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The formation of holograms is interpreted as the consequence of the bilinearity of the ambiguity function.
Reconstruction can then be regarded as the manipulation of the ambiguity function. Specifically, we show
that in the case of in-line holography, the reconstruction can be regarded as phase tomography. In this way
we provide a unified picture for the formulation of both noninterferometric and interferometric phase-
retrieval techniques. © 2007 Optical Society of America

OCIS codes: 100.5070, 090.0090, 110.6960, 110.2990, 070.0070.
Phase-retrieval techniques (PRTs) have found impor-
tant applications in various fields such as in as-
tronomy, radiography, crystallography [1], micros-
copy [2,3], and security [4,5]. The determination of
the phase of a scattered wave field is of interest be-
cause it carries important information about the ob-
ject surface or inner structure. Generally, PRTs fall
into two main categories: interferometric (InF) and
noninterferometric (NInF) approaches. The latter
category can be further classified into methods based
on iterative technique [1,3–5], transport-of-intensity
equation (TIE) [2,6], phase-space tomography [7,8],
and moments of phase-space distributions [9]. All of
these NInF approaches essentially use intensity
measurements of the scattered field at various do-
mains to retrieve the object phase. At each of these
domains, the phase-space distribution, e.g., the ambi-
guity function (AF) associated with the wavefront
has the same value, but the coordinates undergo an
affine transform specified by the ABCD matrix
[10,11]. Thus the Fourier transform of each measured
intensity corresponds to a plane through the ambigu-
ity space with a slope with respect to the propagation
distance. The intensity measurements required by
the NInF approaches mentioned above can then be
regarded as specific samplings in the ambiguity
space [12,13], and these techniques have a unified in-
terpretation based on phase-space tomography.

InF approaches, including digital holography (DH),
have received much attention in the last decades and
have been successfully applied in many areas [14].
Usually the principle of holography has been prima-
rily interpreted using communication theory [15]. It
is not until recently that attempts have been made to
interpret holography using the Wigner distribution
function (WDF) [16]. However, as we will show, the
WDF representation does not depict holography most
conveniently, while the AF representation provides a
much more insightful interpretation. This may be in-
structive in developing a sampling strategy in the re-
construction of DH. It may also provide a unified
framework for the common formulation of InF and

NInF PRTs.
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For simplicity, we consider a one-dimensional (1D)
signal s�x�, since the generalization to two-
dimensions is straightforward. The WDF of s�x� is de-
fined as [11]

Ws�x,�� =� s�x +
x̄

2�s*�x −
x̄

2�exp�− j2��x̄�dx̄.

�1�

One important property of the WDF is its bilinearity,
which is useful in analyzing the coherent superposi-
tion of two signals y�x�=s�x�+r�x�. The WDF of y�x� is

Wy�x,�� = Ws�x,�� + Wr�x,�� + Wsr�x,�� + Wrs�x,��,

�2�

where

Wsr�x,�� =� s�x +
x̄

2�r*�x −
x̄

2�exp�− j2��x̄�dx̄,

�3�

and straightforward for the definition of Wrs�x ,��.
Equation (2) shows that the cross terms arise be-
cause of the bilinearity. Now let us consider the case
when a plane wave of special frequency �0, i.e., r�x�
=exp�j2��0x� is incident at the interference plane
whose longitudinal coordinate is z=0. The WDF of
r�x� is ���−�0�, and according to Eq. (3) Wsr�x ,��
=2 exp�j4���−�0�x�S�2�−�0�, Wrs�x ,��=−2
�exp�−j4���−�0�x�S*�2�−�0�, where S and S* are the
Fourier transforms of s and s*. As schematically
shown in Fig. 1, both cross terms occupy the same
spatial frequency region centered at the coordinate
�0,�0 /2�, while the WDFs of the signal and the refer-
ence are centered at origin and �0,�0�, respectively.
This is clearly not the familiar picture of off-axis ho-
lograms as interpreted using the carrier wave theory
[15].

Now we consider the AF representation. The AF
was initially proposed and is commonly used in radar
and sonar to track moving targets [10]. The AF of the

signal s�x� is defined as
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As��̄, x̄� =� s�x +
x̄

2�s*�x −
x̄

2�exp�− j2��̄x�dx,

�4�

which is the two-dimensional (2D) Fourier transform
of its WDF. Like the WDF, the AF is also bilinear. The
AF associated with y�x� is

Ay��̄, x̄� = As��̄, x̄� + Ar��̄, x̄� + Asr��̄, x̄� + Ars��̄, x̄�,

�5�

in which the cross terms Asr��̄ , x̄� and Ars��̄ , x̄� can be
defined following Eqs. (3) and (4). Historically, these
cross terms were considered undesirable in time-
frequency domain signal processing [17], and efforts
were made to eliminate them. However, they are of
importance in our case because they result in the ho-
logram. We again examine the case of the coherent
superposition of the signal s�x� with the incline plane
wave r�x�. The AF of the cross terms can be written
as Asr��̄ , x̄�=exp�+j���̄+2�0�x̄�S��̄+�0�, and Ars��̄ , x̄�
=exp�−j���̄−2�0�x̄�S*��̄−�0�, respectively. Substitut-
ing them into Eq. (5), we can obtain the distribution
of y�x� in the ambiguity space.

If the signal s�x� propagates along the z axis,
As��̄ , x̄� then lies at the origin in the 2D ambiguity
space, as does Ar��̄ , x̄�. The cross terms, Asr��̄ , x̄� and
Ars��̄ , x̄� are centering at �−�0 ,0� and �+�0 ,0�, and if
�0 is sufficiently large, are well separated, as sche-
matically shown in Fig. 2.

It is interesting to examine the line x̄=0 in the am-
biguity space. The 1D pattern with respect to this
line can, according to Eq. (5), be expressed as

Ay��̄,0� = As��̄,0� + Ar��̄,0� + Asr��̄,0� + Ars��̄,0�

�6�

=As��̄,0� + ���̄� + S��̄ + �0� + S*��̄ − �0�. �7�

Referring to the definition of the AF, Eq. (6) is the
Fourier spectrum of the recorded hologram h�x�
= �y�x��2. We illustrate this in Fig. 2. It can be clearly
seen that the Fourier spectra of the object wavefront

¯ * ¯

Fig. 1. (Color online) Schematic geometry of the WDF of
the superposition of a band-limited signal s�x� and an in-
cline plane wave.
S��� and of its conjugate S ��� are located on either
side of the origin, with shifts in spatial frequency of
−�0 and +�0, respectively, while the spectra of the DC
terms As��̄ ,0�+���̄� occupy the lower frequencies
around the origin. This is consistent with the picture
of the hologram spectrum provided by the carrier
wave theory [15].

We can see from Eq. (7) that the line x̄=0 contains
the full complex amplitude and not only its intensity
as in the NInF cases. Thus appropriate filtering al-
lows extraction of the signal of interest Ars��̄ ,0� or
Asr��̄ ,0� from which the object wavefront can be re-
trieved.

If the spatial frequency of the reference �0 is insuf-
ficiently large, Ars��̄ , x̄� and Asr��̄ , x̄� will overlap with
As��̄ , x̄� and filtering can no longer be satisfactorily
performed. In the extreme case of �0=0, y�x�=s�x�
+1, all terms in Eq. (5) overlap; the AF of y�x� then
becomes

Ay��̄, x̄� = As��̄, x̄� + ���̄�

+ exp�j��̄x̄�S��̄� + exp�− j��̄x̄�S*��̄�, �8�

which corresponds to the case of in-line holography.
To cancel out the DC and conjugate terms, one ap-
proach is to introduce � /2-stepwise phase shifting
into the reference beam [14]. The signs of the last
three terms in Eq. (8) then change. The reconstruc-
tion is achieved by algebraic manipulations of these
AFs.

Alternatively, one can shift the CCD position and
record several holograms longitudinally at the planes
zi, �i=1,2, . . . �, parallel to the first plane (denoted by
z0=0). The Fourier transforms of these holograms
can then be expressed as

Ay��̄,zi�̄� = As��̄,zi�̄� + ���̄�

+ exp�j�zi�̄
2�S��̄� + exp�− j�zi�̄

2�S*��̄�.

�9�

Fig. 2. (Color online) Schematic geometry of the AF of the
superposition of a band-limited signal s�x� and an incline
plane wave r�x�. The lower box shows the Fourier spectrum

of the hologram.



¯

3494 OPTICS LETTERS / Vol. 32, No. 24 / December 15, 2007
It is seen from the last two terms that we have come
to the Fresnel transform. Note that in the paraxial
approximation Ay��̄ , x̄� corresponding to y�x� at differ-
ent planes have the same distribution, subject to a
coordinate transform specified by an ABCD matrix
[10], Ay��̄ ,zi�̄� therefore can be regarded as the sam-
plings of the ambiguity space Ay��̄ , x̄� along the lines
x=zi�̄, �i=0,1, . . . �. Note that on the right-hand side
of each of Eqs. (9) the variable As��̄ ,zi�̄� changes with
respect to zi, while the other two S��̄� and S*��̄� are
independent on zi. However, As��̄ ,zi�̄� can be known
by measuring the intensities of the object wavefront
at planes zi. There are, actually, two unknown vari-
ables in Eqs. (9). Normally, it may be possible to use
four samples or more [that is, to record at least two
holograms and object intensities at longitudinal posi-
tions; their Fourier spectra give Ay��̄ ,z0�̄�, Ay��̄ ,z1�̄�,
As��̄ ,z0�̄�, and As��̄ ,z1�̄�] to solve for S��̄ ,0�. This
S��̄ ,0� is essentially the Fourier spectrum of the full-
complex object wavefront at the first interference
plane z0=0. If the weak-object approximation is ap-
plicable [18,19], Eq. (9) can be reduced to simple al-
gebraic equations. Two samples are sufficient to re-
trieve the object phase. Thus this reconstruction
approach can also be regarded as phase-space tomog-
raphy.

In conclusion, we have shown that the formation of
holograms can be interpreted as the result of the bi-
linearity of the AF. Compared with the WDF repre-
sentation [16], the present approach provides a pic-
ture consistent with the carrier wave theory. One
important prediction of this interpretation is that the
reconstruction of a hologram may be possible by in-
tensity measurements along the z axis. This may re-
sult in a new reconstruction algorithm by solving Eq.
(9). Compared with the NInF techniques, such as the
phase-space tomography of the autoterm of the AF,
the holographic approaches can be regarded as the
phase-space tomography or filtering of the cross term
of the AF in terms of wavefront reconstruction. This

Table 1. Comparison of Interferometric and
Based

Off-axis

Terms of AF being used Cross
Information contained Amplitude
Uniqueness of solution Yes
CCD SBP can be used Part
Number of projections 1

—
—

aHomogeneous or phase-only objects, or Fienup’s method �1�.
bWith weak object assumption �18�.
cTIE �6�, GS algorithm �1�.
dPhase shifting or position shifting.
eMultiple measurements �7,8,13�.
provides a unified picture for the formulation of both
these two categories of PRTs. However, as shown in
detail in Table 1, each of these techniques has its own
applicability. Generally speaking, InF techniques
have simple reconstruction algorithms, while NInF
techniques have simpler measurement setups.
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