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1 Introduction

In 1975, Hawking studied quantum field theory in curved spacetime and showed that black

holes radiate and hence lose their masses [1, 2]. This is in accord with the former obtained

temperature of black holes, T = κ/2π, where κ is black hole’s surface gravity [3–5]. Then

he proposed a paradox which was concerning the conservation of quantum information and

predictability [6]. In fact, he showed that the black hole formation and evaporation process

cause pure states to evolve into mixed states. Hence it destroys quantum information and is

not a unitary process. A quantity called “von Neumann entropy” or “fine-grained entropy”

or “entanglement entropy” is used to express the information loss amount quantitatively,

which is defined as SR = −Tr ρR ln ρR, where ρR is the density matrix of the radiation.

One would expect this quantity to rise at initial stages of the evaporation due to the

entanglement between the radiation emitted and the remained black hole. However, in

the case of starting from a black hole in a pure state, it should fall down after a time

and eventually hit zero for the process to be unitary. Such a curve is suggested by Page

by considering the thermodynamic entropies of radiation and black hole and switching

between them as is shown in fig. 1 [7–9]. According to the Page curve, although the

entanglement entropy of radiation follows Hawking’s calculation at first, after a time called

Page-time—when the thermodynamic entropies of radiation and black hole become equal—

it turns to follow the thermodynamic entropy of the black hole, which is given by the

Bekenstein-Hawking formula, S = Area/4G (there are several ways to obtain this formula

microscopically [10–15]).
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Figure 1: Left: The curve that Page suggested for entanglement entropy of the radiation

emitted from a black hole initially in a pure state, from [9]. This curve is produced by

considering the thermodynamic entropies of the radiation and the black hole as functions

of time, and choosing the one that is less. Right: A schematic visualization of Page’s

procedure in obtaining the Page curve, from [16]. As is shown, the true curve for entan-

glement entropy of the radiation is expected to follow the thermodynamic entropy of the

radiation at first. However, when reaching the Page time, it should switch to follow the

thermodynamic entropy of the black hole. Obviously this curve is consistent with unitarity.

Much attempts made to resolve the paradox and obtain Page curve which finally led

to the so-called “island formula” for entanglement entropy of the radiation [17–20]. One

can see, in the language of path-integral, that Hawking’s calculations neglect some paths

which although are tiny at initial stages of the evaporation process, become dominated

at final ones. The following relation is obtained for entanglement entropy in gravitational

systems

S = minX

{

extX

[

Area(X)

4G
+ Ssemi-cl (ΣX)

]}

, (1.1)

where X is a codimension-2 surface and ΣX is the region bounded by X and the surface

from where we can almost assume that spacetime is flat, called cutoff surface1. Moreover,

Ssemi-cl is the von Neumann entropy of quantum fields on ΣX , appearing in semiclassical

description [21–25] (a good review is presented in [16]). Any surface that extremizes the

expression in the square brackets is called “quantum extremal surface” (QES). It can

be shown that there are two such surfaces present in the evaporation process, one with

vanishing area and the other tending to the event horizon of the black hole from below. At

the initial stages of the evaporation process, the first one can be found to be the minimizing

QES which represents the no-island solution. However, after a time (Page time) the other

1Determining the precise location of the cutoff surface is challenging according to the long-range nature

of gravity.
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one becomes dominated, representing the so-called island solution—due to the presence of

a non-vanishing surface inside the black hole.

The precise state of the radiation is determined by the details of the evaporation process

that made it. So, although gravitational interactions can be ignored in the radiation region

Σrad (from the cutoff surface all the way to infinity), the precise state of the radiation

can only be determined via gravity. Thus one should again make use of Eq. (1.1) for truly

computing the entanglement entropy of the emitted radiation. It should be noticed that the

term ΣX for the radiation consists of: i) Σrad and ii) Σisland—the region inside the island.

According to the literature, “island” is a region that is disconnected from the radiation

region but contributing in its entanglement entropy in the form of Eq. (1.1). Having the

initial black hole in a pure state causes the QES’s of the radiation to be identical with

those of the black hole. In this work, we assume the initial black hole to be in a pure state,

so that we could take the entanglement entropies of the radiation and the black hole to be

identical.

The thermodynamic entropy of a black hole is given by the Bekenstein-Hawking for-

mula, S = A/4G. It scales with the radius squared and not cubed, which means that the

description of that volume of space can be thought of as encoded on its lower-dimensional

boundary. This property is well understood in AdS/CFT correspondence—the most suc-

cessful realization of the holographic principle—as there is a bijective isometry between

the two theories in two spaces with different dimensions: a theory of gravity in a (d+ 1)-

dimensional AdS bulk and a quantum field theory with conformal symmetry living on its

d-dimensional boundary [26–28]. Moreover, AdS/CFT correspondence plays a central role

in derivation of Eq. (1.1). In fact, this relation is based on the so-called RT/HRT/EW

bulk reconstruction, which itself is studied and formulated in the light of AdS/CFT cor-

respondence [21–24, 29]2. Therefore a question rises: To what extent does the Page curve

depend on the holographic assumptions made? In other words, is it possible to obtain

the Page curve directly from the holographic principle? In this work we want to find

a suitable answer to such a question. Specifically, we consider holography in form of

the following assumptions, to obtain a curve for entanglement entropy of an evaporating

(3 + 1)-dimensional black hole: 1) There exists a system described by usual field theories

and holographically dual to the black hole; 2) The black hole’s entanglement entropy will

not exceed the Bekenstein-Hawking entropy [36–41]. Making use of the assumptions, we

obtain a curve that is similar to the Page curve in its general shape, i.e., i) It rises for times

less than a specific time (tPage); ii) It falls for times after that time and iii) It vanishes

when the evaporation process is completed. However, some details of the curve, such as its

limiting behavior in initial times, will depend on the details of the gravitation theory.

It is obvious, from the 2nd assumption, that this work is not going to give a resolution

to the information paradox. Rather it shows that the Page curve can be regarded as a

consequence of the holographic assumptions made and model-independent to a very good

extent. As the Page curve conserves unitarity for the evaporation process, one might

2The information paradox and its resolution is also worked out in de Sitter and asymptotically flat

spacetimes [30–35].
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think about the questions as finding the relationship between holography and unitarity, if

there exists any. Some discussions are presented in [42] on this subject. Moreover, some

conditions for the entanglement entropy to be compatible with causality are presented in

[43].

This paper is organized as follows: In Sec. 2, we discuss the function of a mathematical

tool, called replica trick, and its importance in deriving the true curve for entanglement

entropy—the Page curve. In Sec. 3, we establish some mathematical identities which will

help us a lot in further calculations. In Sec. 4, we show how the desired curve can be

obtained by making use of the holographic assumptions presented in this section. More-

over, some comments on the theory-dependent modifications to the curve are discussed in

subsection 4.1. Finally conclusions are presented in Sec. 5.

2 Replica trick

Replica trick is a mathematical tool that helps us to calculate entanglement entropy of a

system A, with its environment Ā. Let assume that the system and its environment as a

whole (call it AĀ) has a wave function |Ψ〉 which itself has an expansion in terms of some

eigenstates |ψ〉i
∣

∣ψ̄
〉

i
, of H×H̄, with H and H̄ being Hilbert spaces of A and Ā respectively

|Ψ〉 =
∑

i

Ci |ψ〉i
∣

∣ψ̄
〉

i
. (2.1)

One can obtain the density matrix ̺, of AĀ as

̺ = |Ψ〉 〈Ψ| . (2.2)

Taking a trace over the environment, Ā, will lead to the density matrix, ρ, of the system,

A

ρ = TrĀ (̺) . (2.3)

We have TrA(ρ) = 1 due to the normalization of |Ψ〉. The entanglement entropy, which

is a measure of how much the system and its environment are entangled to each other, is

given by

S = −TrA (ρ ln ρ) . (2.4)

As is shown by the index A, the trace is taken over the system. Form now on, we do not

explicitly write the index A for briefness; but take it in mind. The above relation can also

be retrieved as the limit n→ 1 of the following quantity, called Rényi entropy

Sn = −
1

n− 1
ln(Tr ρn). (2.5)

So one can obtain the entanglement entropy of the system by: i) Considering n replicas

of the system; ii) Calculating Sn and iii) Taking the limit n → 1. One can equivalently

obtain the entanglement entropy by

S = −
∂

∂n
ln(Tr ρn)

∣

∣

∣

∣

n→1

, (2.6)
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which for a normalized wave function (i.e., Tr ρ = 1) can also be written as

S = −
∂

∂n
Tr ρn

∣

∣

∣

∣

n→1

. (2.7)

Hence to obtain the entanglement entropy, we first consider n replicas of the system and

find ρn. Then we take a trace (and a natural logarithm) followed by a derivative with

respect to n. Finally we perform the limit n→ 1 and put a minus sign.

It should be noticed that the number of replicas, n, should approach 1 continuously in

the limit. Thus an analytic continuation of n is needed for the limit to be well-defined. This

analytic continuation sometimes runs calculations into trouble (a proposal is presented in

[44] to tackle such difficulties using “deep learning”). However, there is a strict reason to

make use of the replica trick in some cases, which is explained in the following subsection.

2.1 Why replica trick?

As explained before, replica trick is a mathematical tool that would be used to derive the

true curve for entanglement entropy of an evaporating black hole—the Page curve. In

fact, it helps to take all the terms participating in the entanglement entropy into account.

When a black hole evaporates, it undergoes a transition from an initial state to a final

state. All the paths emanating from the initial state and ending in the final one should

be considered for obtaining the true result. However, some paths might be difficult to see

when we perform direct calculations by the means of Eq. (2.4). As a matter of fact, such

paths will appear in calculations through some non-trivial topologies when using replica

trick. As an example, for the case of n = 2 replicas, one has to first calculate

Tr ρ2 =
∑

φi,φj

[ρ]φiφj
[ρ]φjφi

, (2.8)

with φi and φj (collective indices) specifying the states of the evaporating black hole. We

would omit the unnecessary φ’s and make use of i, j, . . . instead of φi, φj , . . . to simplify the

notation.

One would think of ρij as a bridge connecting state i of the black hole to state j, which

is schematically shown in fig. 2a. For Tr(ρ), one should first identify j with i and then

perform a summation over all the states, i’s. We show it simply by a circle as in fig. 2b.

The product ρijρji (with no sum over i and j) might be regarded as: a bridge connecting

state i to j, followed by another bridge connecting state j to i, which is shown in fig. 2c.

However, for Tr
(

ρ2
)

, we should identify the same states (i ↔ i and j ↔ j) and hence

perform summations over i and j. There are two different ways of doing the identifications

and performing the summations, as shown in figs. 2d and 2e:

1. Starting from state i, moving to state j through the bridge ρij , identifying j ↔ j,

moving back to state i through the bridge ρji, and finally identifying i↔ i;

2. Starting from state i, identifying i ↔ i, moving to state j through the bridge ρij ,

identifying j ↔ j, and finally moving back to state i through the bridge ρji.
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Figure 2: (a) A visualization of ρij, which can be regarded as a bridge connecting state

i to state j. (b) Tr(ρ) can be obtained from ρij by first identifying i and j, and then

performing a summation over i = j. We show it simply by a circle. (c) The product ρijρji
(no-summation) is shown as the two successive bridges accordingly. (d) Hawking saddle

forms one loop and is dominated at initial stages of the evaporation process. (e) Replica

saddle forms two loops by gluing the black holes interiors, and is dominated at final stages

of the evaporation process.

Figs. 2d and 2e are topologically different. The first one forms one loop and reproduces

Hawking’s calculations, called “Hawking saddle”. However, the second one forms two loops

and hence corresponds to some different paths in the context of path integral. It is called

“replica saddle”, because the interiors of the black holes are joined together forming a

kind of wormhole, called replica wormhole. One would deduce from its topology that it

is going to give (Tr ρ)2 (which is unity if the wave function is truly normalized). As the

quantity (Tr ρ)2 −Tr
(

ρ2
)

is a measure of “purity”, fig. 2e leads to a pure final state in the

evaporation process. It should be noticed that the Hawking saddle has an exponentially

small contribution to the purity in the final stages. Hence it is not going to get the

arguments into trouble. Moreover, there are more replicas present in the calculations,

n = 3, . . .. Although they contribute to the calculations, they do not affect our qualitative

arguments about unitarity of the evaporation process (beneficial discussions are presented

in [45]). As a matter of fact, the entanglement entropy is mostly given by the Hawking

saddle at the initial stages and by the replica saddle at the final ones. Thus the evaporation

process is unitary. Here we have only stated some results of the calculations which would

be found in detail in some works such as [18, 46].

We made use of purity instead of entanglement entropy in studying unitarity of the

evaporation process. The same results will be obtained if one makes use of entanglement

entropy. However, it is a bit tricky because of the required analytic continuation of n. As

the replica saddle is joining the black holes interiors together, we face with a difficulty in

taking the limit n → 1. In fact, a cut is needed in going from n = 2 to n = 1, as is shown

in fig. 3. Such a cut cannot be regarded as a fine operation. This fact would explain the

reason for using replica trick: The replica saddle might be difficult to see in the case of n
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Figure 3: Replica saddle glues the black holes interiors. So a cut is needed when taking

the limit n→ 1, which is shown by the cutting surface.

exactly 1, hence one would miss it as Hawking did!

It would be fruitful to summarize this subsection: Replica trick is a mathematical tool

which can be used to calculate entanglement entropy of a system. For the special case of

an evaporating black hole, this tool will help us to consider all the paths contributing to

the respective path integral. To be more specific, the particles that are leaving the black

hole have some entanglement with it. This can be regarded as the first order term in the

calculation of entanglement entropy, called Hawking saddle. The particles have also some

entanglement with those that have left the black hole before. The latter can be seen if one

considers higher order terms, or equivalently, n = 2, 3, . . . replicas. One should at least

consider n = 2 replicas to realize that the evaporation process preserves unitarity.

3 Shape dependence of entanglement entropy

Entanglement entropy plays a key role in understanding quantum field theories and quan-

tum gravity [47, 48]. As it represents the amount of entanglement between a system and its

environment, it depends on the shape of the boundary of the system. Hence one may think

about its variations (first, second, etc) with respect to boundary variations. Specifically

its second variation, called entanglement density, is very interesting due to its relationship

with energy density and is studied in some special cases [49–52]. In this section, we derive

some consistency requirements for entanglement entropy variations with respect to some

boundary deformations. Such consistency requirements help us to obtain relations, among

which some would be very fruitful in obtaining a true curve for an evaporating black hole—

Page curve. As it is discussed in the following subsection, the relations might be regarded

as some mathematical identities resulting from the fact that the entanglement entropy is

a well-defined functional of the boundary.

3.1 Consistency constraints on entanglement entropy variation

In this subsection, we obtain relations among different orders of entanglement entropy

variation with respect to some boundary deformation. To begin with, we consider a system
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specified by its boundary, χµ. The system has some entanglement entropy S, which depends

on the boundary of the system χ, as well as the matter fields it contains. If the boundary

deforms by δχ, the entanglement entropy varies which is shown by δS(χ, δχ). One would

expand it in terms of the second argument, δχ, as follows

δS(χ, δχ) =

∞
∑

i=1

∫

δχµ1
(x1)δχµ2

(x2) · · · δχµi
(xi)I

µ1µ2···µi

i [χ] (x1, x2, . . . , xi). (3.1)

The coefficients of expansion, I’s, depend on the initial boundary χ (written in brackets),

and the points through the boundary and matter fields (written in parentheses). The

boundary deformation leads to addition/subtraction of points to/from the system. More-

over, every set of n points has an entanglement entropy and hence contribute to δS. So

we included every order of the boundary deformation—(δχ)n, n = 1, 2, . . .—in the above

relation through the summation. However, the zeroth order term is omitted due to the

fact that there is no entanglement entropy variation without boundary deformation. In

addition, the integrations are taken over the boundary so that all the points are taken

into account. Contractions are also assumed over the repeated indices, µ’s. Hence the

deformations are considered in all the directions.

Nothing should change if we first send χ to χ+ δχ and then send it back to its initial

form χ, i.e.,

δS(χ, δχ) + δS(χ+ δχ,−δχ) = 0. (3.2)

The identity (3.2) is a consistency condition which should be satisfied for the entanglement

entropy to be well-defined. Otherwise, S(χ) might be multi-valued for a system specified

by a unique boundary χ. The consistency condition, Eq. (3.2), can be transformed into

relations among the integrands of Eq. (3.1), I’s. To do so, we first write expansions for

δS(χ, δχ) and δS(χ+ δχ,−δχ) as of Eq. (3.1)

δS(χ, δχ) =

∞
∑

i=1

∫

δχµ1
(x1) · · · δχµi

(xi)I
µ1···µi

i [χ] (x1, . . . , xi),

δS(χ+ δχ,−δχ) =
∞
∑

i=1

(−1)i
∫

δχµ1
(x1) · · · δχµi

(xi)I
µ1···µi

i [χ+ δχ] (x1, . . . , xi).

(3.3)

Then we expand I[χ+ δχ] around χ

I [χ+ δχ] =

∞
∑

j=0

∫

1

j!

∂jI

∂χµ1
(x1)∂χµ2

(x2) · · · ∂χµj
(xj)

[χ] δχµ1
(x1)δχµ2

(x2) · · · δχµj
(xj).

(3.4)

The derivatives in the above expansion are functional derivatives and people mostly use

δ for them. However, we made use of ∂ to prevent confusion with the δ’s used for en-

tropy variations and boundary deformations. Finally we request the identity to be held

independently for each order of boundary deformation and in each set of points due to the

arbitrariness of deformation, δχ(x). So we collect coefficients of δχµ1
(x1) · · · δχµm(xm) to

obtain the following set of relations

(1 + (−1)m) Iµ1···µm
m (x1, . . . , xm) =

m−1
∑

l=1

(−1)l+1

(m− l)!

∂m−lIµ1···µl

l (x1, . . . , xl)

∂χµl+1
(xl+1) · · · ∂χµm(xm)

, (3.5)
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for m = 1, 2, . . .. A relation that we will mostly use in this work can be obtained from

Eq. (3.5) by setting m = 2,

2Iµν2 (x1, x2) =
∂Iµ1 (x1)

∂χν(x2)
. (3.6)

From now on, we drop the µi indices and the xi dependencies for briefness.

The left hand side of Eq. (3.5) vanishes for odd values of m. Hence, it does not express

any odd-order I in terms of the derivative terms. Nevertheless, such expressions would be

found by using some other consistency requirement: Let first deforming the boundary χ

into χ+ δχ, then sending χ+ δχ to χ+2δχ, and finally turning it back to its initial form,

χ. As before, one would expect that nothing should change under these three successive

transformations, i.e.,

δS(χ, δχ) + δS(χ+ δχ, δχ) + δS(χ + 2δχ,−2δχ) = 0. (3.7)

This consistency condition leads to relations, among which some might not be independent

of those of Eq. (3.5)—As an example, it gives Eq. (3.6) again. Desirably, some expressions

would be obtained for some odd-order I’s in terms of the derivative terms, such as

6I3 = −
7

2
·
∂2I1
∂χ2

+ 9 ·
∂I2
∂χ

, (3.8)

which can also be combined with the m = 3 case of Eq. (3.5) to obtain

6I3 = 2 ·
∂I2
∂χ

=
∂2I1
∂χ2

. (3.9)

Following Eqs. (3.2) and (3.7), more consistency identities can be written for entan-

glement entropy variations with respect to some boundary deformations. In general, one

would expect

δS(χ, δχ)+ δS(χ+ δχ, δχ)+ · · ·+ δS(χ+(n− 1)δχ, δχ)+ δS(χ+nδχ,−nδχ) = 0, (3.10)

for n = 1, 2, . . .. Again one can transform the consistency identities into relations among

I’s, following the steps made in the case of n = 1. As stated in the case of n = 2, not all

the relations obtained in this way are independent—Some of them would be reproduced

using some others.

3.2 An interpretation for I2

Let us focus on fig. 4 to find an interpretation for I2 in Eq. (3.1). The boundary is changed

from χ to χ + δχ so that the system is enlarged. The specified segments (shown by gray

squares) participate in δS through

δS|x1x2
= Iµ1 (x1)δχµ(x1) + Iµ1 (x2)δχµ(x2)

+ Iµν2 (x1, x2)δχµ(x1)δχν(x2) + Iµν2 (x2, x1)δχµ(x2)δχν(x1) + · · · .
(3.11)

The I1 terms are standing to take the entanglement entropy variation at the first order.

So they are adding the entanglement entropy of each segment with outside (environment),

– 9 –



χ+δχ

χx1

x2

Figure 4: A boundary deformation of a system is shown. The two segments specified

by gray squares have a mutual entanglement entropy, which is not going to change the

entanglement entropy of the system. This mutual entanglement, however, is considered

two times through the first order terms, I1’s. The I2 terms, inevitably, should cancel these

over-calculations.

while subtracting the entanglement entropy of that segment with inside (system). However,

each couple of segments added to the system has a mutual entanglement entropy which is

not going to change the entanglement entropy of the system, but is added to δS for two

times through I1(x1) and I1(x2). This mutual entanglement entropy is proportional to

both δχ(x1) and δχ(x2), hence it is proportional to the product δχ(x1)δχ(x2). Therefore,

a modification should occur in the second order to cancel these over-calculations. In other

words, the I2 terms are standing to cancel the added mutual entanglement entropies, i.e.,

(Iµν2 (x1, x2) + Iνµ2 (x2, x1))δχµ(x1)δχν(x2) =

− 2× (mutual entanglement entropy of segments 1 & 2) .

(3.12)

The expression at the left hand side of the above equation can be written in a more brief

manner using the following definition

Sym{Iµν2 (x1, x2)} :=
1

2
(Iµν2 (x1, x2) + Iνµ2 (x2, x1)) . (3.13)

Thus we can simply write

Sym{Iµν2 (x1, x2)}δχµ(x1)δχν(x2) = − (mutual entanglement entropy of segments 1 & 2) ,

(3.14)

which is the desired interpretation for I2.

3.3 Interpreting the higher order terms, I3 etc

To complete the discussion, we want to note that there are more over-calculations present

in the first order terms, to be canceled with including higher order terms, I3 etc. To clarify,

let consider three segments added to the system simultaneously, and write δS|x1x2x3, like

what we did in Eq. (3.11). This time we write the terms up to the third order explicitly,
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i.e.,

δS|x1x2x3
=I1(x1)δχ(x1) + I1(x2)δχ(x2) + I1(x3)δχ(x3)

+2I2(x1, x2)δχ(x1)δχ(x2) + 2I2(x2, x3)δχ(x2)δχ(x3) + 2I2(x1, x3)δχ(x1)δχ(x3)

+ (3!) I3(x1, x2, x3)δχ(x1)δχ(x2)δχ(x3) + · · · ,

(3.15)

where the coefficients I2 and I3 are assumed to be symmetric with respect to their argu-

ments, like what we did in Eq. (3.13). It is possible to have a non-zero tripartite entangle-

ment among the segments. In such a situation, one is adding this tripartite entanglement

entropy three times through I1’s in the first line of the above equation. The I3 terms should

cancel these over-calculations, i.e.,

(3!) I3(x1, x2, x3)δχ(x1)δχ(x2)δχ(x3) =

−3× (tripartite entanglement entropy of segments 1,2 and 3) .
(3.16)

Continuing this procedure, one can deduce in general that

Sym{In(x1, x2, . . . , xn)}δχ(x1)δχ(x2) · · · δχ(xn) =

−
n

n!
× (n-partite entanglement entropy of segments 1, 2, . . . , n) ,

(3.17)

which is a generalization of Eq. (3.14) for n = 2, . . ..

3.4 An example

One can rummage Eq. (3.5) to find some useful results. As an example, we consider two

systems with entangling surfaces χ0 and χ0+∆χ respectively, where χ0 is a planar surface

and ∆χ may differ from point to point. We label the systems by 1 and 2 as shown in fig. 5.

The following is an expansion for the entanglement entropy variation of the system 2 under

some boundary deformation δχ

δS(2) = δS(χ0 +∆χ, δχ) =

∫

I
(2)µ
1 (x1)δχµ(x1) +

∫

I
(2)µν
2 (x1, x2)δχµ(x1)δχν(x2) + · · · ,

(3.18)

where the superscript index (2) refers to the system 2. An analogous expansion can also

be written for the system 1, i.e., for δS(1) = δS(χ0, δχ).

One can expand the coefficients of Eq. (3.18), I(2)’s, around χ0 to find a relation

between the two entanglement entropy variations: δS(1) and δS(2), i.e.,

δS(2) =

∫

I
(1)µ
1 (x1)δχµ(x1) +

∫

∂I
(1)µ
1 (x1)

∂χν(x2)
δχµ(x1)∆χν(x2) + · · ·

+

∫

I
(1)µν
2 (x1, x2)δχµ(x1)δχν(x2) + · · ·

+ · · · ,

(3.19)
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Figure 5: A part of the boundaries of two systems and their corresponding deformations

are shown. The systems are labeled by 1 and 2 with the system 1 having an initially planar

boundary. The system 2 has a boundary different from that of the system 1 by amount of

∆χ, which can differ from point to point.

where the superscript index (1) refers to expansion around the planar surface χ0. Inserting

∂I
(1)
1 /∂χ from Eq. (3.6) and considering the special case of ∆χ = nδχ, we have

δS(2) = δS(χ0 + nδχ, δχ)

=

∫

I
(1)µ
1 (x1)δχµ(x1) + (2n+ 1)

∫

I
(1)µν
2 (x1, x2)δχµ(x1)δχν(x2) + · · · .

(3.20)

Dividing it by δS(1), we have

δS(2)

δS(1)
=
δS(χ0 + nδχ, δχ)

δS(χ0, δχ)

=

∫

I
(1)µ
1 (x1)δχµ(x1) + (2n + 1)

∫

I
(1)µν
2 (x1, x2)δχµ(x1)δχν(x2) + · · ·

∫

I
(1)µ
1 (x1)δχµ(x1) +

∫

I
(1)µν
2 (x1, x2)δχµ(x1)δχν(x2) + · · ·

,

(3.21)

where we made use of Eq. (3.20) for δS(1) by setting n = 0. For some special cases, such

as a CFT in the vacuum state, we have (see [50, 53] for proof)

I
(1)µ
1 (x) = 0. (3.22)

In such cases, the leading term of the right hand side of Eq. (3.21) is

δS(2)

δS(1)
=
δS(χ0 + nδχ, δχ)

δS(χ0, δχ)
= (1 + 2n) +O(δχ). (3.23)

This leading term is quiet simple and independent of any details of the systems. This

occurred thanks to Eq. (3.22), which is a result of the very restrictive assumption of a CFT

in the vacuum state. Higher order terms, however, will depend on the details through the

coefficients, I(1)’s. An expression is obtained for δS(1) in [54]; by using which, one can also

obtain an expression for δS(2) through Eq. (3.21). It should be noticed that for a CFT, the

planar entangling surface can be converted to a ball-shaped one through a conformal map.

Hence the relations can also be converted to those of a ball-shaped entangling surface.
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The obtained result, Eq. (3.21), can be generalized to include any small ∆χ parallel

to δχ. First let us define m(x) through

∆χµ(x) = m(x)δχµ(x). (3.24)

Then we substitute nδχ in Eq. (3.21) with the above expression for ∆χ, still keeping I
(1)
1

zero. Finally we expand m(x) around its maximum3, namely m(x0), and only keep the

leading term to obtain

δS(χ0 +m(x)δχ, δχ)

δS(χ0, δχ)
= (1 + 2m(x0)) +O(δχ). (3.25)

One can geometrically interpret m(x0) as the maximum number of δχ’s that can be placed

in ∆χ at x = x0. Again, the higher order terms neglected depend on the details of the

systems through the coefficients, I’s.

We summarize this subsection as: For two systems with planar and near-planar entan-

gling surfaces χ0 and χ0+m(x)δχ, which are described by a CFT in the vacuum state, we

have

δS(χ0 +m(x)δχ, δχ) ≈ (1 + 2×Maxx {m(x)}) δS(χ0, δχ). (3.26)

4 Entanglement entropy of a radiating black hole and the Page curve

In this section, we consider a gravitation theory in (3+1)-dimensions, which is holograph-

ically dual to a field theory in (2+1)-dimensions, and respects the bound S ≤ A/4G, to

obtain the entanglement entropy of an evaporating Schwarzschild black hole. To begin

with, we consider the holographic dual of the black hole, which is a disk of radius r1 in

two spatial dimensions called A. The entanglement entropy of A depends on its radius,

r1, as well as on the details of the field theory that describes it. As discussed in Sec. 1, we

do not specify the details of the field theory here. Rather, we make use of the holographic

assumptions alongside the consistency relations of Sec. 3, to obtain a curve for the entan-

glement entropy of the black hole. This curve will be found to be similar to the Page curve

in its general shape. Nonetheless, some model-dependent modifications would occur, one

of which is explained in subsection 4.1.

Let start the procedure by considering the disk A and variating its radius from r1 to

r′1 = r1 + δr1, fig. 6, left. The variation of the entanglement entropy takes the form

δSA = I1(r1)δr1, (4.1)

where I1 contains the unspecified details of the field theory. The points added to A,

shown by yellow in the figure, have some entanglement with both A and the environment.

Thus I1(r1)δr1 contains the entanglement entropies of the points with the environment and

A, with positive and negative signs respectively. Hence it should be proportional to the

number of the added points, or equivalently, to the added area, i.e.,

I1(r1)δr1 = cr1δr1, (4.2)

3We assumed the entangling surface of the system 2 to be near-planar. So m(x), if is not constant,

should not have more than one local maximum.
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Figure 6: Left: A (2+1)-dimensional disk is shown in two spatial dimensions, which is

holographically dual to a (3+1)-dimensional black hole. The yellow-shaded region is added

to the disk by a radius variation, which leads to some entanglement entropy variation.

Right: n = 2 replicas are shown, although with different radii! The yellow-shaded regions

represent radii variations which lead to some variation of the entanglement entropy of the

system. The connecting curves (wormhole) represent some entanglement between the disks

in the sprite of ER=EPR.

where we absorbed a factor of 2π in c. Moreover, c contains information about the field

theory; hence it depends on r1 in general. So we would expand it in terms of r1, or

equivalently, make use of the replica trick according to the discussions passed in Sec. 2.1.

Let consider n = 2 replicas and label them by 1 and 2, as in fig. 6 right. We take the

radii of the disks to be different at first. However, we set them equal after we found a proper

expression for the entanglement entropy variation, δS(n=2). This would be considered as a

trick for obtaining some relations much easier. The entanglement entropy variation due to

the radii variations takes the general form

δS(n=2) = I1(r1; r2)δr1 + I1(r2; r1)δr2 + 2I2(r1, r2)δr1δr2, (4.3)

where r′1 and r′2 in the figure are substituted by r1+ δr1 and r2+ δr2 respectively. The first

(second) term is standing to take the entanglement entropy variation between the disk 1

(2), shown by darker (lighter) yellow, with the environment into account; while the I2 term

(symmetric under r1 ↔ r2) is standing to take the entanglement entropy variation between

the disks, 1 and 2, into account. The connecting curves in fig. 6, right, are referring to

such an entanglement in the spirit of ER=EPR. We have separated r1 and r2 dependence

of I1(r1; r2) (or I1(r2; r1)) by “;” to emphasize that: Although the term I1(r1; r2)δr1 is

standing for the entanglement change of the disk 1 and the environment, it implicitly

depends on the value of r2 due to the presence of some entanglement between the disks, 1

and 2. One can deduce, as in Eq. (4.2), that

I1(r1; r2)δr1 =
α(r2)r1
G

δr1, (4.4)
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and

I1(r2; r1)δr2 =
α(r1)r2
G

δr2, (4.5)

where G is the Newton’s constant in (3+1) dimensions, inserted to make α dimensionless4.

As one can see, we dropped the dependence of α on the first argument of I1 according to the

discussion made after Eq. (4.2). One can also deduce that the I2(r1, r2)δr1δr2 term should

be proportional to both the number of the points added to disk 1 and disk 2; or equivalently,

it should be proportional to the multiplication of the areas of the two yellow-shaded regions

in fig. 6 right, i.e.,

I2(r1, r2)δr1δr2 = −
ζr1r2
G2

δr1δr2, (4.6)

where ζ is a dimensionless constant and positive according to Eq. (3.14)—The minus sign

is inserted to make it positive. Making use of Eq. (3.6), one can find the following relation

between the unknown coefficients, α and ζ

dα(r)

dr
= −

2ζr

G
, (4.7)

which leads to

α(r) = −
ζr2

G
+ γ, (4.8)

with γ being a dimensionless constant. Now we can write down the entropy variation as

δS(n=2) =

(

γ −
ζr22
G

)

r1
G
δr1 −

2ζr1r2
G2

δr1δr2 +

(

γ −
ζr21
G

)

r2
G
δr2. (4.9)

It is an easy task to find an expression for δSA. To do so, let look at the terms participating

in δS(n=2). We have two I1 terms which is a direct consequence of having n = 2 replicas.

Moreover, every pair of replicas will lead to a 2I2 term. Thus returning the n-dependence

and setting r1 = r2 = r, we have

δS(n=2→n) = n

(

γ −
ζr2

G

)

r

G
δr − 2

(

n

2

)

ζr2

G2
δr2, (4.10)

where the superscript index (n = 2 → n) is indicating that we have obtained the above

equation from n = 2 replicas. There are also other terms participating in δS which would

be appear when we consider more replicas, n = 3 etc. Performing the limit n → 1, the

above equation gives

δS(2) = δSA ≈

(

γ −
ζr2

G

)

r

G
δr, (4.11)

where the superscript (2) refers to the fact that we have considered the terms up to I2.

It should be noticed that although the term I2(r1, r2)δr1δr2 disappeared from our

calculations in the limit n→ 1, it played an essential role in deriving the above expression

for the entanglement entropy variation. The entanglement entropy can easily be obtained

from the above equation

S(2)(r) =
γr2

2G
−
ζr4

4G2
. (4.12)

4We used α in both Eq. (4.4) and Eq. (4.5) due to the symmetry 1 ↔ 2.
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The two unknown constants ζ and γ would be found by using the following constraints on

the dual black hole: i) The entanglement entropy vanishes at r = r0—the initial radius of

the black hole5—which means that the black hole was initially in a pure state, i.e.,

S(r = r0) = 0. (4.13)

ii) The entanglement entropy will not exceed the Bekenstein-Hawking entropy, A/4G—At

most, it saturates the bound. Thus we have

Maxr

{

4GS(r)

A(r)

}

= 1. (4.14)

It is obvious from Eq. (4.12) that the maximum occurs when r → 0. Applying these two

boundary conditions for r = 0 and r = r0, one obtains γ = 2π and ζ = 4πG/r20 , hence

S(2)(r) =
πr2

G
−
πr4

Gr20
=
πr2

G

(

1−
r2

r20

)

. (4.15)

We can easily convert the r-dependence of S into the time-dependence. To do so, we would

make use of r = 2GM , with M being mass of the black hole variating by time as given in

[9]

M(t) =M0

(

1−
t

tdecay

)1/3

, (4.16)

where M0 is the initial mass of the black hole and tdecay is the time duration of the

evaporation process as measured by an asymptotic observer. Hence we find

S(2)(t) = πGM2
0

(

1−
t

tdecay

)2/3
[

1−

(

1−
t

tdecay

)2/3
]

. (4.17)

In the limit r ≪ r0, or equivalently t . tdecay, Eqs. (4.15) and (4.17) give

S(2) (r ≪ r0) ≈
πr2

G
, S(2) (t . tdecay) ≈ 4πGM2

0

(

1−
t

tdecay

)2/3

, (4.18)

the left of which is the Bekenstein-Hawking entropy formula S = A/4G. In the other limit

of interest r . r0, or equivalently t≪ tdecay, we have

S(2) (r . r0) ≈
2π

G
r0 (r0 − r) , S(2) (t≪ tdecay) ≈

8πGM2
0

3

t

tdecay
. (4.19)

One can compare the obtained results with those of Page [9]

SPage(t) = 4πGβM2
0

[

1−

(

1−
t

tdecay

)2/3
]

θ (tPage − t)

+4πGM2
0

(

1−
t

tdecay

)2/3

θ (t− tPage) ,

(4.20)

5The disk’s radius is different from the black hole’s one by a factor of 2, which is absorbed in the

constants.
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Figure 7: Comparing the obtained results from n = 2 replicas with those of Page: The

orange curves are the results from n = 2 replicas (Eqs. (4.15) and (4.17)); while the blue

curves are those of Page (Eqs. (4.20) and (4.22)). The green curves are the two limiting

behaviors of the orange curves (Eqs. (4.18) and (4.19)) extrapolated to the inner region to

intersect each other.

where θ is the Heaviside step function, β ≈ 1.48472 and

tPage =

[

1−

(

β

β + 1

)3/2
]

tdecay. (4.21)

Converting the time-dependence into r-dependence via Eq. (4.16) alongside M = r/2G,

one obtains

SPage(r) =
πβ

G

(

r20 − r2
)

θ (r − rPage) +
π

G
r2θ (rPage − r) , (4.22)

where

rPage =

(

1−
tPage
tdecay

)1/3

r0. (4.23)

The obtained results Eqs. (4.15) and (4.17), and those of Page Eqs. (4.20) and (4.22) are

shown in fig. 7 by orange and blue respectively. As discussed in Sec. 1, the Page curve is

obtained by considering the thermodynamic entropies of the radiation and the black hole

and switching between them (as shown in fig. 1). Hence we have extrapolated the two

limiting behaviors of Eqs. (4.15) and (4.17) (which are given by Eqs. (4.18) and (4.19)) by

green, to compare with the results of Page. As can be seen, they are the same for small to

medium values of r, or equivalently, for medium to large values of time. Some discrepancies

are apparent in the middle points of the diagrams. However, when considering n = 3

replicas a modification occurs such that the curves (blue and green) may become identical.

Such a possibility will be worked out in subsection 4.1. The following are important points

obtained from the comparison:

• The most important feature of the Page curve is: It vanishes at both the start point

and the end point (time or radius), which is necessary for the evaporation process

to be unitary6. However, it seems that such a desired behavior can be regarded as a

6We have assumed that the black hole is initially in a pure state.
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direct consequence of the holographic assumptions made—independent of the details

of the gravitation theory such as its field equations.

• The Page curve has a singular (breaking) point which, as discussed in Sec. 1, results

from the switching between the thermodynamic entropies of the black hole and the

radiation. Thus the discrepancies between the smooth curves (fig. 7, orange) and

those of Page (fig. 7, blue) in the middle points are mostly due to the presence of

such a point and is almost unavoidable. It is worth noting that one would expect

such a singular point to be avoided when deriving the entanglement entropy using a

well-behaved manner.

One can think of the time in our results that is equivalent to the Page time—namely

t∗. As there are no breaking points, it can be introduced as the time when the entropy

takes its maximum value. Such a time is reported in Table 1 for both cases of considering

n = 2 and n = 3 replicas.

According to the Hawking pair creation process, the quantum state of the radiation is

treated as purely thermal prior to the Page time. However, as the obtained curve (fig. 7,

orange) lies below the Page curve (fig. 7, blue), one would conclude that the radiation has

more information content. The difference of the maximum entropy values for the Page

curve and for the obtained curve, reported in Table 1, can be regarded as a measure of

such additional information. Discussions are presented in [55] on this subject.

Table 1: The location and height of the maximum points are stated in curves SPage(t),

S(2)(t) and S(3)(t). The quantity (SPage(t)−S(t))/SPage(t), for any time prior to the Page

time, can be regarded as the amount of additional information about the quantum state

of the black hole that is stored in the radiation. This quantity is also stated for the curves

in their maxima.

Value (#/tdecay) Entropy (S/4πGM2
0 ) (SPage − S)/SPage

tPage 0.54 0.60 0

t
(2)
∗ 0.65 0.25 0.58

t
(3)
∗ 0.59 0.31 0.48

4.1 Considering n = 3 replicas

As mentioned earlier in this section, the details of the gravitation theory, such as its field

equations, affect our calculations by some higher order terms (O(r6)) that are coming into

account when we consider more replicas (I3, etc). As the first correction to Eq. (4.15),

let consider n = 3 replicas. In this situation a term I3 corresponding to some tripartite

entanglement should be included, which through the same arguments as of I1 and I2 should

be of the form

I3(r1, r2, r3)δr1δr2δr3 = −
ηr1r2r3
6G3

δr1δr2δr3, (4.24)
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with η being a positive dimensionless constant. Such a term will give an r6 correction to

Eq. (4.12). Hence the modified equation becomes

S(3)(r) =
γ(3)r2

2G
−
ζ(3)r4

4G2
−
ηr6

6G3
, (4.25)

where the superscript (3) refers to the fact that we have considered the terms up to I3.

One would expect the constant η to be computed directly from the gravitation theory

or its dual field theory7. However, we want just to show that it is possible for such a term

to modify our results to be in more agreement with those of Page, specially for r . r0,

or equivalently for t ≪ tdecay. The three constants of Eq. (4.25) should be determined by

three boundary conditions. We have two of them (as before) and assume that the third

one is enforcing the r . r0 limiting behavior of the entanglement entropy to be matched

with the Page’s result. Hence the boundary conditions are

Maxr

{

4GS(r)

A(r)

}

= 1, S(r = r0) = 0,
dS(r)

dr

∣

∣

∣

∣

r→r0

= −
2πβ

G
r0, (4.26)

which result in

γ(3) = 2π = γ, ζ(3) =
4πG(2 − β)

r20
, η =

6πG2(β − 1)

r40
, (4.27)

that give

S(3)(r) =
πr2

G
− (2− β)

πr4

Gr20
− (β − 1)

πr6

Gr40
. (4.28)

Replacing from Eq. (4.16), we find the following expression for S(3)(t)

S(3)(t) = 4πGM2
0

[

(

1−
t

tdecay

)2/3

− (2− β)

(

1−
t

tdecay

)4/3

− (β − 1)

(

1−
t

tdecay

)2
]

.

(4.29)

The modification mostly affect our results in the limit r . r0, or equivalently t≪ tdecay,

as expected. Both S(3)(r) and S(3)(t) are shown in fig. 8 (green) alongside those obtained

from n = 2 replicas (orange) and those of Page (blue) for comparison. The consistency

between the results from n = 3 replicas and those of Page is obvious. Please note that

for β = 1 the modified results coincide the old ones. It is worth noting that the modified

curves (fig. 8, green) might be considered as smooth versions of the Page curves up to some

O(r8), or equivalently O((tdecay − t)8/3), corrections.

Learning from n = 3 replicas, we can make some general conclusions about the higher

order terms coming from the higher replicas. Following Eq. (4.25), the terms should be of

the form

−
θnr

2n

2nGn
, (4.30)

7The direct computation of η needs specifying the gravitation theory alongside the dictionary and it

might need heavy and numerical computations!
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Figure 8: Comparing the obtained results from n = 2 and n = 3 replicas with those of

Page: The orange curves are the results from n = 2 replicas (Eqs. (4.15) and (4.17)); while

the green curves are those from n = 3 replicas (Eqs. (4.28) and (4.29)) and the blue curves

are the results of Page (Eqs. (4.20) and (4.22)). The limiting behaviors of the orange curves

are shown in fig. 6, while the limiting behaviors of the green curves coincide the results of

Page.

with n = 4, . . .. θn is determined by the gravitation theory and is positive according to

subsection 3.3. Although we do not have the coefficients, θ’s, it is an easy task to show that

the higher order terms are not going to change the general shape of the obtained curves

(fig. 8, orange and green): Since these terms are always negative and of the form r2n,

δS will have exactly one root for 0 < r < r0 (a local maximum). Moreover, the limiting

behaviors of the curves are uniquely determined by the boundary conditions, Eq. (4.26).

Hence the modifications will preserve the general shape of the curves.

5 Conclusions

In this work we argued that the Page curve is a consequence of holography—independent

of the details of the gravitational field equations. In other words, a holographic theory of

gravity which respects the bound S ≤ A/4G for entanglement entropy, would result in a

Page curve for an evaporating black hole. The details of the gravitation theory and its

field equations would affect the curve through some shape-preserving modifications. It is

obvious from the holographic assumptions that this work is not regarded as a resolution to

the black hole information paradox. Nevertheless, it gives a deeper understanding of the

role of holography in preserving the information in gravitation theories.

One would expect the entanglement entropy, S, of a system to depend on its boundary,

χ(x). Hence it is considered as a functional of the boundary, S(χ). For the entanglement

entropy to be well-defined (single-valued), it should not change under the following trans-

formation: first deforming χ to χ + δχ, and then turning it back to χ. This gives some

quit general constraints on the entanglement entropy which were worked out in this paper.

These constraints helped us a lot in obtaining an expression for the entanglement entropy

of an evaporating black hole.
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The obtained results indicate that the Hawking radiation prior to the Page time con-

tains some information about the quantum state of the black hole. This means that it

cannot be regarded as purely thermal, which is in accordance with some other studies,

such as [55]. Moreover, the amount of information carried by the radiation prior to the

Page time is expected to play an important role in a better understanding of the dynamics

of black hole evaporation at the quantum level.
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