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We develop both the gravity and field theory sides of the Karch-Randall conjecture that the near-horizon
description of a certain D5-D3 brane configuration in string theory, realized ag>A&Sbisected by an
AdS,x S? “brane,” is dual to V=4 super Yang-Mills theory irR* coupled to arR® defect. We propose a
complete Lagrangian for the field theory dual, a novel “defect superconformal field theory” wherein a subset
of the fields of V=4 SYM theory interacts with @=3 SU(N) fundamental hypermultiplet on the defect
preserving conformal invariance and 8 supercharges. The Kaluza-Klein reduction of wrapped D5 modes on
AdS,x S? leads to towers of short representationsQifs(4|4), and we construct the map to a set of dual
gauge-invariant defect operatof¥% possessing integer conformal dimensions. Gravity calculatiof)gf
and{0,05) are given. Spacetime amdldependence matches expectations from DCFT, while the behavior as
functions of =g°N at strong and weak coupling is generically different. We comment on a class of correlators
for which a nonrenormalization theorem may still exist. Partial evidence for the conformality of the quantum
theory is given, including a complete argument for the special case Wf13 gauge group. Some weak
coupling arguments which illuminate the duality are presented.
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. INTRODUCTION tions on the Ad$ brane should be dual to additional physics
confined to the boundary of the AgdHence, the dual field

The study of the AdS/CFT corresponderide-3| (for a  theory contains not only the usudl=(3+1)N=4 super
review, seg4]) has taught us much about both the behavioryang Mills theory, but also new fields and couplings living
of field theories and the nature of string theory. Accordingly,on a (2+1)-dimensional defect, obtained from the low-
generalizations of the correspondence with additional strucenergy limit of the 3-5 open strings interacting with the 3-3
ture added to both sides are inherently quite interesting, anstrings of the original brane setup.
potentially have much more to teach us about field theory We study the case of a single D5-brane, whose back re-
dynamics, the nature of string theory and how holographyaction on the near-horizon geometry can be neglected in the
relates them. 't Hooft limit, allowing it to be treated as a probe hosting

It is well known that spatial defects may be introducedopen strings. The resulting dual field theory consists of
into conformal field theories, reducing the total symmetrySU(N) A'=4 SYM theory in R* with a subset of these
but preserving conformal invarian¢b,6]. Whether one can ambient modes interacting in a fashion we will determine
obtain holographic duals of such “defect conformal field with a single fundamental hypermultiplet on tRé defect.
theories”(DCFTS9 is a fascinating question. A potential grav- The resulting theory has half the supersymmetry of the am-
ity dual was proposed by Karch and Randdl, who studied  bient theory, but intriguingly, must preser@(3,2) confor-
curved branes in anti—de Sitter space in an effort to “locallymal symmetry in order to match the unbroken anti—de Sitter
localize” gravity [8]. isometries on the gravity side. As a result the Karch-Randall

In their investigation, Karch and Randall noticed that ansystem is an ideal candidate for the holographic description
AdS, brane inside AdScould be naturally realized in string of a DCFT. We will construct the field theory explicitly as a
theory using a certain D3-brane—D5-brane system. The neanovel defect superconformal theory with an exact Lagrang-
horizon limit of the N D3-branes produces an Ag8S®  ian description.
background in which the D5-branes occupy an AdS? The reduced symmetries of codimension-one DCFTs ad-
submanifold. Karch and Randall speculated that the AdSiit interesting structures such as one-point functions for the
CFT correspondence would “act twice” in this system, usual operators in the ambient space, two-point functions for
meaning that in addition to the closed strings propagatin@ambient operators with different conformal dimensions, and
throughout space providing a holographic description of amixed two-point functions between these and operators lo-
field theory on the boundary of AdSs usual, the fluctua- calized on the defect; the functional forms of such correlators
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are significantly constraineldb,6]. On the supergravity side, various one- and two-point functions, and compare to grav-
we employ holography to calculate such novel correlationty. We find that although the powers &f match perfectly,
functions from Witten diagrams involving integrals over the the powers of the 't Hooft parameter do not. Hence, unlike
AdS, submanifold, and we reproduce the space-time formshe N=4 case, the simplest correlators of this theory do not
required by defect conformal symmetry. obey a nonrenormalization theorem. We do describe a class
We consider the expansion of the D5-brane action througlef correlators independent af at leading order, for which a
quadratic order in fluctuations about the A4S’ probe  non-renormalization theorem is not ruled out. We conclude
configuation. We perform a Kaluza-Klein reduction of qua-with a discussion of directions for future research.
dratic terms in bosonic open string fieldg)(and find a set One can consider analogous models in other dimensions.
of modes of integer mass and scale dimension. The lowe$2efect conformal field theories in two dimensions are stud-
mode of the D5-brane gauge field on AdB dual to the ied in[12]. Some of them have holographic duals in AdS
current of a globalJ(1)g symmetry in the field theory. As such as the AdSbranes inside AdSwith the NS-NS flux
expected all modes can be organized in short representatiogtdied in[13]. In these cases, one may be able to study the
of the superalgebr®S(4]4) associated with supersymme- correspondence beyond the supergravity approximation.
try in AdS,. Other terms in the fluctuation action involve  Sections IV and VI on the construction and analysis of the
closed string fields ¢), specifically terms of ordet, ¢y,  field theory are largely independent of holography and can
and ¢. These are interpreted as interactions which deterbe read separately.
mine the novel correlators discussed above. We also obtain
the leading power oN and the 't Hooft coupling\ for the
D5-brane contribution to all correlation functions, a strong-
coupling prediction. A. Brane construction
We then turn to the dual DSCFT. Using gauge invariance,
supersymmetry andR symmetry, we construct the field
theory Lagrangian. This involves augmenting the usial

II. DESCRIPTION OF THE SYSTEM

The system of partially-overlapping 3-branes and
5-branes preserving 8 supercharges has been known for some

: . . : ) time, and was extensively studied [ib4] as a way to engi-
=4 super-Yang-Mills theory in four dimensions with dy- neer 3 gimensional'=4 field theories on branes. In con-

namics on the defect. The fundamental defect hypermultipleltrast, we consider systems which have infinite D3-branes,
couples canonically to the restriction of the 4D gauge field to,

. ) and hence have four-dimensiondhs well as three-
the hypersurface; we use the “superspace boundary tecrﬂimension@l dynamics.

nique [9] to derive a defect ac_tion preserving eight super- We choose coordinates as follows. TReD3-branes fill
charges. We construct the_actlon M=1 superspace, but o 0106 directions, while the D5-brane spans 012345; all
demonstrate that it is full\'=4 supersymmetric by identi- he pranes sit at the origin of the transverse coordinates. In
fying the SU(2)yxSU(2)y R symmetry. The symmetries ho apsence of the D5-brane, the system has 16 unbroken
rule out any additional marginal interactions, preserving thesupercharges ar8O(3,1) Lorentz symmetry acting on
4D gauge coupling as the only dimensionless parameter, a Xo,X1,%2,Xs) and an additionaBO(6)~SU(4) acting on

well as forbidding mass terms, leaving the theory classicall (Xs,X4,Xs,X7,Xg,Xg). The D3-D5 background preserves 8
conformal-invariant. Interestingly, the bulk fields participat- susp’er4$'yr5n’m7e’tri8ésg .reduceESO(S 1) to SO21) on

ing in the defect interaction involve not just half the scalars, d breaks SO6) to SO3)XSO(3
but the normal derivatives of the other half. The bosoniCQ(()S’i(J%'z);i')%S?Jr(]Z)v aﬁﬁ]gs onoé(<3 )x4 X(;) an(?j( ()27 xgox(g))

parts of relatednonconformal supersymmetric defect ac- ;
fi derived f int tind b 01 respectively.
ions derived from intersecting branes appearefli11]. Four kinds of strings exist in this system. As usual, closed

We aI;o match th? bosonic mades of the D5—bra_ne on thgtrings propagate in the bulk, giving rise to the fields of type
gravity side to dual field theory operators. The multiplets arg g supergravity(SUGRA) as well as all the excited modes.

short, so conformal dimgnsions s.hould be protepted ?n th%Iso, 3-3 and 5-5 open strings lead to sixteen-supercharge
usual way. There is a unique candidate for the chiral primary, ., .. multiplets on the D3-brane and D5-brane, respec-

:)pﬁlatort(?;]the Iotwe;s;[hr_nultlp:te_t,l atnd wte rl:.se stﬁpersy?mettr)(ively; these each split into a vector multiplet and a hyper-
o Tl out the rest of this muiipiel, matching thé modes omultipletunder the preserved eight supercharges. Finally, 3-5
fluctuations on the gravity side. We also d|squss the Op(.aratosrtrings localized on the (21)-dimensional intersection of

structure of higher multiplets. Weak coupling calculatlonsthe branes lead to a three-dimensional hypermultiplet,

help to determine which operators have protected scale dEharged as a bifundamental under the gauge group of each
mensions. brane.

Finally, we discuss the perturbative dynamics of the field
theory. We argue that for a certain class of “pinned” correla-
tors, there are no divergences other than wave function
renormalization of the defect fields. This is sufficient to dem- We remind the reader of the familiar facts of the original
onstrate quantum conformal invariance for gauge groufAdS/CFT procedure of Maldacefa]. Consider a stack dfl
U(1). Forgauge groulSU(N) nonpinned correlators must parallel D3-branes witlys— 0, N—oo with gsN fixed. This
be considered as well, and we have not yet studied thessystem may be examined either fggN<1, in which case
Hence the question of quantum conformal invariance rethe appropriate description is provided by open strings
mains open. We also discuss the field theory computation giropagating on flat branes, or fggN>1, in which case the

B. Near-horizon limit
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appropriate description is a black three-brane solution offhe metric for the near-horizon geometry in this coordinate
type 11B supergravity. By sendinig— 0 with the energies of system is
fluctuations fixed, one is left in the former case with the

renormalizable field theory of the massless open string states, ds’= dsidSer dsés, (2.2

namely 4DAN=4 super Yang Mills theory, and with closed

strings propagating in the AgS S® near-horizon geometry do?

of the black brane in the latter case. A4 =L2 v d2+dy?) |, 2.3
v

Thus the two kinds of string modes in the original brane
setup, open and closed, have been segregated from one an-

other, yet are found to describe the same physics in the field dsis=L2(dy?+ coy(d6?+ sir?od ¢?)
theory/near-horizon limit. Each description is useful in a dif- . .
ferent region of parameter space. Additionally, the symmetry +sirfy(dx+sirfxds?)), 2.4

groups enlarge on both sides in the limit, as the field theory

is exactly(supejconformal, while AdS isometries appear on Where as usudl®=4ma’?gN. The D5-brane sits at=
the gravity side; the 4D conformal and 5D anti—de Sitter=0, filling the AdS, defined by the coordinates, 37 and
supergroups are algebraically identical, and are denotegrapping theS? parametrized by, ¢.

SU(2,34). This group also contains tf&Q(6)~SU(4) of The isometry group of the metri@.3), (2.4) preserved by
the original brane setup, which is &symmetry in the field  he D5-prane ISO(3,2)XSU(2)yXSU(2)y. SO(3,2) acts

theory and the isometry group of $ the dual. - . .
The system we study is richer, but displays similar behavO" ©.y), Wh'le_ while SU(2)y "?‘”dSU(Z)v rqtate (‘?"P) and
(x,s), respectively. From a field theory viewpoiBtU(2),

ior. Again we takegs<<1, N>1 with A=g.N fixed. For the X y
casegsN<1, the appropriate description of the branes are a SU(2)y is the unbrokerR symmetry andSO(S,Z) is the
D conformal group, suggesting that the dual field theory

flat hypersurfaces. We take the linhit—0 with the energies b | ’ | and in the eigh d
of D3-brane fluctuations fixed. This decouples the modes of Ust Pe exactly conformal and contain the eight preserve
the heavy D5-branes, as [14], and leads to the3+1)- supercharges of the D3-D5 system. Including the supercon-

dimensional field theory described by=4 SYM theory formal enhancement to sixteen supercharges, we expect to

throughout most of the space, but with a(2)-dimensional  "d the supergrou Sp(4/4).

defect containing a localized, interacting fundamental hyper-
multiplet. C. Correlators in a defect CFT

~ ForgsN>1, on the other hand, the appropriate descrip-  The symmetries and the form of correlation functions for
tion of the D3-branes is a black three-brane. However, wesET, with planar boundary have been discussed in the lit-
still havegs<1, and hence a single D5-brane should still begratyre. for example i5,6]. Our field theory system, a
described as a hypersurface with propagating open stringgeT, in R* with additional fields on a planaR® defect,
Taking thels—0 limit here leads to the usual Ag8S®  gnares these features. We therefore review the most relevant
near-horizon geometry of D3-branes with an embeddegyart of this information, which is mostly taken frofs].

“probe” D5-brane: Once again the stringy modes of the = | the field theory description we denote pointsRSf by
brane setup have been segregated into two sets, one for e ;/nx)zx with the defect ak=0. TheSO(3,2) conformal
limit of g¢N: the closed strings and open 5-5 strings describ gr(,)up ofﬂthe DCET is generated by 3-dim’ensional transla-
the gravity side, while the low-energy limit of the 3-3 and tions and Lorentz transformations together with the
3-5 open strings produces the field theory. Once again, th%—dimensional inversions,—x., /(x,x"). These transforma-
expectation is that the two systems are holographic duals Yons preserve the de/fLeCt Mandv ac.t on it as standard

one another. 3-dimensional conformal transformations
We may readily see that the D5-brane fives on an AdS The possible forms of correlation functions for primary

2 ; 5 _
XS submanifold of Ad$X S, as follows. In the near  scalar operator®, on the ambienR, and Q5 on the defect
horizon geometry of the D3-branes, the useful coordinates : .

- B . , are restricted by the conformal symmetry. Correlators involv-
arey=(Xo,X1,%z), X=xg, and the radial coordinate and g only 0, have the properties expected from standard
the angled)s= (¢, 6,¢,x,s) defined by 3-dimensional conformal invariance, e.g. the space-time
form of two- and three-point functions is completely deter-

X3=0v COS¥ SiNACOSp, X4=v COSYSindsSineg, : . . . . ;
3=y ysingcose 4= Y ysingsing mined, while four-point functions contain an arbitrary func-

X5=Uv COSy COSH, tion of two “cross-ratio” variables.
_ _ _ _ _ On the other hand the restriction of the conventional con-
X7=v SINySiny COSs, Xg=v SIng sSiny sing, formal groupSO(4,2) of CFT, to SO(3,2) leads to new

possibilities for correlators aP, in DCFT. Let scale dimen-
sions of operator®), and O; be denoted by\, and Aj,
respectively. There are nonvanishing one-point functions
(O,4), with fully determined space-time dependence:

Xg=v Siny cosy. (2.1

YLocally localizing gravity the D3/D5 system requirdés D5-
branes withgsM>1, a different regime from our cag&]. Other c
studies of Adg/AdS; setups with strong back reaction include ((94(X,)7)>= —_ (2.5
[15,16. s
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as well as two-point function&0,0;) between one ambient rected in our system due to the new physics on the defect,
and one defect operator, with space-time dependence alsmd we expect new correlators of the fof@5), (2.7) to
fully determined: appear. On the gravity side, this is a consequence of cou-
) plings of closed-string modes to brane modes that are im-
- N c 2.2 22 plicit in Sg; and . Furthermore, terms in the brane action
(Oa(xy)0s(y")) = xS Aaphsr =X =y invoIvinchl)pen ?t/\r/|zr19 modes and open or closed string cou-
(2.6 plings make predictions for purely three-dimensional corr-
i o . . elators of theD;, as well as mixed correlators involving both
and finally there can be nonvanishing two-point functlons(r)3 and O, which we expect to match for examp(2.6).

(040,") between ambient operators withy#A,’, contain- Let us compare the normalizations of the terms in Eq.
ing an arbitrary function of one invariant variable: (3.1) to understand the relative coupling strength of the vari-
1 ous kinds of interaction. The overall normalizationSyfz in
(O4%,Y)O4X" Y)Y = ——F(8), the Einstein frame i§18]
XA4XIA4
/ / 1
E=(X, =X, )21Axx’. 2.7 S||B:Ff d'%\—g(R—-3(d®)*+---), (3.2
. K
Our calculations in both weak coupling field theory and the 5 1 7.3 14 i
AdSs/AdS, dual confirm this structure. wherex“=3(2m)‘gsa’® includes factors of the string cou-

On the gravity side the action of the conformal symme-Pling extracted from the dilaton before passing to the Ein-
tries is best seen if we transform the radial coordinate  Stein frame. In calculating correlation functions, it is useful
z=1/v, in terms of which the AdS metric (2.3 becomes to Weyl rescale the metric to extract the dimensionful param-

conformally flat, eter[19],

L2 . o
dSh4s,= Sz (dZ2+dx+dy?). 2.8 gun=L"gun - 3.3

The boundary is now a=0. The usual inversion isometry " terms of the rescaled metric, we have

of AdS; preserves both the boundary and the pdb the

D5-brane atx=0. It acts as the standard inversion on this L8 —

AdS,. Hence the usual relation between bulk isometries and Siug~ 2—,4f A%~ g(R—3(a®)?+---)
conformal symmetries on the boundary of the usual AdS/ gsa

CFT correspondence extends to the new AdSIS, setup? _
~N2f %V gR—1(a®)2+---), (3.4
lll. STRING THEORY SIDE

The bulk degrees of freedom at—0, gsN fixed but  where in the last line we used*=4mwgNa'?. This is a
large include both closed string modes, and open string examiliar result. If we wish we may canonically normalize the
citations on the D5-brane. The former are the massless muéction by defining rescaled bulk fields’=®N.
tiplet of type 1B SUGRA reduced on AdX S°, while the The D5-brane action in the Einstein frame is given by
latter are a 6D 16-supercharge vector multiplet living on the
D5, dimensionally reduced on AgS 2.

With the goal of calculating correlation functions, we are Sg1= —TD5f dbge®’?
interested in the fluctuation equations of this system. The
total action is the sum of the type 1IB SUGRA action and the x—de(gtE+e ®(BPE+27a'Fyp)), (3.5
Born-Infeld and Wess-Zumino pieces of the D5-brane action: ab ab an
Stot=Sig + Sgit Swz- 3.1 ‘. gPB
: Swz=—Tos | &2/ = AT Cff, 36

The fluctuation equations for type [IB SUGRA reduced on
AdS; X S° were analyzed if17], and they have been used
extensively to calculate correlations for gauge-invariant opwhere PB denotes the pullback of a ten-dimensional quan-
erators®, in N=4 SYM theory at largex (for a review and tity; the unusual powers of? result from transforming out
references, sep4]). These results will generically be cor- of string frame and do not affect the quadratic action. We use

a,b=0,1,2p,0,¢ for the coordinates along the 5-brang,

=6,x,s, ¢ for the normal directions, anéll,N to run over all

2The 5D inversion also preserves the more general Karch-RandaiO indices. Furthermore, we will use,» for AdS, indices

AdS, surfaces ak=Cz and acts as the standard inversion on thesealone anda, for S indices. Weyl rescaling the metric in
surfaces. Sgi, we will find

025009-4



HOLOGRAPHY AND DEFECT CONFORMAL FIELD THEORIES PHYSICAL REVIEW B6, 025009 (2002

— AdS/CFT amplitudes sum all planar graphs at large fixed
Sgi=— L6TD5J d6§\/—_g(1+f|uctuation3 but it also indicates that the nonrenormalization properties of
correlation functions inZW’=4 SYM theory which were re-
vealed through supergravif0] are absent for generic de-
fect correlator$.Correlation functions witm=2 and anym,
however, are seen from E@3.8) to be independent oX.
where we used the expressidips=1/(27)°gsa’® for the  This includes defect 2-point functiong’;0;) and others

=— QN)\”ZJ d®&\—g(1+fluctuations, (3.7)

D5-brane tension, and includes the numerical factors. which behave a3 at weak coupling. Nonrenormalization
theorems could exist for this class of correlators.
A. Correlators of DCFT from gravity One can use E3.8) to compute correlation functions of

defect and ambient operataf® andO, for a generic bound-

Let us imagine a generic D5-brane figldand some cou- 51y DCFT. The one-point functiof,) is computed by tak-

pling of m bulk generic fieldsp to n 5-brane fields: ing the standard bulk-boundary propagator in Ad&ing a
point on the boundary wher@, is located, and integrating
SB,=N)\1’2f de&((ay) 2+ ™y the propagator over the AdSsubspace. Let us consider a

scalarQ, of conformal weightA ,. The integral is convergent
for A,>3, and one finds

N dzdZ T(Ay)
<(94(x,y)>=>\1’2f 5 T2

- dﬁg(w'ﬂ

rm a1
+Nm+n/27l)\n/471/29ZS ¢ )

(3.9

z ) A4
224+ X2+ (z—y)?

where we defined a canonically normalized brane figld
=NY2\ V4. The interaction terms resulting fro8y,, scales A—3\ (A 3
identically inN and\. The canonically normalized fields’ 1 r 42 )F(f) F(E)
and ¢’ produce two-point correlation functions of dual op- —)\2_—_ )
erators with no factors dfl and\. With this normalization, xA4 ml'(A4—2)
the one-point function of the bulk fiel¢’ scales as\'/?
(m=1,n=0) and the two-point function of the bulk field and By translational invariance along the defect, the one-point
the defect field scales as’*N~? (m=1n=1). function depends only on the transverse coordinat&he

Holography requires that the power bffin the gravity — scalingx ™4 is what is expected from conformal invariance
result for any correlator agree with that of planar graphs in2.5). We will discuss the singularity at,=3 shortly.
the field theory at fixed.. On 2the other hand, the power of The one-point functiod®,(x,y)) is closely related to the
from Eq. (3.8) at largeA=g°N need not agree with field tyo-point function (O,(x4)O4(x£)) in the conventional
theory results at weak coupling. It is quite easy to see in thQ\deH/CFTd correspondence. It is know@1] that a naive
present case that tié dependence always agrees butihe g pergravity computation for the latter is incorrect and that a
dependence generically does not. o careful cutoff procedure is required. One may thus be wor-

The agreement foN can best be ascertained in the nor-rjeq about a similar sensitivity in the computation (@,).
maI|zat|<23qs of Eqs(3.4) and (3.7) in which we have the owever, there is reason to believe that this is not the case
factor N® in S andN in Sg;. All correlators(O040;---)  here, and that Eq3.9) is in fact the correct answer. One way
which are nonvanishing if the defect is removed are of leadtg see this is to recall that for the two-point function, each of
ing orderN?, while contributions ofSg, are of ordemN in all  the two contributing terms from the action was separately
correlators. There is a simple normalization in the DCFTdivergent, and so a more careful treatment of the Dirichlet
which reproduces these resultBlanar graphs with only ad- problem was required to extract the proper finite re2di.
joint fields are of ordeNz, while in those with defect fields Here there is no such divergence in the Sing|e term contrib-
there is a fundamental “quark” loop which matches thién uting to the one-point function.
Eq. (3.7). Alternately, a world sheet way to understand the subtlety

The power ofa for multipoint correlators is generically a in the computation of the two-point function follows from
negative fraction, and it is clear that perturbative field theorytrying to perform the calculation in string theory, which is
gives non-negative integer powers in the weak couplingyell defined ford=2 [22]. There one considers a two-point
limit. This situation is entirely consistent with the view that function of the Corresponding vertex operators on a Sphere

and divides the result by the volume of the world sheet con-

(3.9

3For chiral primaries one can tak@,=N*"¥2Tr X* in terms of
canonicalX fields of V=4 SYM theory. Defect correlators contain-  4o_Anarony and A. Karch independently calculated xhdepen-

ing powers @_\I’)j or (Eq)j of canonical hypermultiplet fields carry dence of(O,) and recognized it could not obey a nonrenormaliza-
the factorN®~J, tion theorem. We thank them for communicating their results.
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formal symmetry which fixes the two insertion points. The 1 du patds—4

volume of this residual conformal symmetry is infinite, and it =<5 a2 J’ ENVEET:

is canceled by another infinity in the numerator from the XF4TR(x+y )73 ) (1+uf)™

world sheet two-point function. Thus again the computation w2

of the target space correlator involves cancellation of two > f d (3.14
divergent factors, which may leave out a finifedependent (1+w)2a '
coefficient; in fact the proper treatment of this computation

has been shown to give the correct factor &2 [22]. 1

However, there is no corresponding subtlety in the computa- = _

tion of the one point functiod®,), since the volume of the X247 83(x?+y?)4s

residual conformal symmetry of a disk with one interior At Aae3 A A

point fixed is finite. Hence we expect E@®.9) to be unam- 2| =2 5 3 )F( 42 3)

biguous and correct. % _ (3.19

For the two-point functiod O,(x,y) O3(0)), the integral 2I'(Ay)
to be done is the product of bulk-boundary propagators
Ka,Ka, With the first as above and the second propagating he conformal invariant forni2.6) thus arises from gravity.
The integral converges if the conditios,=A; and A,
+A5;=3 are satisfied. The singularity at,+A;=3 is due
to a divergence as the inverted radial coordirite 0 and is
similar to the singularity of0,) atA,= 3. The singularity at

from the pointz,= (z,0Z) on AdS, to the point Oon its
boundary. We write

(O4(x,y) O5(0)) A,=A; arises ag’ — .

The poles due to thE functions in the numerators of Egs.

B - \?\1/4 I'(Ay) (3.9 and(3.14 were calculated using the generic foft18)
_‘J(X'y’A4’A3’N1/2 mT(A,—2) of Sg,. We can show that they cancel in the particular D3/D5

theory we are studying because the actual couplings vanish

T'(Aj) due toSU(2)y X SU(2), symmetry. For Eq(3.9) the issue

7 3’ (3.10 arises onlyA,=3, but the primary operatap,=Tr X® be-

773/21“( Ag— 5) longs to the (0,3,0) irreducible representation $6(6)

which contains no singlets under the residBadymmetry.

To discuss the poles i00,03), we must anticipate one
with the integral key result of the Kaluza-Klein analysis in the next subsec-
tion, namely that the primary operators on the defect carry
SU(2)4yxXSU(2)y quantum numbers|£&1,0) and have

- A
T AL Al dzd?Z z N scale dimensiom\;=I. Thus the pole ah,+A;=3 in Eq.
(X,y:84,43)= 2 |\ 24x2+(z-y)? (3.19 can appear only fo©,=Tr X? a_nd the lowestD;, a
case which violateR symmetry. Consider the next poles at
7 \4s As—A,=2n=0. We need the fact that the primari€¥,
X 2432 (3.11 =TrXX contain only components in the representations

(k,0),(k—2,0), ... of SU(2)yxSU(2)y. Isospin conser-
vation in{0,03) thus required =k—2m or A;—A,=1—-k
As explained in21], it is convenient to use the inversion = —2m,; thus only the case with pol&;—A,=0 is allowed
by R symmetry. However, the set of poles we are discussing
are close analogues of those in the 3-point function\dn
(.07, (x.3)= . LN =4 SYM theory (Tr X¥Tr X!Tr X™ studied in[21]. In the
71227 ' y'2 3-point case a large set of singular cases is forbidden by
(3.12 SO(6) symmetry, and there is one remaining extremal case
with k=I1+m. For this case the actual bulk couplinggm
from type 1IB supergravity have a zero which cancels the
pole leaving a finite resu[t20]. The remaining singular case
for (0, O3) is extremal in exactly the same sense, and we

(2,02)=

2/2

to do the integral, which leads to

conjecture that the specific couplings that occur in the D5-
———— | dZ/dZ’3(z" )24 brane action will cancel the pole.
T (x +y2)A4
7' A4 B. D5-brane open-string modes
224 %24 (Z7 —y')? (313 We now turn to a more detailed study of the D5-brane

action for the Karch-Randall system. We will enumerate all
. . terms up to quadratic order in both open and closed string
After scalingz’' =y’ +x'?+z?w andz’ =x’u, one finds bosonic fluctuations. Considering first the quadratic action
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for the open string modes alone, we perform a Kaluza-Klein Ou=L%02, QWZLZ’ U= L2sir?z?,
reduction on the 5 producing kinetic terms for towers of i 2o
AdS, modes. We solve for the masses of these fluctuations, Qs =L2siPZ" sinfZx. (3.18

and determine the conformal dimensions of the dual opera- . ) ) _
tors O5. As we will see, two kinds of excitation are elemen- Notice thatg,, andg,, are higher order in the fluctuations,
tary to handle, while the remaining two types are mixed and"d hence the kinetic terms f@r andZ* vanish to quadratic
their mass matrix must be diagonalized. Although there ar@'der- This is a consequence of our choice of coordinate
three negative-mass modes in the full system, theystem, as th;g ands coordinates becc_)m_e_degeneratqbat
Breitenlohner-Freedman stability bound is satisfied. All=0, the location of the DS-brane. All infinitesimal fluctua-
masses and conformal dimensions are nontrivially found t¢ions of the D5-brane on the>@re ¢ fluctuations, and they
be integers, a sign of supersymmetry. These fluctuations fferm @ triplet of SU(2)y . Thus Sg, to quadratic order in
into short multiplets o0 S[(4/4), and we will establish the ©OPen string fluctuations reads
dictionary relating them to gauge-invariant defect operators
in the dual DSCFT in Sec. V. _ 6 a4

There still remain interactions on the brane involving Se1=~(Tosl )f d*x\gade
closed string modes. As explained in the last subsection,
these give rise to various correlation functions. We list the

1+ 3029%32%9,Z%

!

i ; X 1 ag0, i "2 2ma’ |, ab
couplings up to quadratic order in Sec. Il C, but do not +320°2%0,2"—(2")°+ NN iFanF™ |,
perform the KK reductions for most cases.

The bosonic open string modes living on the D5-brane are (3.19

theU(1) gauge field3, and the embedding coordinat@¥.® _

As usual we pick a static gauge to fix the world volumewhere we are now raising indices witg?®, and dQ
diffeomorphisms, £2=272, leaving us with the dynamical =\/g,d6d¢. Notice that the gauge field kinetic term is down
fluctuationsZ'. Expanding out the determinant 83, to qua- by an additional factor’/L*~ 1/\.

dratic order, we find Let us now turn taS,,. We find

1 . :
SBI:_TDSJ d°¢e®?{—detg| 1+ 55°7'9,Z'g; swz=—TD5f (CEB+CRBAF+...). (320
1 . - - -
4 ZF. Faby gazip ) 31 Of the Ramond-Ramond fields, on{y, is nonzero in the
47 ab @ (3.19 background. The relevant tefris

CX012:U4L4. (321)
where F,p,=B,,+27a’'F,y,. There is still a lot of physics
hidden in —detg, which is the determinant of the metric The 5-brane does not span the coordinatéiowever, Eq.
over the Ad$x S directions. The background metric is im- (3.21) contributes to the pullback
plicitly a function both of the world volume coordinaté8

PB _ i H
(thanks to the static gauge conditjoand the embedding Cabed= 9aZ Cipegt+ (PErMs in abcd) + O(Z%).
fields Z': (3.22
We find the contribution to the part &, quadratic in five-
6. 2. b6 = " brane fields,
J—detg=L%?singcogz’=L \/—94@00522 ,
(3.17

2

Where@ andgz are the determinants of the Weyl-rescaled —F opd,Z%)
metric (3.3 on AdS, and $, respectively. The cosine will

1
S\NZ: - _L4TD5(27Ta’)f dGXUQaﬁ(207aZXFUB

provide mass terms faf¥. Furthermoreg, andg, contain 1, ) 6o M ap .
graviton fluctuations, which must be expanded out when we - 5'— Tos(27a )J d°xv"€e*(29,27,B g
consider closed string modes.

For now, we concentrate on the open string modes in Eq. —Fapd,Z%), (3.23

(3.16 and postpone discussing the closed string fluctuations, B 5
including those in mixed terms such @&Z'h;,. For the wheree®? is the flat-space epsilon tensor wié*=1, and

variousg;; , we find we used integration by parts and antisymmetry to eliminate

SWe reserve the symbolsandX for the D3-brane fields that will There is also a term polarized in the angular directions, required
appear in the field theory sectiors, should not be confused with for the self-duality ofFs; it does not play a role in the quadratic
the NSNS 2-formB,,, . Lagrangian.
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the?“ﬁ&azxaﬁBv term in the second line of E¢3.23. Com-

PHYSICAL REVIEW D56, 025009 (2002

We impose the gauge choit®*b,=0, which decouples,,

bining Egs.(3.19 and (3.23, we have the complete set of from b,. We then find forSyaqe

guadratic terms in the open-string fields. We see that the

gauge field is coupled to the scal&f, while the scalaz? is

free. We examine each of these systems in turn, expanding in

spherical harmonics on the &nd computing Ad$ masses
and dual conformal dimensions.

Angular fluctuations.The D5-brane may wiggle away
from its background locatiog=0 on the 5-sphere, and this
is described byz?. The fluctuation equation follows from
Eqg. (3.19 and is simply

(O+2)z’=0. (3.29
We expand in the usuaPSpherical harmonics,
Z9y,0,0)= 2 n(Y,0) Y 2). (3.25

The six-dimensional Laplacian splits as=[ags, +Hs2,

and as every second-grader knows from studies of angulafrheb are scalars on the

momentum, the spherical harmonM,%(ﬂ,d;) are eigenvec-
tors of g with eigenvalues

DeYm(0,0)=—1(1+1)Y1(6,0). (3.26
Upon reduction, Eq(3.24 becomes

(Dags,~ M) () =0, m2(1)=—2+I(1+1).
(3.27)

Thus the zero mode is tachyonic. However, tachyonic modes

do not generate an instability in AgS,; space as long as the

masses do not violate the Breitenlohner-Freedman boun&lua|

[23], which in the metricg where the AdS scale is unity
takes the forrm?= —d?/4. Ford=3 we havem?= —9/4,
which is satisfied by all the mod€8.27). Hence there is no

Sgauge: Sb#‘l' Sbay (3.30
1
Sb#: - ZTDSLGJ d4X\/EdQ
x(f,,f*"+2D,b,DD"), (3.31)
1
Sy = - ZTD5LGJ d*x\/g,dQ
X(2D b, D*b*+f ,4f*F). (3.32

Furthermore, we see that the coupli®23 involves only
b,. ThereforeSbM gives the complete quadratic action for

b, . The fluctuation equation is
D#f,,+0Ogb,=0. (3.33

2%and hence can be expanded in
ordinary spherical harmonics as with E§.25),

bﬂ<y*,v,ﬂ>=;}1 bl (Y. 0) Yi(), (3.3

under which Eq.(3.33 reduces to a Maxwell equation for
the zero mode and standard Proca equations for the excited
tower, with masses

m?=1(1+1). (3.39

We translate EQ.(3.35 into conformal dimensions for

operators using the standard vector relation
A= (d+/(d—2)?+4m?)/2, and obtain
A=2+1. (3.39

instability in this sector, as expected due to supersymmetry. _ _
Karch and Randall7] already considered the zero mode and Coupled sectoie finally consider the coupled sector of

found it to be stable.

Using the standard AQS,/CFTy; formula A.=(d
+Jd?+4m?)/2 with d=3, we find for the dual conformal
dimensions,

A =2+1, A_=1-1I. (3.28
A _ is only possible for the constant motie 0.

AdS, gauge field fluctuationsie find it convenient to
defineb,=(27a’'/L?)B,, fp=(2ma’'/L?)F 4; these fluc-
tuations then have the same normalization aszheThe
action is then

1
Sgauge: - ZTDSLGJ d4X\/Edeabfab

1
= ZTD5L6J dgadQ(f 47

+2f o FHO+ 5T P, (3.29

b, and Z* from Egs.(3.19, (3.23, and (3.32. In this in-
stance we find it more convenient to perform ther&duc-
tion on the level of the action, before extracting equations of
motion for each mode.

For Z* we expand as usual

ZX(y,0,0)=2, Zh(y,0)Yi(Q).

I,m

(3.37

For b,, the gauge conditio®“b,=0 tells us that is co-
closed as a 1-form on?Shy the Hodge decomposition theo-
remb is a sum of coexact and harmonic pieces. Since there
are no harmonic 1-forms orfSwe may writeb as a coexact
form,

bad,v,m:IZ br(Y,0) €,5DPY1(Q),  (3.39

wheree g is the curved-space epsilon tensor on I8 what
follows, we will drop the “magnetic quantum numbenion
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z ., bl and Y for clarity; it is implicitly present and
summed over whehis summed over.
We find in Eq.(3.32),

fdQZDMbaD“b‘EZf dQ Y, (D,b'D*b")
I’

X(DBY'DﬁY")

,U«b|,
(3.39

where we integrated by parts and used @38, andk(l) is
the normalization infdQY'Y' =k(1)8"", which will drop
out at the end of the day, as well as

Db'

—2k<|>2

fdmaﬁfaﬁzz dQ Y, b'b"[(Deg,

1n’

—Dge,,)D?Y'ID%€PD ,Y"

=2k(|)2 ((1+1))%'p',
(3.40

PHYSICAL REVIEW B6, 025009 (2002

Expanding bottZ* andb,, in spherical harmonics, we find

sNZ=4TD5L6f d*xVg,dQo S ZY'b DY,
I’

1
- ZTD5L6k(I)f d*\ga

le 16/(1+1)vZ'b'. (3.44

We are now in a position to derive the fluctuation equations
for each mode using the total acti¢8.41), (3.42), (3.44).
For theb' modes, we find

Oags,p'=1(1+1)b'+407, (3.45
while for theZ', we have

1
_a/,l,
Vo
(3.49

The factors ofv? can be dealt with by rescaling by a
function of v that is chosen to eliminate any terms with a

040%9""9,2 =02 (1+1)2+ 41 (1 +1)ub'.

where we have commuted covariant derivatives through eacsingle derivative of' on the left-hand side of E¢3.46. The

other as needed and usaqﬁ gaB Thus the total action
(3.32 for theb' modes is

X (a,b'd*b'+1(1+1)b'b"). (3.4)

The quadratic terms foZ* in Eq. (3.19 are considerably
simpler; we find

S,(=——TD5L fd x\g,dQv?

x>, (D,ZD*Z' YY" +2Z'D*Y'D Y,

I’

=— %TosLsk(”f d4X\/E(202)

X2, (0,202 +1(1+1)2'7). (3.42
|

Finally, there is the mixing term frons,,, (3.23. Writing

€*Pf 5=2€"P3,a,, we integrate both the, and theg,

derivatives in the second term in E@.23 by parts, which

cancels the first term but leaves a piece coming frap f).

Using €*#=\g,e*# and a factor ofv? to form v/g,, we
obtain

Swz=—4Tosl® | d'x\G,d007€D b, (3.43

correct factor to extract turns out to be

y'=vz. (3.47
Dividing by an overall factor o, Eq. (3.46) then reduces to
(Oags,~AY'=1(1+1)y'+41(1+ Db (3.48

Additionally, the equation fob' (3.45) loses its explicit fac-
tors ofv when expressed in terms pf:
DAdS4b'=I(I+1)b'+4y'. (3.49

Solving the system is now trivial. Equatiori8.48, (3.49
can be expressed in terms of the mass matrix

).

The mass matrix is diagonalized to find the mass eigenvalues

2al(1+1)+1

=1?2+1+2+x2(1+1).

I(1+1)+4 41(1+1)

yI
4 I(14+1) b')' (350

AdS,

m?=1(1+1)+2+

(3.5)

The masses turn out integer, which is not a property of ge-
neric Freund-Rubin-type KK reductions and is usually an
indication of supersymmetrj24]. Each of the two branches

(3.52

has associated dual operators, whose conformal dimensions
we compute. Fom?("), we have

m2()=1245+4, m2()=12-3],
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o 3.1 > 3 1 The Born-Infeld action(3.16 contains terms involving
AC ):§i§V9+4(| +ol+4)=5x5(21+5). the gravitonh and dilaton®. Expanding the dilaton expo-
(3.53 nential and using
- lpa, 1opay2_ 1 ab 3
Only the + branch is possible for unitarity; this gives \/a \/EG(lJr 2hat 5(Na) "~ 2haph™+ O(R%), (3.56
A =1+4. (3.549  we find the closed-string one-point couplings,

Meanwhile, form?(~), we find
S<B1,>:—TDSL6J d*x\Vg,dQ(3d+1hd),  (3.57)

3 1 3 1
A(;)=§ t5 9+4(1°-3l)= §t§|2| —3|. (3855 the closed-string two point-couplings
For I=1,2, both choices are possible, while only,”) is SE%)=—TD5L6J d4X\/EdQ(%‘D2+%(hg)z—%habhab
possible fol >2. Again nontrivially, we find integer quanti-
ties. +1dh2+1B,,B%), (3.59

A few words are necessary for the special das@. This
corresponds to a constant spherical harmafic. Itis easy ~ and the mixed open or closed couplings
to see flrogn Eq(3.38 thatb,, vanishes for such a mode, and
henceb' ="=0 uniformly. (The expansion of the vector field (LY)_ _ 6| 44 azip 41 ab
b, on & does not contain a scalar pais a result the/' =° s Tosk f dxgd0(#Z o+ 1Bl ).
mode is uncoupled, and from E@.48 we see that it has the (3.59
(positive massm?=4. This is merely the value of>(") for
=0 (3.52. Hence, as is common in such Kaluza-Klein
problems, the lower branch truncates at sdmd, in this
casel =1, while the upper branch can take any valee0.
The I=1, |=2 states on the lower branch both have the

The Wess-Zumino actiori3.20 couples the closed-string
fluctuationsCg andC, to the brane. The one-point coupling

negative massn®=—2, which satisfies the Breitenlohner- Swz:_TDsf Cs
Freedman bound.

We have now determined the complete spectrum of
bosonic open-string fluctuations on the D5-brane. These __TDSLGJ d4X\/EdQ

modes are expected to be the bosonic elements of a series of

short representations of the superalge&p(4/4) whose

even subalgebra 80(3,2)XSU(2)y X SU(2)y . The struc- X
ture of such representations is knoy@b], but it is simpler

to compare with the short representations of maximum spin he closed string two-point coupling is
of the OSQ(3|4) subalgebra whose decomposition with re-

1
afadeEf(CG)abcdef>a (3.60

spect t0S(Q(3,2)XSO(3) was explicitly given in(50) of 2)

[26]. The supercharges dDSp(3]4) are in theJ=1 of Swz=—Tos | BACy
SO(3), so weidentify SO(3) asSU(2), , the diagonal sub-

algebra ofSU(2)4 X SU(2)y . This means that th¢g modes __ 6f a4

appear withJ=I+1],1—1. Having noted this, one finds Tosl® | d'xVgd0

complete agreement between the Kaluza-Klein m¢8ex3),

(3.36, (3.53, (3.55 and the short representations [@6]. %
Agreement for the bosonic modes is nontrivial since a given

OSp(3l4) representation includes 5 scalars and a vector with , , ,
specific relations betweeh andJ. The KK spectrum is sum- and the mixed two-point couplings are
marized in Table | of Sec. V, where we will match the D5-

brane modes to gauge-invariant composite operators con- SEAllg):_TDSL6J d4X\/EdQ
fined to the defect of the dual field theory.

— 1 abcdef
2X 41 € Bab(C4)cdef ' (3.6])

C. D5-brane closed-string modes X

eabcde i((}’ ZI)(C )
51 \“%a 6/ibcdef

Here we briefly list the remaining quadratic terms in the
Born-Infeld and Wess-Zumino actions, involving closed as
well as open string modes. These genekdfa), (O0,03)
and corrections t40,0,), respectively. We perform the KK
reduction for the example of the dilaton one-point coupling. - %uzeaﬁ(Bw&vZX—ZaaZXBUB)}. (3.62

1
+ m fab(c4)cdef)
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Again, € denotes a curved-space antisymmetric tensor. Notetring modes involve a similar reduction of vector and tensor
the terms in the last line of Eq3.62 involved the back- spherical harmonics, which we leave for the future.

ground value ofC, and are analogous to the purely open-
string terms(3.23. IV. FIELD THEORY ACTION

One point to notice is that the brane interactions do not \we now determine the action for the dual quantum field
couple bulk eigenmodes directly. Thus we find the one-poin{heory_ In the absence of the defect, the theory is simgly
coupling hy with @= 6,¢ in Eq. (3.57), although the field =4 super Yang-Mills theory with gauge gropU(N) in
theory operators TXX are dual to linear combinations bf*  four dimensions; this completely specifies the four-
with @ now running over all Sindices, and the four-form dimensional fields and their bulk couplings. We also know
C, polarized along the S that the defect, which breaks the total supersymmetry to

Naturally, all the bulk modes appearing in E48.57—  eight supercharges, hosts a three-dimensional hypermultiplet,
(3.62 are restricted to the brane. This implies certain restricwhich transforms as a fundamental of the bulk gauge group
tions on theSO(6) quantum numbers of the modes resulting(see, for examplg,14]). In principle, the defect action can be
from the S reduction. Consider the dilaton, which is the derived as ther’— 0 limit of the D3—D5-brane intersection.
simplest case since it is a 10D scalar. As usual it is expandeidowever, we will be able to use gauge invariance and the
in spherical harmonics on°S preserved supersymmetry aRcgsymmetry to completely de-

termine the action, given the inputs above.
- - The preserved spacetime symmetries of the configuration
@(y,x,v,95)=2| ®'(y,x,0)Y(Qs), (363  are three-dimensional translations and Lorentz transforma-
tions, as well as three-dimensionAl=4 supersymmetry,
which admits arSO(4) R symmetry, realized in our case as
SU(2)yxSU(2)y. The gravity dual predicts that the field
theory is additionally superconformal, but these extra sym-
metries will not be used to construct the action. Classical
symmetric traceless product of thé while {I,m} and scale.invariance will non.etheless. be manifest, with the di-
{i"m'} are the quantum numbers for tHSU(Z) mensionless 4D Yang-Mills coupllr]g the only parameter.
XéU(Z) subaroup. Th herical harmoni rH di Whether conformal symmetry persists on the quantum level
v group. These spherical harmonics aré disyy o important test of the correspondence, for which we
cuss.ed in the Appendlxe.s, yvhere we show that the only harpirovide partial results in Sec. VI A; further results can be
monics that are nonvanishing on the D5-brage=0) are found in[27]
those withl’=m’=0. Hence the closed-string modes that )

e . . . The interactions on the defect involve both 4D and 3D
participate in the interaction€3.57), (3.58 and (3.59 are fields. Th led | .
characterized only by, | andm. Furthermore, afy=0 the ields. These must be coupled in a supersymmetric way, and

i . consequently, one must develop a procedure for breaking up
functional form of the harmonic dc_>es not dependionhe .__4D supermultiplets into sets of fields that, when restricted to
t_otal quantum number only determines an overall normallzafhe defect, transform like 3D supermultiplets. The method
tion. . . . we use is based on work of Hd®], who addressed similar
theLSitIz:thnSVv; Eggslder the one-point couplingss7). For questions of defining supersymmetric interactions on a codi-

mension one hypersurfaden his case in two dimensiojis
similar technigques have been employed previously to effect
ordinary dimensional reductiof28]. This method employs
superspace: four-dimensional’=1 superfieldsY(Q,x,H)
can be made into three-dimensiondal=1 superfields
X >, he §,v)y'm(g)z:<0(o) Y 34(y,®) by restricting them to the “superspace boundary,”
k.l,m ’ which means imposing=0 as well as two linear relations
on the four fermionic coordinate®. Invariant three-

Z_%TD5L6J’ d4X\/E 2 Z(k)CDSO()Zv). dimensional _action_s involving[?d(ﬁ,(?) along with inher-
K'even ently three-dimensional superfiel@y,®) can then easily
(3.64  Dbe constructed. Such actions possess terms with derivatives
transverse to the defect and hence are not equivalent to ac-
Herez(k)=Z0) is ak-dependent normalization factor. We tions obtained by direct dimensional reduction. In the next
have integrated over the?Swhich gives zero for aIIY'm subsection we detail the superspace boundary methdd in
except the constant mod€)=1/\/47. We note that only the =1 superspace. In the section that follows, we construct the
representations oSQ(6) with k even containSU(2) action for our eight-supercharge field theory with defect, and
X SU(2)y singlets; this can be seen by recalling thgat discuss the realization of the extended supersymmetry.
—(3,1)®(1,3), and hence by the usual rules for addition of
angular momentum, th&O(6) representation witk even or
odd only contain& O(2)y X SU(2)y, representations with to- We briefly review some elementary facts about super-
tal spinl +1’ even or odd, respectively. The remaining closedspace, and in the process fix our notation. 4= 1 super-

where theY' are scalarSO(6) spherical harmonics and
={k,I,m,I",;m’} is a total index for the five quantum num-
bers characterizing an element of 8(6) representation.
The labelk gives the totaBO(6) representation as tlkefold

1
sP=- %TDSLGEJ dx\/gad0

A. The superspace boundary
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space consists of the usual bosonic coordinages) (with y (LW)3=—%(DR D)e 2V*T(LD) e?V°T"

a 3-vector as well as anticommuting coordinaie3o facili-

tate reduction to three dimensions, our 4D superspace con- 2800 ] . .
ventions are in a Majorana form, and henées a four- =e Yk —I(LA®),—D%(L ),
component Majorana spinor. Superfields(y,x,6) are
defined on superspace, and can be expanded in a terminating
power series irg, where the coefficient8(y,x) andF(y,x)

are just the ordinary bosonic and fermionic fields that make
up a given supersymmetry multiplet. One defines the super- +(|_7MDM)\)Q(§|_ 9))_ 4.7
space covariant derivativi@ and supersymmetry genera®r

i
14 a
+E(L’y'u e)aF,uV

We define the superspace measures

J J
D=—=+iy*09,, S=—=—iy"0d,, 4.0 _ _
a6 . 96 . d?6,=d6Ldg, d?6z=d6Rds, d*9=d?g d?6R.
(4.8)
{D, ,5,3}: —2iy*d,, {S, ,§ﬂ}:2i Yo, We then have the action integrals

{D,,Sp=0, (4.2) fd“xd“&fl_)ezv'TCI)
and the supersymmetry transformation of a superfield _J 4 o p i— " —
Y (¥.x,6) is simply = | OX (D) D ¢=5¢y"D, Y+ FF

SY(Y,%,0)=(79)Y(¥,%,6), 4.3 FIV2(GNTALY— yRAT?¢) _JDA'

with 2 Majorana. The power of superspace lies in the fact f d“x%lmj d20xT(WLW)
that products of superfields and their covariant derivatives

are again superfields with the transformation lei3). By

integrating such products over superspace, one obtains =f d’x
Lagrangians that are invariant under supersymmetry by con-

1 i
;( —aFL P = SN D N %DaDa)

struction. This is often far more convenient than fashioning a -
component action term-by-term and verifying supersymme- t 352 FoF47],
try explicitly.
Chiral (antic_hira) superfieldsd (q_>) obey the condition 4o B i
RD®=0 (LD®=0). We can write f d’xd eRW(‘Di)‘f d™X(F'oW( )
—3[30;W(P) 1L i), 4.9

D(y,x,0) =€ 27 Y9,((y, %)+ \20L (¥, %)
with the definitions

+0LOF(y,X)), (4.9
D,¢=(9,—i1A2T?) ¢,
i — o+ (i12)0y"y600,( 30 v ipd() Ta a =
D(y,x,0) et iy (6(y.X)+20Ry(y,X) D= (0, IAL(LT - RT ), 7=+ 5.
+ OROF(y,X)), (4.9 (4.10

with ¢ andF complex scalars angt a Majorana spinor. The

vector superfield\/a()?,x,e) is a real superfield, which in
Wess-Zumino gauge reads

served, leaving 3DV=1.

VA= %Ey“yeAfﬁi(?L 0)(RA?) — i (OR6) (ILA?) Under the three-dimensional Lorentz group, a four-

It is clear that the presence of the defect must break some
supersymmetry, sincetranslations are broken; supercharges
that anticommute to such translations must also be broken.
The only possibility is that half the supersymmetry is pre-

component spinor decomposes into a pair of two-component

—1(8L6)(6RA)D?, (4.6) 3D spinors, labeled by an additional index 1,2. The de-

composition of gamma matrices in our basis is given in Ap-
pendix B. For example, the four-component supersymmetry

while the field strength superfield is generatorS turns into a pair of two-component objects:
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J 9 metry, exhibiting the decomposition of a 40=1 chiral
Si== —ip O1dt 6205,  Sp=— =5+ p 020+ 010y multiplet into two 3DA=1 real multiplets.
J0 99 The appearance of the transverse derivatiyé in Eq.
(4.1 (4.17 may appear at first unusual, but it is required by 3D

Only a linear combination of the generatd#s11) that does supersymmetryas one may easily check using component

not involve g, can be preserved. To this end, we must p|aC(:'transformation}s and will prove vital in our construction of
two linear relations on the fous coordinates: a convenient the €ight-supercharge Lagrangian. When one compactifies
choice for us is the 3-direction and expands in normal modesg;¢ con-

tributes the appropriate mass terms to the 3D auxiliary field,
0,=0, (4.12  which helps in understanding its presence.

In three dimensions, the superspace action for the kinetic
where we bear in mindd, is a two-component real 3D terms of superfield® as well as coupling to a gauge mul-
spinor. Defining®= 6, we now have the 3DV=1 super- tiplet is [29]
space covariant derivative and supersymmetry generator

9 Scin= f d*xd?03(VQ)VQ, (4.18
D=D1|g,-0= _6+ipkf9k,
J where we have defined the superspace gauge covariant de-
rivative

d
S8=Si|) o= —=—ipk@4, . 4.1
tlop-0= 25~ 1P 0% 413 V=D—iraT?, 4.19

Fields native to the defect are naturally written as inherentlyincluding the connection spinor superfielf, which con-
3D superﬁemgg()},@)_ These have the expansion tains the gauge field and its partners. We are not interested in
inherently 3D gauge fields, but instead we wish to obtain a
Q(y,0)=q(y)+0WV(y)+100f(y), (414  connection superfield by starting with some 4D superfield

containing the gauge multiplet and reducing to the super-
and may be real or complex, but if complex, the real andspace boundary. We arrive’ at

imaginary parts transform independently under supersymme- o
try. Furthermore, from any 4D superfiehd(;?,x,@) we may FaE(DVa)2|3=ipk®A§+ A\ (00). (4.20
create a 3D superfielﬂ”3d(§,®) by restricting to the “su-

perspace boundary:” Here we decompose the 4D spiridW? into two-component

3D spinors and keep the latter 3D spinor, restricting it to the
Ygd(§,®):Y()—;,X,0)|(;EY()—/),X,0)|XZ0 —o. (419 superspace boundary. Notice that the auxiliBd/ does not

2 survive the projection to three dimensions; this is appropriate
since a 3DN=1 vector multiplet does not contain an ausxil-

This is the central concept.sq(y, ©) includes some orall of . g0 199). With the definition(4.20, the action(4.18
the component fields contained Y(y,x, ) restricted to the  oquces to

defect atx=0. As can readily be seeiY,34 transforms as a

3D superfield under the preserved supersymmetry transfor- 5 ot = s I
mations, namely Eq(4.3) with 7,=0. Consequently, any Skin:j d*x((D*q) 'Dq—iVp D W+ ff+igAiToW
product of Y 34(y,®) and Q(y,®) and their 3D covariant _

derivatives —iWUA{TAq), (4.21)

[Q(Y,0)--Y3,(y,0)---DQi(y,0)---DY5(y,®)---]  with D=a,—iT?A§. This indeed contains a canonical cou-
pling between 3D matter, ar{dertain components pthe 4D
may be integrated over the tw® coordinates to produce a gauge field and its superpartners. In the next subsection, we
3D N=1 invariant Lagrangian. We define the measure  will apply these results to obtain the particuls=4 theory
_ we need to describe our system.
d?’0=3d0do. (4.16 Besides making supersymmetry manifest, the “super-
. , space boundary” technique outlined here has the advantage
As an example of a 4D superfield restricted to the sUperspacs producing an action already formulated in superspace lan-
boundary, we find for the chiral superfied, guage. This facilitates perturbation theory, where all but the

1 _
_®(¢/1_|¢2)+%®®(F+|&3¢)1 (417) . . _i yaTa i yaTa
V2 “In principle one could defin€2T2=(1/a)e "*V" T De'*V"T" for

any «, but upon settingd,=0 these all coincide in Wess-Zumino
where againy,, i, are the 2-component spinors emerging (wz) gauge. Outside WZ gauge,would appear in the coupling of
from the 4-componeny. The real and imaginary parts of Eq. the gauge-artifact fields in the vector multiplet to the 3D modes, but
(4.17 transform independently under 30=1 supersym- these terms have no physical content.

q)la:d""
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most elementary calculations in component formalism prove S4= S+ Sy+ Sw,
far too cumbersome even in the case of the pure bvlk
=4 SYM theory.

A drawback of using this superspace formalism for our
system, however, is that it makes only one quarter of the
supersymmetry manifest: four supercharges in the bulk bro- it 5 _
ken to two on the defect, instead of sixteen broken to eight. Sg:j d Xi'”‘J d“Orm(WLW),
This also means that tHe symmetries are obscured: only a
diagonalSU(2)p CSU(2), X SU(2)y will be visible in the 1 2

. . . - 4 abc _
superspace action. To confirm that the larger symmetries are Sw ng d*xeapcf 31
present, we will reduce to a component action, and explicitly '
demonstrate&sU(2),, X SU(2)y invariance. The existence of
this R symmetry then implies the full 3V=4 supersym-
metry.

1 - asa
SK: azj d4Xd40q)Ab(82V t )bc(I)ACi

X( f d20Rq)Aaq)Bb(DCC

, (4.23

N f o260, DPADBOGCE

B. Action for field theory with defect . . . -
y where (),.= —if2"¢ since the®”? are in the adjoint rep-

Under the reduced supersymmetry, the bulk AB-4 resentation. In components, this is
vector multiplet decomposes into a 3W=4 vector multip-
let and a 3DN=4 adjoint hypermultiplet. As described in 1 .
[14], the bosonic components of the vector multiplet are542;f d*x
{AXT, X8 X%, with the scalars transforming as tBeof
SU(2)y, while the hypermultiplet consists of O i ~aus
{Ag,X3,X* X5, with these scalars a triplet &U(2) . (In +t 32wk
fact, we will see this is slightly oversimplified: thederiva-
tives of X3, X* and X° actually participate in the vector
multiplet, as doeg\s, as part of the auxiliary field The four
adjoint Majorana spinors ok=4 SYM theory transform as

i
— §FL P = Ay*D N+ 3D?D?

i— _
+(D,U,an)TDMan_ EXAEi,y,u.DMXAa_i_ FAaFAa

a (2,2) of SU(2)yX SU(2)s, which we denote!™. Under + \2FAPEXAONAL YA Y APRNAXAS) + i 2PXAPD AXAC
the reduced spacetime symmetries, they decompose into 1
pairs of two-component 3D Majorana spinors, witfl' end- + — eppcfAPS(FABXBDX Coy FAayBbY Ce
ing up in the vector multiplet ana’" in the hyper. V2
The hypermultiplet living on the defect transforms in the
fundamental representation of the gauge group. It consists of ~ _Aa(| xCc RxCe),Bb)| (4.24)

an SU(2)y doublet of complex scalarg™ and anSU(2),,

doublet of Dirac 3D fermion&’'. In addition to theR sym-

metry charges, the defect hypermultiplet is also charged urwith D, X?=a,X?+ f3°°A°X° and likewise for the fermions.

der a globalJ(1)g, under which the bulk fields are inert; the ~ The defect hypermultiplet can be written as two complex

corresponding current is dual to the D5-brane gauge field oD multipletsQ', i=1,2:

the gravity side. Because the defect hyper fields are in the S

fundamental representation of the gauge gr8ugfN), they Q=q'+0¥'+;00f, (4.29

are coupled canonically té,, and hence supersymmetry S o

will induce couplings to the rest of the bulk vector multiplet Q'=q'+¥'0+i00f'. (4.2

as well, which we determine below. The bulk hypermultiplet

does not directly couple to the defect fields. The superfield®Q' (Q') transform in the fundamentahnti-
The field content and Lagrangian for the theory in thefundamental representation 08U(N); we have suppressed

bulk are identical to that o/=4 super Yang-Mills theory the gauge indices. They are coupled to the bulk gauge fields

with gauge groulBU(N). Using N=1 superspace, the su- in the way we have outlined

perfields are arBU(N) vector multipletV?, as in Eq.(4.6),

and three chiral multiplets in the adjoint representath#, 1 T i
with A=1,2,3: Skin:? d°xd“03(VQ)VQ', (4.27)
D= e_(ilzﬁyﬂya‘gﬂ(xaA+ V26L 3 A+ L 6F2A), with V as in Eq.(4.19.
(4.22) Finally, to obtain a theory that preserves 8 supercharges

and places the 3D part of the gauge fidlg in a single
supermultiplet with the scalad$’, X8, X°, we must produce
and theA/’=4 action in our conventions is a coupling of theQ' to half the fields in theb”. We choose
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a convention where the scalar parts df* are (X  Under SU(2)p, the defect hyper fieldg' and W' should
+iXA)/V2, with X, = (X3,X4,X5) andX,= (X7, X8,X%.We both transform as a doublet. Hen8&)(2), acts as a global
then define the following 3D superfields by restricti#g? ~ Symmetry on our superfield®' is a doublet andt” is a

to the superspace boundary: triplet, while I' is a singlet. The kinetic actiot¥.27) is ob-
viously invariant undeiISU(2)p; preserving the symmetry
xheTa=Rg eV TdATee V' T)|, in Eq. (4.29 requires the Pauli matrix coupling, but does not

specify the overall coefficient.

1_ o The globalU(1)g symmetry, with current dual to the D5-
=| ReX?a+ —@X’fa+ 100 (ReFA? brane gauge field, is also manifest in the superspace presen-
V2 tation: the superfiel@' has charge one while the bulk fields
are inert.
— gglm XAa— fabeADm xAC) | T2, Also worth mentioning are a pair of discrete parity sym-

metries,P andPg. In three dimensions, reversing the sign of
both spatial coordinates is a part of the proper Lorentz group,

1 o o but reversing the sign of just one, which we c@llis non-

= —(X02+ 01+ 100(F{? trivial. For example, we can seng— —x,, A,— —A,. The
V2 total bulk and defect superspace actid23), (4.27), (4.29
_ D6X,|':\|a))-|—a, (4.29 is then invariarit under the transformation

whereT? are generators in the fundamental representation of p. g_,;j Y20, Vis—-Va d——-D, Q—Q.
SU(N). The sole consequence of the exponential terms in (4.30)
the definition(4.29 is to covariantize the transverse deriva- ’

tive dg, Which is necessary to preserve 4D gauge invariance. ) _ o ]
We now claim that the final piece of the action is One can also consider reversing the sign in the broken direc-

tion, Xg— —Xg, Ag— — Ag. This is realized on superspace as

1 — .
Sy=— J d3xd20 202 Q' rAeT2Q), (4.29 _
9° b Pe: 60—iyy®0, Vi-—-V3 d-d, Q—Q.
. . - 4.31
whereaﬁ are the Pauli matrices. This is tié=4 supersym- ( )
metric completion of Eq(4.27), and therefore involves the _ o
same coupling constang, Hence the defect action adds no The superspace transformatio@s30 and (4.31) implicitly
new couplings to the theory. That E@.29 is bilinear inQ'  determine the action of parity on the component fields. The
gauge invariance and supersymmetry. The origin of the prel iS €quivalent to changing the signs of the ambient hyper-
cise coefficients will emerge as we discuss the symmetriefields (which do not participatewhile leaving the ambient

and component expansion of this action. vector and defect fields inert. It is a nontrivial symmetry of
We notice immediately that, not only the scalag X8  the ’=4 SYM action. _ _
andX?, but also the field®, X4, X5 and A, participate in Not evident in the superspace formulation are the remain-

the bulk vector multiplet and couple to the boundary hypering off-diagonal symmetriies_ iSU(Z)VXS_U(Zi)_H - Under a
multiplet, due to the ¢XA? term inside the auxiliary field of SU(2)v transformation¥" will rotate while q' is inert, and
X2 This should not be too surprising, since it is known thatth® converse forSU(2),,. Additionally, under a generic
constraining the bulk vector multiplet to vanish at the defectS U(2)vX SU(2)y transformation, the Fermi fieldg,® in-
places Dirichlet boundary conditions o, and Neumann ~Side X% mix with the A’=1 gaugino\{ inside I'%, and
boundary conditions 0% [14]. Analogously, the bulk hy- together form a2,2). It is obvious that if these symmetries
permultiplet restricted to the defect contains the first deriva@r present, they will only be visible by reducing to the com-
tives of theX{ along with the restriction of th&Z . ponent action. , _

Let us examine how the symmetries of the system are In components, the defect actio4.27, (4.29 is
realized in the action4.23, (4.27), (4.29. N=4 SYM
theory has arBU(4)g R symmetry, of which onlySU(3) S3=Sin+Sx, (4.32
X U(1)g is visible in theA’=1 superspace formulation: the
SU(3) acts on the three chiral superfields in the obvious 1
way. Once the defect is introduced, onlgU(2 _ = 3 Kpyiyt i ik rIrl
><SyU(2)HCSU(4)R is preserved. We cannot hopgth(at)\r/nore Skin= ng dx(D7q) Dy~ p D+ 1
than the intersection ofSU(2),xXSU(2)y with SU(3) J— R _
X U (1) will be visible in our presentation. In our conven- +ig'\ TP —iwN\ITq), (4.33
tion for the components o, the SO(3)CSU(3) is pre-
cisely the diagonal subgroupU(2)p,CSU(2)y X SU(2)y,
and this turns out to be the manifest part of Rigymmetry. 8Assuming the vanishing of the vacuugnangle.

025009-15



OLIVER DeWOLFE, DANIEL Z. FREEDMAN, AND HIROSI OOGURI PHYSICAL REVIEW D56, 025009 (2002

1 — . — . — .
S= g f d3X[ - o WIXGATAW f dx(— )= - f d3x?(a" o) TP XGPXEP.
o n (4.41
A/ i AaTang] i AaTan~]
— o Tawi+ WiyheTag]
oilax X Using the relation o¢”0B=8"8+iepgco®  and
+Uﬁ(anCaTafj+FX©aTaqj symmetrization-antisymmetrization, we obtain the result
+0'(F§— DXt T0)]. (4.34 f 6 (— LT TOh g XAexAD
We would like to demonstrate the fuU(2),, X SU(2)4 L b Ama i uBbuCe
invariance. The kinetic terms are obviously invariant. Let us +3eascf A ol TP QXX (442

next examine the Yukawa terms coupling the defect hyper tc_)l_h G S U2 SU2). | . . h d
the bulk fermions\,, x7. We define the gaugino fields e first term isSU(2)y X SU(2)y invariant, since the an
Xy variations cancel separately. The second term, however,

A& =N28,—ix 2R (4.35 s notinvariant. Fortunately, we have not exhausted the con-
tributions to the potential.
which transform as\®—gyA3gy’, analogous to a linear We turn now to the bulk auxiliary fields. Their action can
sigma model fieldo+i7"c”. Here we are using, j as be written
SU(2)y indices andm, n as SU(2)y indices. The Yukawa
terms then become f d4X(EAaFAa+ iGABCfabc(FAabiX0c+EAaYBbYCc)
V2
| @D i T 0D T, @30
+8(xg)q oA T2 FAa> , (4.43
and are manifestly invariant. The precise value of the coef- ¢ N v

ficient in Eq. (4.29 was required to construct E¢4.36. )
There is one more Yukawa term in E@.34), namely where the last term comes from the defect action. In terms of

real and imaginary parts, this becomes

— | d®ahwix{eTAw), (4.37)
f e f d*X[ 5 (FUFG+ FATFA™ eapcf2P(FUXE XY
This obviously respectSU(2)y X SU(2) : X4 is a triplet of _ pAayBbyCe_ opAayBby Ce
SU(2), and V' is a doublet, and all fields are inert under vV H H H XHXv)

SU(2)y . Furthermore, the scalar derivative coupling n 5(Xe)aUﬁTaquCa]- (4.44)

_f d3XUﬁE(D6Xﬁa)Taqi, (4.38  The imaginary parfy does not couple to the defect, so its
contribution to the potential is unchanged frokfi=4 SYM

transforms undeSU(2)y in the same way Eq4.37) did  theory. For the real pafty, we find

underSU(2)y, and is similarly invariant. — .
Finally we come to the auxiliary fields and the scalar po- FU%= — G eapct XX~ XEXE) + 8(x6) g oy T2,
tential. Having entirely fixed the form of Eq4.29 to en- (4.45)
force SU(2)y X SU(2)y on the Yukawa terms, invariance in
this sector is a nontrivial check, and in fact we find a grati-
fying interplay between bulk and defect auxiliary fields that
preserves the symmetries. The result is reminiscent of how in
the bulk ’=4 SYM theory, neitheF-term norD-term con- J d*x— 3(FOPF{+ FAPF LD
tributions to the scalar potential are individuaBp(4) in-

where the first part is the same 454 SYM theory. Thus
all terms from the bulk auxiliarieE” are

variant, but instead only the sum. . 4 - aber wBbuCe
Considering first the defect auxiliaried, we have the :f d*™x(—=V;— 3 8(Xg) €acf* Xy Xy
terms _ _ — .
- B B = XEPXE9d o T 3 8(x6) (' o T20))?).
J d3x(f'f' + o} (q'XGAT2F1 + £1X(°T2g))).  (4.39 (4.46
. F o ihuti _
Eliminating thef' via their equations of motion as usual, we HereVy is the usuaF-term contribution to theV=4 SYM
find potential, which when combined with the bulkterms is of
courseSU(2)y, X SU(2)y invariant[in fact it is SU(4) in-
fiz—aﬁXCaTaqj, fl= —aﬁinCaTa, (4.40 varlanﬂ_. The 8(xg)? term_ls also obviously invariant. The
remaining terms can be integrated o\&Kxg) to produce a
and then Eq(4.39 becomes three-dimensional potential. “Miraculously,” the&x8°xS°
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term exactly cancels the noninvariant piece from &y2. The two independent ways of contracting the gauge indices

The final term is invariant, as bothr”q andexg XEXS are  lead to two dimensionless couplings, which generically run

triplets of SU(2),, and singlets oBSU(2)y, . with scale. Eliminating thé fields results in the new contri-
We have now demonstrated that in addition to being 3DPutions to the scalar potential

N=1 supersymmetric by construction, our bulk-defect ac-

tion has anSU(2)yxXSU(2)y R symmetry. We therefore (9'g")3, (qiqi)a'jAkquOaTaqk_ (4.52

conclude that it is in fact 3DV=4 supersymmetric. We sum-

marize the final expression for the defect action, includin

the potential 9he SU(2)yXSU(2)y R symmetry of our theory, however,

does not permit us to modify the action with E@.52);
S5=Skin+ Syuk+ Spots (4.47  although the ¥'¥ig'q’) and (@'q)® terms areSU(2),
X SU(2)y invariant, the rest are not.
1 3 ot m Tk i We have assumed throughout this section that the defect
Skin= 7 d*x((D*q™) D@ =W p D), couples only to the bulk vector multiplet, and that the bulk
(4.48 hypermultiplet ignores the localized matter at the tree level.
One can readily see that a term analogous to(E@9 but
_ i g3 iamey a -Ta\lfi—'\Fi ay. Tagm mVO|Vmg
Syuk gz X(|q ()\1)m| | (Al)lm q

yAaTaE Im(eV~T(I)AaTae*V-T)|{?

— W o hXGATW), (4.49
1 — —
1 _ = 5 (X3 0x5"+ 10O (F57+ DX, ")T,
Spor=~ g2 | AT TR V2

- (4.53
+ GIJKfabc,XJHbXEcqmo_:nnTaqn)
1 instead ofYA? is forbidden, since th&U(2), X SU(2)y as-
_—zf dsx(amtflmn(DesX:?) Tagn signments of the participating bulk spalars are reversed.
9 [Such a term would be part of the mirror coupling of the
defect matter to the bulk hyper only, wherein t8&J(2),
X SU(2)y charges o™ and¥' are exchangedl.

One may also consider interactions on the defect involv-
ing only the ambient fields. The marginal term

+358(0)(qMoh, T2™2), (4.50

where we have distinguishe8U(2),, indicesi,j,A,B,C
from SU(2)y indices m,n,1,J,K. The §(0) factor in Eq.
(4.50 may seem curious, but in fact terms of this nature have .
already been anticipated by Kapustin and Sé¢fi], who . NI
argued they were necessary to obtain a sensible Higgs SCS_EZJ d*xd*OT (DD Lp)+-- ), (454
branch, and by Mirabelli and PesKi@0], who showed them
to be necessary for proper cancellation of divergences in _ e 3 .
5D case. Such terms are a generic feature of supersymmetrFrl%ads toklt;ot? a gaugino bilineax A7) and a Chern-Simons
couplings of defect matter to higher-dimensional gauge mulferm (€""AgdAp+ - --) for the restriction of the gauge
tiplets involving auxiliary fields. We shall have more to say field; the ellipsis in Eq(4.54) indicates terms with 3 and 4
abouts(0) in Sec. VI A. fact_ors of " necessary fpr the. _non—Abellan completlm].
Before leaving the action behind, let us discuss a fewNotice that while fermion bilinears and a Chern-Simons
other terms that one might try to include, and argue on Sympiece for inherently thrge-dimensipnal fields would be mass
metry grounds that they are absent. In particular, to justifyl€'ms, for the ambient fields localized on the brane they are
our action we must rule out the presence of other margingharginal. Such terms are related h=4 supersymmetry to
couplings. Doing so has the additional benefit that the gauge

coupling g is left as the unique parameter of the defect 3 O AR AR
theory. N'=1 supersymmetry does not forbid terms of the szzf d°xd“@ A™°Y
form

o = f I OGP = DeXi®) — 3x1°x1Y). (4.59
Squartic:f d3Xd2®(QIQIQJQ])

o The simplest way to rule out E€4.55, and hence Eq4.59
= f d*x[2(f'q'a'q’ +q'f'g'g)) as well, is to notice thatx{®DeX£4? violates SU(2)y
X SU(2)y; eliminating the bulk auxiliaryF,, also produces
_(2@\1;@(41+2@q@\pi_aqﬂip0ﬁqﬂ noninvariant interactions. A term involving the bulk hyper
_ [d2@YA¥yAd suffers from similar problems. Finally, one
—pigetigh]. (451)  may imagine
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TABLE |. Kaluza-Klein towers of massless D5-brane modes.

Mode m? A SU(2)y SU(2)y Operator in lowest multiplet
b, [(1+1) [+2 =0 0 TROL IR AN

W (1+2)(1-1) [+2 (1-1) =0 1 q—,iaﬁq,ﬁzamxoaﬂqm
(b+2)) I(1-3) 1 (3—1) =1 0 qno! "

(b+2z)H) (I1+4)(1+1) I+4 =0 0 —

. e AaiAR is fully SO(3,2) symmetric. Almost all the rejected cou-
vazf d“xd“@ X%y plings would have violated the parity symmeRythis is not
surprising, since 3D fermion mass bilinears are known to

violate parity, and Eq(4.51 contains an analogougV V.
The exception is Eq4.56), which respects parity; the term
_ (S d®xenpcf2PXEAXEPXEY) is unusual in that it is parity-
Aa Aa_ Aa . . . .

+DeXy) + X1 X2 (456 invariant butSU(2),X SU(2)y noninvariant.

. . ) We have concluded that our theory is an 3B-4 super-
Interestingly, almost every bosonic term 8y is SU(2)v  symmetric,SU(2), X SU(2)-invariant coupling of bulk\/
XSSEJ(Z)H 'Eva/{'a”Btg Cthe one exception Is a term _y gyner Yang Mills theory to the defect hypermultiplet,
(Jdxeapcf XXy Xy") arising from the auxiliary fields. 5150 respecting th& U(N) gauge symmetry and the global
Nonetheless, this term allows us to rule it out. This com-y (1), and additionally we were unable to find any further
pletes our list of potential marginal terms with additional generalizations of the theory that preserve these symmetries.
couplings. _ Consequently, we conclude that the action we have obtained

Since our sought-after field theory must be conformal, Wejefines the correct candidate for a novel defect superconfor-
must not have any massive parameters in the action. Morema| field theory dual to the A(},SDS-brane system. We dis-

over, for the quantum theory to maintain conformal symme-cy;ss conformal invariance in the quantum theory in Sec. VI.
try, it is necessary that couplings of dimensionare not

generated by linear divergences. Consequently, it is useful to
demonstrate that mass terms are ruled out\by4 super-
symmetry andSU(2), X SU(2)y. One might imagine the  The spectrum of modes resulting from the KK reduction

= f d3x3 (XRA(FG*—DeXB?) + X0A(FR®

V. OPERATOR MATCHING

N=1 supersymmetric couplings of the D5-brane fields in Sec. lll must be matched with
gauge-invariant operators in the field theory. In this section,

Sm:f d3xd2(m5ij+mAaﬁ)an we dlsc_uss the construction of this dictionary. We identify
conclusively the operators dual to the lowest floor of the

tower of KK modes. We also discuss the primary operators at
_ 3 . A A\l Lol fi Qi higher Kaluza-Klein levels. At the end, we make a few re-
_f dx(may + Mo (Fa’+a fi—vmwh). marks about the effect of the defect on the closed-string

(4.57  mode identification.

. . . . In Table | we summarize the results from Sec. Ill, where
Although j[he triplet mass term N:.A’ supersym_m_etrl(_:, M€" " in the second and third lines we have noted the possibility of
ther term 'SSU(Z)VXSULZ)_H invariant, since elimination of A _ for small values ofl. We have also indicated the three
the f' leads not only tag'g’ mass terms, but also to cross gual operators that appear in the lowésasslessmultiplet,
terms o, q' X{°T%q and (00 ®);;0'X{*T?q!, which violate  which we identify below; thel§+z)*) tower does not con-
the R symmetry. tribute to this multiplet.

Meanwhile, terms involving ambient fields with a massive  The fields of the dual field theory, their quantum numbers
coupling constant are impossible, since on dimensionaind their conformal dimensions in the free theory are tabu-
grounds the superspace integrand would have to contain lated in Table Il. TheSU(2) quantum numbers are written in
single superfield, which cannot be gauge invariant fora spin notation. From these fields, we can construct gauge-
SU(N), in the spirit of a defect Fayet-lliopoulos term. Hence invariant operators. Since the operators dual to D5-brane
the preservedk symmetry forbids mass parameters of anymodes are confined to the defect, each must include at least
kind. one pair ofg' or ¥ fields, but may contain ambient fields as

Although we have not imposed them, we find that scalewell.
invariance and parity4.30 are both symmetries of our final Certainly it need not be true that every possible operator
classical action[The other discrete symmetripg (4.31), is  will have a dual among the KK SUGRA excitations, as some
also a symmetry, but we have in effect imposed it by de-will instead correspond to stringy modes, a scenario familiar
manding that the defect matter couple only to the ambienin AdS/CFT. However, we do expect to be able to find a dual
vector multiplet] Furthermore, it is also straightforward to operator for every D5-brane mode, because the correspond-
show that the action is invariant under inversion, and hencéng multiplets are short, and consequently we expect the con-

025009-18



HOLOGRAPHY AND DEFECT CONFORMAL FIELD THEORIES

TABLE Il. Quantum numbers of defect theory fields.

PHYSICAL REVIEW B6, 025009 (2002

ishing SU(2)yxXSU(2)y quantum numbers, and corre-
spondingly is dual to the lowest mode Iof .

Mode Spin  SU(2)y SU(2)y SU(N) A This operator map implies the existence of terms in the
A 1 0 0 di action of the full D3/D5 system, localized on the intersection
K adj 1 . ; . .
N ; and coupling the D5-brane fluctuations to the fields making
Xy 0 0 1 adj 1 ; e
; up the dual operators. For example, the identification of Eq.

Ag 0 0 0 adj 1 A

| ' (5.4) as the dual of the D5-brane gauge field implies a
X (1) } ? ad_J 31 coupling
Nim z 7 3 adj 2
qm 0 5 0 N :
v : 0 3 N 1 Spas 2 J d*xBJg, (5.5

which is precisely what we expect given that in the full brane

formal dimensions of the elements to be protected and not teystem, the defect fields are in the fundamental of the D5-

vary with the 't Hooft coupling\.

brane gauge group as well. The supersymmetric partners of

In principle, the dual operators are determined by obtain£g. (5.5 must reproduce the rest of the ground floor operator

ing the full action for the D3/D5 system before the near-map. For us, by far the easiest way to confirm this isTto
horizon limit is taken. Terms linear in D5-brane modes thendualize our defect actiot%.33), (4.34) in the 4 and 5 direc-
give the composite operator, composed of both D3 and 3/%ons; this transforms the D3-branes into D5-branes and vice
fields, dual to the D5-brane mode. We can deduce the idenersa, and hence generates from the coupling of D3 fields to
tities of the dual operators in the ground floor by exploitingthe defect the analogous D5-brane couplings to the defect.
supersymmetry alon€el duality in the D3/D5 system pro- We find that the terms in the DSCFT actidndualize to
vides a check on these results, and identifies the structure eérms that confirm the identification of the operat@ssi),

the higher multiplets.
Consider first the bottom of thebz)(™) tower, |=1.
This mode lies in the mass region where either or A _ is

(5.3, and(5.4). This agreement is strong evidence that the
field theory action we have developed is the correct candi-
date for a dual description of the gravity background.

possible. Since the theory is superconformal and we have the Let us now consider the highémodes. In analogy with
usual relation between the conformal dimension andRhe the usual AAS/CFT case, we expect the chiral primary for
symmetry, we expeck to ascend linearly i, and hence we each value of to be obtained frond' by insertingl copies of
identify the correct choice as_ = 1. The operator must be a an operator®” with A=1 andSU(2)y spin-1, and taking

spacetime scalar in the3(1) of SU(2)4,xSU(2)y, and
there is a unique candidate:

C'=q"0,,d". (5.1)

the symmetric traceless part:

CI'O""':C('O(’)'l..-Ol')- (5.6

In principle the quantum numbers permit two candidates

All the other operators dual to D5-brane modes have largefor O':

conformal dimension, and hence we identifyas the lowest
chiral primary. The remainder of the lowest multiplet can be
obtained by acting o¢' with A’=4 supersymmetry trans-

X . (5.7)

amo'lm nqni

formations. We can easily do so by beginning with the com-From the point of view of the intersecting brane systety,
ponentN=1 supersymmetry transformations implicit in Eq. is the natural choice to generate higher moments of D5-brane
(4.3 and promoting the supersymmetry parameter to a Jields. On the other hand, one might worry théd is an

X 2 matrix of Majorana spinors;,,, which transforms like

unnatural candidate for an operator that generates chiral pri-

the gaugino\;,,. We find the other operators in the same maries, since it is a member of the inert bulk hypermultiplet

multiplet asC' to be

Fim=w*ign+ g™y, (5.2
EA=W oW+ 29GP T3, (5.9
J5=iq™D " —i(D g g+ WY, (5.4

where to obtain Eq(5.3) we used the explicit form of
(4.40. We can readily match the bosonic operat®fs J‘é to

D5-brane modes£” is an SU(2)y triplet and a spacetime

scalar withA=2, and hence matches the 0 mode of,
assuming we choosa . . Furthermore,]'é is precisely the
current of the global symmetty (1)g, with A=2 and van-

that does not even couple to the defect fields. One can once
again turn toTl duality in the full brane system to argue that
X}, is the right choice.

To do so, one must notice an additional constraint on pos-
sible terms localized on the intersection in the D3/D5 sys-
tem. T duality along the 4 and 5 directions carries the system
into itself, so the total set of these terms must be invariant up
to a relabeling of coordinates. However, this operation inter-
changes indices of D3 or D5-brane modes polarized on
=345 with those polarized in the 6-direction. Consequently,
a generic term that iSU(2)y—invariant beforeT duality
might not be afterwards; such terms cannot be present in the
brane action. In order to reconcileduality with SU(2)y,
one must require that an even number of D3 or D5 indices in
either the 345 or 6 directions appear. This constraint turns
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out to be equivalent to the requirement that the set of D3- VI. PERTURBATIVE FIELD THEORY
g(raaar:einaggirl;&brane ambient hypermultiplet fields only ap- There is by now a vast literature discussing the interac-

tions of matter localized on a boundary with higher-
dimensional fields, chiefly inspired by the Twa-Witten

6. L . .~ scenario[31] and involving a five-dimensional bulk caught
mode ofZ” with no b, contribution. This mode appears in between two “end-of-the-world” 3-branes. Perturbative

the second flopr Shf” multiplet, and is dual t_o larsmglet. analysis for such theories in a spirit similar to this paper can
operatorQ z6 with A=4. Hence there must exist a coupling be found in[30,32,33

in the D3/D5 brane system

Up until now we have not discussed the 0 mode at the
bottom of the b+2)* tower, which is simply the constant

The DSCFT dual to the Karch-Randall system is novel in
a number of ways. First, space does not terminate at the
defect but instead continues through it, and consequently no
boundary conditions are imposed on the ambient fields. Sec-
ond, since the total dimension is four, the gauge theory is
Unlike the D5-brane modes appearing in the ground floorenormalizable and hence well-defined in the ultraviolet. Fi-
operator mapZ® is in the D5-brane ambient hypermultiplet, nally, despite the presence of the defect, the theory is postu-
not the vector.T duality hence demands that at least onelated to be exactly superconformal.
D3-brane ambient hyper field appearcys. Now, © ;6 must In this section, we discuss the results of a preliminary
be a four-supercharge descendant of the second-floor chirgfudy of the perturbative properties of such theories. The first
primary C; ; however, one may show that no such desceniask of such a study should be to investigate whether the
dant ofaa('quJ)q contains a D3 hyper field. On the other classicalS(Q(3,2) conformal symmetry is maintained in per-

[ . i . turbation theory, and an approach to this question is pre-
hand, X, is itself in the D3-brane ambient hyper, and sented in the next subsection. This is followed by a discus-

qo*X)q indeed does have descendants containing such gon of weak coupling properties of correlation functions of

field. B composite operators which illuminate issues which arose in
Hence, we identifyqa"XE)q as the consistent choice for our discussion of the putative gravity dual.

the second-floor chiral primary, aﬁ(ﬂ as the operato©®’

that generates all higher chiral primari@scorresponding to A. Quantum conformal invariance?

tgfnz(aprTnZ) _Dté)_vgre;nis nlfgd(:f)in?e d_opera’z;:z g}lt:alr]_tohér;e The elementary yet essential aspect of our defect theories
ining , includir@zs ! '9 is that certain fields of the ambief=4 SYM theory are

moments, can be obtained from il by supersymmetry “pinned” to the defect atx=0 and couple as 3-dimensional
transformations. This determines in principle the Completﬁ‘ields with scale dimension enhanced by one unit. Thus for a

D5-brane mode—defect operator dictionary. - ) . -
Before turning to perturbative calculations, let us mentionSc@lar POsoiX(x,y) or restricted spinok,(x,y) we have the

the effect of the defect on the closed-string mode—operatd?inned propagatorén Euclidean signatuje
dictionary. The leading-order identification of bulk closed

So3ps2 f d3xa'Z80 6. (5.9

st_ring fiel_ds to operators varying over the am_bient 4D_ space (X(O,)?)X(O,;?’))z } __—FT, é) (6.1)
will remain unchanged, but corrections can arise localized on 4m(y—y')? 2|K|
the defect. One obvious example of this is the energy-
momentum tensor, dual to the transverse traceless graviton, L oMY=y )i i XK,
which has the form N (0Yy)N1(0y"))=— ——=—=—=FT3| ——|,
2m*(y—y")* 2[K|
Tu=To 4 800 Ti'6L 5, 5.9 ©2
whereas propagators of defect fields are
Note that tracelessness of the full stress tensor, associated
with conformal invariance, refers to a trace over all 4 indices, - 1
not just 3, despite the fact that the conformal group is just (aty)aty’))= anly—y'| =FTy @2 ©.3
SO(3,2). This reflects the fact that the realization of scale
transformations is four-dimensional, reducing to a 3D scale K , ik
transformation only on the defect. (WT())=— w: T3<'F:_k> _
The dilaton, which is the supersymmetric partner of the Armly—y']? k2
graviton, should be dual to the total field theory Lagrangian, (6.4

including defect terms. Similarly, other operators in the same

reduced supersymmetry multiplet may haveS@) piece. Of course it is the 3-dimensional Fourier transform,
Obtaining the contributions of such defect pieces to correlaF T,(f(k))= fd3ke* Yf(k)/(2)3, which is relevant for cor-
tion functions via gravity calculations is an open problem.relation functions with all external operators pinned at the
Some bulk modes, such as the scalars dual t§?Tlie in  defect. We thus find that pinned propagators are more singu-
different multiplets; whether they also receive a localizedlar at short distance or high momentum than is standard in 3
part at leading order would be interesting to determine.  dimensions. It is in this way that the defect theory, which
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would have been super-renormalizable if purely in 3 dimen-contribution to this quantity with both external fields pinned
sions, becomes critically renormalizable with dimensionlesdas linear superficial degree of divergence, but this is de-
couplings. creased due to gauge invariance. Decreasing by a single
We now outline an argument based on power countingoower of externap; suggests a log-divergent Chern-Simons
and symmetries that conformal symmetry is maintained irfounterterm, but this is again prohibited by parity symmetry,
perturbation theory. We will argue that, after cancellationas is the companion pinned mass texgh ;. Thus both the
among the graphs of fixed loop order contributing to a giverpinned vacuum polarization and, self-energy are UV fi-
one particle irreducibl¢1Pl) amplitude, the only new diver- nite; SU(2),XSU(2)y, symmetry requires they; self-
gences are those of wave function renormalization of theenergy to be finite as well. Th¥,, self-energy is linearly
defect fieldsq',¥',f'. Wave function renormalization in- divergent, but there is no Lorentz-invariaxyd; X, counter-
duces anomalous dimensions of the elementary fields, whickerm. The termXy dgXy is Lorentz-invariant and parity-
are generically gauge dependent and nonobservable, and thiyariant, but it violated®s, and once again SUSY requires it
have no effect on conformal symmefrPur discussion as- t0 appear with other term4.56 that violate SU(2)y
sumes that the supersymmetry and other symmefges XSU(2)y.
parity andSU(2) X SU(2),/] are maintained in perturbation ~ Moving on to 3-point functions, we see that the amputated
theory. correlator(A; W) with the gauge field pinned is log diver-
Amputatedn-point functions of ambient fields generically gent by power counting. Although confined to the defect, the
contain two types of contributiongfor each bulk ling—a  hyperino¥' is a canonically coupled field in the fundamen-
pinned contribution in which the “first interaction” of the tal of the gauge group, and the usual gauge Ward identity
external field is on the defect and an unpinned contributionmplies that this divergence is canceled by wave function
in which the first interaction is in the ambieRt*. Our dis-  renormalization. The gauge coupliggan only be renormal-
cussion deals first with the pinned contributions, which carryized in the vacuum polarization, for which the defect contri-
an explicit 8(x) factor!® Divergences of these contributions bution was argued to be finite above. This argument applies
would require local countertermsl = [d3y©®; on the de- not just to our theory, but to a general coupling of a 4D
fect. Further the pinned pieces are the only contributions ijauge theory to 3D matter. In our case, howevEi 4
the ambient 4D theory is free, e.g., fdf=4 SYM theory = SUSY and SU(2),XSU(2)y, invariance then imply that

with gauge grougJ(1). there are no infinite counterterms for any of the cubic cou-
Let us write a power-counting formula for a generic am-plings in S, (4.33, or Sy (4.34).
putatedn-point function withng, ny, n; external defect The quartic couplings of the scalar potentialSg,; (4.50

fields andn,, ny , Nx,» Mxr Nyo NE pinned ambient fields. are generated from three-point couplings by eliminating aux-
With modest work, one can see that the superficial degree diary fields, and hence these are also fixed by SUSY and

divergence is cannot be renormalized. It has also been shown in Sec IV B
that other potentially log divergemtpoint functions withn
§=2na+3n,+2ny +ny +3n,+net3ng =4, such agq'q'¥/¥!) and(q'q'q’'q'q*q*), cannot induce
. new couplings because they violate the symmetries.
+2ny+3n—3n+3. (6.5 These remarks add up to a strongly suggestive argument

that at least the diagrams involving defect and pinned ambi-
There is a long list of divergent component amplitudes, ofent fields respect conformal invariance. This is sufficient to
which we discuss a few in order to convey the essential parguarantee conformality for thgl(1) version of our theory,
of our argument. where the gauge charge appears only in defect interactions.
Beginning with two-point functions, we see that tdeé  The gravity dual requireSU(N) gauge group for the field
self-energy is linearly divergent, threatening an infinite massheory. This necessarily involves nonpinned contributions to
counterterm¥'¥'. However, we have pointed out in Sec. correlators involving both ambient and defect fields. They
IV B that this term is parity violating and, due t&/=1  are more divergent at short distance, and lack conventional
SUSY, must be accompanied by other terms which are norranslation symmetry. Further study is needed to handle
invariant undeiSU(2), X SU(2)y . Thus the potential diver- them. Thus, although we are optimistic, it is too early to
gence must cancel, and SUSY then implies that the onlgleclare victory on the question of conformal symmetry of the
divergence of 2-point functions of defect fields is logarithmi- SU(N) theory.
cally divergent wave function renormalization. Gauge anomalies can be shown to be absent. Our theory
We may also consider the effect of the defect on the selfis still four-dimensionally gauge invariant, as it must be to
energy of bulk fields. The vacuum polarization of the gaugemake sense of the 4D gauge field, and bulk fields in principle
field determines the renormalization of the coupljngThe — contribute to a 4D gauge anomaly, which {6f=4 SYM
theory cancels. Defect fields, however, participate only in a
restricted three-dimensional gauge invariance. There are no
9Inspection of the unique 1-loop graph for theself-energy re- ordinary gauge anomalies in three dimensions. Three-
veals immediately that it is logarithmically divergent. The same isdimensional theories can possess a parity anomaly that in-
true for theF* self-energy in conventional componebt=4 A duces a 3D Chern-Simons terfB84], but this arises only
=4 SYM theory in Wess-Zumino gauge. when there is an odd number of charged Majorana spinors,
OFor an externaky, line the factor iss’ (x). so our theory is safe.
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One novel feature of the defect theory is th@) from (i) a(g2)

the q Frq vertex in the action. We now give a general argu- oy e et e
ment that this is a harmless artifact. We start at the level of ™/%%) <*-.__ M) "‘\\g -

elementary auxiliary fields. The propagatorFaf in (Euclid- T~ T

N r® iy m (@)
ean momentum space is 1 and that ofX,; is 1/(k>+k?).
Thus fordeXu(x,y), itis k% (k?+k?). In exchanges between ) s
gg pairs one then has the effective propagator —‘_:,,——" SN X
GMq(f) &< _ i Xu aMa() focoeees S
dk k2 dk k2 el N
f Z l—m :fﬁmz“(l (66) Tx q(s) r q(#73)

FIG. 1. Feynman diagrams through one-loop order for the cor-

- M Al Naro Al o i A
In position space this amounts to the propagator #/)2y  'elators(aMa(y.)a(y2)a(ys)) whereM is eithero™ or 1.

—y’)* betweenqq vertices at (0;) and (Oy'). After elimi-
nation of Fz one can see that the correct perturbation expan
sion is obtained if one neglects t#0) term in Eq.(4.50
and uses the effective propagators above for exchange of

d . — -
9¢Xy betweenqq pairs. Needless to say this is true for both | M m+,3(g)d—g_2?’q_ Yo [(O(y1)d(y2)a(ys))=0.
the tree level exchange, as discussed3@], and when the (6.7)
exchange is included with another amplitude. This suggests
that it may be useful to use/s=1 supergraph formalism in The two 2-point functions can be expressed as follows:
which the cancellation above is automdtiy].

counterterms are needed and renormalization data is inferred
directly from the Callan-Symanzik equations

(Aa(YDai(Y2)a;(ys))=8;[F+30x]), (6.9
B. Composite correlators at weak coupling

AN N (o v _ A ’
One clear prediction of the extended AdS/CFT correspon- (ao7a(y2)ai(y2)q;(ys)) = o[+ = Tx].
dence we are investigating is that a large set of defect opera-
tors in the dual field theory have integer scale dimension:rhe Feynman diagrams which contribute B=r©
Assuming the conjectured conformal symmetry is valid, the M) 17 Ty are given in Fig. 1. Th&U(2),, algebra for

reason is that these operators span a_short reprgsentationtﬁ se diagrams has been done and incorporated in the equa-
the superalgebr@Sy(4/4). Itis then valid to map fields on i,ns apove, while color is suppressed. The analysis succeeds

AdS, to composite operators on the defect according to th%ecause th&,, exchange diagrarfiy has different weights

free field scale dimension of the latter, and this was done B the two amplitudes.

Sec. V. Although one would not expect symmetry relations to  \yia have argued in Sec VI A tha(g)=0, but, even if
falil, it wohuld be Qeslrable to use weakhcouphng qaLcuIaluonsnot, the lowest order contribution i8~g3 which cannot
to test that radiative corrections to thedes vanish. Al- affect the present argument. Writiig®,I'® to distinguish

though the AdS/CFT duality predicts that most correlatorstree and 1-loop contributions 1, the perturbative CS equa-
are renormalized, it is not excluded that 2-point functions Oftions can be written as

defect operators{0;03), have no radiative corrections.

However, to test these features requires more precise calcu- d

lations than time has so far allowed us. MW(F(1)+3FX)=(2yq+ Ya) T, (6.10
It is nevertheless possible to use weak coupling analysis

to illuminate some aspects of the operator map and we now q

dls_cuss one appllcgtlon. I_(aliza-_KIem analy3|s_ Iefi us to a MW(F(1)+F'—Tx)=(27q+Van)T(O)-

unique operator of dimensiah= 1 in the open string—defect

operator dictionary, namely tf&U(2),, triplet C*=qo*q of (6.11

Eq. (5.1). The singletgq is not in the operator map. Generi- The graphl’’

cally one would expgct it to have anomalous dimension, a”%ultiple of g?T'®), and its scale derivative thus vanishes.

we will show tha_t this does happen to ordgiN. However, botH" M) andT"y are log divergent. By subtraction,
The operatorjoq is the primary of the multiplet con- the two equations then give

taining the conserved curreﬂg of Eq. (5.4), so it is fair to

assume that its scale dimension is exadily 1. Given this O

assumption it is not difficult to compare graphs for the 4Mm WFX:(qu_?’qvq)F : (6.12

3-point_functions  (qo*a(y)a(y2)a(ys))  and

(qa(y1)a(y2)a(ys)) through 1-loop order and show thagy  !f ¥goq IS Nonvanishing, as we assumgg is nonvanishing.

acquires anomalous dimension. We work implicitly in the Thus qq has radiatively corrected scale dimensitg,=1

framework of differential regularizatiof35] in which no  + ygq.

(6.9

is UV finite (it turns out to be a numerical
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Another application of perturbative analysis to the opera-

tor map is studying the two candidate operators discussed in P ETI IS
Sec. V whose multiple products might appear as field theory Tr (Xy)? ”
duals of higher D5-brane KK fluctuations on AdShe chi- ooy,

ral primary fields of the KK multiplets are modes o ( Xy oo

+2)(7) with SU(2),; quantum numbet (with 1=2) and
scale dimensiom\=1I. The two families of candidate dual  F|G. 2. The generic contribution to the one point function

operators are the isospircomponents ofdoq)' and those  (Tr(X,)*) with all k Xy lines pinned to the defecvertical line,

of qoA(X2)(~q. In Sec. V we presented an argument depicted here fok=3.

based on th&-duality invariance of the defect D3/D5 action

suggesting that the latter family is the correct choice. We will We conclude our survey of perturbative results with a
now outline an argument based on the Callan-Symanzikliscussion of the field theory interpretation of poles that ap-
equation which shows that the former set of operators has npeared in the gravity calculations of Sec. Ill. In the compu-
anomalous dimension to lowest order. The virtue of this artation of (0,) from the D5-brane action, we noted a diver-

gument, which is similar to that fayq above, is that a pre- 9gence forA,<3 which comes from the boundary region of

cise evaluation of the diagrams is not required. This is nothe integration over AdsS In the conventional AdS/CFT cor-
true for the operator faminToA(XE)('*l)q since there are respondence similar infinities can be interpreted as UV di-

more contributing diagrams, so the question of anomalou¥€r9ences in. the dual field theory. kA parallel interpretgtion
dimension for these is not yet settled. Seems plausible here. F6Y,=Tr (X,)" some Feynman dia-

. : _grams contain a generic subamplitude viitpinnedXy, lines
. We choo_seAthe2 highest weight component ofltaé pro (as shown in Fig. 2 fok=3). The degree of divergence is
jection of (go"q)” and study all tree and 1-loop graphs for s_3_ | Thys the diagram has a subdivergetaall inter-

the 5-point function action pointsy, on the loop come togethefor k<3 in per-

o o o fect correspondence with the gravity result. Of course the
(9 9% a%(y)a (Y1) d2(Y2)a1(Y3) G2(Ya)). divergence on the gravity side is present for generic AdS
action, but cancels due to symmetry in our specific case. In
. field theory as well, the divergence predicted by generic
There are 1-loop graphs with gluon afgX,, exchange be- ,ver counting also violates symmetry and cancels. For the
tween theq lines aty; andy,. These graphs contribute no casek=2 the field theory amplitude is linear divergent, but
anomalous dimension in the CS equation since they enter ithe gravity result is finite. However, in low order examples,
the same way as for the protected operatof'q. The same the divergence cancels due to symmetric integration leaving

is true for exchanges between linesyatandy,. There are @ finite remainder. One may also apply similar power count-
additional UV finite graphs as ifi’ above. There remain 4 ing to field theory amplitudes fo(0,03) and find that a

graphs with gluon exchange betwefepor Vo and373 or 94 subdlvergenc_e is formally _pre(_jlcted Whehs_— Ay=0 in
and 4 more graphs with exchange @i, . The amplitudes agreement with the calculation in supergravity.

of the graphs are not the same space-time functions, but their
contribution to the scale derivative is proportional to the
same local tree amplitude in all cases. There are two gluon

exchanges betweeyq and two betweenq. Coefficients are Many avenues remain for further exploration. The most
equal and opposite and the sum cancels. One can examiféessing issue is the proof of conformality 8tJ(N) gauge

the SU(2),, flavor algebra and find a similar cancellation group. Assuming that the theory is conformal, one is natu-
among the 495X, exchange graphs. In this way we have rally led to wonder about the existence of other DSCFTs.
shown that the 5-point function satisfies the CS equatioimple generalizations include changing the gauge group,
with no orderg?N anomalous dimension for tHe=2 com-  the defect matter representation, or promoti@l)s to a
ponents of the operatoﬁ(rAq)z. The same argument fails non-A_bellan symmetry; this last p_055|blllty may be holo-
for 1=0,1 components because there are inequivalent coldjraphically related to a theory with multiple D5-branes.
contractions. ompletely different DSCFTs in other dimensions likely ex-

It is a matter of simple combinatorics to extend the argu-'St as well, and.may have holographic dyals. .
ment to the highest weight=n components of qoq)" A more detailed study of the correlation functions of the

, o . ) ) field theory described in the present paper would also be
One first separates grEphs with interactiongdimes which interesting, including a precise matching with results from

terminate at a singlejo”q factor in the product. These the D5-brane action containing KK reduced bulk modes. The
graphs do not contribute to the anomalous dimension, aguestion of the existence of non-renormalization theorems
above. There remain B 1) gluon exchanges betweem  for correlators with two defect operators should be investi-
and 2f1—1) betweenqq. Their contribution to the scale gated. There also remains the more general understanding of
derivative cancels as above. Finally, there are41) dgXy how the presence of the defect corrects the closed string—
exchanges. Within groups of 4 one can study the flavor algeambient operator map and the related correlation functions.
bra and find complete cancellation. Whether the gravity coupling vanishes for “extremal” corr-

VII. OPEN QUESTIONS
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elators(0,05) is a test of our reasoning concerning the pole ( 1 9 iy cody g 10+1)
structure. 7 a2, o sInycosy— — ———5—
The importance of determining the supergravity solution S cOS § 4 oy cosy
taking account of the back-reaction of many D5-branes, as (1" +1)
emphasized by7], remains. Such a geometry must produce S
all the physics of the DSCFT through closed string excita- Sirfy
tions alone, presumably by means of local localization. Fi-
nally, it would be fascinating to deform this correspondenceSince there are interactions between closed-string and D5-
away from the conformal ||m|t, and to Study the h0|ographic brane fields on the D5 world volume, we are interested in the
duality between the much broader class of defect field theobehavior of the spherical harmonicsyat-0. To leading or-
ries that run with scale and more intricate brane geometriesler in ¢, the equation fozﬁ,(w) (A4) reduces to
Note added in proofA demonstration of the conformality

of the full non-Abelian defect theory has recently appeared > 2 o9 1'(I'+1) K
in [27]. —+———T+k(k+4)—l(l+l) Z,,(4)=0.

)Z:(I/(d/)z —k(k+4)Z},(). (Ad)

W oY
(A5)
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APPENDIX A: SPHERICAL HARMONICS ON S ° AND S? there no more than one harmonic with a fixed choicé.of
This is because according to E&\6), the second-order dif-
ferential equation(A4) has only one solution regular at

always free to takey# 0 by redefininge if necessary. The
leading order term in EqA5) then leads to the requirement

a=l" or a=-1"-1. (AB)

Bulk fields are expanded in spherical harmonics on the S
For gxarnple, for scalar harmonics, we can write tAd&- =0. This uniqueness implies that for givdn there is no
rr1|9n|cs in terms of products of standard harmomhﬁe,cp), more than one&SU(2), X SU(2)y representation labeled by
Y. (x,s) on each & and functions of the fifth coordinaig: (1.

We can furthermore show that ongU(2), X SU(2)y

k _v! K k representations with+1’<k will appear inside theSQ(6)
Yimrm (8:0,0,x,89) =Y (0,0)Y . (x,8)Z),, (). representation labeled by Recall that theSO(6) represen-

(A1) tation is thek-fold symmetric product of the fundamentl

L . . This decomposes into representatioBsl) (1,3), i.e. into
The S Laplacian in the coordinate®.4) is a sum of (,I")=(1,0) and (,I')=(0,1). We easily see that

1 5 5 the k-fold product of this sum contains only representations
Des= — 2 Sirw colu— + 0 satisfyingl +1’ <k, with equality only when the factors in
ST Sty cody g v '/jaz/; cosy 7 eachSU(2) are completely symmetrized.
1
APPENDIX B: FIELD THEORY CONVENTIONS
+ mm’“ . (A2)

We work in mostly-minus signature. Minimal three-
A scalar spherical harmoni¥ on S transforms in thé-fold ~ dimensional spinors are Majorana, so it is convenient for us
symmetrized traceless product of fundamentalsS@(q 0 use Majorana notation in four dimensions as well. A con-
+1). It is an eigenvalue of the Laplacian o with  Vvenient Majorana basis for 3D (22) and 4D (4<4) Clif-

eigenvalue ford matricesp® and y* is
OeaY = —k(k+q—1)Y¥ (A3) pi==o® pi=ict, pP=ic?, (8D)
0_ 0. 3 1_ 1. 3
and using Eq(A2) we can obtain an ordinary differential y=p®o, y=p®o,
equation forZ\, (), Y’=p?00®, yi=Iwict, (B2)
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with o the Pauli matrices. These matrices are all imaginary, y=—iy"y"%?y*=1®c?, L=%i(1+y), R=3(1—1v),

and p° and y° are Hermitian while the rest are anti- (B3)
Hermitian. In this basis, Majorana spinors are real in both

three and four dimensions. We define the 4D chirality andwith y purely imaginary and Hermitian and as usual satisfy-

projection matrices as ing y*=1,{y,y"}=0.
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