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1 Introduction

The recognition that the quark-gluon plasma (QGP) produced in relativistic heavy ion

collisions is strongly coupled [1] has prompted much work using gauge/gravity duality

(or “holography”) to study aspects of non-equilibrium dynamics in strongly coupled N =4

supersymmetric Yang-Mills theory (SYM), which may be viewed as a theoretically tractable

toy model for real QGP. Work to date has involved various idealizations (boost invariance,

planar shocks, imploding shells) which reduce the dimensionality of the computational

problem, at the cost of eliminating significant aspects of the real collision dynamics [2–

7]. In this paper, we report the results of the first calculation of this type which does

not impose unrealistic dimensionality reducing restrictions. We study the collision, at

non-zero impact parameter, of bounded, localized distributions of energy density which

mimic colliding relativistic Lorentz-contracted nuclei and form stable incoming projectiles

in strongly coupled SYM.

In the dual gravitational description our initial state consists of two localized incoming

gravitational waves, in asymptotically anti-de Sitter (AdS) spacetime, which are arranged

to collide at a non-zero impact parameter. The precollision geometry contains a trapped

surface and the collision results in the formation of a black brane. We numerically solve

the full 5D Einstein equations for the geometry during and after the collision and report

on the evolution of the SYM stress-energy tensor Tµν .

2 Gravitational formulation

2.1 Single shocks

We construct initial data for Einstein’s equations by combining the metrics describing

gravitational shock waves moving at the speed of light in opposite directions. In Fefferman-

Graham (FG) coordinates, the metric of a single shock moving in the ±z direction is given
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by [8, 9]

ds2 =
L2

s2
[
−dt2 + dx2

⊥ + dz2 + ds2 + h±(x⊥, z∓, s) dz
2
∓

]
, (2.1)

(where x⊥ ≡ {x, y} and z∓ ≡ z ∓ t). This is a sourceless solution to Einstein’s equa-

tions with cosmological constant Λ ≡ −6/L2, provided the function h± satisfies the linear

differential equation (
∂2
s − 3

s ∂s +∇2
⊥

)
h± = 0 . (2.2)

Solutions to this equation which vanish at the boundary, s = 0, may be written in the form

h±(x⊥, z∓, s) =

∫
d2k⊥

(2π)2
eik⊥·y⊥ H̃±(k⊥, z∓) 8(s

2/k2⊥) I2(k⊥s) , (2.3)

where H̃± is an arbitrary function of the 2D transverse wavevector k⊥ and the longitudinal

variable z∓ (and I2 is a modified Bessel function).

The geometry described by eqs. (2.1) and (2.3) represents a state in the dual SYM

theory with a stress-energy tensor expectation value given by [10].

〈T 00〉 = 〈T zz〉 = ±〈T 0z〉 = κH±(x⊥, z∓), (2.4)

with all other components vanishing. Here, H± is the 2D transverse Fourier transform of

H̃±, and the constant κ ≡ L3/(4πGN ) = N2
c /(2π

2) (with Nc the gauge group rank of the

SU(Nc) SYM theory). In other words, the function H± specifies the energy density (and

longitudinal stress and momentum density) of a shock wave moving, non-dispersively, at

the speed of light in the ±z direction. Given any choice of this energy density profile,

eqs. (2.1) and (2.3) give an explicit form for the unique dual gravitational geometry which

describes this shock wave.

For simplicity, we consider Gaussian energy density profiles,

H±(x⊥, z∓) =
A√
2πw2

exp

(
−1

2
z2∓/w

2

)
exp

[
−1

2
(x⊥ ∓ b/2)2/R2

]
, (2.5)

with longitudinal width w, transverse width R, and a transverse offset ±b/2. Hence, b

will be the impact parameter when these oppositely directed shock waves collide. The

amplitude A gives the maximum value of the longitudinally integrated energy density

(divided by κ).

For the explicit computations presented below, we adopt units in which the amplitude

A equals unity and choose longitudinal and transverse widths w = 1
2 and R = 4, respec-

tively, and impact parameter b = 3
4R x̂. Consequently, the stress tensor (2.4) describes

localized lumps of energy centered about x = ±b/2, y = 0, and z = ±t. The AdS curvature

scale L is not a physical scale in the dual QFT and may independently be set to unity.

2.2 Infalling coordinates

Our time evolution scheme [11] for asymptotically-AdS gravitational dynamics uses infalling

Eddington-Finkelstein (EF) coordinates in which the spacetime metric has the form

ds2 =
r2

L2
gµν(x, r) dx

µdxν + 2 dr dt , (2.6)
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with Greek indices denoting spacetime boundary coordinates, xµ ≡ (t, x, y, z), and r the

bulk radial coordinate. For the asymptotically-AdS geometries of interest, the metric

coefficients gµν have the near-boundary behavior gµν = ηµν + g
(4)
µν /r4 +O(1/r5) as r → ∞,

with ‖ηµν‖ ≡ diag(−1,+1,+1,+1) the usual Minkowski metric tensor. The sub-leading

coefficients g
(4)
µν determine the SYM stress tensor expectation value. In these coordinates,

〈Tµν〉/κ = g(4)µν + 1
4 ηµν g

(4)
00 . (2.7)

Although the single shock solution to Einstein’s equations has the nice analytic

form (2.4) in Fefferman-Graham coordinates, this geometry does not have a simple analytic

form in infalling EF coordinates; the transformation to infalling coordinates must be per-

formed numerically. One may easily show that, in infalling coordinates, curves along which

r varies, with the other coordinates held fixed, are infalling null geodesics (with r an affine

parameter). To transform the geometry (2.1) to the infalling form (2.6) one must locate

the same congruence of infalling radial null geodesics in FG coordinates. Let Y ≡ {yµ, s}
denote the FG coordinates of some event, and let X ≡ {xµ, r} denote the EF coordinates

of the event at affine parameter r along the radial infalling geodesic which begins at bound-

ary coordinates xµ. Then the solution Y (X) to the geodesic equation (in FG coordinates)

for the same null geodesic which begins at boundary coordinates xµ provides the required

mapping between EF and FG coordinates. Given this mapping, the required transforma-

tion of the FG metric components G̃MN (Y ) to the metric components GMN (X) in our

infalling coordinates (with ds2 = GMN (X) dXMdXN = G̃MN (Y ) dY MdY N ) is simply

GMN (X) =
∂Y A

∂XM

∂Y B

∂XN
G̃AB(Y (X)) . (2.8)

To compute the congruence Y (X), we first periodically compactified spatial directions

(to obtain a finite computational domain) with transverse size Lx = Ly = 32 and longi-

tudinal length Lz = 12. We employed spectral methods [11], and used a rectangular grid

built from single domain Fourier grids with 32 points in the transverse directions, a 256

point Fourier grid in the longitudinal direction, and three Chebyshev domains of 32 points

each in the radial direction. We used a Newton iterative procedure to solve the non-linear

geodesic equation starting at each grid point on the boundary (modulo the C4v transverse

cubic symmetry).1 We integrated the geodesic equations to a depth of s = 5 and fixed

the residual radial shift reparameterization freedom [11] by demanding that the surfaces

u ≡ 1/r = 5 in infalling coordinates, and s = 5 in FG coordinates, coincide.

2.3 Colliding shocks: initial data

For early times, t ≪ −w, the Gaussian profiles H± of the oppositely directed incoming

shocks have negligible overlap and the precollision geometry can be constructed by replacing

the last term in the single shock metric (2.1) with the sum of corresponding terms from

1To obtain solutions with high accuracy, we used 40 digit arithmetic in this step. This allowed us to

reduce both numerical arithmetic and iterative convergence errors to negligible levels, leaving the spectral

truncation error as the limiting numerical issue.
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left and right moving shocks. The resulting metric satisfies Einstein’s equations, at early

times, up to exponentially small errors.

Initial data for the subsequent time evolution consists of the values of the spatial

metric coefficients, rescaled to have unit determinant, ĝij ≡ gij/(det ‖gij‖)1/3, on every

point of the initial time slice, together with the values of the energy and momentum

density (or equivalently the asymptotic coefficients g
(4)
0ν ) at the initial time. The initial

time slice was chosen to lie at t = −2, We slightly modified the initial data by adding

a small uniform background energy density, equal to 3.7% of the peak energy density of

the incoming shocks. This modestly displaced the location of the apparent horizon toward

the boundary, improving numerical stability and allowing use of a coarser grid, thereby

reducing memory requirements.2

2.4 Colliding shocks: time evolution

Time development of the geometry was calculated using the procedure described in detail

in ref. [11]. Time evolution was performed using a spectral grid of size Nx = Ny = 39,

Nz = 145, and Nr = 40. A fourth-order Runge-Kutta time integration algorithm was used

with a time step of 0.005. Integration continued to a final time of t = 4. Even though our

gravitational dynamics is five dimensional, with no symmetry restrictions imposed, we were

able to perform the time evolution on a 6 core desktop computer with a 14 day runtime.

3 Results

In figure 1 we plot the energy density T 00 (top) and energy flux T 0i (bottom) in the

plane y = 0 at several values of time.3 Note that the color scaling varies from plot to

plot. The color scaling in the lower plots denotes |T 0i| and the flow lines indicate the

direction of T 0i. At time t = −2 the system consists of two well separated lumps of energy

moving towards each other at the speed of light. The non-zero impact parameter in the

x-direction is apparent. At time t = 0, when both shocks are centered at z = 0, the energy

density and flux differ by only 8% and 15%, respectively, from a linear superposition of

two unmodified shocks. Nevertheless, the subsequent evolution is very different from two

unmodified outgoing shocks: the remnants of the initial shocks, which remain close to the

lightcone, z = ±t, are significantly attenuated in amplitude with the extracted energy

deposited in the interior region.

At sufficiently late times, in accord with fluid/gravity duality [12, 13], the evolution of

the stress tensor should be governed by hydrodynamics. To compare to hydrodynamics,

we define the fluid velocity to be the normalized time-like (uµu
µ = −1) future directed

eigenvector of the stress tensor,

Tµ
ν u

ν = −ǫ uµ , (3.1)

2Note added in proof: we have been able to recompute the evolution using a much smaller background

energy density, equal to 0.05% of the peak energy density. Over the time duration studied, the impact on

the resulting dynamics of this change in background energy density is negligible. None of the features of

the results discussed below are significantly affected by this background energy density.
3Here and henceforth, Tµν is really the expectation value of the SYM stress-energy tensor divided by

κ ≡ N2

c /(2π
2).
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Figure 1. The energy density T 00 (top) and energy flux |T 0i| (bottom), at four different times, in

the plane y = 0. Streamlines in the lower plots denote the direction of energy flux. Note that the

color scaling varies from plot to plot. At the initial time t = −2 the shocks are at z = ±2. The

non-zero impact parameter in the x-direction is apparent. The shocks move in the ±z direction at

the speed of light and collide at t = z = 0. After the collision the remnants of the initial shocks,

which remain close to the lightcone, z = ±t, are significantly attenuated in amplitude with the

extracted energy deposited in the interior region. The development of transverse flow is apparent

at positive times.

with ǫ the proper energy density. Given the flow field uµ and energy density ǫ, we construct

the hydrodynamic approximation to the stress tensor Tµν
hydro using the constitutive relations

of first order viscous hydrodynamics.

In figure 2 we plot the stress tensor components T xx and T zz, and their hydrodynamic

approximations T xx
hydro and T zz

hydro, at the spatial origin x = y = z = 0, as a function of

time. At this point the stress tensor is diagonal, the flow velocity u = 0, and T xx and T zz

are simply the pressures in the x and z directions. As shown in the figure, the pressures

increase dramatically during the collision, reflecting a system which is highly anisotropic

and far from equilibrium. After a time t ≈ 1.25 the pressures are well described by viscous

hydrodynamics. Remarkably, at this time the transverse pressure T xx is nearly ten times

larger than T zz. (This latter phenomena has also been seen in 1+1 dimensional flow [2–4].)
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xx
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Figure 2. Stress tensor components T xx and T zz at the spatial origin, x = y = z = 0, as a function

of time. Dashed lines denote the viscous hydrodynamic approximation. Around t = 0 the system is

highly anisotropic and far from equilibrium. Nevertheless, at this point in space, the system begins

to evolve hydrodynamically at t ≈ 1.25.

Figure 3. The residual ∆ in the transverse plane, at several proper times τ and two values of

rapidity ξ. Regions with ∆ ≪ 1 are evolving hydrodynamically. At ξ = 0 (top row) the central

region becomes hydrodynamic at τ ≈ 1.25, whereas at ξ = 1 (bottom row) hydrodynamic behavior

of the central region has already begun by τ ≈ 1. At ξ = 1, hydrodynamic behavior first sets in

at x < 0. This feature reflects the fact that the receding maxima remain far from equilibrium and

non-hydrodynamic, and the maxima with ξ > 0 lies at x > 0.
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Figure 4. The fluid 3-velocity |v| at time t = 4, in the z−x, z−y, and x−y planes. Streamlines

denote the direction of v. Regions in which the residual ∆, defined in eq. (3.2), is greater than

0.15 have been excised; within these regions the system is behaving non-hydrodynamically. The

maximum of |v|, which occurs in the vicinity of the receding maxima, is 0.64. In contrast, the

maximum transverse velocity in the x−y plane is 0.3.

To quantify the domain in which hydrodynamics is applicable, we define a residual

measure

∆ ≡ (1/p̄)
√

∆Tµν∆Tµν , (3.2)

with ∆Tµν ≡ Tµν − Tµν
hydro and p̄ ≡ ǫ/3 the average pressure in the local rest frame. The

quantity ∆ is frame-independent but, when evaluated in the local fluid rest frame, reduces

to the relative difference between the spatial stress in Tµν and Tµν
hydro. Regions with ∆ ≪ 1

are evolving hydrodynamically.

In figure 3 we plot ∆ in the transverse plane at proper times τ = 1, 1.25, and 2, and

rapidities ξ = 0 and 1. The color scaling is the same in all plots. Focusing first on ξ = 0 (top

row), at τ = 1 one sees that ∆ & 0.5 in the central region (x, y ≈ 0), and hydrodynamics

is not a good description. However, by τ = 1.25 a fluid droplet with ∆ . 0.15 and

transverse radius x⊥ ≡ |x⊥| . 5.3 has formed, with subsequent evolution well described by

hydrodynamics. At τ = 2 the transverse size of the droplet has increased and ∆ < 0.15 for

x⊥ . 8.6. Turning now to the behavior at rapidity ξ = 1 (bottom row), one sees that for

small x⊥ the system is already evolving hydrodynamically at τ = 1. Moreover, the onset of

hydrodynamics occurs earlier for x < 0 than for x > 0. This feature reflects the fact that

the receding maxima remain far from equilibrium and non-hydrodynamic, and (as seen in

figure 1), the maxima with ξ > 0 lies at x > 0.

Interestingly, the inclusion of transverse dynamics seems to hasten the approach to

local equilibrium: the equilibration time thydro ∼ 1.25 is about 30% smaller than was the

case in our previous studies [3, 11] of planar shock collisions. Recent work [14, 15] has

found that equilibration time scales of far-from-equilibrium states can be understood, at

least semi-quantitatively, in terms of the spectrum of quasinormal modes. Post-collision,

a distribution of quasinormal modes will be excited. With the inclusion of transverse

dynamics, the dominantly excited quasinormal modes will be ones with non-zero transverse

wavevectors of order 1/R. Faster decay rates of quasinormal modes with increasing |k⊥|

– 7 –



J
H
E
P
1
0
(
2
0
1
5
)
0
7
0

x⊥

0 5 10 15

⟨T
0
⊥
⟩

0

0.02

0.04

0.06

τ = 1.25

ξ = 0, exact

ξ = 0, approx

ξ = 1, exact

ξ = 1, approx
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Figure 5. The average lab-frame radial energy flux, as a function of x⊥, at two values each of

proper time and rapidity. Also shown is the approximate form (3.4) which, for small rapidity, agrees

quite well with the full results.

should lead to faster apparent relaxation of the entire sum (i.e., the metric perturbation)

independent of location in the transverse plane. This will be the case provided one considers

sufficiently coarse measures of relaxation, such as our ∆ < 0.15 criterion, which can become

satisfied when numerous quasinormal modes are comparably excited. With a much more

stringent local equilibration criterion, we would expect to see less of a difference relative

to the planar case.

A striking feature of the the post-collision evolution in figure 1 is the appearance of

flow in the transverse plane at early times. The early-time acceleration imparted on the

transverse flow can have a significant impact on the subsequent transverse expansion. In

figure 4 we plot the fluid 3-velocity v ≡ u/u0 in the z−x, z−y, and x−y planes at time

t = 4. The color scaling, which indicates |v|, is the same in each plot. The flow lines

show the direction of v. Regions in which ∆ > 0.15, and the system is not behaving

hydrodynamically, have been excised. Already at time t = 4 and radius x⊥ ≈ 5 the

transverse fluid velocity in the x−y plane has magnitude 0.3. In contrast, the maximum of

the longitudinal velocity, which occurs in the neighborhood of the receding maxima, is 0.64.

One sees from figure 4 that the fluid velocity in the x−y plane is nearly radial: we

see no strong signatures of elliptic flow. At vanishing rapidity (or z = 0), the traceless

part of the spatial stress, as well as the hydrodynamic residual shown in the upper row of

figure 3, deviate significantly from rotational symmetry in the x−y plane (at a 5–6% level

at t = 4). However, the energy density and the resulting fluid velocity deviate only slightly

from azimuthal symmetry; at t = 4 their transverse plane anisotropy is about 1%. Our

computed evolution does not extend through the entire hydrodynamic phase of the plasma

and continued hydrodynamic expansion may generate more elliptic flow. However, the very

modest elliptic flow, despite the substantial impact parameter, may reflect an unphysical

– 8 –
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aspect of our choice of Gaussian initial energy density profiles. Gaussian profiles differ,

of course, from more realistic models of nuclear density (such as Wood-Saxon profiles).

But a Gaussian profile in the transverse plane is computationally convenient. The very

rapid decrease of its Fourier transform allowed us to use a rather modest transverse grid.

However, a special feature of Gaussian transverse plane profiles is that the overlap function

(i.e., the product of the energy densities of the two incident projectiles) is rotationally

symmetric for any impact parameter:

e−
1

2
(x⊥+b/2)/R2

e−
1

2
(x⊥−b/2)/R2

= e−(x2

⊥
+(b/2)2)/R2

. (3.3)

With Gaussian profiles (and equal size incident projectiles), there simply is no “almond”

in the overlap function. The actual dynamics depends, of course, on the full spacetime

dependence of the initial data, not just on this overlap function and, as noted above, the

stress tensor and the residual ∆ depart significantly from transverse rotational symmetry.

Nevertheless, a simple picture in which the early transverse flow reflects, in large part, this

initial overlap function appears plausible.

A notable feature in our results is that the fluid flow, in the z−x plane, is not symmetric

about the z axis and the longitudinal flow does not vanish at z = 0. The latter observation

is a direct violation of the simplified model of boost invariant flow, in which vz = z/t and

vanishes at z = 0. Nevertheless, at t = 4 and in the region of space where ǫ > 0.6max(ǫ),

the longitudinal flow is roughly described by boost invariant flow at the 20% level or

better, with larger deviations appearing at larger rapidities.4 For planar shock collisions,

the deviation of the longitudinal fluid velocity from boost invariant flow decreases as the

shock thickness decreases [4, 11].5 It will be interesting to see if this also holds when

transverse dynamics is included.

We conclude by discussing the early-time transverse flow predicted in ref. [16]. There,

using assumptions of boost invariance and transverse plane rotational symmetry, it is ar-

gued that at early times the transverse energy flux is proportional to the gradient of the

energy density and grows linearly with time,

T 0x = − t

2
∂xǫ , T 0y = − t

2
∂yǫ . (3.4)

In figure 5 we plot the angular averaged radial flow 〈T 0⊥〉 ≡ 〈x̂i⊥T 0i〉, together with the

approximation (3.4), at proper times τ = 1.25 and 2, and rapidities ξ = 0 and 1. The

approximation (3.4) works remarkably well at both times and rapidities, although the

agreement is not quite as good at ξ = 1 where the assumption of boost invariance is more

strongly violated. It would be interesting to see if the agreement with the approxima-

tion (3.4) improves when the shock thickness decreases.

4 Final remarks

We have presented results from the first calculation, using numerical holography, of the

evolution in strongly coupled N =4 SYM theory of an initial state which resembles two

4Specifically, in the region where ǫ > 0.6max (ǫ), we find max |vz − z/t| < 0.20 max |vz|.
5However, even in the limit of thin planar shocks the proper energy density has strong rapidity depen-

dence [4, 11].
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colliding heavy nuclei, Correctly treating the dynamics, both longitudinal and transverse,

requires solving a five dimensional gravitational initial value problem. This was challeng-

ing, but feasible, using our characteristic formulation and (good) desktop-scale computing

resources. The results presented above are a proof-of-principle. Clearly, it will be inter-

esting to explore how results change as the impact parameter, longitudinal thickness, and

transverse size of each projectile are varied. It should also be possible to explore the effects

produced by using more realistic initial energy density profiles, possibly including shorter

distance fluctuations of the type which have been suggested to be relevant in real heavy

ion collisions. (See, for example, ref. [17–20] and references therein.) We hope future work

will shed light on some of these topics.
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