so we write the finite expres-
sions

c~t!5
c0

GDAhuuuD22ut
, ~15!

d

dt
ln c52~D22!

Rabn
anb

uuu
, ~16!

where c0 is a finite numerical coefficient. Implied is the
statement that for larger values of proper time, we penetrate
deeper in the bulk and therefore flow to lower energies. This
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statement will be made more precise in the next section.
When uuu→`, putting an end to the sampling of the bulk
points and assumingRabn

anb is finite, Eq.~16! indicates that
we have reached an infrared fixed point. Depending on
whether the combinationAhuuuD22 is finite or infinite, we
have a finite or zero central charge. This implies that all
renormalization group flows to lower energies lead to IR
fixed points. This is certainly a desirable statement; we have
correlated caustics with IR fixed points.4 The other criterion
for the theorem, the null convergence condition, was also a
condition advocated by the work of@10# for the statement of
monotonicity. Our covariant approach indicates that this ob-
servation is a general one.

IV. COVARIANT UV-IR RELATION

We need to prescribe a relation between the proper time
and the energy cutoff in the renormalization group flow. We
have very little to guide ourselves with in this regard. The
UV-IR relation, as sketched in, for example,@22#, is a rough
scaling relationship, and it is still associated with various
paradoxes. A fundamental formulation of the relation be-
tween scale on the boundary and bulk physics is yet un-
known. In the spirit of our previous discussion, we should try
to write a covariant UV-IR relation. One can write trivially
the statement of@22#, i.e., gttdt2;grr dr2, covariantly:

1

m~t!
.E

tUV

t

dt8na¹at. ~17!

Heret is the function foliating the equal time surfaces,tUV is
the proper time chosen in the UV, andm~t! is the energy
cutoff associated with the proper timet. This approach is
particularly naive, and moreover it is not unique. One can
readily write other covariant expressions, particularly ones
that make reference to the second fundamental form and ap-
pear to be more natural choices. Given the correlation be-
tween IR fixed points and caustics we advocated earlier, it is
desirable to state a UV-IR relation such that caustics natu-
rally correspond to the zero-energy limit of the cutoff. For
the standard scenarios analyzed in the literature in the con-
text of Eq. ~17!, this is certainly the case. However, our
understanding of the underlying physics in this regard in a
general context is limited; we will then adopt for now Eq.
~17! as a rough guide for the purpose of tracking the scaling
relation between energy scale and a coordinate in the bulk. A
more fundamental geometrical understanding of this issue
and the coarse graining prescription is needed for a more
rigorous map between the renormalization group and geom-
etry.

V. TEST AND EXAMPLES

A. Gauged supergravity

We first consider the class of geometries describing do-
main walls in gauged supergravities. These solutions inter-

polate between two asymptotic AdS regions. ForD55, they
are believed to correspond to compactifications of type-IIB
vacua on manifolds that get deformed from the spherical
geometry of the Freund-Rubin scenario as one flows from
the UV to the IR. ForD54 or D57, they correspond to
M-theory compactifications. A wide class of solutions were
summarized in@11#, and the metrics have the generic form

ds25e2A~r !~dxW ~D22!
2 2dt2!1dr2. ~18!

We pick the (D22)-dimensional manifoldM as a surface
of constantr, and we measure time/energy by the coordinate
t. The congruence of ingoing null geodesics can easily be
found using the timelike Killing vector field] i ; one finds

na5ge22A] t2ge2A] r , ~19!

where g is an arbitrary parameter, chosen to be positive,
which scales the proper time; this is an arbitrariness charac-
teristic of null geodesics. The Christoffel variables are found
to be

G i i
r 52A8e2Ah i i , G ri

i 5A8, ~20!

whereh tt521 andh i i 511 for i PM. We construct the
second fundamental form

Bbc5gS A8e2A A8 ¯0¯

A8 A8eA
¯0¯

] ]

0 0 2A8eA1

] ]

D . ~21!

The data for thec function become

B̂52gA8e2A1D22 , Ah5e~D22!A, ~22!

yielding

c5
c0

GDA8D22 . ~23!

This is the expression that was proposed for thec function in
@10,11# along with compelling evidence in its favor. The
form of Eq. ~8! assures that the parameterc0 here is such
that, in the asymptotic AdS UV region, the central charge is
given by that of the UV fixed point.

B. Dp-branes

We next consider the near-horizon geometries of
Dp-branes. It will be more convenient to first study a class of
metrics of the form

ds25e2A~z!@ f ~z!21dz21dxWD22
2 2 f ~z!dt2#. ~24!

We will coordinate transform the Dp-brane geometries into
this form later. We choose a constantz and t surface for our
manifold M. The congruence of null geodesics is given by
the vector field

4If Rabn
anb is to diverge, we expect stringy physics to set in to

regulate the conclusion.
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na5g f 21e22A] t1ge22A]z . ~25!

The Christoffel variables are

Gzz
z 5

1

2 S 2
f 8

f
12A8D , G i i

z 52 f A8,

G tt
z 5

f

2
~ f 812 f A8!,

Gzi
i 5A8, Gzt

t 5
1

2 S f 8

f
12A8D . ~26!

The data for thec function become

B̂52gA8e22A, Ah5e~D22!A. ~27!

We then get the expression

c5
c0

GDe2~D22!AA8D22 . ~28!

The functionf (z) disappeared from the expression for thec
function. The role of this function in the metric is to excite
the geometry above extremality, i.e., to create a thermody-
namic horizon. Correspondingly, in the dual description, we
excite a finite-temperature vacuum in the same theory. Thec
function should not change when the vacuum reflects a ther-
modynamic state in the same theory with the same degrees
of freedom. This insensitivity of our expression to thermo-
dynamic horizons is the second nontrivial piece of evidence
in its favor. We will come back to this issue later in the
context of the AdS Schwarzschild black hole; for now, let us
proceed to Dp-branes.

A Dp-brane metric in the Maldacena scaling regime is
given by @23,24#

dsstr
2 5S r

qD ~72p!/2

~dxW ~p!
2 2 f dt 2!

1S q

r D ~72p!/2

~ f 21dr21r 2dV82p
2 !. ~29!

with the dilation being

ef5S q

r D ~72p!~32p!/4

~30!

and

q72p.gstrN, f 512S r 0

r D 72p

, ~31!

where ~after taking the decoupling limit! we have chosen
units such thata851. Energy in the SYM dual is measured
with respect to the coordinate timet. Given that we lack
numerical accuracy in the relation between energy scale and
radial extentr at present~for that matter, we also lack rigor-
ous conceptual understanding in this context!, we will now
start being careless with numerical coefficients and aim at

determining only the scaling of thec function with respect to
the physical parameters of the SYM theory. We apply the
coordinate transformation

r 5z2/~p25! with p,5. ~32!

After rescaling the metric to the Einstein frame, as well as
absorbing certain constants in the transverse coordinates

gmn
Ein5e2f/2gmn

str , ~p25!
q~p27!/2

2
~xW ,t !→~xW ,t !, ~33!

we get

dsEin
2 5q~p11!~72p!/8z~p23!2/4~p25!S 2

p25D 2

3S 1

z2 ~ f 21dz22 f dt21dxW p
2!1S p25

2 D 2

dV82p
2 D .

~34!

Note that we have effectively rescaled the SYM energy. This
metric is of the form ~24! except for the transverse
(82p)-sphere factor. Even though it is straightforward to
extend our formalism to this extended space with the trans-
verse sphere, it is easier to track the scaling of the physical
parameters by imagining that we have compactified the ge-
ometry on this sphere, with the effect that the gravitational
coupling in the lowerD5p12 dimensions scales as

G~p12!.
gstr

2

Vol~V82p!
5gstr

2 zp28e~p28!A~z!, ~35!

where A(z) refers to the corresponding function identified
from matching Eq.~24! with Eq. ~34!. We then have

A8.
1

z
. ~36!

The c function becomes

c5c0

z82pe8A

gstr
2 A8p 5c08gstr

~p23!/2N~p11!/2z~p23!2/~p25!, ~37!

where c0 and c08 are numerical coefficients. Applying the
UV-IR relation given by Eq.~17! ~necessarily at zero tem-
perature; see comments clarifying the relevance of this state-
ment in the Schwarzschild black hole section, Sec. V C!, we
get @22#

m~z!;
1

AgstrNz
, ~38!

where we interpretm as the renormalization energy cutoff
scale. We have eliminated the proper time in favor of the
coordinatez using the trajectory of the geodesics. We have
also undone the rescaling of the time variable in Eq.~33!, so
that m is energy scale as measured in the SYM theory. Put-
ting things together and defining the effective largeN dimen-
sionless coupling as
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geff
2 ~m![gY

2Nmp23, ~39!

wheregY
25gstr, we arrive at an expression for thec function

for the (p11)-dimensional SYM theory:

cDp~m!.gstr
~p23!/~52p!N~p27!/~p25!m~p23!2/~52p!

.geff
2~p23!/~52p!~m!N2.cSYM~geff!. ~40!

The first thing to note is that, when the energy scale ism
;mYM such that the curvature scale in the region of space
where the integral of Eq.~10! is evaluated becomes of order
the string scale, we havegeff

2 (mYM);1, and therefore, for all
p,

cDp~mYM !.N2; ~41!

i.e., the gravitational description breaks down at the
Horowitz-Polchinski correspondence point@25# and the cen-
tral charge scales as in the perturbative SYM regime. This
happens in the UV forp,3 and in the IR forp54. For p
53, we note that thec function is constant and of orderN2

as expected for the conformal (311)d N54 SYM theory.
Now let us analyze the different scenarios more

closely: forp51, we get

cD1~m!.
N2

geff~m!
.

N3/2

gY
m. ~42!

This result was obtained in@26# by different methods; the
authors there could use the correlation function with inser-
tions of two energy-momentum tensors to read off the central
charge. Thisc function, as noted by them, interpolates be-
tween the (111)-dimensional SYM and the matrix string
theory regimes; the latter arises in the IR at energy scales
mMS;gY /N1/2, which is again a Horowitz-Polchinski corre-
spondence point in a dual geometry@27#; Eq. ~42! yields, at
this energy scale,

cD1~mMS!;N ~43!

as expected for the matrix string theory@28,29#.
Next, considerp52; we have

cD2~m!.
N2

geff
2/3~m!

.
N5/3

gY
2/3 m1/3. ~44!

Moving from the 211 SYM theory to the IR, at energy
scales mM2;gY

2N21/2, as shown in@27#, the membrane
theory is encountered. We find the corresponding central
charge is

cD2~mM2
!'N3/2. ~45!

This is indeed the proposed behavior for the membrane
theory@30#. Beyond this point, the geometry becomes AdS4,
and it appears we have reached a fixed point of flow.5

For p54, we flow from the SYM in the IR to the~2,0!
theory on a circle sitting in the UV. We have

cD4~m!;gY
2mN3. ~46!

As we flow to the UV, we will start probing the size of the
11th dimension. This happens atmM5;1/R11;gY

22. The
central charge then becomes

cD4~mM5!;N3. ~47!

This is indeed the characteristic scaling for the central charge
of the M5-branes@21#. The geometry becomes beyond this
scale AdS73S4, i.e., the near-horizon geometry of M5-
branes.

The reader may have noticed thatp55 was a special case
in our analysis. The coordinate transformation applied for
these examples breaks down in this setting. In this case, one
probes the delicate Neveu-Schwarz, 5-brane~NS5-brane! ge-
ometry; a more careful analysis of the geodesic flow is in
order. The results are bound to have more of a predictive
nature than of a test of our proposal; we will postpone this
task to the future.

Equation~40! appears then to correctly reflect the renor-
malization group flow in (p11)-dimensional SYM theories
for p,5. Furthermore, the expression is insensitive to exci-
tations of the vacuum above extremality to finite tempera-
tures. We will say more on this issue in the next section. One
may argue that the matching onto the M2- and M5-brane
central charges is not terribly impressive since the geom-
etries become AdS at these energy scales, and our expression
is tuned to give the right answer for AdS spaces. We note,
however, that, at the Horowitz-Polchinski correspondence
points, this issue cannot be raised. We have two powers of
the dimensionless quantitiesgeff and N to check against; if
one gets fixed by the AdS region, the other is free. Note that
in the case for D1-branes, the Horowitz-Polchinski corre-
spondence criteria bound both sides of the flow. And these
matched the proper asymptotics known from other reliable
methods. Turning around the argument, this becomes a test
of our hypothesis that thec function is expressible in terms
of local geometrical quantities, a statement which is intu-
itively in tune with the prescription of the renormalization
group flow. When we reach a fixed point, i.e., an AdS region,
it is irrelevant how we got there; there may be different
routes to flowing to a fixed points from different neighboring
conformal field theories. The outcome must be the same; the

5One may expect naively that the energy scalemM2 must be
1/R11; however, the geometry of the lifted D2-branes is given by
that of smeared M2-branes, whose near-horizon geometry isnot
AdS4 ; the energy scalemM2;gY

2N21/2 was identified in@27# as the
scale where the localized membrane theory sets in; it is this geom-
etry which is AdS4. Correspondingly, we find the characteristicN3/2

scaling for membranes at this scale of the flow.
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central charge is fixed by the end point, i.e., by the cosmo-
logical scale and gravitational coupling of the AdS region.
This viewpoint, along with the nontrivial matchings with the
perturbative SYM regimes for allp and the matrix string
theory, constitutes compelling evidence in favor of a local
expression for the central charge.

C. AdS Schwarzschild black holes

We briefly explore here the four-dimensional AdS
Schwarzschiled black hole case to illustrate a previous point
in a simpler setting. Let us consider the metric@31#

ds252g~r !dt21 f ~r !dr21r 2du21r 2 sin2 u df2.
~48!

For the AdS black hole, we have

g~r !512
r 0

r
1

r 2

l 2 5 f ~r !21, ~49!

where l is related to the cosmological constant. One then
finds

c; f ~r !g~r !. ~50!

The inverse relation betweenf andg characteristic of horizon
excitations yields a constantc function. As in the near-
extremal Dp-brane cases, we find here as well that our as-
sessment of the central charge in the theory does not get
affected by a thermodynamic horizon. The central charge for
the AdS Schwarzschild black hole geometry is a constant
equal to the value set by the asymptotic AdS region.

Note that this example also demonstrates that the disap-
pearance of the functionf from the central charge in the
cases of near-extremal Dp-branes wasnot a result of focus-
ing on the spaceM transverse to thez-t plane; it is the
relative relationship betweenf andg that the central charge
probes. One may get troubled from the fact that we used the
zero-temperatureUV-IR relation when we wrote the central
charge as a function of the cutoff energy; i.e., we used the
extremal metric. The complaint would be that the insensitiv-
ity of the central charge, written as a function of energy
scale, to the presence of the black horizon was partly put by
hand. The point is that the relation between energy scale in
the boundary theory and extent in the bulk should be an
independentstatement; a covariant formulation of the UV-IR
statement should be insensitive to the presence of a thermo-
dynamic horizon in the geometry independently from any
other statement. It would be unphysical if the presence of a
background thermal bath affected our assessment of the re-
lation between the location of an excitation in the bulk and
its energy as measured in the boundary theory. This would
have been needed if the cancelation of the horizon factors in
the central charge expression was not to occur. This feature
of our expression is then positive evidence in its favor.

In what sense then is the presence of a black horizon
special? It seems that we are drawn to the conclusion that the
central charge for the AdS Schwarzschild black hole geom-
etry is set by the asymptotic AdS region; the black hole is

simply a thermal state in the conformal field theory dual to
the AdS vacuum@32,33#. The answer has to do with the
causal aspect of the horizon. Consider a surfaceM sitting at
the horizon. As Bousso notes, there are now three classes of
null congruences which are candidates for sampling the bulk.
One set will sample the inside of the horizon, but the other
two sets, the trapped geodesics, will sample the surface area.
These ones saturate the sampling criterionu<0; i.e., they
satisfy u50. This indicates that thegravitational dynamics
at the horizon in some sense is a holographic dual to the
gravitational dynamicswithin the horizon, both descriptions
being duals to a conformal field theory. This viewpoint, in its
current fetal state, presents an intriguing marriage between
our understanding of the special causal aspects of a black
horizon, its thermodynamic character, and renormalization
group flow.

In principle, one can arrange matter configurations so as
to curve spacetime as in Eq.~48! with arbitrary f and g.
Asymptotically, we must recover AdS space with the cosmo-
logical constant set by our gravitational action. Our analysis
suggests that, if this setup is stable, unlike the black hole
scenario, it would correspond to perturbing the boundary
theory away from conformality, generating nontrivial renor-
malization group flow.

The generalization of this example to higher dimensions
is straightforward; we expect no change in the conclusions.

VI. DISCUSSION

Let us recap the proposal and critically assess the evi-
dence we have presented in its favor. We used a principle of
covariant holography and a set of intuitively driven, yet non-
rigorous, arguments to define holographic duals. In this con-
text, we proposed ac function for the boundary theory; it is
a geometrical, local, covariant expression holographic in na-
ture:

c;
1

*M detB̂
. ~51!

The inverse central charge is simply written as the integral of
the determinant of the second characteristic form onM. The
expression was explicitly tuned to yield a constant for AdS
spaces. Unfortunately, we do not have a more physical un-
derstanding of the form Eq.~51!. If this proposal is indeed
correct, it is a statement about understanding the holographic
encoding of information in the language of the renormaliza-
tion group. The evidence we presented in favor of Eq.~51!
was as follows.

~i! We could prove ac theorem: this essentially fol-
lowed from Raychaudhuri’s equation. One of the two criteria
for a monotonically decreasingc function, the conditionu
,0, correlates with Bousso’s criterion for sampling the bulk
space for information; the second criterion, the null conver-
gence condition, was advocated independently in the ex-
ample of@10#.

~ii ! For domain wall solutions, our result agrees with
@10,11#. This may be regarded as merely a test for the pos-
sibility to formulate ac function through the formalism of
congruences of null geodesics.
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~iii ! For the Dp-brane geometries, our expression appears
to interpolate correctly between known asymptotics. This
constitutes a nontrivial test for the principle that a covariant
and local expression for thec function exists. As such, how-
ever, any other covariant local expression is a candidate as
well.

~iv! Exciting a thermodynamic horizon in the bulk space
does not change the central charge. This constitutes a non-
trivial test for the form we have proposed, beyond the test for
covariance.

The proposal~51! may be incomplete, with additional
corrections needed as we move further into the bulk@20#.
The successes we demonstrated may have been accidents due
to certain symmetries in the cases considered. Any covariant
term, invariant under boundary diffeomorphisms and vanish-
ing in the maximally symmetric AdS case, isa priori al-
lowed. Less interestingly, terms involving arbitrary powers
of detB̂ andu such that the dimensions are right are allowed;
we can write combinations involving objects like TrB̂¯B̂.
Such possibilities are endless, as well as being uninteresting;
unfortunately, without examples that probe the effect of
shear, one cannot distinguish between them. We propose the
expression~51! for the c function as it appears to be the
simplest and most natural form amongst these possibilities.
On the other hand, more general terms can be multiplied by
powers of the gravitational coupling to make them dimen-
sionless; their origin would then probably be stringy. One
may in principle add terms constructed from pullbacks of the
curvature tensors; adding Weyl-tensor-dependent terms
would not affect our conclusions in the cases of extremal
Dp-branes and domain walls; it would, however, change the
conclusion for near extremal Dp-branes, which would be
undesirable. It is possible that our approach may be a first
order approximation to the underlying physics, and perhaps
probing the geometry by geodesics can go so far; one may
need to study the full quantum field theory in a given back-
ground geometry~or for that matter the full string theory! to
decode renormalization group data from gravitational phys-
ics. On the other hand, the principle of covariant holography
accords an attractive special physical role to null geodesics.6

We certainly expect corrections of string theoretical origin as
the geometrical description starts to break down. However,
within energy scales where the low energy gravity sector is a
good approximation, a fundamental quantity like thec func-
tion may be expected to have a simple geometrical represen-
tation such as Eq.~51!. This is in the spirit of the frugal
statement that relates the entropy of a black hole with the
area of its horizon. We believe that we have presented
enough evidence to make the proposal worthy of further in-
vestigation.

One of the most attractive aspects of Eq.~51! is the fact
that it is in practice easy to computationally handle. It can
readily be applied to a myriad of geometries, tested, as well
as used to understand the nature of certain ill-understood
dual theories~such as five-branes!. There are also more strin-
gent tests that the expression can be subjected to: in par-

ticular, an understanding of the relation between the first
order Callan-Symanzik equations and the second order Ein-
stein equations is of direct relevance to this proposal. Work
in this direction is in progress.

We stated in the beginning of the first section the condi-
tion that the gravitational vacuum under consideration should
solve Einstein’s equations in the presence of a negative cos-
mological constant. From the string theory side, we know
that there exists an energy regime that screens out regions of
spacetime that are not candidates for holography. This typi-
cally leads to focusing on the near-horizon geometries of
Dp-branes, which are conformal to AdS spaces. On the side
of the boundary theory, fixed points play a fundamental role
in defining renormalization group flows. These special points
indeed correspond to AdS spaces. It is in this light that we
are motivated to state that holography, in general, and the
formalism we presented, in particular, need to be thought of
in the context of a gravitational theory with a negative cos-
mological constant. This line of thought rules out extending
these ideas to flat Minkowski space. It would be interesting,
however, to explore this approach in scenarios where the
spacetime does not admit a timelike Killing vector field.

An important issue that we have not been able to address
properly is a covariant formulation of the UV-IR correspon-
dence. This issue is related to an understanding of the pro-
cess of coarse graining as seen by the gravity side. A pos-
sible picture for this was presented in@9#. On the other hand,
it is tempting to believe that the gravitational vacuum that
solves Einstein’s equations reflects the state of the dual
theory at all energy scales; locally, foliations are snapshots
of the theory at different energy scales. The metric and its
first derivative onM ~essentially the content of the congru-
ence data! encode all the necessary information about the
theory at a given scale. From the difficulty we are having in
formulating a covariant UV-IR correspondence, it appears
that this line of thought may be only part of the whole pic-
ture.

Finally, certain simplifying assumptions were made in the
text to arrive at leaner conclusions and to focus on the rel-
evant physics. The assumption of shearless flow, however,
may hold rich physics. Even though it may appear straight-
forward to generalize the approach to this case, there are
subtleties which we do not understand in this context. Flow
with shear is in particular a characteristic of boundary theo-
ries coupled to background gravity. Our understanding of the
effect of this using the renormalization prescription is lim-
ited.

If a fundamental relation between renormalization group
flow and geometry exists, it should be possible to find a
geometrical interpretation for every object in the renormal-
ization group prescription. We hope to have stimulated fur-
ther investigation in this direction.
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