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We develop both the gravity and field theory sides of the Karch-Randall conjecture that the near-horizon
description of a certain D5-D3 brane configuration in string theory, realized as AdS53S5 bisected by an
AdS43S2 ‘‘brane,’’ is dual to N54 super Yang-Mills theory inR4 coupled to anR3 defect. We propose a
complete Lagrangian for the field theory dual, a novel ‘‘defect superconformal field theory’’ wherein a subset
of the fields ofN54 SYM theory interacts with ad53 SU(N) fundamental hypermultiplet on the defect
preserving conformal invariance and 8 supercharges. The Kaluza-Klein reduction of wrapped D5 modes on
AdS43S2 leads to towers of short representations ofOSp(4u4), and we construct the map to a set of dual
gauge-invariant defect operatorsO3 possessing integer conformal dimensions. Gravity calculations of^O4&
and^O4O3& are given. Spacetime andN dependence matches expectations from DCFT, while the behavior as
functions ofl5g2N at strong and weak coupling is generically different. We comment on a class of correlators
for which a nonrenormalization theorem may still exist. Partial evidence for the conformality of the quantum
theory is given, including a complete argument for the special case of aU(1) gauge group. Some weak
coupling arguments which illuminate the duality are presented.
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I. INTRODUCTION

The study of the AdS/CFT correspondence@1–3# ~for a
review, see@4#! has taught us much about both the behav
of field theories and the nature of string theory. According
generalizations of the correspondence with additional st
ture added to both sides are inherently quite interesting,
potentially have much more to teach us about field the
dynamics, the nature of string theory and how holograp
relates them.

It is well known that spatial defects may be introduc
into conformal field theories, reducing the total symme
but preserving conformal invariance@5,6#. Whether one can
obtain holographic duals of such ‘‘defect conformal fie
theories’’~DCFTs! is a fascinating question. A potential gra
ity dual was proposed by Karch and Randall@7#, who studied
curved branes in anti–de Sitter space in an effort to ‘‘loca
localize’’ gravity @8#.

In their investigation, Karch and Randall noticed that
AdS4 brane inside AdS5 could be naturally realized in strin
theory using a certain D3-brane–D5-brane system. The n
horizon limit of the N D3-branes produces an AdS53S5

background in which the D5-branes occupy an AdS43S2

submanifold. Karch and Randall speculated that the A
CFT correspondence would ‘‘act twice’’ in this system
meaning that in addition to the closed strings propaga
throughout space providing a holographic description o
field theory on the boundary of AdS5 as usual, the fluctua
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tions on the AdS4 brane should be dual to additional physi
confined to the boundary of the AdS4. Hence, the dual field
theory contains not only the usuald5(311)N54 super
Yang Mills theory, but also new fields and couplings livin
on a (211)-dimensional defect, obtained from the low
energy limit of the 3-5 open strings interacting with the 3
strings of the original brane setup.

We study the case of a single D5-brane, whose back
action on the near-horizon geometry can be neglected in
’t Hooft limit, allowing it to be treated as a probe hostin
open strings. The resulting dual field theory consists
SU(N) N54 SYM theory in R4, with a subset of these
ambient modes interacting in a fashion we will determi
with a single fundamental hypermultiplet on theR3 defect.
The resulting theory has half the supersymmetry of the a
bient theory, but intriguingly, must preserveSO(3,2) confor-
mal symmetry in order to match the unbroken anti–de Si
isometries on the gravity side. As a result the Karch-Rand
system is an ideal candidate for the holographic descrip
of a DCFT. We will construct the field theory explicitly as
novel defect superconformal theory with an exact Lagra
ian description.

The reduced symmetries of codimension-one DCFTs
mit interesting structures such as one-point functions for
usual operators in the ambient space, two-point functions
ambient operators with different conformal dimensions, a
mixed two-point functions between these and operators
calized on the defect; the functional forms of such correlat
©2002 The American Physical Society09-1
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are significantly constrained@5,6#. On the supergravity side
we employ holography to calculate such novel correlat
functions from Witten diagrams involving integrals over t
AdS4 submanifold, and we reproduce the space-time for
required by defect conformal symmetry.

We consider the expansion of the D5-brane action thro
quadratic order in fluctuations about the AdS43S2 probe
configuation. We perform a Kaluza-Klein reduction of qu
dratic terms in bosonic open string fields (c) and find a set
of modes of integer mass and scale dimension. The low
mode of the D5-brane gauge field on AdS4 is dual to the
current of a globalU(1)B symmetry in the field theory. As
expected all modes can be organized in short representa
of the superalgebraOSp(4u4) associated with supersymm
try in AdS4. Other terms in the fluctuation action involv
closed string fields (f), specifically terms of orderf,fc,
and f2. These are interpreted as interactions which de
mine the novel correlators discussed above. We also ob
the leading power ofN and the ’t Hooft couplingl for the
D5-brane contribution to all correlation functions, a stron
coupling prediction.

We then turn to the dual DSCFT. Using gauge invarian
supersymmetry andR symmetry, we construct the fiel
theory Lagrangian. This involves augmenting the usualN
54 super-Yang-Mills theory in four dimensions with dy
namics on the defect. The fundamental defect hypermulti
couples canonically to the restriction of the 4D gauge field
the hypersurface; we use the ‘‘superspace boundary’’ te
nique @9# to derive a defect action preserving eight sup
charges. We construct the action inN51 superspace, bu
demonstrate that it is fullyN54 supersymmetric by identi
fying the SU(2)V3SU(2)H R symmetry. The symmetrie
rule out any additional marginal interactions, preserving
4D gauge couplingg as the only dimensionless parameter,
well as forbidding mass terms, leaving the theory classic
conformal-invariant. Interestingly, the bulk fields participa
ing in the defect interaction involve not just half the scala
but the normal derivatives of the other half. The boso
parts of related~nonconformal! supersymmetric defect ac
tions derived from intersecting branes appeared in@10,11#.

We also match the bosonic modes of the D5-brane on
gravity side to dual field theory operators. The multiplets
short, so conformal dimensions should be protected in
usual way. There is a unique candidate for the chiral prim
operator of the lowest multiplet, and we use supersymm
to fill out the rest of this multiplet, matching the modes
fluctuations on the gravity side. We also discuss the oper
structure of higher multiplets. Weak coupling calculatio
help to determine which operators have protected scale
mensions.

Finally, we discuss the perturbative dynamics of the fi
theory. We argue that for a certain class of ‘‘pinned’’ corre
tors, there are no divergences other than wave func
renormalization of the defect fields. This is sufficient to de
onstrate quantum conformal invariance for gauge gro
U(1). For gauge groupSU(N) nonpinned correlators mus
be considered as well, and we have not yet studied th
Hence the question of quantum conformal invariance
mains open. We also discuss the field theory computatio
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various one- and two-point functions, and compare to gr
ity. We find that although the powers ofN match perfectly,
the powers of the ’t Hooft parameter do not. Hence, unl
theN54 case, the simplest correlators of this theory do
obey a nonrenormalization theorem. We do describe a c
of correlators independent ofl at leading order, for which a
non-renormalization theorem is not ruled out. We conclu
with a discussion of directions for future research.

One can consider analogous models in other dimensi
Defect conformal field theories in two dimensions are stu
ied in @12#. Some of them have holographic duals in AdS3,
such as the AdS2 branes inside AdS3 with the NS-NS flux
studied in@13#. In these cases, one may be able to study
correspondence beyond the supergravity approximation.

Sections IV and VI on the construction and analysis of
field theory are largely independent of holography and c
be read separately.

II. DESCRIPTION OF THE SYSTEM

A. Brane construction

The system of partially-overlapping 3-branes a
5-branes preserving 8 supercharges has been known for s
time, and was extensively studied in@14# as a way to engi-
neer 3-dimensionalN54 field theories on branes. In con
trast, we consider systems which have infinite D3-bran
and hence have four-dimensional~as well as three-
dimensional! dynamics.

We choose coordinates as follows. TheN D3-branes fill
the 0126 directions, while the D5-brane spans 012345;
the branes sit at the origin of the transverse coordinates
the absence of the D5-brane, the system has 16 unbro
supercharges, anSO(3,1) Lorentz symmetry acting on
(x0 ,x1 ,x2 ,x6) and an additionalSO(6);SU(4) acting on
(x3 ,x4 ,x5 ,x7 ,x8 ,x9). The D3-D5 background preserves
supersymmetries, reducesSO(3,1) to SO(2,1) on
(x0 ,x1 ,x2), and breaks SO(6) to SO(3)3SO(3)
;SU(2)H3SU(2)V acting on (x3 ,x4 ,x5) and (x7 ,x8 ,x9),
respectively.

Four kinds of strings exist in this system. As usual, clos
strings propagate in the bulk, giving rise to the fields of ty
IIB supergravity~SUGRA! as well as all the excited modes
Also, 3-3 and 5-5 open strings lead to sixteen-supercha
vector multiplets on the D3-brane and D5-brane, resp
tively; these each split into a vector multiplet and a hyp
multiplet under the preserved eight supercharges. Finally,
strings localized on the (211)-dimensional intersection o
the branes lead to a three-dimensional hypermultip
charged as a bifundamental under the gauge group of e
brane.

B. Near-horizon limit

We remind the reader of the familiar facts of the origin
AdS/CFT procedure of Maldacena@1#. Consider a stack ofN
parallel D3-branes withgs→0, N→` with gsN fixed. This
system may be examined either forgsN!1, in which case
the appropriate description is provided by open strin
propagating on flat branes, or forgsN@1, in which case the
9-2
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appropriate description is a black three-brane solution
type IIB supergravity. By sendingl s→0 with the energies of
fluctuations fixed, one is left in the former case with t
renormalizable field theory of the massless open string sta
namely 4DN54 super Yang Mills theory, and with close
strings propagating in the AdS53S5 near-horizon geometry
of the black brane in the latter case.

Thus the two kinds of string modes in the original bra
setup, open and closed, have been segregated from on
other, yet are found to describe the same physics in the
theory/near-horizon limit. Each description is useful in a d
ferent region of parameter space. Additionally, the symme
groups enlarge on both sides in the limit, as the field the
is exactly~super!conformal, while AdS isometries appear o
the gravity side; the 4D conformal and 5D anti–de Sit
supergroups are algebraically identical, and are deno
SU(2,2u4). This group also contains theSO(6);SU(4) of
the original brane setup, which is anR symmetry in the field
theory and the isometry group of S5 in the dual.

The system we study is richer, but displays similar beh
ior. Again we takegs!1, N@1 with l[gsN fixed. For the
casegsN!1, the appropriate description of the branes are
flat hypersurfaces. We take the limitl s→0 with the energies
of D3-brane fluctuations fixed. This decouples the modes
the heavy D5-branes, as in@14#, and leads to the~311!-
dimensional field theory described byN54 SYM theory
throughout most of the space, but with a (211)-dimensional
defect containing a localized, interacting fundamental hyp
multiplet.

For gsN@1, on the other hand, the appropriate descr
tion of the D3-branes is a black three-brane. However,
still havegs!1, and hence a single D5-brane should still
described as a hypersurface with propagating open stri
Taking the l s→0 limit here leads to the usual AdS53S5

near-horizon geometry of D3-branes with an embed
‘‘probe’’ D5-brane.1 Once again the stringy modes of th
brane setup have been segregated into two sets, one for
limit of gsN: the closed strings and open 5-5 strings descr
the gravity side, while the low-energy limit of the 3-3 an
3-5 open strings produces the field theory. Once again,
expectation is that the two systems are holographic dual
one another.

We may readily see that the D5-brane lives on an Ad4
3S2 submanifold of AdS53S5, as follows. In the near-
horizon geometry of the D3-branes, the useful coordina
are yW[(x0 ,x1 ,x2), x[x6, and the radial coordinatev and
the anglesV55(c,u,w,x,§) defined by

x35v cosc sinu cosw, x45v cosc sinu sinw,

x55v cosc cosu,

x75v sinc sinx cos§, x85v sinc sinx sin§,

x95v sinc cosx. ~2.1!

1Locally localizing gravity the D3/D5 system requiresM D5-
branes withgsM@1, a different regime from our case@7#. Other
studies of AdS4 /AdS5 setups with strong back reaction includ
@15,16#.
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The metric for the near-horizon geometry in this coordin
system is

ds25dsAdS5

2 1dsS5
2 , ~2.2!

dsAdS5

2 5L2S dv2

v2 1v2~dx21dyW 2! D , ~2.3!

dsS5
2

5L2
„dc21cos2c~du21sin2udw2!

1sin2c~dx21sin2xd§2!…, ~2.4!

where as usualL454pa82gsN. The D5-brane sits atx5c

50, filling the AdS4 defined by the coordinatesv, yW and
wrapping theS2 parametrized byu, w.

The isometry group of the metric~2.3!, ~2.4! preserved by
the D5-brane isSO(3,2)3SU(2)V3SU(2)H . SO(3,2) acts
on (v,yW ), while whileSU(2)H andSU(2)V rotate (u,w) and
(x,§), respectively. From a field theory viewpointSU(2)V
3SU(2)H is the unbrokenR symmetry andSO(3,2) is the
3D conformal group, suggesting that the dual field theo
must be exactly conformal and contain the eight preser
supercharges of the D3-D5 system. Including the superc
formal enhancement to sixteen supercharges, we expe
find the supergroupOSp(4u4).

C. Correlators in a defect CFT

The symmetries and the form of correlation functions
CFTd with planar boundary have been discussed in the
erature, for example in@5,6#. Our field theory system, a
CFT4 in R4 with additional fields on a planarR3 defect,
shares these features. We therefore review the most rele
part of this information, which is mostly taken from@6#.

In the field theory description we denote points ofR4 by
(yW ,x)5xm with the defect atx50. TheSO(3,2) conformal
group of the DCFT is generated by 3-dimensional trans
tions and Lorentz transformations together with t
4-dimensional inversion,xm→xm /(xnxn). These transforma-
tions preserve the defect and act on it as stand
3-dimensional conformal transformations.

The possible forms of correlation functions for prima
scalar operatorsO4 on the ambientR4 andO3 on the defect
are restricted by the conformal symmetry. Correlators invo
ing only O3 have the properties expected from standa
3-dimensional conformal invariance, e.g. the space-ti
form of two- and three-point functions is completely dete
mined, while four-point functions contain an arbitrary fun
tion of two ‘‘cross-ratio’’ variables.

On the other hand the restriction of the conventional c
formal group SO(4,2) of CFT4 to SO(3,2) leads to new
possibilities for correlators ofO4 in DCFT. Let scale dimen-
sions of operatorsO4 and O3 be denoted byD4 and D3,
respectively. There are nonvanishing one-point functio
^O4&, with fully determined space-time dependence:

^O4~x,yW !&5
c

xD4
, ~2.5!
9-3
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as well as two-point functionŝO4O3& between one ambien
and one defect operator, with space-time dependence
fully determined:

^O4~x,yW !O3~yW 8!&5
c8

xD42D3hD3
, h[x21~yW2yW 8!2,

~2.6!

and finally there can be nonvanishing two-point functio
^O4O48& between ambient operators withD4ÞD48, contain-
ing an arbitrary function of one invariant variable:

^O4~x,yW !O4~x8,yW 8!8&5
1

xD4x8D48
f ~j!,

j[~xm2xm8!2/4xx8.
~2.7!

Our calculations in both weak coupling field theory and t
AdS5 /AdS4 dual confirm this structure.

On the gravity side the action of the conformal symm
tries is best seen if we transform the radial coordinatev to
z[1/v, in terms of which the AdS5 metric ~2.3! becomes
conformally flat,

dsAdS5

2 5
L2

z2 ~dz21dx21dyW 2!. ~2.8!

The boundary is now atz50. The usual inversion isometr
of AdS5 preserves both the boundary and the AdS4 of the
D5-brane atx50. It acts as the standard inversion on th
AdS4. Hence the usual relation between bulk isometries
conformal symmetries on the boundary of the usual A
CFT correspondence extends to the new AdS5 /AdS4 setup.2

III. STRING THEORY SIDE

The bulk degrees of freedom atgs→0, gsN fixed but
large include both closed string modes, and open string
citations on the D5-brane. The former are the massless m
tiplet of type IIB SUGRA reduced on AdS53S5, while the
latter are a 6D 16-supercharge vector multiplet living on
D5, dimensionally reduced on AdS43S2.

With the goal of calculating correlation functions, we a
interested in the fluctuation equations of this system. T
total action is the sum of the type IIB SUGRA action and t
Born-Infeld and Wess-Zumino pieces of the D5-brane acti

Stot5SIIB1SBI1SWZ . ~3.1!

The fluctuation equations for type IIB SUGRA reduced
AdS53S5 were analyzed in@17#, and they have been use
extensively to calculate correlations for gauge-invariant
eratorsO4 in N54 SYM theory at largel ~for a review and
references, see@4#!. These results will generically be co

2The 5D inversion also preserves the more general Karch-Ran
AdS4 surfaces atx5Cz and acts as the standard inversion on th
surfaces.
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rected in our system due to the new physics on the def
and we expect new correlators of the form~2.5!, ~2.7! to
appear. On the gravity side, this is a consequence of c
plings of closed-string modes to brane modes that are
plicit in SBI andSWZ . Furthermore, terms in the brane actio
involving open string modes and open or closed string c
plings make predictions for purely three-dimensional co
elators of theO3, as well as mixed correlators involving bot
O3 andO4, which we expect to match for example~2.6!.

Let us compare the normalizations of the terms in E
~3.1! to understand the relative coupling strength of the va
ous kinds of interaction. The overall normalization ofSIIB in
the Einstein frame is@18#

SIIB5
1

2k2E d10xA2g„R2 1
2 ~]F!21•••…, ~3.2!

wherek25 1
2 (2p)7gs

2a84 includes factors of the string cou
pling extracted from the dilaton before passing to the E
stein frame. In calculating correlation functions, it is use
to Weyl rescale the metric to extract the dimensionful para
eter @19#,

gMN[L2ḡMN . ~3.3!

In terms of the rescaled metric, we have

SIIB;
L8

gs
2a84E d10xA2ḡ„R2 1

2 ~]F!21•••…

;N2E d10xA2ḡ„R2 1
2 ~]F!21•••…, ~3.4!

where in the last line we usedL454pgsNa82. This is a
familiar result. If we wish we may canonically normalize th
action by defining rescaled bulk fieldsF8[FN.

The D5-brane action in the Einstein frame is given by

SBI52TD5E d6jeF/2

3A2det„gab
PB1e2F~Bab

PB12pa8Fab!…, ~3.5!

SWZ52TD5E e2pa8F1BPB
`(

p
C(p)

PB , ~3.6!

wherePB denotes the pullback of a ten-dimensional qua
tity; the unusual powers ofeF result from transforming out
of string frame and do not affect the quadratic action. We
a,b50,1,2,v,u,w for the coordinates along the 5-brane,i , j
56,x,§,c for the normal directions, andM ,N to run over all
10 indices. Furthermore, we will usem,n for AdS4 indices
alone anda,b for S2 indices. Weyl rescaling the metric in
SBI , we will find

all
e

9-4
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SBI52L6TD5E d6jA2ḡ~11fluctuations!

52%Nl1/2E d6jA2ḡ~11fluctuations!, ~3.7!

where we used the expressionTD551/(2p)5gsa83 for the
D5-brane tension, and% includes the numerical factors.

A. Correlators of DCFT from gravity

Let us imagine a generic D5-brane fieldc and some cou-
pling of m bulk generic fieldsf to n 5-brane fields:

SBI5Nl1/2E d6j„~]c!21fmcn
…

5E d6jS ~]c8!2

1
1

Nm1n/221ln/421/2
f8mc8nD . ~3.8!

where we defined a canonically normalized brane fieldc8
5N1/2l1/4c. The interaction terms resulting fromSWZ scales
identically inN andl. The canonically normalized fieldsf8
and c8 produce two-point correlation functions of dual o
erators with no factors ofN andl. With this normalization,
the one-point function of the bulk fieldf8 scales asl1/2

(m51,n50) and the two-point function of the bulk field an
the defect field scales asl1/4N21/2 (m51,n51).

Holography requires that the power ofN in the gravity
result for any correlator agree with that of planar graphs
the field theory at fixedl. On the other hand, the power ofl
from Eq. ~3.8! at largel5g2N need not agree with field
theory results at weak coupling. It is quite easy to see in
present case that theN dependence always agrees but thel
dependence generically does not.

The agreement forN can best be ascertained in the no
malizations of Eqs.~3.4! and ~3.7! in which we have the
factor N2 in SIIB and N in SBI . All correlators^O4O48•••&
which are nonvanishing if the defect is removed are of le
ing orderN2, while contributions ofSBI are of orderN in all
correlators. There is a simple normalization in the DC
which reproduces these results.3 Planar graphs with only ad
joint fields are of orderN2, while in those with defect fields
there is a fundamental ‘‘quark’’ loop which matches theN in
Eq. ~3.7!.

The power ofl for multipoint correlators is generically
negative fraction, and it is clear that perturbative field the
gives non-negative integer powers in the weak coupl
limit. This situation is entirely consistent with the view th

3For chiral primaries one can takeO45N12k/2Tr Xk in terms of
canonicalX fields ofN54 SYM theory. Defect correlators contain

ing powers (C̄C) j or (q̄q) j of canonical hypermultiplet fields carr
the factorN12 j .
02500
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AdS/CFT amplitudes sum all planar graphs at large fixedl,
but it also indicates that the nonrenormalization properties
correlation functions inN54 SYM theory which were re-
vealed through supergravity@20# are absent for generic de
fect correlators.4 Correlation functions withn52 and anym,
however, are seen from Eq.~3.8! to be independent ofl.
This includes defect 2-point functionŝO3O3& and others
which behave asl0 at weak coupling. Nonrenormalizatio
theorems could exist for this class of correlators.

One can use Eq.~3.8! to compute correlation functions o
defect and ambient operatorsO3 andO4 for a generic bound-
ary DCFT. The one-point function̂O4& is computed by tak-
ing the standard bulk-boundary propagator in AdS5, fixing a
point on the boundary whereO4 is located, and integrating
the propagator over the AdS4 subspace. Let us consider
scalarO4 of conformal weightD4. The integral is convergen
for D4.3, and one finds

^O4~x,yW !&5l1/2E dzdzW3

z4

G~D4!

p2G~D422!

3S z

z21x21~zW2yW !2D D4

5l1/2
1

xD4

GS D423

2 DGS D4

2 DGS 3

2D
pG~D422!

. ~3.9!

By translational invariance along the defect, the one-po
function depends only on the transverse coordinatex. The
scalingx2D4 is what is expected from conformal invarianc
~2.5!. We will discuss the singularity atD453 shortly.

The one-point function̂O4(x,yW )& is closely related to the
two-point function ^O4(x1

m)O4(x2
m)& in the conventional

AdSd11 /CFTd correspondence. It is known@21# that a naive
supergravity computation for the latter is incorrect and tha
careful cutoff procedure is required. One may thus be w
ried about a similar sensitivity in the computation of^O4&.
However, there is reason to believe that this is not the c
here, and that Eq.~3.9! is in fact the correct answer. One wa
to see this is to recall that for the two-point function, each
the two contributing terms from the action was separat
divergent, and so a more careful treatment of the Dirich
problem was required to extract the proper finite result@21#.
Here there is no such divergence in the single term cont
uting to the one-point function.

Alternately, a world sheet way to understand the subtl
in the computation of the two-point function follows from
trying to perform the calculation in string theory, which
well defined ford52 @22#. There one considers a two-poin
function of the corresponding vertex operators on a sph
and divides the result by the volume of the world sheet c

4O. Aharony and A. Karch independently calculated thel depen-
dence of̂ O4& and recognized it could not obey a nonrenormaliz
tion theorem. We thank them for communicating their results.
9-5
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formal symmetry which fixes the two insertion points. T
volume of this residual conformal symmetry is infinite, and
is canceled by another infinity in the numerator from t
world sheet two-point function. Thus again the computat
of the target space correlator involves cancellation of t
divergent factors, which may leave out a finiteD-dependent
coefficient; in fact the proper treatment of this computat
has been shown to give the correct factor ford52 @22#.
However, there is no corresponding subtlety in the compu
tion of the one point function̂O4&, since the volume of the
residual conformal symmetry of a disk with one interi
point fixed is finite. Hence we expect Eq.~3.9! to be unam-
biguous and correct.

For the two-point function̂ O4(x,yW )O3(0W )&, the integral
to be done is the product of bulk-boundary propagat
KD4

KD3
, with the first as above and the second propaga

from the pointzm5(z,0,zW) on AdS4 to the point 0W on its
boundary. We write

^O4~x,yW !O3~0W !&

5J~x,yW ;D4 ,D3!
l1/4

N1/2

G~D4!

p2G~D422!

3
G~D3!

p3/2GS D32
3

2D , ~3.10!

with the integral

J~x,yW ;D4 ,D3!5E dzdzW3

z4 S z

z21x21~zW2yW !2D D4

3S z

z21zW2D D3

. ~3.11!

As explained in@21#, it is convenient to use the inversion

~z,0,zW ![
1

z821zW82
~z8,0,zW8!, ~x,yW ![

1

x821yW 82
~x8,yW 8!,

~3.12!

to do the integral, which leads to

J5
1

~x21yW 2!D4
E dz8dzW83~z8!D324

3S z8

z821x821~z8W2yW 8!2D D4

. ~3.13!

After scalingzW85yW 81Ax821z82wW andz85x8u, one finds
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J5
1

xD42D3~x21yW 2!D3
E du uD41D324

~11u2!D42 2/2

3E dwW 3

~11wW !D4
~3.14!

5
1

xD42D3~x21yW 2!D3

3

p2GS D41D323

2 DGS D42D3

2 D
2G~D4!

. ~3.15!

The conformal invariant form~2.6! thus arises from gravity.
The integral converges if the conditionsD4>D3 and D4
1D3>3 are satisfied. The singularity atD41D353 is due
to a divergence as the inverted radial coordinatez8→0 and is
similar to the singularity of̂O4& at D453. The singularity at
D45D3 arises asz8→`.

The poles due to theG functions in the numerators of Eqs
~3.9! and~3.14! were calculated using the generic form~3.8!
of SBI . We can show that they cancel in the particular D3/D
theory we are studying because the actual couplings va
due toSU(2)H3SU(2)V symmetry. For Eq.~3.9! the issue
arises onlyD453, but the primary operatorO45Tr X3 be-
longs to the (0,3,0) irreducible representation ofSO(6)
which contains no singlets under the residualR symmetry.

To discuss the poles in̂O4O3&, we must anticipate one
key result of the Kaluza-Klein analysis in the next subs
tion, namely that the primary operators on the defect ca
SU(2)H3SU(2)V quantum numbers (l>1,0) and have
scale dimensionD35 l . Thus the pole atD41D353 in Eq.
~3.14! can appear only forO45Tr X2 and the lowestO3, a
case which violatesR symmetry. Consider the next poles
D32D452n>0. We need the fact that the primariesO4
5Tr Xk contain only components in the representatio
(k,0),(k22,0), . . . of SU(2)H3SU(2)V . Isospin conser-
vation in ^O4O3& thus requiresl 5k22m or D32D45 l 2k
522m; thus only the case with poleD32D450 is allowed
by R symmetry. However, the set of poles we are discuss
are close analogues of those in the 3-point function onN
54 SYM theory ^Tr XkTr XlTr Xm& studied in@21#. In the
3-point case a large set of singular cases is forbidden
SO(6) symmetry, and there is one remaining extremal c
with k5 l 1m. For this case the actual bulk couplingsgklm
from type IIB supergravity have a zero which cancels t
pole leaving a finite result@20#. The remaining singular cas
for ^O4 O3& is extremal in exactly the same sense, and
conjecture that the specific couplings that occur in the D
brane action will cancel the pole.

B. D5-brane open-string modes

We now turn to a more detailed study of the D5-bra
action for the Karch-Randall system. We will enumerate
terms up to quadratic order in both open and closed st
bosonic fluctuations. Considering first the quadratic act
9-6
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for the open string modes alone, we perform a Kaluza-Kl
reduction on the S2, producing kinetic terms for towers o
AdS4 modes. We solve for the masses of these fluctuatio
and determine the conformal dimensions of the dual op
torsO3. As we will see, two kinds of excitation are eleme
tary to handle, while the remaining two types are mixed a
their mass matrix must be diagonalized. Although there
three negative-mass modes in the full system,
Breitenlohner-Freedman stability bound is satisfied.
masses and conformal dimensions are nontrivially found
be integers, a sign of supersymmetry. These fluctuation
into short multiplets ofOSp(4u4), and we will establish the
dictionary relating them to gauge-invariant defect operat
in the dual DSCFT in Sec. V.

There still remain interactions on the brane involvi
closed string modes. As explained in the last subsect
these give rise to various correlation functions. We list
couplings up to quadratic order in Sec. III C, but do n
perform the KK reductions for most cases.

The bosonic open string modes living on the D5-brane
theU(1) gauge fieldBa and the embedding coordinatesZM.5

As usual we pick a static gauge to fix the world volum
diffeomorphisms,ja5Za, leaving us with the dynamica
fluctuationsZi . Expanding out the determinant inSBI to qua-
dratic order, we find

SBI52TD5E d6jeF/2A2detgS 11
1

2
]aZi]aZjgi j

1
1

4
FabF ab1]aZihiaD , ~3.16!

whereFab[Bab12pa8Fab . There is still a lot of physics
hidden inA2detg, which is the determinant of the metri
over the AdS43S2 directions. The background metric is im
plicitly a function both of the world volume coordinatesja

~thanks to the static gauge condition! and the embedding
fields Zi :

A2detg5L6v2sinu cos2Zc5L6A2ḡ4Aḡ2cos2Zc,
~3.17!

where ḡ4 and ḡ2 are the determinants of the Weyl-rescal
metric ~3.3! on AdS4 and S2, respectively. The cosine wil
provide mass terms forZc. Furthermore,ḡ4 and ḡ2 contain
graviton fluctuations, which must be expanded out when
consider closed string modes.

For now, we concentrate on the open string modes in
~3.16! and postpone discussing the closed string fluctuatio
including those in mixed terms such as]aZihia . For the
variousgi j , we find

5We reserve the symbolsA andX for the D3-brane fields that will
appear in the field theory sections.Ba should not be confused with
the NSNS 2-formBab .
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gxx5L2v2, gcc5L2, gxx5L2sin2Zc,

g§§5L2sin2Zc sin2Zx. ~3.18!

Notice thatgxx andg§§ are higher order in the fluctuations
and hence the kinetic terms forZx andZ§ vanish to quadratic
order. This is a consequence of our choice of coordin
system, as thex and§ coordinates become degenerate atc
50, the location of the D5-brane. All infinitesimal fluctua
tions of the D5-brane on the S5 arec fluctuations, and they
form a triplet of SU(2)V . Thus SBI to quadratic order in
open string fluctuations reads

SBI52~TD5L6!E d4xAḡ4dVS 11 1
2 v2]aZx]aZx

1 1
2 ]aZc]aZc2~Zc!21S 2pa8

L2 D 2

1
4 FabF

abD ,

~3.19!

where we are now raising indices withḡab, and dV

[Aḡ2dudw. Notice that the gauge field kinetic term is dow
by an additional factora82/L4;1/l.

Let us now turn toSWZ . We find

SWZ52TD5E ~C6
PB1C4

PB`F1••• !. ~3.20!

Of the Ramond-Ramond fields, onlyC4 is nonzero in the
background. The relevant term6 is

Cx0125v4L4. ~3.21!

The 5-brane does not span the coordinatex. However, Eq.
~3.21! contributes to the pullback

Cabcd
PB 5]aZiCibcd1~perms in abcd!1O~Z2!.

~3.22!

We find the contribution to the part ofSWZ quadratic in five-
brane fields,

SWZ52
1

2
L4TD5~2pa8!E d6xv4ẽab~2]aZxFvb

2Fab]vZx!

52
1

2
L4TD5~2pa8!E d6xv4ẽab~2]aZx]vBb

2Fab]vZx!, ~3.23!

where ẽab is the flat-space epsilon tensor withẽuf51, and
we used integration by parts and antisymmetry to elimin

6There is also a term polarized in the angular directions, requ
for the self-duality ofF5; it does not play a role in the quadrati
Lagrangian.
9-7
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the ẽab]aZx]bBv term in the second line of Eq.~3.23!. Com-
bining Eqs.~3.19! and ~3.23!, we have the complete set o
quadratic terms in the open-string fields. We see that
gauge field is coupled to the scalarZx, while the scalarZc is
free. We examine each of these systems in turn, expandin
spherical harmonics on the S2 and computing AdS4 masses
and dual conformal dimensions.

Angular fluctuations.The D5-brane may wiggle awa
from its background locationc50 on the 5-sphere, and thi
is described byZc. The fluctuation equation follows from
Eq. ~3.19! and is simply

~h12!Zc50. ~3.24!

We expand in the usual S2 spherical harmonics,

Zc~yW ,v,V!5(
l ,m

cm
l ~yW ,v !Ym

l ~V!. ~3.25!

The six-dimensional Laplacian splits ash5hAdS4
1hS2,

and as every second-grader knows from studies of ang
momentum, the spherical harmonicsYm

l (u,f) are eigenvec-
tors of hS2 with eigenvalues

hS2Ym
l ~u,w!52 l ~ l 11!Ym

l ~u,w!. ~3.26!

Upon reduction, Eq.~3.24! becomes

„hAdS4
2m2~ l !…cm

l ~x!50, m2~ l !5221 l ~ l 11!.
~3.27!

Thus the zero mode is tachyonic. However, tachyonic mo
do not generate an instability in AdSd11 space as long as th
masses do not violate the Breitenlohner-Freedman bo
@23#, which in the metricḡ where the AdS scale is unit
takes the formm2>2d2/4. For d53 we havem2>29/4,
which is satisfied by all the modes~3.27!. Hence there is no
instability in this sector, as expected due to supersymme
Karch and Randall@7# already considered the zero mode a
found it to be stable.

Using the standard AdSd11 /CFTd formula D65(d
6Ad214m2)/2 with d53, we find for the dual conforma
dimensions,

D1521 l , D2512 l . ~3.28!

D2 is only possible for the constant model 50.
AdS4 gauge field fluctuations.We find it convenient to

defineba[(2pa8/L2)Ba , f ab[(2pa8/L2)Fab ; these fluc-
tuations then have the same normalization as theZi . The
action is then

Sgauge52
1

4
TD5L6E d4xAḡ4dV f abf ab

52
1

4
TD5L6E d4xAḡ4dV~ f mn f mn

12 f ma f ma1 f ab f ab!. ~3.29!
02500
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We impose the gauge choiceDaba50, which decouplesbm
from ba . We then find forSgauge

Sgauge5Sbm
1Sba

, ~3.30!

Sbm
52

1

4
TD5L6E d4xAḡ4dV

3~ f mn f mn12DabmDabm!, ~3.31!

Sba
52

1

4
TD5L6E d4xAḡ4dV

3~2DmbaDmba1 f ab f ab!. ~3.32!

Furthermore, we see that the coupling~3.23! involves only
ba . ThereforeSbm

gives the complete quadratic action fo

bm . The fluctuation equation is

Dm f mn1hS2bn50. ~3.33!

The bm are scalars on the S2 and hence can be expanded
ordinary spherical harmonics as with Eq.~3.25!,

bm~yW ,v,V!5(
l ,m

bmm
l ~yW ,v !Ym

l ~V!, ~3.34!

under which Eq.~3.33! reduces to a Maxwell equation fo
the zero mode and standard Proca equations for the ex
tower, with masses

m25 l ~ l 11!. ~3.35!

We translate Eq.~3.35! into conformal dimensions for
dual operators using the standard vector relat
D5„d1A(d22)214m2

…/2, and obtain

D521 l . ~3.36!

Coupled sector.We finally consider the coupled sector o
ba and Zx from Eqs. ~3.19!, ~3.23!, and ~3.32!. In this in-
stance we find it more convenient to perform the S2 reduc-
tion on the level of the action, before extracting equations
motion for each mode.

For Zx we expand as usual

Zx~yW ,v,V!5(
l ,m

zm
l ~yW ,v !Ym

l ~V!. ~3.37!

For ba , the gauge conditionDaba50 tells us thatb is co-
closed as a 1-form on S2; by the Hodge decomposition theo
rem b is a sum of coexact and harmonic pieces. Since th
are no harmonic 1-forms on S2, we may writeb as a coexact
form,

ba~yW ,v,V!5(
l ,m

bm
l ~yW ,v ! eabDbYm

l ~V!, ~3.38!

whereeab is the curved-space epsilon tensor on S2. In what
follows, we will drop the ‘‘magnetic quantum number’’m on
9-8
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zm
l , bm

l and Ym
l for clarity; it is implicitly present and

summed over whenl is summed over.
We find in Eq.~3.32!,

E dV2DmbaDmba52E dV(
l l 8

~DmblDmbl 8!

3~DbYlDbYl 8!

52k~ l !(
l

l ~ l 11!

L2 DmblDmbl ,

~3.39!

where we integrated by parts and used Eq.~3.38!, andk( l ) is
the normalization in*dVYlYl 85k( l )d l l 8, which will drop
out at the end of the day, as well as

E dV f ab f ab52E dV(
l l 8

blbl 8@~Daebg

2Dbeag!DgYl #DaebdDdYl 8

52k~ l !(
l

„l ~ l 11!…2blbl ,

~3.40!

where we have commuted covariant derivatives through e
other as needed and usedR̄ab5ḡab . Thus the total action
~3.32! for the bl modes is

Sba
52

1

4
TD5L6k~ l !E d4xAḡ42(

l
l ~ l 11!

3„]mbl]mbl1 l ~ l 11!blbl
…. ~3.41!

The quadratic terms forZx in Eq. ~3.19! are considerably
simpler; we find

Sx52
1

2
TD5L6E d4xAḡ4dVv2

3(
l l 8

~DmzlDmzl 8YlYl 81zlzl 8DaYlDaYl 8!,

52
1

4
TD5L6k~ l !E d4xAḡ4~2v2!

3(
l

„]mzl]mzl1 l ~ l 11!zlzl
…. ~3.42!

Finally, there is the mixing term fromSWZ ~3.23!. Writing
ẽab f ab52ẽab]aab , we integrate both the]a and the]v
derivatives in the second term in Eq.~3.23! by parts, which
cancels the first term but leaves a piece coming from (]vv4).

Using ẽab5Aḡ2eab and a factor ofv2 to form Aḡ4, we
obtain

SWZ524TD5L6E d4xAḡ4dVvZxeabDabb . ~3.43!
02500
ch

Expanding bothZx andba in spherical harmonics, we find

SWZ54TD5L6E d4xAḡ4dVv(
l l 8

zlYlbl 8hS2Yl 8,

52
1

4
TD5L6k~ l !E d4xAḡ4

3(
l

16l ~ l 11!vzlbl . ~3.44!

We are now in a position to derive the fluctuation equatio
for each mode using the total action~3.41!, ~3.42!, ~3.44!.
For thebl modes, we find

hAdS4
bl5 l ~ l 11!bl14vzl , ~3.45!

while for thezl , we have

1

Aḡ4

]m
Aḡ4v2gmn]nzl5v2l ~ l 11!zl14l ~ l 11!vbl .

~3.46!

The factors ofv2 can be dealt with by rescalingzl by a
function of v that is chosen to eliminate any terms with
single derivative ofzl on the left-hand side of Eq.~3.46!. The
correct factor to extract turns out to be

yl[vzl . ~3.47!

Dividing by an overall factor ofv, Eq. ~3.46! then reduces to

~hAdS4
24!yl5 l ~ l 11!yl14l ~ l 11!bl . ~3.48!

Additionally, the equation forbl ~3.45! loses its explicit fac-
tors of v when expressed in terms ofyl :

hAdS4
bl5 l ~ l 11!bl14yl . ~3.49!

Solving the system is now trivial. Equations~3.48!, ~3.49!
can be expressed in terms of the mass matrix

hAdS4S yl

bl D 5S l ~ l 11!14 4l ~ l 11!

4 l ~ l 11!
D S yl

bl D . ~3.50!

The mass matrix is diagonalized to find the mass eigenva

m25 l ~ l 11!1262A4l ~ l 11!11

5 l 21 l 1262~ l 11!. ~3.51!

The masses turn out integer, which is not a property of
neric Freund-Rubin-type KK reductions and is usually
indication of supersymmetry@24#. Each of the two branche

m2(1)5 l 215l 14, m2(2)5 l 223l , ~3.52!

has associated dual operators, whose conformal dimens
we compute. Form2(1), we have
9-9
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D6
(1)5

3

2
6

1

2
A914~ l 215l 14!5

3

2
6

1

2
~2l 15!.

~3.53!

Only the1 branch is possible for unitarity; this gives

D1
(1)5 l 14. ~3.54!

Meanwhile, form2(2), we find

D6
(2)5

3

2
6

1

2
A914~ l 223l !5

3

2
6

1

2
u2l 23u. ~3.55!

For l 51,2, both choices are possible, while onlyD1
(2) is

possible forl .2. Again nontrivially, we find integer quanti
ties.

A few words are necessary for the special casel 50. This
corresponds to a constant spherical harmonicYl 50. It is easy
to see from Eq.~3.38! thatba vanishes for such a mode, an
hencebl 5050 uniformly. ~The expansion of the vector fiel
ba on S2 does not contain a scalar part.! As a result theyl 50

mode is uncoupled, and from Eq.~3.48! we see that it has the
~positive! massm254. This is merely the value ofm2(1) for
l 50 ~3.52!. Hence, as is common in such Kaluza-Kle
problems, the lower branch truncates at somel .0, in this
casel 51, while the upper branch can take any valuel>0.
The l 51, l 52 states on the lower branch both have t
negative massm2522, which satisfies the Breitenlohne
Freedman bound.

We have now determined the complete spectrum
bosonic open-string fluctuations on the D5-brane. Th
modes are expected to be the bosonic elements of a seri
short representations of the superalgebraOSp(4u4) whose
even subalgebra isSO(3,2)3SU(2)H3SU(2)V . The struc-
ture of such representations is known@25#, but it is simpler
to compare with the short representations of maximum sp
of the OSp(3u4) subalgebra whose decomposition with r
spect toSO(3,2)3SO(3) was explicitly given in~50! of
@26#. The supercharges ofOSp(3u4) are in theJ51 of
SO(3), so weidentify SO(3) asSU(2)D , the diagonal sub-
algebra ofSU(2)H3SU(2)V . This means that thec modes
appear withJ5 l 11,l ,l 21. Having noted this, one find
complete agreement between the Kaluza-Klein modes~3.28!,
~3.36!, ~3.53!, ~3.55! and the short representations of@26#.
Agreement for the bosonic modes is nontrivial since a giv
OSp(3u4) representation includes 5 scalars and a vector w
specific relations betweenD andJ. The KK spectrum is sum-
marized in Table I of Sec. V, where we will match the D
brane modes to gauge-invariant composite operators
fined to the defect of the dual field theory.

C. D5-brane closed-string modes

Here we briefly list the remaining quadratic terms in t
Born-Infeld and Wess-Zumino actions, involving closed
well as open string modes. These generate^O4&, ^O4O3&
and corrections tôO4O48&, respectively. We perform the KK
reduction for the example of the dilaton one-point couplin
02500
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The Born-Infeld action~3.16! contains terms involving
the gravitonh and dilatonF. Expanding the dilaton expo
nential and using

Ag5Ag0
„11 1

2 ha
a1 1

8 ~ha
a!22 1

4 habh
ab1O~h3!…,

~3.56!

we find the closed-string one-point couplings,

SBI
(1)52TD5L6E d4xAḡ4dV~ 1

2 F1 1
2 ha

a!, ~3.57!

the closed-string two point-couplings

SBI
(2)52TD5L6E d4xAḡ4dV„

1
8 F21 1

8 ~ha
a!22 1

4 habh
ab

1 1
4 Fha

a1 1
4 BabB

ab
…, ~3.58!

and the mixed open or closed couplings

SBI
(1,1)52TD5L6E d4xAḡ4dV~]aZihia1 1

4 Babf ab!.

~3.59!

The Wess-Zumino action~3.20! couples the closed-string
fluctuationsC6 andC4 to the brane. The one-point couplin
is

SWZ
(1) 52TD5E C6

52TD5L6E d4xAḡ4dV

3S 1

6!
eabcde f~C6!abcde fD , ~3.60!

the closed string two-point coupling is

SWZ
(2) 52TD5E B`C4

52TD5L6E d4xAḡ4dV

3S 1

234!
eabcde fBab~C4!cde fD , ~3.61!

and the mixed two-point couplings are

SWZ
(1,1)52TD5L6E d4xAḡ4dV

3Feabcde fS 1

5!
~]aZi !~C6! ibcde f

1
1

234!
f ab~C4!cde fD

2 1
2 v2eab~Bab]vZx22]aZxBvb!G . ~3.62!
9-10
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Again, e denotes a curved-space antisymmetric tensor. N
the terms in the last line of Eq.~3.62! involved the back-
ground value ofC4 and are analogous to the purely ope
string terms~3.23!.

One point to notice is that the brane interactions do
couple bulk eigenmodes directly. Thus we find the one-po
coupling ha

a with a5u,w in Eq. ~3.57!, although the field
theory operators TrXk are dual to linear combinations ofha

a

with a now running over all S5 indices, and the four-form
C4 polarized along the S5.

Naturally, all the bulk modes appearing in Eqs.~3.57!–
~3.62! are restricted to the brane. This implies certain rest
tions on theSO(6) quantum numbers of the modes resulti
from the S5 reduction. Consider the dilaton, which is th
simplest case since it is a 10D scalar. As usual it is expan
in spherical harmonics on S5,

F~yW ,x,v,V5!5(
I

F I~yW ,x,v !YI~V5!, ~3.63!

where theYI are scalarSO(6) spherical harmonics andI
5$k,l ,m,l 8,m8% is a total index for the five quantum num
bers characterizing an element of anSO(6) representation
The labelk gives the totalSO(6) representation as thek-fold
symmetric traceless product of the6, while $ l ,m% and
$ l 8,m8% are the quantum numbers for theSU(2)H
3SU(2)V subgroup. These spherical harmonics are d
cussed in the Appendixes, where we show that the only
monics that are nonvanishing on the D5-brane (c50) are
those with l 85m850. Hence the closed-string modes th
participate in the interactions~3.57!, ~3.58! and ~3.59! are
characterized only byk, l and m. Furthermore, atc50 the
functional form of the harmonic does not depend onk; the
total quantum number only determines an overall normal
tion.

Let us now consider the one-point couplings~3.57!. For
the dilaton we find

SF
(1)52 1

2 TD5L6
1

A4p
E d4xAḡ4dV

3 (
k,l ,m

F lm
k ~yW ,v !Ym

l ~V!Zl ,0
k ~0!

52 1
2 TD5L6E d4xAḡ4 (

k even
z~k!F00

k ~yW ,v !.

~3.64!

Herez(k)[Z00
k (0) is ak-dependent normalization factor. W

have integrated over the S2, which gives zero for allYm
l

except the constant modeY0
051/A4p. We note that only the

representations ofSO(6) with k even containSU(2)H
3SU(2)V singlets; this can be seen by recalling that6
→(3,1) % (1,3), and hence by the usual rules for addition
angular momentum, theSO(6) representation withk even or
odd only containsSO(2)H3SU(2)V representations with to
tal spinl 1 l 8 even or odd, respectively. The remaining clos
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string modes involve a similar reduction of vector and ten
spherical harmonics, which we leave for the future.

IV. FIELD THEORY ACTION

We now determine the action for the dual quantum fie
theory. In the absence of the defect, the theory is simplyN
54 super Yang-Mills theory with gauge groupSU(N) in
four dimensions; this completely specifies the fou
dimensional fields and their bulk couplings. We also kno
that the defect, which breaks the total supersymmetry
eight supercharges, hosts a three-dimensional hypermulti
which transforms as a fundamental of the bulk gauge gr
~see, for example,@14#!. In principle, the defect action can b
derived as thea8→0 limit of the D3–D5-brane intersection
However, we will be able to use gauge invariance and
preserved supersymmetry andR symmetry to completely de
termine the action, given the inputs above.

The preserved spacetime symmetries of the configura
are three-dimensional translations and Lorentz transfor
tions, as well as three-dimensionalN54 supersymmetry,
which admits anSO(4) R symmetry, realized in our case a
SU(2)V3SU(2)H . The gravity dual predicts that the fiel
theory is additionally superconformal, but these extra sy
metries will not be used to construct the action. Classi
scale invariance will nonetheless be manifest, with the
mensionless 4D Yang-Mills couplingg the only parameter.
Whether conformal symmetry persists on the quantum le
is an important test of the correspondence, for which
provide partial results in Sec. VI A; further results can
found in @27#.

The interactions on the defect involve both 4D and 3
fields. These must be coupled in a supersymmetric way,
consequently, one must develop a procedure for breaking
4D supermultiplets into sets of fields that, when restricted
the defect, transform like 3D supermultiplets. The meth
we use is based on work of Hori@9#, who addressed simila
questions of defining supersymmetric interactions on a co
mension one hypersurface~in his case in two dimensions!;
similar techniques have been employed previously to ef
ordinary dimensional reduction@28#. This method employs
superspace: four-dimensionalN51 superfieldsY(yW ,x,u)
can be made into three-dimensionalN51 superfields
Y3d(yW ,Q) by restricting them to the ‘‘superspace boundary
which means imposingx50 as well as two linear relation
on the four fermionic coordinatesu. Invariant three-
dimensional actions involvingY3d(yW ,Q) along with inher-
ently three-dimensional superfieldsQ(yW ,Q) can then easily
be constructed. Such actions possess terms with deriva
transverse to the defect and hence are not equivalent to
tions obtained by direct dimensional reduction. In the n
subsection we detail the superspace boundary method iN
51 superspace. In the section that follows, we construct
action for our eight-supercharge field theory with defect, a
discuss the realization of the extended supersymmetry.

A. The superspace boundary

We briefly review some elementary facts about sup
space, and in the process fix our notation. 4DN51 super-
9-11
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space consists of the usual bosonic coordinates (yW ,x) with yW
a 3-vector as well as anticommuting coordinatesu. To facili-
tate reduction to three dimensions, our 4D superspace
ventions are in a Majorana form, and henceu is a four-
component Majorana spinor. SuperfieldsY(yW ,x,u) are
defined on superspace, and can be expanded in a termin
power series inu, where the coefficientsB(yW ,x) andF(yW ,x)
are just the ordinary bosonic and fermionic fields that ma
up a given supersymmetry multiplet. One defines the su
space covariant derivativeD and supersymmetry generatorS,

D[
]

]ū
1 igmu]m , S[

]

]ū
2 igmu]m , ~4.1!

$Da ,D̄b%522igm]m , $Sa ,S̄b%52igm]m ,

$Da ,S̄b%50, ~4.2!

and the supersymmetry transformation of a superfi
Y(yW ,x,u) is simply

dY~yW ,x,u!5~ h̄S!Y~yW ,x,u!, ~4.3!

with h Majorana. The power of superspace lies in the f
that products of superfields and their covariant derivati
are again superfields with the transformation law~4.3!. By
integrating such products over superspace, one obt
Lagrangians that are invariant under supersymmetry by c
struction. This is often far more convenient than fashionin
component action term-by-term and verifying supersymm
try explicitly.

Chiral ~antichiral! superfieldsF (F̄) obey the condition
RDF50 (LDF̄50). We can write

F~yW ,x,u!5e2( i /2)ūgmgu]m
„f~yW ,x!1A2ūLc~yW ,x!

1 ūLuF~yW ,x!…, ~4.4!

F̄~yW ,x,u!5e1( i /2)ūgmgu]m
„f̄~yW ,x!1A2ūRc~yW ,x!

1 ūRuF̄~yW ,x!…, ~4.5!

with f andF complex scalars andc a Majorana spinor. The
vector superfieldVa(yW ,x,u) is a real superfield, which in
Wess-Zumino gauge reads

Va52 1
2 ūgmguAm

a 1 i ~ ūLu!~ ūRla!2 i ~ ūRu!~ ūLla!

2 1
2 ~ ūLu!~ ūRu!Da, ~4.6!

while the field strength superfield is
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~LW!a
a[2 1

8 ~D̄RD!e22VaTa
~LD !ae2VaTa

5e2( i /2)ūgmgu]mS 2 i ~Lla!a2Da~Lu!a

1
i

2
~Lgmnu!aFmn

a

1~LgmDml!a~ ūLu! D . ~4.7!

We define the superspace measures

d2uL[dūLdu, d2uR[dūRdu, d4u[d2uLd2uR .
(4.8)

We then have the action integrals

E d4xd4uF̄e2V•TF

5E d4xF ~Dmf!†Dmf2
i

2
c̄gmDmc1F̄F

1 iA2~f̄l̄aTaLc2c̄RlaTaf!2f̄DfG ,
E d4x 1

2 ImE d2uRt~W̄LW!

5E d4xF 1

g2 S 2 1
4 Fmn

a Famn2
i

2
l̄agmDmla1 1

2 DaDaD
1

u

32p2 Fmn
a F̃amnG ,

E d4xd2uRW~F i !5E d4x„Fi] iW~f!

2 1
2 @] i] jW~f!#c̄ iLc j…, ~4.9!

with the definitions

Dmf5~]m2 iAm
a Ta!f,

Dmc5„]m2 iAm
a ~LTa2RT* a!…c, t[

i

g2 1
u

8p2 .

~4.10!

It is clear that the presence of the defect must break so
supersymmetry, sincex translations are broken; supercharg
that anticommute to such translations must also be brok
The only possibility is that half the supersymmetry is pr
served, leaving 3DN51.

Under the three-dimensional Lorentz group, a fo
component spinor decomposes into a pair of two-compon
3D spinors, labeled by an additional indexi 51,2. The de-
composition of gamma matrices in our basis is given in A
pendix B. For example, the four-component supersymme
generatorS turns into a pair of two-component objects:
9-12
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S15
]

]ū1
2 irku1]k1u2]x , S252

]

]ū2
1rku2]k1u1]x .

~4.11!

Only a linear combination of the generators~4.11! that does
not involve]x can be preserved. To this end, we must pla
two linear relations on the fouru coordinates: a convenien
choice for us is

u250, ~4.12!

where we bear in mindu2 is a two-component real 3D
spinor. DefiningQ[u1, we now have the 3DN51 super-
space covariant derivative and supersymmetry generato

D[D1uu2505
]

]Q̄
1 irkQ]k ,

S[S1uu2505
]

]Q̄
2 irkQ]k . ~4.13!

Fields native to the defect are naturally written as inheren
3D superfieldsQ(yW ,Q). These have the expansion

Q~yW ,Q!5q~yW !1Q̄C~yW !1 1
2 Q̄Q f ~yW !, ~4.14!

and may be real or complex, but if complex, the real a
imaginary parts transform independently under supersym
try. Furthermore, from any 4D superfieldY(yW ,x,u) we may
create a 3D superfieldY3d(yW ,Q) by restricting to the ‘‘su-
perspace boundary:’’

Y3d~yW ,Q!5Y~yW ,x,u!u][Y~yW ,x,u!ux5u250 . ~4.15!

This is the central concept.Y3d(yW ,Q) includes some or all of
the component fields contained inY(yW ,x,u) restricted to the
defect atx50. As can readily be seen,Y3d transforms as a
3D superfield under the preserved supersymmetry trans
mations, namely Eq.~4.3! with h250. Consequently, any
product of Y3d(yW ,Q) and Q(yW ,Q) and their 3D covariant
derivatives

@Qi~yW ,Q!•••Y3d
a ~yW ,Q!•••DQj~yW ,Q!•••DY3d

b ~yW ,Q!•••#

may be integrated over the twoQ coordinates to produce
3D N51 invariant Lagrangian. We define the measure

d2Q[ 1
2 dQ̄dQ. ~4.16!

As an example of a 4D superfield restricted to the supersp
boundary, we find for the chiral superfieldF,

Fu]5f1
1

A2
Q̄~c12 ic2!1 1

2 Q̄Q~F1 i ]3f!, ~4.17!

where againc1 , c2 are the 2-component spinors emergi
from the 4-componentc. The real and imaginary parts of Eq
~4.17! transform independently under 3DN51 supersym-
02500
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metry, exhibiting the decomposition of a 4DN51 chiral
multiplet into two 3DN51 real multiplets.

The appearance of the transverse derivative]3f in Eq.
~4.17! may appear at first unusual, but it is required by 3
supersymmetry~as one may easily check using compone
transformations!, and will prove vital in our construction o
the eight-supercharge Lagrangian. When one compact
the 3-direction and expandsf in normal modes,]3f con-
tributes the appropriate mass terms to the 3D auxiliary fie
which helps in understanding its presence.

In three dimensions, the superspace action for the kin
terms of superfieldsQ as well as coupling to a gauge mu
tiplet is @29#

Skin5E d3xd2Q 1
2 ~¹Q!¹Q, ~4.18!

where we have defined the superspace gauge covarian
rivative

¹[D2 iGaTa, ~4.19!

including the connection spinor superfieldGa, which con-
tains the gauge field and its partners. We are not intereste
inherently 3D gauge fields, but instead we wish to obtai
connection superfield by starting with some 4D superfi
containing the gauge multiplet and reducing to the sup
space boundary. We arrive at7

Ga[~DVa!2u]5 irkQAk
a1l1

a~Q̄Q!. ~4.20!

Here we decompose the 4D spinorDVa into two-component
3D spinors and keep the latter 3D spinor, restricting it to
superspace boundary. Notice that the auxiliaryDa does not
survive the projection to three dimensions; this is appropr
since a 3DN51 vector multiplet does not contain an aux
iary field @29#. With the definition~4.20!, the action~4.18!
reduces to

Skin5E d3x„~Dkq!†Dkq2 i C̄rkDkC1 f̄ f 1 i q̄l̄1
aTaC

2 i C̄l1
aTaq…, ~4.21!

with Dk5]k2 iTaAk
a . This indeed contains a canonical co

pling between 3D matter, and~certain components of! the 4D
gauge field and its superpartners. In the next subsection
will apply these results to obtain the particularN54 theory
we need to describe our system.

Besides making supersymmetry manifest, the ‘‘sup
space boundary’’ technique outlined here has the advan
of producing an action already formulated in superspace
guage. This facilitates perturbation theory, where all but

7In principle one could defineGaTa[(1/a)e2 iaVaTa
DeiaVaTa

for
any a, but upon settingu250 these all coincide in Wess-Zumin
~WZ! gauge. Outside WZ gauge,a would appear in the coupling o
the gauge-artifact fields in the vector multiplet to the 3D modes,
these terms have no physical content.
9-13
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most elementary calculations in component formalism pr
far too cumbersome even in the case of the pure bulkN
54 SYM theory.

A drawback of using this superspace formalism for o
system, however, is that it makes only one quarter of
supersymmetry manifest: four supercharges in the bulk b
ken to two on the defect, instead of sixteen broken to eig
This also means that theR symmetries are obscured: only
diagonalSU(2)D,SU(2)V3SU(2)H will be visible in the
superspace action. To confirm that the larger symmetries
present, we will reduce to a component action, and explic
demonstrateSU(2)V3SU(2)H invariance. The existence o
this R symmetry then implies the full 3DN54 supersym-
metry.

B. Action for field theory with defect

Under the reduced supersymmetry, the bulk 4DN54
vector multiplet decomposes into a 3DN54 vector multip-
let and a 3DN54 adjoint hypermultiplet. As described i
@14#, the bosonic components of the vector multiplet a
$Ak ,X7,X8,X9%, with the scalars transforming as the3 of
SU(2)V , while the hypermultiplet consists o
$A6 ,X3,X4,X5%, with these scalars a triplet ofSU(2)H . ~In
fact, we will see this is slightly oversimplified: thex deriva-
tives of X3, X4 and X5 actually participate in the vecto
multiplet, as doesA6, as part of the auxiliary field.! The four
adjoint Majorana spinors ofN54 SYM theory transform as
a (2,2) of SU(2)V3SU(2)H , which we denotel im. Under
the reduced spacetime symmetries, they decompose
pairs of two-component 3D Majorana spinors, withl1

im end-
ing up in the vector multiplet andl2

im in the hyper.
The hypermultiplet living on the defect transforms in t

fundamental representation of the gauge group. It consis
an SU(2)H doublet of complex scalarsqm and anSU(2)V
doublet of Dirac 3D fermionsC i . In addition to theR sym-
metry charges, the defect hypermultiplet is also charged
der a globalU(1)B , under which the bulk fields are inert; th
corresponding current is dual to the D5-brane gauge field
the gravity side. Because the defect hyper fields are in
fundamental representation of the gauge groupSU(N), they
are coupled canonically toAk , and hence supersymmetr
will induce couplings to the rest of the bulk vector multipl
as well, which we determine below. The bulk hypermultip
does not directly couple to the defect fields.

The field content and Lagrangian for the theory in t
bulk are identical to that ofN54 super Yang-Mills theory
with gauge groupSU(N). Using N51 superspace, the su
perfields are anSU(N) vector multipletVa, as in Eq.~4.6!,
and three chiral multiplets in the adjoint representation,XaA

with A51,2,3:

FaA5e2( i /2)ūgmgu]m~XaA1A2ūLxaA1 ūLuFaA!,
(4.22)

and theN54 action in our conventions is
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S45SK1Sg1SW ,

SK5
1

g2E d4xd4uF̄Ab~e2Vata!bcF
Ac,

Sg5E d4x 1
2 ImE d2uRt~W̄LW!,

SW5
1

g2E d4xeABCf abcA 2

3!

3S E d2uRFAaFBbFCc

1E d2uLF̄AaF̄BbF̄CcD , ~4.23!

where (ta)bc52 i f abc since theFAa are in the adjoint rep-
resentation. In components, this is

S45
1

g2E d4xF2 1
4 Fmn

a Famn2
i

2
l̄agmDmla1 1

2 DaDa

1
u

32p2 Fmn
a F̃amn

1~DmXAa!†DmXAa2
i

2
x̄AagmDmxAa1FAaF̄Aa

1A2 f abc~X̄Abl̄aLxAc2x̄AbRlaXAc!1 i f abcX̄AbDaXAc

1
1

A2
eABCf abc

„FAaXBbXCc1F̄AaX̄BbX̄Cc

2x̄Aa~LXCc1RX̄Cc!xBb
…G , ~4.24!

with DmXa5]mXa1 f abcAm
b Xc and likewise for the fermions

The defect hypermultiplet can be written as two comp
3D multipletsQi , i 51,2:

Qi5qi1Q̄C i1 1
2 Q̄Q f i , ~4.25!

Q̄i5q̄i1C̄ iQ1 1
2 Q̄Q f̄ i . ~4.26!

The superfieldsQi (Q̄i) transform in the fundamental~anti-
fundamental! representation ofSU(N); we have suppresse
the gauge indices. They are coupled to the bulk gauge fi
in the way we have outlined

Skin5
1

g2E d3xd2Q 1
2 ~¹Qi !¹Qi , ~4.27!

with ¹ as in Eq.~4.19!.
Finally, to obtain a theory that preserves 8 superchar

and places the 3D part of the gauge fieldAk in a single
supermultiplet with the scalarsX7, X8, X9, we must produce
a coupling of theQi to half the fields in theFA. We choose
9-14
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a convention where the scalar parts ofFA are (XV
A

1 iXH
A)/A2, with XH5(X3,X4,X5) andXV5(X7,X8,X9). We

then define the following 3D superfields by restrictingFAa

to the superspace boundary:

X AaTa[Re~eV•TFAaTae2V•T!u]

5S ReXAa1
1

A2
Q̄x1

Aa1 1
2 Q̄Q~ReFAa

2]6Im XAa2 f abcA6
bIm XAc!D Ta,

[
1

A2
„XV

Aa1Q̄x1
Aa1 1

2 Q̄Q~FV
Aa

2D6XH
Aa!…Ta, ~4.28!

whereTa are generators in the fundamental representatio
SU(N). The sole consequence of the exponential terms
the definition~4.28! is to covariantize the transverse deriv
tive ]6, which is necessary to preserve 4D gauge invarian
We now claim that the final piece of the action is

SX5
1

g2E d3xd2QA2s i j
AQ̄iX AaTaQj , ~4.29!

wheres i j
A are the Pauli matrices. This is theN54 supersym-

metric completion of Eq.~4.27!, and therefore involves the
same coupling constant,g. Hence the defect action adds n
new couplings to the theory. That Eq.~4.29! is bilinear inQi

and linear in theX A can be expected on the grounds
gauge invariance and supersymmetry. The origin of the p
cise coefficients will emerge as we discuss the symmet
and component expansion of this action.

We notice immediately that, not only the scalarsX7, X8

andX9, but also the fieldsX3, X4, X5 andA6 participate in
the bulk vector multiplet and couple to the boundary hyp
multiplet, due to theD6XH

Aa term inside the auxiliary field of
X Aa. This should not be too surprising, since it is known th
constraining the bulk vector multiplet to vanish at the def
places Dirichlet boundary conditions onXV

A and Neumann
boundary conditions onXH

A @14#. Analogously, the bulk hy-
permultiplet restricted to the defect contains the first deri
tives of theXV

A along with the restriction of theXH
A .

Let us examine how the symmetries of the system
realized in the action~4.23!, ~4.27!, ~4.29!. N54 SYM
theory has anSU(4)R R symmetry, of which onlySU(3)
3U(1)R is visible in theN51 superspace formulation: th
SU(3) acts on the three chiral superfields in the obvio
way. Once the defect is introduced, onlySU(2)V
3SU(2)H,SU(4)R is preserved. We cannot hope that mo
than the intersection ofSU(2)V3SU(2)H with SU(3)
3U(1)R will be visible in our presentation. In our conven
tion for the components ofF, the SO(3),SU(3) is pre-
cisely the diagonal subgroupSU(2)D,SU(2)V3SU(2)H ,
and this turns out to be the manifest part of theR symmetry.
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Under SU(2)D , the defect hyper fieldsqi and C i should
both transform as a doublet. HenceSU(2)D acts as a globa
symmetry on our superfields:Qi is a doublet andX A is a
triplet, while G is a singlet. The kinetic action~4.27! is ob-
viously invariant underSU(2)D ; preserving the symmetry
in Eq. ~4.29! requires the Pauli matrix coupling, but does n
specify the overall coefficient.

The globalU(1)B symmetry, with current dual to the D5
brane gauge field, is also manifest in the superspace pre
tation: the superfieldQi has charge one while the bulk field
are inert.

Also worth mentioning are a pair of discrete parity sym
metries,P andP6. In three dimensions, reversing the sign
both spatial coordinates is a part of the proper Lorentz gro
but reversing the sign of just one, which we callP, is non-
trivial. For example, we can sendx2→2x2 , A2→2A2. The
total bulk and defect superspace action~4.23!, ~4.27!, ~4.29!
is then invariant8 under the transformation

P: u→ ig2u, Va→2Va, F→2F̄, Q→Q.
(4.30)

One can also consider reversing the sign in the broken di
tion, x6→2x6 , A6→2A6. This is realized on superspace

P6 : u→ igg3u, Va→2Va, F→F̄, Q→Q.
(4.31)

The superspace transformations~4.30! and ~4.31! implicitly
determine the action of parity on the component fields. T
transformationP6 is realized trivially on our defect action, a
it is equivalent to changing the signs of the ambient hyp
fields ~which do not participate! while leaving the ambient
vector and defect fields inert. It is a nontrivial symmetry
the N54 SYM action.

Not evident in the superspace formulation are the rema
ing off-diagonal symmetries inSU(2)V3SU(2)H . Under a
SU(2)V transformation,C i will rotate while qi is inert, and
the converse forSU(2)H . Additionally, under a generic
SU(2)V3SU(2)H transformation, the Fermi fieldsx1

Aa in-
side X Aa mix with the N51 gauginol1

a inside Ga, and
together form a (2,2). It is obvious that if these symmetrie
are present, they will only be visible by reducing to the co
ponent action.

In components, the defect action~4.27!, ~4.29! is

S35Skin1SX , ~4.32!

Skin5
1

g2E d3x„~Dkqi !†Dkq
i2 i C̄ irkDkC

i1 f̄ i f i

1 i q̄ i l̄1
aTaC i2 i C̄ il1

aTaqi
…, ~4.33!

8Assuming the vanishing of the vacuumu angle.
9-15
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SX5
1

g2E d3x@2s i j
AC̄ iXV

AaTaC j

2s i j
A~ q̄i x̄1

AaTaC j1C̄ ix1
AaTaqj !

1s i j
A
„q̄iXV

AaTaf j1 f̄ iXV
AaTaqj

1q̄i~FV
Aa2D6XH

Aa!Taqj
…#. ~4.34!

We would like to demonstrate the fullSU(2)V3SU(2)H
invariance. The kinetic terms are obviously invariant. Let
next examine the Yukawa terms coupling the defect hype
the bulk fermionsl1 , x1

A . We define the gaugino fields

l im
a [lad im2 ixAas im

A , ~4.35!

which transform asla→gVlagH
†, analogous to a linea

sigma model fields1 ipAsA. Here we are usingi, j as
SU(2)V indices andm, n as SU(2)H indices. The Yukawa
terms then become

E d3x„i q̄m~ l̄1
a!miT

aC i2 i C̄ i~l1
a! imTaqm

…, ~4.36!

and are manifestly invariant. The precise value of the co
ficient in Eq. ~4.29! was required to construct Eq.~4.36!.
There is one more Yukawa term in Eq.~4.34!, namely

2E d3xs i j
AC̄ iXV

AaTaC j . ~4.37!

This obviously respectsSU(2)V3SU(2)H : XV
A is a triplet of

SU(2)V and C i is a doublet, and all fields are inert und
SU(2)H . Furthermore, the scalar derivative coupling

2E d3xs i j
Aq̄i~D6XH

Aa!Taqj , ~4.38!

transforms underSU(2)H in the same way Eq.~4.37! did
underSU(2)V , and is similarly invariant.

Finally we come to the auxiliary fields and the scalar p
tential. Having entirely fixed the form of Eq.~4.29! to en-
force SU(2)V3SU(2)H on the Yukawa terms, invariance i
this sector is a nontrivial check, and in fact we find a gra
fying interplay between bulk and defect auxiliary fields th
preserves the symmetries. The result is reminiscent of ho
the bulkN54 SYM theory, neitherF-term norD-term con-
tributions to the scalar potential are individuallySU(4) in-
variant, but instead only the sum.

Considering first the defect auxiliariesf i , we have the
terms

E d3x„ f̄ i f i1s i j
A~ q̄iXV

AaTaf j1 f̄ iXV
AaTaqj !…. ~4.39!

Eliminating thef i via their equations of motion as usual, w
find

f i52s i j
AXV

AaTaqj , f̄ j52s i j
Aq̄iXV

AaTa, ~4.40!

and then Eq.~4.39! becomes
02500
s
to

f-

-

-
t
in

E d3x~2 f̄ i f i !52E d3xq̄a~sAsB! i j T
aTbqjXV

AbXV
Bb .

~4.41!

Using the relation sAsB5dAB1 i eABCsC and
symmetrization-antisymmetrization, we obtain the result

E d3x~2 1
2 q̄i$Ta,Tb%qiXV

AaXV
Ab

1 1
2 eABCf abcq̄is i j

ATaqjXV
BbXV

Cc!. ~4.42!

The first term isSU(2)V3SU(2)H invariant, since theq and
XV variations cancel separately. The second term, howe
is not invariant. Fortunately, we have not exhausted the c
tributions to the potential.

We turn now to the bulk auxiliary fields. Their action ca
be written

E d4xS F̄AaFAa1
1

A2
eABCf abc~FAaXBbXCc1F̄AaX̄BbX̄Cc!

1d~x6!q̄is i j
ATaqjFV

AaD , ~4.43!

where the last term comes from the defect action. In term
real and imaginary parts, this becomes

E d4x@ 1
2 „FV

AaFV
Aa1FH

AaFH
Aa1eABCf abc~FV

AaXV
BbXV

Cc

2FV
AaXH

BbXH
Cc22FH

AaXH
BbXV

Cc!…

1d~x6!q̄is i j
ATaqjFV

Aa#. ~4.44!

The imaginary partFH does not couple to the defect, so i
contribution to the potential is unchanged fromN54 SYM
theory. For the real partFV , we find

FV
Aa52„

1
2 eABCf abc~XV

BbXV
Cc2XH

BbXH
Cc!1d~x6!q̄is i j

ATaqj
…,

(4.45)

where the first part is the same asN54 SYM theory. Thus
all terms from the bulk auxiliariesFA are

E d4x2 1
2 ~FV

AaFV
Aa1FH

AaFH
Aa!

5E d4x„2V4
F2 1

2 d~x6!eABCf abc~XV
BbXV

Cc

2XH
BbXH

Cc!q̄is i j
ATaqj2 1

2 d~x6!2~ q̄is i j
ATaqj !2

….

~4.46!

HereV4
F is the usualF-term contribution to theN54 SYM

potential, which when combined with the bulkD-terms is of
courseSU(2)V3SU(2)H invariant @in fact it is SU(4) in-
variant#. The d(x6)2 term is also obviously invariant. The
remaining terms can be integrated overd(x6) to produce a
three-dimensional potential. ‘‘Miraculously,’’ theXV

BbXV
Cc
9-16
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term exactly cancels the noninvariant piece from Eq.~4.42!.
The final term is invariant, as bothq̄sAq andeABCXH

BXH
C are

triplets of SU(2)H and singlets ofSU(2)V .
We have now demonstrated that in addition to being

N51 supersymmetric by construction, our bulk-defect a
tion has anSU(2)V3SU(2)H R symmetry. We therefore
conclude that it is in fact 3DN54 supersymmetric. We sum
marize the final expression for the defect action, includ
the potential,

S35Skin1Syuk1Spot , ~4.47!

Skin5
1

g2E d3x„~Dkqm!†Dkq
m2 i C̄ irkDkC

i
…,

~4.48!

Syuk5
1

g2E d3x„i q̄m~ l̄1
a!miT

aC i2 i C̄ i~l1
a! imTaqm

2C̄ is i j
AXV

AaTaC j
…, ~4.49!

Spot52
1

g2E d3x 1
2 ~ q̄m$Ta,Tb%qmXV

AaXV
Ab

1e IJK f abcXH
JbXH

Kcq̄msmn
I Taqn!

2
1

g2E d3x„q̄msmn
I ~D6XH

Ia! Taqn

1 1
2 d~0!~ q̄msmn

I Taqn!2
…, ~4.50!

where we have distinguishedSU(2)V indices i , j ,A,B,C
from SU(2)H indices m,n,I ,J,K. The d(0) factor in Eq.
~4.50! may seem curious, but in fact terms of this nature ha
already been anticipated by Kapustin and Sethi@11#, who
argued they were necessary to obtain a sensible H
branch, and by Mirabelli and Peskin@30#, who showed them
to be necessary for proper cancellation of divergences
5D case. Such terms are a generic feature of supersymm
couplings of defect matter to higher-dimensional gauge m
tiplets involving auxiliary fields. We shall have more to s
aboutd(0) in Sec. VI A.

Before leaving the action behind, let us discuss a f
other terms that one might try to include, and argue on sy
metry grounds that they are absent. In particular, to jus
our action we must rule out the presence of other marg
couplings. Doing so has the additional benefit that the ga
coupling g is left as the unique parameter of the defe
theory. N51 supersymmetry does not forbid terms of t
form

Squartic5E d3xd2Q~Q̄iQiQ̄jQj !

5E d3x@2~ f̄ iqi q̄ jqj1q̄i f i q̄ jqj !

2~2C̄ iC i q̄ jqj12C̄ iqi q̄ jC j2q̄iCTir0q̄ jC j

2C̄ iqiC† jqj !#. ~4.51!
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The two independent ways of contracting the gauge indi
lead to two dimensionless couplings, which generically r
with scale. Eliminating thef fields results in the new contri
butions to the scalar potential

~ q̄iqi !3, ~ q̄iqi !s jk
A q̄jXV

AaTaqk. ~4.52!

The SU(2)V3SU(2)H R symmetry of our theory, however
does not permit us to modify the action with Eq.~4.51!;
although the (C̄ iC i q̄ jqj ) and (q̄iqi)3 terms areSU(2)V
3SU(2)H invariant, the rest are not.

We have assumed throughout this section that the de
couples only to the bulk vector multiplet, and that the bu
hypermultiplet ignores the localized matter at the tree lev
One can readily see that a term analogous to Eq.~4.29! but
involving

Y AaTa[Im~eV•TFAaTae2V•T!u]

5
1

A2
„XH

Aa2Q̄x2
Aa1 1

2 Q̄Q~FH
Aa1D6XV

Aa!…Ta,

~4.53!

instead ofX Aa is forbidden, since theSU(2)V3SU(2)H as-
signments of the participating bulk scalars are revers
@Such a term would be part of the mirror coupling of th
defect matter to the bulk hyper only, wherein theSU(2)V
3SU(2)H charges ofqm andC i are exchanged.#

One may also consider interactions on the defect invo
ing only the ambient fields. The marginal term

SCS5
1

2g2E d3xd2Q„Ḡa~D̄bDaGb!1•••…, ~4.54!

leads to both a gaugino bilinear (l̄1
al1

a) and a Chern-Simons
term (eklmAk

a] lAm
a 1•••) for the restriction of the gauge

field; the ellipsis in Eq.~4.54! indicates terms with 3 and 4
factors ofG necessary for the non-Abelian completion@29#.
Notice that while fermion bilinears and a Chern-Simo
piece for inherently three-dimensional fields would be m
terms, for the ambient fields localized on the brane they
marginal. Such terms are related byN54 supersymmetry to

SX25E d3xd2QX AaX Aa

5E d3x„XV
Aa~FV

Aa2D6XH
Aa!2 1

2 x̄1
Aax1

Aa
…. ~4.55!

The simplest way to rule out Eq.~4.55!, and hence Eq.~4.54!
as well, is to notice thatXV

AaD6XH
Aa violates SU(2)V

3SU(2)H ; eliminating the bulk auxiliaryFV also produces
noninvariant interactions. A term involving the bulk hyp
*d2QY AaY Aa suffers from similar problems. Finally, on
may imagine
9-17
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TABLE I. Kaluza-Klein towers of massless D5-brane modes.

Mode m2 D SU(2)H SU(2)V Operator in lowest multiplet

bm l ( l 11) l 12 l>0 0 i q̄mDJ kqm1C̄ irkC i

c ( l 12)(l 21) l 12 (12 l ) l>0 1 C̄ is i j
AC j12q̄mXV

AaTaqm

(b1z)(2) l ( l 23) l (32 l ) l>1 0 q̄msmn
I qn

(b1z)(1) ( l 14)(l 11) l 14 l>0 0 —
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SXY5E d3xd2QX AaY Aa

5E d3x 1
2 „XH

Aa~FV
Aa2D6XH

Aa!1XV
Aa~FH

Aa

1D6XV
Aa!1x̄1

Aax2
Aa
…. ~4.56!

Interestingly, almost every bosonic term inSXY is SU(2)V
3SU(2)H invariant; the one exception is a ter
(*d3xeABCf abcXH

AaXV
BbXV

Cc) arising from the auxiliary fields.
Nonetheless, this term allows us to rule it out. This co
pletes our list of potential marginal terms with addition
couplings.

Since our sought-after field theory must be conformal,
must not have any massive parameters in the action. M
over, for the quantum theory to maintain conformal symm
try, it is necessary that couplings of dimensionm are not
generated by linear divergences. Consequently, it is usef
demonstrate that mass terms are ruled out byN54 super-
symmetry andSU(2)V3SU(2)H . One might imagine the
N51 supersymmetric couplings

Sm5E d3xd2Q~md i j 1mAs i j
A !Q̄iQj

5E d3x~md i j 1mAs i j
A !~ f̄ iqj1q̄i f j2C̄ iC j !.

~4.57!

Although the triplet mass term isN54 supersymmetric, nei
ther term isSU(2)V3SU(2)H invariant, since elimination of
the f i leads not only toq̄iqj mass terms, but also to cros
termss i j

Aq̄iXV
AaTaqj and (sAsB) i j q̄

iXV
AaTaqj , which violate

the R symmetry.
Meanwhile, terms involving ambient fields with a massi

coupling constant are impossible, since on dimensio
grounds the superspace integrand would have to conta
single superfield, which cannot be gauge invariant
SU(N), in the spirit of a defect Fayet-Iliopoulos term. Hen
the preservedR symmetry forbids mass parameters of a
kind.

Although we have not imposed them, we find that sc
invariance and parity~4.30! are both symmetries of our fina
classical action.@The other discrete symmetry,P6 ~4.31!, is
also a symmetry, but we have in effect imposed it by d
manding that the defect matter couple only to the amb
vector multiplet.# Furthermore, it is also straightforward t
show that the action is invariant under inversion, and he
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is fully SO(3,2) symmetric. Almost all the rejected cou
plings would have violated the parity symmetryP; this is not
surprising, since 3D fermion mass bilinears are known
violate parity, and Eq.~4.51! contains an analogousq̄qC̄C.
The exception is Eq.~4.56!, which respects parity; the term
(*d3xeABCf abcXH

AaXV
BbXV

Cc) is unusual in that it is parity-
invariant butSU(2)V3SU(2)H noninvariant.

We have concluded that our theory is an 3DN54 super-
symmetric,SU(2)V3SU(2)H-invariant coupling of bulkN
54 super Yang Mills theory to the defect hypermultiple
also respecting theSU(N) gauge symmetry and the globa
U(1)B , and additionally we were unable to find any furth
generalizations of the theory that preserve these symmet
Consequently, we conclude that the action we have obta
defines the correct candidate for a novel defect supercon
mal field theory dual to the AdS5 /D5-brane system. We dis
cuss conformal invariance in the quantum theory in Sec.

V. OPERATOR MATCHING

The spectrum of modes resulting from the KK reducti
of the D5-brane fields in Sec. III must be matched w
gauge-invariant operators in the field theory. In this secti
we discuss the construction of this dictionary. We ident
conclusively the operators dual to the lowest floor of t
tower of KK modes. We also discuss the primary operator
higher Kaluza-Klein levels. At the end, we make a few r
marks about the effect of the defect on the closed-str
mode identification.

In Table I we summarize the results from Sec. III, whe
in the second and third lines we have noted the possibility
D2 for small values ofl. We have also indicated the thre
dual operators that appear in the lowest~massless! multiplet,
which we identify below; the (b1z)(1) tower does not con-
tribute to this multiplet.

The fields of the dual field theory, their quantum numbe
and their conformal dimensions in the free theory are ta
lated in Table II. TheSU(2) quantum numbers are written i
a spin notation. From these fields, we can construct gau
invariant operators. Since the operators dual to D5-br
modes are confined to the defect, each must include at l
one pair ofqi or Ca fields, but may contain ambient fields a
well.

Certainly it need not be true that every possible opera
will have a dual among the KK SUGRA excitations, as som
will instead correspond to stringy modes, a scenario fami
in AdS/CFT. However, we do expect to be able to find a d
operator for every D5-brane mode, because the corresp
ing multiplets are short, and consequently we expect the c
9-18



t

in
ar
e
3
e

ng
-
re

t
e

a

g

be
-
m
q.

e

-

the
on
ing
Eq.

a

ne
5-

s of
tor

ice
s to
ect.

he
di-

for

tes

ane

pri-
let
nce

at

os-
ys-
em
up

er-
n
tly,

the

s in
rns

HOLOGRAPHY AND DEFECT CONFORMAL FIELD THEORIES PHYSICAL REVIEW D66, 025009 ~2002!
formal dimensions of the elements to be protected and no
vary with the ’t Hooft couplingl.

In principle, the dual operators are determined by obta
ing the full action for the D3/D5 system before the ne
horizon limit is taken. Terms linear in D5-brane modes th
give the composite operator, composed of both D3 and
fields, dual to the D5-brane mode. We can deduce the id
tities of the dual operators in the ground floor by exploiti
supersymmetry alone.T duality in the D3/D5 system pro
vides a check on these results, and identifies the structu
the higher multiplets.

Consider first the bottom of the (b1z)(2) tower, l 51.
This mode lies in the mass region where eitherD1 or D2 is
possible. Since the theory is superconformal and we have
usual relation between the conformal dimension and thR
symmetry, we expectD to ascend linearly inl, and hence we
identify the correct choice asD251. The operator must be
spacetime scalar in the (3,1) of SU(2)H3SU(2)V , and
there is a unique candidate:

C I[q̄msmn
I qn. ~5.1!

All the other operators dual to D5-brane modes have lar
conformal dimension, and hence we identifyC I as the lowest
chiral primary. The remainder of the lowest multiplet can
obtained by acting onC I with N54 supersymmetry trans
formations. We can easily do so by beginning with the co
ponentN51 supersymmetry transformations implicit in E
~4.3! and promoting the supersymmetry parameter to a
32 matrix of Majorana spinorsh im , which transforms like
the gauginol im . We find the other operators in the sam
multiplet asC I to be

F im[C* iqm1q̄mC i , ~5.2!

E A[C̄ is i j
AC j12q̄mXV

AaTaqm, ~5.3!

JB
k [ i q̄mDkqm2 i ~Dkqm!†qm1C̄ irkC i , ~5.4!

where to obtain Eq.~5.3! we used the explicit form off
~4.40!. We can readily match the bosonic operatorsE A, JB

k to
D5-brane modes.E A is an SU(2)V triplet and a spacetime
scalar withD52, and hence matches thel 50 mode ofc,
assuming we chooseD1 . Furthermore,JB

k is precisely the
current of the global symmetryU(1)B , with D52 and van-

TABLE II. Quantum numbers of defect theory fields.

Mode Spin SU(2)H SU(2)V SU(N) D

Ak 1 0 0 adj 1
XV

A 0 0 1 adj 1
A6 0 0 0 adj 1
XH

I 0 1 0 adj 1
l im

1
2

1
2

1
2 adj 3

2

qm 0 1
2 0 N 1

2

C i 1
2 0 1

2 N 1
02500
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ishing SU(2)V3SU(2)H quantum numbers, and corre
spondingly is dual to the lowest mode ofbm .

This operator map implies the existence of terms in
action of the full D3/D5 system, localized on the intersecti
and coupling the D5-brane fluctuations to the fields mak
up the dual operators. For example, the identification of
~5.4! as the dual of the D5-brane gauge field implies
coupling

SD3/D5.E d3xBkJB
k , ~5.5!

which is precisely what we expect given that in the full bra
system, the defect fields are in the fundamental of the D
brane gauge group as well. The supersymmetric partner
Eq. ~5.5! must reproduce the rest of the ground floor opera
map. For us, by far the easiest way to confirm this is toT
dualize our defect action~4.33!, ~4.34! in the 4 and 5 direc-
tions; this transforms the D3-branes into D5-branes and v
versa, and hence generates from the coupling of D3 field
the defect the analogous D5-brane couplings to the def
We find that the terms in the DSCFT actionT dualize to
terms that confirm the identification of the operators~5.1!,
~5.3!, and ~5.4!. This agreement is strong evidence that t
field theory action we have developed is the correct can
date for a dual description of the gravity background.

Let us now consider the higher-l modes. In analogy with
the usual AdS/CFT case, we expect the chiral primary
each value ofl to be obtained fromC I by insertingl copies of
an operatorO J with D51 andSU(2)H spin-1, and taking
the symmetric traceless part:

Cl
I 0 . . . I l5C(I 0O I 1 . . . O I l ). ~5.6!

In principle the quantum numbers permit two candida
for O I :

q̄msmn
I qn, XH

I . ~5.7!

From the point of view of the intersecting brane system,XH
I

is the natural choice to generate higher moments of D5-br
fields. On the other hand, one might worry thatXH

I is an
unnatural candidate for an operator that generates chiral
maries, since it is a member of the inert bulk hypermultip
that does not even couple to the defect fields. One can o
again turn toT duality in the full brane system to argue th
XH

I is the right choice.
To do so, one must notice an additional constraint on p

sible terms localized on the intersection in the D3/D5 s
tem.T duality along the 4 and 5 directions carries the syst
into itself, so the total set of these terms must be invariant
to a relabeling of coordinates. However, this operation int
changes indices of D3 or D5-brane modes polarized oI
5345 with those polarized in the 6-direction. Consequen
a generic term that isSU(2)H2invariant beforeT duality
might not be afterwards; such terms cannot be present in
brane action. In order to reconcileT duality with SU(2)H ,
one must require that an even number of D3 or D5 indice
either the 345 or 6 directions appear. This constraint tu
9-19
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out to be equivalent to the requirement that the set of D
brane and D5-brane ambient hypermultiplet fields only
pear in pairs.

Up until now we have not discussed thel 50 mode at the
bottom of the (b1z)1 tower, which is simply the constan
mode ofZ6 with no ba contribution. This mode appears i
the second floor short multiplet, and is dual to anR singlet
operatorO Z6 with D54. Hence there must exist a couplin
in the D3/D5 brane system

SD3/D5.E d3xa8Z6O Z6. ~5.8!

Unlike the D5-brane modes appearing in the ground fl
operator map,Z6 is in the D5-brane ambient hypermultiple
not the vector.T duality hence demands that at least o
D3-brane ambient hyper field appear inO Z6. Now,O Z6 must
be a four-supercharge descendant of the second-floor c
primary C1

IJ ; however, one may show that no such desc

dant of q̄s (Iqq̄sJ)q contains a D3 hyper field. On the othe
hand, XH

I is itself in the D3-brane ambient hyper, an

q̄s (AXH
B)q indeed does have descendants containing su

field.
Hence, we identifyq̄s (AXH

B)q as the consistent choice fo
the second-floor chiral primary, andXH

J as the operatorO J

that generates all higher chiral primariesCl corresponding to
the (b1z)2 tower as Eq.~5.6!. The operators dual to th
remaining D5-brane modes, includingO Z6 and its higher
moments, can be obtained from theCl by supersymmetry
transformations. This determines in principle the compl
D5-brane mode–defect operator dictionary.

Before turning to perturbative calculations, let us ment
the effect of the defect on the closed-string mode–oper
dictionary. The leading-order identification of bulk close
string fields to operators varying over the ambient 4D sp
will remain unchanged, but corrections can arise localized
the defect. One obvious example of this is the ener
momentum tensor, dual to the transverse traceless grav
which has the form

Tmn5Tmn
N541d~x!Tkl

3ddm
k dn

l . ~5.9!

Note that tracelessness of the full stress tensor, assoc
with conformal invariance, refers to a trace over all 4 indic
not just 3, despite the fact that the conformal group is j
SO(3,2). This reflects the fact that the realization of sc
transformations is four-dimensional, reducing to a 3D sc
transformation only on the defect.

The dilaton, which is the supersymmetric partner of t
graviton, should be dual to the total field theory Lagrangi
including defect terms. Similarly, other operators in the sa
reduced supersymmetry multiplet may have ad(x) piece.
Obtaining the contributions of such defect pieces to corre
tion functions via gravity calculations is an open proble
Some bulk modes, such as the scalars dual to TrX2, lie in
different multiplets; whether they also receive a localiz
part at leading order would be interesting to determine.
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VI. PERTURBATIVE FIELD THEORY

There is by now a vast literature discussing the inter
tions of matter localized on a boundary with highe
dimensional fields, chiefly inspired by the Horˇava-Witten
scenario@31# and involving a five-dimensional bulk caugh
between two ‘‘end-of-the-world’’ 3-branes. Perturbativ
analysis for such theories in a spirit similar to this paper c
be found in@30,32,33#.

The DSCFT dual to the Karch-Randall system is novel
a number of ways. First, space does not terminate at
defect but instead continues through it, and consequently
boundary conditions are imposed on the ambient fields. S
ond, since the total dimension is four, the gauge theory
renormalizable and hence well-defined in the ultraviolet.
nally, despite the presence of the defect, the theory is po
lated to be exactly superconformal.

In this section, we discuss the results of a prelimina
study of the perturbative properties of such theories. The
task of such a study should be to investigate whether
classicalSO(3,2) conformal symmetry is maintained in pe
turbation theory, and an approach to this question is p
sented in the next subsection. This is followed by a disc
sion of weak coupling properties of correlation functions
composite operators which illuminate issues which arose
our discussion of the putative gravity dual.

A. Quantum conformal invariance?

The elementary yet essential aspect of our defect theo
is that certain fields of the ambientN54 SYM theory are
‘‘pinned’’ to the defect atx50 and couple as 3-dimensiona
fields with scale dimension enhanced by one unit. Thus fo
scalar bosonX(x,yW ) or restricted spinorl1(x,yW ) we have the
pinned propagators~in Euclidean signature!

^X~0,yW !X~0,yW 8!&5
1

4p2~yW2yW 8!2
5FT3S 1

2ukW u
D , ~6.1!

^l1~0,yW !l̄1~0,yW 8!&52
rk~y2y8!k

2p2~yW2yW 8!4
5FT3S irkkk

2ukW u
D ,

~6.2!

whereas propagators of defect fields are

^q~yW !q̄~yW 8!&5
1

4puyW2yW 8u
5FT3S 1

kW2D ~6.3!

^C~yW !C̄~yW 8!&52
rk~y2y8!k

4puyW2yW 8u3
5FT3S irkkk

kW2 D .

~6.4!

Of course it is the 3-dimensional Fourier transform
FT3„f (kW )…5*d3keikW•yW f (kW )/(2p)3, which is relevant for cor-
relation functions with all external operators pinned at t
defect. We thus find that pinned propagators are more sin
lar at short distance or high momentum than is standard
dimensions. It is in this way that the defect theory, whi
9-20
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would have been super-renormalizable if purely in 3 dim
sions, becomes critically renormalizable with dimensionl
couplings.

We now outline an argument based on power count
and symmetries that conformal symmetry is maintained
perturbation theory. We will argue that, after cancellati
among the graphs of fixed loop order contributing to a giv
one particle irreducible~1PI! amplitude, the only new diver
gences are those of wave function renormalization of
defect fieldsqi ,C i , f i . Wave function renormalization in
duces anomalous dimensions of the elementary fields, w
are generically gauge dependent and nonobservable, and
have no effect on conformal symmetry.9 Our discussion as
sumes that the supersymmetry and other symmetries@e.g.
parity andSU(2)H3SU(2)V# are maintained in perturbatio
theory.

Amputatedn-point functions of ambient fields generical
contain two types of contributions~for each bulk line!—a
pinned contribution in which the ‘‘first interaction’’ of the
external field is on the defect and an unpinned contribut
in which the first interaction is in the ambientR4. Our dis-
cussion deals first with the pinned contributions, which ca
an explicitd(x) factor.10 Divergences of these contribution
would require local countertermsdL5*d3yO3 on the de-
fect. Further the pinned pieces are the only contribution
the ambient 4D theory is free, e.g., forN54 SYM theory
with gauge groupU(1).

Let us write a power-counting formula for a generic a
putatedn-point function with nq , nC , nf external defect
fields andnA , nl , nXV

, nXH
, nx , nF pinned ambient fields

With modest work, one can see that the superficial degre
divergence is

d52nA1 3
2 nl12nXV

1nXH
1 3

2 nx1nF1 5
2 nq

12nC1 3
2 nf23n13. ~6.5!

There is a long list of divergent component amplitudes,
which we discuss a few in order to convey the essential
of our argument.

Beginning with two-point functions, we see that theC
self-energy is linearly divergent, threatening an infinite m
countertermC̄ iC i . However, we have pointed out in Se
IV B that this term is parity violating and, due toN51
SUSY, must be accompanied by other terms which are n
invariant underSU(2)H3SU(2)V . Thus the potential diver-
gence must cancel, and SUSY then implies that the o
divergence of 2-point functions of defect fields is logarithm
cally divergent wave function renormalization.

We may also consider the effect of the defect on the s
energy of bulk fields. The vacuum polarization of the gau
field determines the renormalization of the couplingg. The

9Inspection of the unique 1-loop graph for thef i self-energy re-
veals immediately that it is logarithmically divergent. The same
true for theFA self-energy in conventional componentD54 N
54 SYM theory in Wess-Zumino gauge.

10For an externalXH line the factor isd8(x).
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contribution to this quantity with both external fields pinne
has linear superficial degree of divergence, but this is
creased due to gauge invariance. Decreasing by a si
power of externalpi suggests a log-divergent Chern-Simo
counterterm, but this is again prohibited by parity symme
as is the companion pinned mass terml̄1l1. Thus both the
pinned vacuum polarization andl1 self-energy are UV fi-
nite; SU(2)H3SU(2)V symmetry requires thex1 self-
energy to be finite as well. TheXV self-energy is linearly
divergent, but there is no Lorentz-invariantXV] iXV counter-
term. The termXV ]6XV is Lorentz-invariant and parity-
invariant, but it violatesP6, and once again SUSY requires
to appear with other terms~4.56! that violate SU(2)V
3SU(2)H .

Moving on to 3-point functions, we see that the amputa
correlator^AiCC̄& with the gauge field pinned is log diver
gent by power counting. Although confined to the defect,
hyperinoC i is a canonically coupled field in the fundame
tal of the gauge group, and the usual gauge Ward iden
implies that this divergence is canceled by wave funct
renormalization. The gauge couplingg can only be renormal-
ized in the vacuum polarization, for which the defect cont
bution was argued to be finite above. This argument app
not just to our theory, but to a general coupling of a 4
gauge theory to 3D matter. In our case, however,N54
SUSY and SU(2)H3SU(2)V invariance then imply that
there are no infinite counterterms for any of the cubic co
plings in Skin ~4.33!, or SX ~4.34!.

The quartic couplings of the scalar potential inSpot ~4.50!
are generated from three-point couplings by eliminating a
iliary fields, and hence these are also fixed by SUSY a
cannot be renormalized. It has also been shown in Sec I
that other potentially log divergentn-point functions withn

>4, such aŝ q̄iqiC̄ jC j& and^q̄iqi q̄ jqj q̄kqk&, cannot induce
new couplings because they violate the symmetries.

These remarks add up to a strongly suggestive argum
that at least the diagrams involving defect and pinned am
ent fields respect conformal invariance. This is sufficient
guarantee conformality for theU(1) version of our theory,
where the gauge charge appears only in defect interacti
The gravity dual requiresSU(N) gauge group for the field
theory. This necessarily involves nonpinned contributions
correlators involving both ambient and defect fields. Th
are more divergent at short distance, and lack conventio
translation symmetry. Further study is needed to han
them. Thus, although we are optimistic, it is too early
declare victory on the question of conformal symmetry of t
SU(N) theory.

Gauge anomalies can be shown to be absent. Our th
is still four-dimensionally gauge invariant, as it must be
make sense of the 4D gauge field, and bulk fields in princi
contribute to a 4D gauge anomaly, which forN54 SYM
theory cancels. Defect fields, however, participate only i
restricted three-dimensional gauge invariance. There are
ordinary gauge anomalies in three dimensions. Thr
dimensional theories can possess a parity anomaly tha
duces a 3D Chern-Simons term@34#, but this arises only
when there is an odd number of charged Majorana spin
so our theory is safe.

s
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One novel feature of the defect theory is thed(0) from
the q̄ FRq vertex in the action. We now give a general arg
ment that this is a harmless artifact. We start at the leve
elementary auxiliary fields. The propagator ofFR in ~Euclid-
ean! momentum space is21 and that ofXH is 1/(k21kW2).
Thus for]6XH(x,yW ), it is k2/(k21kW2). In exchanges betwee
q̄q pairs one then has the effective propagator

E dk

2p F12
k2

k21kW2G5E dk

2p

kW2

k21kW2
5ukW u. ~6.6!

In position space this amounts to the propagator 1/(2p2)(yW

2yW 8)4 betweenq̄q vertices at (0,yW ) and (0,yW 8). After elimi-
nation ofFR one can see that the correct perturbation exp
sion is obtained if one neglects thed(0) term in Eq.~4.50!
and uses the effective propagators above for exchang
]6XH betweenq̄q pairs. Needless to say this is true for bo
the tree level exchange, as discussed in@30#, and when the
exchange is included with another amplitude. This sugg
that it may be useful to use aN51 supergraph formalism in
which the cancellation above is automatic@27#.

B. Composite correlators at weak coupling

One clear prediction of the extended AdS/CFT corresp
dence we are investigating is that a large set of defect op
tors in the dual field theory have integer scale dimensi
Assuming the conjectured conformal symmetry is valid,
reason is that these operators span a short representati
the superalgebraOSp(4u4). It is then valid to map fields on
AdS4 to composite operators on the defect according to
free field scale dimension of the latter, and this was done
Sec. V. Although one would not expect symmetry relations
fail, it would be desirable to use weak coupling calculatio
to test that radiative corrections to theseD ’s vanish. Al-
though the AdS/CFT duality predicts that most correlat
are renormalized, it is not excluded that 2-point functions
defect operators,̂ O3O3&, have no radiative corrections
However, to test these features requires more precise ca
lations than time has so far allowed us.

It is nevertheless possible to use weak coupling anal
to illuminate some aspects of the operator map and we
discuss one application. Kaluza-Klein analysis led us t
unique operator of dimensionD51 in the open string–defec
operator dictionary, namely theSU(2)H triplet C A[q̄sAq of
Eq. ~5.1!. The singletq̄q is not in the operator map. Gener
cally one would expect it to have anomalous dimension,
we will show that this does happen to orderg2N.

The operatorq̄sAq is the primary of the multiplet con
taining the conserved currentJB

k of Eq. ~5.4!, so it is fair to
assume that its scale dimension is exactlyD51. Given this
assumption it is not difficult to compare graphs for t
3-point functions ^q̄sAq(yW 1)q̄(yW 2)q(yW 3)& and

^q̄q(yW 1)q̄(yW 2)q(yW 3)& through 1-loop order and show thatq̄q
acquires anomalous dimension. We work implicitly in t
framework of differential regularization@35# in which no
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counterterms are needed and renormalization data is infe
directly from the Callan-Symanzik equations

FM
d

dM
1b~g!

d

dg
22gq2gOG^O~yW 1!q̄~yW 2!q~yW 3!&50.

~6.7!

The two 2-point functions can be expressed as follows:

^q̄q~yW 1!q̄i~yW 2!qj~yW 3!&5d i j @G13GX#, ~6.8!

^q̄sAq~yW 1!q̄i~yW 2!qj~yW 3!&5s i j
A@G1G82GX#.

~6.9!

The Feynman diagrams which contribute toG5G (0)

1G (1),G8,GX are given in Fig. 1. TheSU(2)H algebra for
these diagrams has been done and incorporated in the e
tions above, while color is suppressed. The analysis succ
because theXH exchange diagramGX has different weights
in the two amplitudes.

We have argued in Sec VI A thatb(g)50, but, even if
not, the lowest order contribution isb;g3 which cannot
affect the present argument. WritingG (0),G (1) to distinguish
tree and 1-loop contributions toG, the perturbative CS equa
tions can be written as

M
d

dM
~G (1)13GX!5~2gq1g q̄q!G (0), ~6.10!

M
d

dM
~G (1)1G82GX!5~2gq1g q̄sq!G (0).

~6.11!

The graphG8 is UV finite ~it turns out to be a numerica
multiple of g2G (0)), and its scale derivative thus vanishe
However, bothG (1) andGX are log divergent. By subtraction
the two equations then give

4M
d

dM
GX5~g q̄q2g q̄sq!G (0). ~6.12!

If g q̄sq is nonvanishing, as we assume,g q̄q is nonvanishing.
Thus q̄q has radiatively corrected scale dimensionD q̄q51
1g q̄q .

FIG. 1. Feynman diagrams through one-loop order for the c

relators^q̄Mq(yW 1)q̄(yW 2)q(yW 3)& whereM is eithersA or 1.
9-22
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Another application of perturbative analysis to the ope
tor map is studying the two candidate operators discusse
Sec. V whose multiple products might appear as field the
duals of higher D5-brane KK fluctuations on AdS4. The chi-
ral primary fields of the KK multiplets are modes of (b
1z)(2) with SU(2)H quantum numberl ~with l>2) and
scale dimensionD5 l . The two families of candidate dua
operators are the isospinl components of (q̄sAq) l and those
of q̄sA(XH

B)( l 21)q. In Sec. V we presented an argume
based on theT-duality invariance of the defect D3/D5 actio
suggesting that the latter family is the correct choice. We w
now outline an argument based on the Callan-Syman
equation which shows that the former set of operators ha
anomalous dimension to lowest order. The virtue of this
gument, which is similar to that forq̄q above, is that a pre
cise evaluation of the diagrams is not required. This is
true for the operator familyq̄sA(XH

B)( l 21)q since there are
more contributing diagrams, so the question of anomal
dimension for these is not yet settled.

We choose the highest weight component of thel 52 pro-
jection of (q̄sAq)2 and study all tree and 1-loop graphs f
the 5-point function

^q̄1q2q̄1q2~yW !q1~yW 1!q̄2~yW 2!q1~yW 3!q̄2~yW 4!&.

There are 1-loop graphs with gluon and]6XH exchange be-
tween theq lines atyW 1 and yW 2. These graphs contribute n
anomalous dimension in the CS equation since they ente
the same way as for the protected operatorq̄sAq. The same
is true for exchanges between lines atyW 3 and yW 4. There are
additional UV finite graphs as inG8 above. There remain 4
graphs with gluon exchange betweenyW 1 or yW 2 andyW 3 or yW 4
and 4 more graphs with exchange of]6XH . The amplitudes
of the graphs are not the same space-time functions, but
contribution to the scale derivative is proportional to t
same local tree amplitude in all cases. There are two gl
exchanges betweenqq and two betweenqq̄. Coefficients are
equal and opposite and the sum cancels. One can exa
the SU(2)H flavor algebra and find a similar cancellatio
among the 4]6XH exchange graphs. In this way we ha
shown that the 5-point function satisfies the CS equa
with no orderg2N anomalous dimension for thel 52 com-
ponents of the operator (q̄sAq)2. The same argument fail
for l 50,1 components because there are inequivalent c
contractions.

It is a matter of simple combinatorics to extend the arg
ment to the highest weightl 5n components of (q̄sAq)n.
One first separates graphs with interactions onq lines which
terminate at a singleq̄sAq factor in the product. These
graphs do not contribute to the anomalous dimension
above. There remain 2(n21) gluon exchanges betweenqq̄
and 2(n21) betweenqq. Their contribution to the scale
derivative cancels as above. Finally, there are 4(n21) ]6XH
exchanges. Within groups of 4 one can study the flavor a
bra and find complete cancellation.
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We conclude our survey of perturbative results with
discussion of the field theory interpretation of poles that
peared in the gravity calculations of Sec. III. In the comp
tation of ^O4& from the D5-brane action, we noted a dive
gence forD4<3 which comes from the boundary region
the integration over AdS4. In the conventional AdS/CFT cor
respondence similar infinities can be interpreted as UV
vergences in the dual field theory. A parallel interpretati
seems plausible here. ForO45Tr (XV)k some Feynman dia
grams contain a generic subamplitude withk pinnedXV lines
~as shown in Fig. 2 fork53). The degree of divergence i
d532k. Thus the diagram has a subdivergence~as all inter-
action pointsyW I on the loop come together! for k<3 in per-
fect correspondence with the gravity result. Of course
divergence on the gravity side is present for generic Ad4
action, but cancels due to symmetry in our specific case
field theory as well, the divergence predicted by gene
power counting also violates symmetry and cancels. For
casek52 the field theory amplitude is linear divergent, b
the gravity result is finite. However, in low order example
the divergence cancels due to symmetric integration leav
a finite remainder. One may also apply similar power cou
ing to field theory amplitudes for̂O4O3& and find that a
subdivergence is formally predicted whenD32D4>0 in
agreement with the calculation in supergravity.

VII. OPEN QUESTIONS

Many avenues remain for further exploration. The mo
pressing issue is the proof of conformality forSU(N) gauge
group. Assuming that the theory is conformal, one is na
rally led to wonder about the existence of other DSCF
Simple generalizations include changing the gauge gro
the defect matter representation, or promotingU(1)B to a
non-Abelian symmetry; this last possibility may be hol
graphically related to a theory with multiple D5-brane
Completely different DSCFTs in other dimensions likely e
ist as well, and may have holographic duals.

A more detailed study of the correlation functions of t
field theory described in the present paper would also
interesting, including a precise matching with results fro
the D5-brane action containing KK reduced bulk modes. T
question of the existence of non-renormalization theore
for correlators with two defect operators should be inve
gated. There also remains the more general understandin
how the presence of the defect corrects the closed stri
ambient operator map and the related correlation functio
Whether the gravity coupling vanishes for ‘‘extremal’’ cor

FIG. 2. The generic contribution to the one point functio
^Tr(XV)k& with all k XV lines pinned to the defect~vertical line!,
depicted here fork53.
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OLIVER DeWOLFE, DANIEL Z. FREEDMAN, AND HIROSI OOGURI PHYSICAL REVIEW D66, 025009 ~2002!
elators^O4O3& is a test of our reasoning concerning the po
structure.

The importance of determining the supergravity solut
taking account of the back-reaction of many D5-branes
emphasized by@7#, remains. Such a geometry must produ
all the physics of the DSCFT through closed string exc
tions alone, presumably by means of local localization.
nally, it would be fascinating to deform this corresponden
away from the conformal limit, and to study the holograph
duality between the much broader class of defect field th
ries that run with scale and more intricate brane geometr

Note added in proof.A demonstration of the conformality
of the full non-Abelian defect theory has recently appea
in @27#.

ACKNOWLEDGMENTS

We are grateful for conversations with Allan Adams, Co
tas Bachas, Alex Buchel, Jan de Boer, Robbert Dijkgra
Noah Graham, Ami Hanany, Petr Horˇava, Andreas Karch
Igor Klebanov, Andrei Mikhailov, Joe Polchinski, Kostas S
enderis, Witek Skiba, Jan Troost, and Wati Taylor. We a
thank Sergey Frolov and Massimo Porrati for pointing o
minor errors in the first version. The work of O.D. was su
ported by the NSF under grant PHY-99-07949. The work
D.Z.F. was supported by the NSF under grant PHY-0
96515. The work of H.O. was supported in part by DO
Grant DE-AC03-76SF000098. D.Z.F. and H.O. would a
like to thank ITP, Santa Barbara for hospitality.

APPENDIX A: SPHERICAL HARMONICS ON S 5 AND S2

Bulk fields are expanded in spherical harmonics on the5.
For example, for scalar harmonics, we can write the S5 har-
monics in terms of products of standard harmonicsYm

l (u,w),

Ym8
l 8 (x,§) on each S2 and functions of the fifth coordinatec:

Ylml8m8
k

~c,u,w,x,§!5Ym
l ~u,w!Ym8

l 8 ~x,§!Zll 8
k

~c!.
~A1!

The S5 Laplacian in the coordinates~2.4! is

hS55
1

sin2c cos2c

]

]c
sin2c cos2c

]

]c
1

1

cos2c
hu,w

1
1

sin2c
hx,§ . ~A2!

A scalar spherical harmonicYk on Sq transforms in thek-fold
symmetrized traceless product of fundamentals ofSO(q
11). It is an eigenvalue of the Laplacian onSq with
eigenvalue

hSqYk52k~k1q21!Yk, ~A3!

and using Eq.~A2! we can obtain an ordinary differentia
equation forZll 8

k (c),
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sin2c cos2c

]

]c
sin2c cos2c

]

]c
2

l ~ l 11!

cos2c

2
l 8~ l 811!

sin2c
D Zll 8

k
~c!52k~k14!Zll 8

k
~c!. ~A4!

Since there are interactions between closed-string and
brane fields on the D5 world volume, we are interested in
behavior of the spherical harmonics atc50. To leading or-
der in c, the equation forZll 8

k (c) ~A4! reduces to

S ]2

]c2 1
2

c

]

]c
2

l 8~ l 811!

c2
1k~k14!2 l ~ l 11!D Zll 8

k
~c!50.

~A5!

We perform a standard Frobenius analysis by expand
Zll 8

k (c) near c50 as Z(c)5ca(n50
` xncn, where we are

always free to takex0Þ0 by redefininga if necessary. The
leading order term in Eq.~A5! then leads to the requiremen

a5 l 8 or a52 l 821. ~A6!

Requiring the regularity of the spherical harmonics over
complete S5 selects the former. We are then led to the co
clusion that Zll 8

k (c50)50, and by extensionYlml8m8
k (c

50)50, unlessl 850. We conclude that only the closed
string modes invariant underSU(2)L couple directly to the
D5-brane fields.

Another conclusion we can draw is that givenl and l 8,
there no more than one harmonic with a fixed choice ofk.
This is because according to Eq.~A6!, the second-order dif-
ferential equation~A4! has only one solution regular atc
50. This uniqueness implies that for givenk, there is no
more than oneSU(2)H3SU(2)V representation labeled b
( l ,l 8).

We can furthermore show that onlySU(2)H3SU(2)V
representations withl 1 l 8<k will appear inside theSO(6)
representation labeled byk. Recall that theSO(6) represen-
tation is thek-fold symmetric product of the fundamental6.
This decomposes into representations (3,1) % (1,3), i.e. into
a sum of (l ,l 8)5(1,0) and (l ,l 8)5(0,1). We easily see tha
the k-fold product of this sum contains only representatio
satisfying l 1 l 8<k, with equality only when the factors in
eachSU(2) are completely symmetrized.

APPENDIX B: FIELD THEORY CONVENTIONS

We work in mostly-minus signature. Minimal three
dimensional spinors are Majorana, so it is convenient for
to use Majorana notation in four dimensions as well. A co
venient Majorana basis for 3D (232) and 4D (434) Clif-
ford matricesrk andgm is

r052s2, r15 is1, r25 is3, ~B1!

g05r0
^ s3, g15r1

^ s3,

g25r2
^ s3, g35I ^ is1, ~B2!
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with sk the Pauli matrices. These matrices are all imagina
and r0 and g0 are Hermitian while the rest are ant
Hermitian. In this basis, Majorana spinors are real in b
three and four dimensions. We define the 4D chirality a
projection matrices as
. B

O

,’’

e

e

,

En

v

02500
y,

h
d

g[2 ig0g1g2g35I ^ s2, L[ 1
2 ~11g!, R[ 1

2 ~12g!,
~B3!

with g purely imaginary and Hermitian and as usual satis
ing g251, $g,gm%50.
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