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Holography for cosmology

Paul McFadden* and Kostas Skenderis†

Institute for Theoretical Physics, Valckenierstraat 65, 1018XE Amsterdam, The Netherlands
(Received 17 August 2009; published 21 January 2010)

We propose a holographic description of four-dimensional single-scalar inflationary universes, and

show how cosmological observables, such as the primordial power spectrum, are encoded in the

correlation functions of a three-dimensional quantum field theory (QFT). The holographic description

correctly reproduces standard inflationary predictions in the regime where a perturbative quantization of

fluctuations is justified. In the opposite regime, wherein gravity is strongly coupled at early times, we

propose a holographic description in terms of perturbative large N QFT. Initiating a holographic

phenomenological approach, we show that models containing only two parameters, N and a dimensionful

coupling constant, are capable of satisfying the current observational constraints.

DOI: 10.1103/PhysRevD.81.021301 PACS numbers: 98.80.Cq, 11.25.Tq, 11.25.Wx

I. INTRODUCTION

Over the past two decades, striking new observations
have transformed cosmology from a qualitative to a quan-
titative science. A minimal set of cosmological parameters
characterizing the observed universe, the concordance cos-
mology, have now been measured to within a few percent
[1]. These observations reveal a spatially flat universe,
endowed with small-amplitude primordial perturbations
that are approximately Gaussian and adiabatic with a
nearly scale-invariant spectrum. This data is consistent
with the generic predictions of inflationary cosmology
and set inflation as the leading theoretical paradigm for
the initial conditions of big bang cosmology. With future
observations promising an unprecedented era of precision
cosmology, the constraints on cosmological parameters are
expected to tighten further still, particularly as regards the
inflationary sector. This presents a unique window to
Planck-scale physics and a challenge for fundamental
theory.

During the past decade we have also witnessed exciting
new developments in fundamental theory. Holographic
dualities have been proposed and developed leading to a
new viewpoint for physical reality. Holography states that
any quantum theory of gravity should have a description in
terms of a quantum field theory (QFT) which does not
contain gravity in one dimension less. It is natural to
wonder how cosmology fits into the holographic frame-
work and the main aim of this paper is to propose a
concrete holographic framework for inflationary
cosmology.

Apart from the conceptual advances that such a develop-
ment would imply, there are also a number of more prag-
matic reasons for developing such a framework. First,
uncovering the structure of three-dimensional QFT in cos-
mological observables brings in new intuition about their

structure and may lead to more efficient computational
techniques, cf. the computation of non-Gaussianities in
[2]. Second, holographic dualities are strong/weak cou-
pling dualities meaning that in the regime where the one
description is weakly coupled the other is strongly coupled.
This provides an arena for constructing new models with
intrinsic strong-coupling gravitational dynamics at early
times that have only a weakly coupled three-dimensional
QFT description and are thus outside the class of model
described by standard inflation. Such models may well lead
to qualitatively different predictions for the cosmological
observables that will be measured in the near future.
Any holographic proposal should specify what the dual

QFT is and how to use it to compute cosmological observ-
ables. The holographic description we propose uses the
one-to-one correspondence between cosmologies and
domain-wall spacetimes discussed in [3,4] and assumes
that the standard gauge/gravity duality is valid. More pre-
cisely, the steps involved are illustrated in Fig. 1. The first
step is to map any given inflationary model to a domain-
wall spacetime. For inflationary cosmologies that at late
times approach either a de Sitter spacetime or a power-law
scaling solution [5], the corresponding domain-wall solu-
tions describe holographic renormalization group flows.

FIG. 1. The ‘‘pseudo’’ QFT dual to inflationary cosmology is
operationally defined using the correspondence of cosmologies
to domain walls and standard gauge/gravity duality.
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For these cases there is an operational gauge/gravity dual-
ity; namely, one has a dual description in terms of a three-
dimensional QFT. Now, the map between cosmologies and
domain walls can equivalently be expressed entirely in
terms of QFT variables, and amounts to a certain analytic
continuation of parameters and momenta. Applying this
analytic continuation we obtain the QFT dual of the origi-
nal cosmological spacetime.

We shall call the resulting theory a ‘‘pseudo’’ QFT
because we currently only have an operational definition
of this theory. Namely, we do the computations in the QFT
theory dual to the corresponding domain wall and then
apply the analytic continuation. Perhaps a more fundamen-
tal perspective is to consider the QFTaction, with complex
parameters and complex fields as the fundamental objects,
and then to consider the results on different real domains as
applicable to either domain walls or cosmologies. Note that
the supergravity embedding of the domain-wall/
cosmology correspondence discussed in [6] works in pre-
cisely this way.

The holographic description should reproduce standard
inflationary results in their regime of applicability, namely,
when the fluctuations around the cosmological background
can be perturbatively quantized. New results should follow
by applying the duality in the cases where such a pertur-
bative quantization of fluctuations is not justified. In the
remainder of this paper, we show first that the standard
results are indeed reproduced, then move to construct new
models which are strongly coupled at early times but have
a weakly coupled large N QFT description.

II. DOMAIN-WALL/COSMOLOGY
CORRESPONDENCE

For simplicity, we focus on spatially flat universes
equipped with a single minimally coupled scalar field,
but the results can be extended to more general cases
(e.g., nonflat, multiscalar, noncanonical kinetic terms,
etc.) The linearly perturbed metric and scalar field may
be written in the form

ds2 ¼ �dz2 þ a2ðzÞ½�ij þ hijðz; ~xÞ�dxidxj;
� ¼ ’ðzÞ þ �’ðz; ~xÞ;

(1)

where � ¼ �1 in the case of cosmology, in which case z is
the time coordinate, and � ¼ þ1 in the case of domain-
wall solutions, in which case z is the radial coordinate. We
take the domain wall to be Euclidean for later convenience.
A Lorentzian domain wall may be obtained by continuing
one of the xi coordinates to become the time coordinate [4].
The continuation to a Euclidean domain wall is convenient,
however, because the QFT vacuum state implicit in the
Euclidean formulation maps to the Bunch-Davies vacuum
on the cosmology side. Other choices of cosmological
vacuum require considering the boundary QFT in different

states, as may be accomplished using the real-time formal-
ism of [7].
The actions for both the cosmology and the Euclidean

domain wall may be written in the combined form,

S ¼ �

2�2

Z
d4x

ffiffiffiffiffiffi
jgj

q
½�Rþ ð@�Þ2 þ 2�2Vð�Þ�; (2)

where �2 ¼ 8�G and we take the scalar field � to be
dimensionless. For background solutions in which the
evolution of the scalar field is (piecewise) monotonic,
’ðzÞ can be inverted to give zð’Þ, allowing the Hubble
rate H ¼ _a=a to be expressed in terms of some ‘‘fake
superpotential’’ Wð’Þ as HðzÞ ¼ �ð1=2ÞWð’Þ. The com-
plete equations for the background are then

_a

a
¼ � 1

2
W; _’ ¼ W 0; 2��2V ¼ W 02 � 3

2
W2; (3)

whereW 0 ¼ dW=d’. This first-order formalism goes back
to the work of [8] (for cosmology), where it was obtained
by application of the Hamilton-Jacobi method. In [4] this
formalism was linked to the notion of (fake) (pseudo)
supersymmetry.
The equations of motion for the perturbations are

0 ¼ €� þ ð3H þ _�=�Þ _� � �a�2q2�;

0 ¼ €�ij þ 3H _�ij � �a�2q2�ij;
(4)

where ~q is the comoving wave vector of the perturbations,
and the background quantity �ðzÞ is defined as � ¼
� _H=H2 ¼ 2ðW 0=WÞ2. �ij is a transverse traceless metric

perturbation and � ¼ c þ ðH= _’Þ�’ is the standard
gauge-invariant variable constructed from a metric pertur-
bation, hij ¼ �2c ðz; ~xÞ�ij, and the scalar perturbation

�’.
Defining now the analytically continued variables �� and

�q according to

�� 2 ¼ � ��2; �q ¼ �iq; (5)

it is easy to see that a perturbed cosmological solution
written in terms of the variables � and q continues to a
perturbed Euclidean domain-wall solution expressed in
terms of the variables �� and �q.
We have thus established that the correspondence be-

tween cosmologies and domain walls holds, not only for
the background solutions, but also for linear perturbations
around them. This is the basis for the relation between
power spectra and holographic two-point functions, to be
discussed momentarily. The argument can be generalized
to arbitrary order to relate non-Gaussianities to holo-
graphic higher-point functions [9].

III. QUANTIZATION OF PERTURBATIONS

In the inflationary paradigm, cosmological perturbations
originate on subhorizon scales as quantum fluctuations of
the vacuum. Quantizing the perturbations in the usual
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manner, one finds the scalar and tensor superhorizon power
spectra

�2
SðqÞ ¼

q3

2�2
h�ðqÞ�ð�qÞi ¼ q3

2�2
j�qð0Þj2;

�2
TðqÞ ¼

q3

2�2
h�ijðqÞ�ijð�qÞi ¼ 2q3

�2
j�qð0Þj2;

(6)

where �qð0Þ and �qð0Þ are the constant late-time values of the

cosmological mode functions �qðzÞ and �qðzÞ.
The mode functions are themselves solutions of the

classical equations of motion (4) (setting �ij ¼ �qeij, for

some time-independent polarization tensor eij). To select a

unique solution for each mode function, we impose the
Bunch-Davies vacuum condition �q, �q � e�iq� as � !
�1, where the conformal time � ¼ R

z dz0=aðz0Þ. The

normalization of each solution (up to an overall phase)
may then be fixed by imposing the canonical commutation
relations for the corresponding quantum fields. This leads
to the Wronskian conditions,

i ¼ �q�
ð�Þ�
q ��ð�Þ

q ��q ; i=2 ¼ �q�
ð�Þ�
q ��ð�Þ

q ��
q;

(7)

where �ð�Þ
q ¼ 2�a3��2 _�q and �ð�Þ

q ¼ ð1=4Þa3��2 _�q are

the canonical momenta associated with each mode func-
tion, and we have set @ to unity.

To make connection with the holographic analysis to
follow, we introduce the linear response functions E and�
satisfying

�ð�Þ
q ¼ ��q; �ð�Þ

q ¼ E�q: (8)

(These quantities are well defined since we have already
selected a unique solution for each mode function.)
Substituting these definitions into the Wronskian condi-
tions, which are valid at all times, the cosmological power
spectra may be reexpressed as

�2
SðqÞ ¼

�q3

4�2 Im�ð0ÞðqÞ
; �2

TðqÞ ¼
�q3

2�2 ImEð0ÞðqÞ
;

(9)

where Im�ð0Þ and ImEð0Þ are the constant late-time values

of the imaginary part of the response functions. Wewill see
shortly how the response functions also give the two-point
functions of the pseudo-QFT.

Let us now consider the corresponding domain-wall
solution obtained by applying the continuation (5). The
early-time behavior �e�iq� of the cosmological perturba-
tions maps to the exponentially decaying behavior�e �q� in
the interior of the domain wall (� ! �1). Such regularity
in the interior is a prerequisite for holography, explaining
our choice of sign in the continuation of q.

The domain-wall response functions �E and �� [10] are
defined analogously to (8), namely,

�� ð�Þ
�q ¼ � ��� �q

��ð�Þ
�q ¼ � �E� �q; (10)

where ��ð�Þ
�q ¼ 2�a3 ���2 _� �q and ��ð�Þ

�q ¼ ð1=4Þa3 ���2 _� �q are

the radial canonical momenta. The minus signs are inserted

so that ��ð�iqÞ ¼ �ðqÞ and �Eð�iqÞ ¼ EðqÞ. By choosing
the arbitrary overall phase of the cosmological perturba-
tions appropriately, we may ensure that the domain-wall
perturbations are everywhere real. The domain-wall re-
sponse functions are then purely real, while their cosmo-
logical counterparts are complex.

IV. HOLOGRAPHIC ANALYSIS

There are two classes of domain-wall solutions for
which holography is well understood.

A. Asymptotically anti-de Sitter spacetime (AdS)
domain walls

In this case the solution behaves asymptotically as

aðzÞ � ez; ’� 0 as z ! 1: (11)

The boundary theory has a UV fixed point which corre-
sponds to the bulk AdS critical point. Depending on the
rate at which ’ approaches zero as z ! 1, the QFT is
either a deformation of the conformal field theory (CFT) or
else the CFT in a state in which the dual scalar operator
acquires a nonvanishing vacuum expectation value (see
[11] for details). Under the domain-wall/cosmology corre-
spondence, these solutions are mapped to cosmologies that
are asymptotically de Sitter at late times.

B. Asymptotically power-law solutions

In this case the solution behaves asymptotically as

aðzÞ � ðz=z0Þn; ’� ffiffiffiffiffiffi
2n

p
logðz=z0Þ as z ! 1;

(12)

where z0 ¼ n� 1. This case has only very recently been
understood [12]. For n ¼ 7 the asymptotic geometry is the
near-horizon limit of a stack of D2 brane solutions. In
general, these solutions describe QFTs with a dimensionful
coupling constant in the regime where the dimensionality
of the coupling constant drives the dynamics. Under the
domain-wall/cosmology correspondence, these solutions
are mapped to cosmologies that are asymptotically power
law at late times.
Holographic two-point functions are now obtained by

solving the linearized equations of motion about the
domain-wall solution with Dirichlet boundary conditions
at infinity and imposing regularity in the interior. It will
suffice to discuss the two-point function for the energy-
momentum tensor. On general grounds, the two-point
function takes the form

hTijð �qÞTklð� �qÞi ¼ Að �qÞ�ijkl þ Bð �qÞ�ij�kl; (13)
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where �ijkl is the three-dimensional transverse traceless

projection operator defined by �ijkl ¼ �iðk�lÞj �
ð1=2Þ�ij�kl and �ij ¼ �ij � �qi �qj= �q

2. The holographic

computation amounts to the extracting the coefficients A
and B from the asymptotics of the linearized solution.
Using the radial Hamiltonian method developed in [10],
one finds

Að �qÞ ¼ 4 �Eð0Þð �qÞ; Bð �qÞ ¼ 1
4
��ð0Þð �qÞ; (14)

where the zero subscript indicates the leading (constant)
term as z ! 1, after holographic renormalization has been
performed [10,13].

V. CONTINUATION TO THE PSEUDO-QFT

We now wish to reexpress the bulk analytic continuation
(5) in terms of QFT variables. This amounts to

�N 2 ¼ �N2; �q ¼ �iq; (15)

where the barred quantities are associated with the QFT
dual to the domain wall. We thus find that the power
spectrum for any inflationary cosmology that is asymptoti-
cally de Sitter or asymptotically power law can be directly
computed from the two-point function of a three-
dimensional QFT via the formulas

�2
SðqÞ ¼

�q3

16�2 ImBð�iqÞ ; �2
TðqÞ ¼

�2q3

�2 ImAð�iqÞ :
(16)

VI. BEYOND THE WEAK GRAVITATIONAL
DESCRIPTION

In the discussion so far we have assumed that the de-
scription in terms of gravity coupled to a scalar field is
valid at early times, and that the perturbative quantization
of fluctuations can be justified. The holographic descrip-
tion also allows us to obtain results when these assump-
tions do not hold. At early times, the theory may be
strongly coupled with no useful description in terms of
low-energy fields (such as the metric and the scalar field).
The holographic setup allows us to extract the late-time
behavior of the system, which can be expressed in terms of
low-energy fields, from QFT correlators. (For further de-
tails see [13].) Here we only note that this is the counterpart
of the standard fact that in gauge/gravity duality the
asymptotic behavior of bulk fields near the boundary of
spacetime is reconstructed by the correlators of the dual
QFT [14]. This late-time behavior is precisely the infor-
mation we need to compute the primordial power spectra
and other cosmological observables.

Ideally, one would deduce from a string/M-theoretic
construction what the dual QFT is. Instead we initiate
here a holographic phenomenological approach. The dual
QFTwould involve scalars, fermions, and gauge fields and

it should admit a large N limit. The question is then
whether one can find a theory which is compatible with
current observations. In particular, one might consider
either deformations of CFTs or theories with a single
dimensionful parameter, as these QFTs have already fea-
tured in our discussion above.
We will discuss here super-renormalizable theories that

contain one dimensionful coupling constant. A prototype
example is SUðNÞ Yang-Mills theory coupled to a number
of scalars and fermions, all in the adjoint of SUðNÞ. To
extract predictions we need to compute the coefficients A
and B of the two-point function of the energy-momentum
tensor (13), analytically continue the results, and insert
them in the holographic formulas for the power spectra.
First, the leading contribution to the two-point function

of the energy-momentum tensor is at one loop. Since the
energy-momentum tensor has dimension three,

Að �qÞ � �N2 �q3; Bð �qÞ � �N2 �q3: (17)

A generic such model thus leads to a scale-invariant spec-
trum at leading order in N. To fix the parameters of these
models, we may then compare with observations.
Comparing the observed amplitude of the scalar power
spectrum [1] with its holographic value we find N �
Oð104Þ, justifying the large N limit. To determine the
coupling constant g2YM we may compare with the tilt of
the spectrum. The precise formula requires a two-loop
computation [15] and will be reported elsewhere [9]. One

FIG. 2 (color online). The straight line is the leading order
prediction of holographic models with a single dimensionful
coupling constant for the correlation of the running 	s and the
scalar tilt ns. The data show the 68% and 95% C.L. constraints
(marginalizing over tensors) at q ¼ 0:002 Mpc�1, and are taken
from Fig. 4 of [1]. As new data appear the allowed region should
shrink to a point, which is predicted to lie close to the line.
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can obtain an order of magnitude estimate, however, on
general grounds. The perturbative expansion depends on
the effective dimensionless coupling constant g2eff ¼
g2YM �N= �q, and the leading correction to the two-point func-
tion yields ðns � 1Þ ¼ cg2eff ; where the constant c is of

order one and depends on the details of the theory. From
Table 4 of [1], one finds that ðns � 1Þ �Oð10�2Þ, thus we
find that g2eff �Oð10�2Þ justifying the perturbative QFT

treatment. Independently of the details of the theory, the
scalar index runs: 	s ¼ dns=d lnq ¼ �ðns � 1Þ þ
Oðg4effÞ. This prediction is qualitatively different from

slow-roll inflation [for which 	s=ðns � 1Þ is of first-order
in slow-roll [17] ], yet is nonetheless consistent with the
constraints on ns and 	s given in [1] for a wide range of
values of ns and 	s, as illustrated in Fig. 2. The ratio of
tensor to scalar power spectra can be computed from (16),
yielding r ¼ 32 ImBð�iqÞ=ImAð�iqÞ. For massless sca-
lars and for vector fields A ¼ B ¼ ð1=256Þ �N2 �q3 (for con-
formally coupled scalars B ¼ 0 instead), and for massless
fermions A ¼ ð1=128Þ �N2 �q3 and B ¼ 0. With appropriate
field content, one can thus satisfy the current observational
bound on r.

Once N, g2YM, and the field content are fixed, all other
cosmological observables (such as non-Gaussianities, etc.)
follow uniquely from straightforward computations. We
will present details of the correspondence between
higher-order QFT correlation functions and non-Gaussian
cosmological observables elsewhere [9]. Our results indi-
cate, however, that the non-Gaussianity parameter flocalNL

[18] is independent of N to leading order, consistent with
current observational evidence [1].

VII. CONCLUSIONS

We have presented a concrete proposal describing hol-
ography for cosmology, and initiated a holographic phe-
nomenological approach capable of satisfying current
observational constraints. Clearly, onewould like to further
develop holographic phenomenology and obtain precise
predictions for the cosmological observables to be mea-
sured by forthcoming experiments. We hope to report on
this in the near future.
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