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Abstract

In this thesis, QCD is studied from three different directions, with one over-

arching theme: holography. The holographic duality allows certain strongly

coupled QFTs to be described in terms of much simpler classical gravity in

one dimension more. The first direction from which QCD is studied in this

thesis is by examining the effects of an external magnetic field on a particu-

lar holographic model of QCD, yielding interesting qualitative insight. The

second approach examines how, in the same model, one can describe dense

baryonic configurations, providing a new way to study the matter composing

neutron stars. Indeed, the equation of state produced in this way is subse-

quently used to compute several neutron star properties which are observ-

able, or will be in the near future. The last direction contains no holographic

computations per se, but does incorporate several qualitative insights from

holography into a new heavy ion code called Trajectum. This will in the near

future be used to perform a Bayesian analysis, whereby it is hoped that these

qualitative insights from holography can be tested on experimental data, to

see how well the ideas coming from holography match up with experiment.
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Chapter 1

Introduction

The work described in this thesis is all centered around one goal: understand-
ing the theory of the strong interaction, QCD. Looking at the Lagrangian
that defines it, this theory is simple and elegant. Yet this simple fundamental
description results in a rich phenomenology, because the theory is strongly
coupled in many regimes of interest. This leads to two reasons why studying
QCD is interesting. On the one hand, the strongly coupled nature of many
of the objects of study in QCD provides us with a playground in which we
can learn how non-perturbative physics works. On the other hand, many
outstanding problems in QCD are the main obstacles to understanding other
problems. As an example of this, many properties of neutron stars require an
equation of state (EoS) to compute, and to obtain this EoS one has to solve
a QCD problem. In a way, these two reasons for studying QCD go hand in
hand. Returning to the example of neutron stars, as our knowledge of the
QCD equation of state grows, so does our knowledge of neutron stars, and
on the other hand, as more measurements on neutron stars are done, we can
use those measurements to learn something about QCD, and hence about
strong coupling.

During my PhD, I have worked towards the goal of understanding QCD
from three directions, corresponding to the remaining chapters in this thesis,
excluding the conclusion. Each of these chapters can be read mostly inde-
pendently, as only minor details should be unclear from reading a chapter
by itself. Wherever this occurs I reference where the details can be looked
up for the interested reader. In the sections below I give an introduction to
the concepts used throughout the remaining chapters, starting with an QCD
itself, its main features and its quantities of interest.
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CHAPTER 1. INTRODUCTION

1.1 QCD

QCD is the non-Abelian gauge theory of SU(3), which is minimally coupled
to a number of quark flavors Nf . In the standard model, there are of course 6
flavors. However, the three heaviest flavors are too heavy to be of importance
for many observables, and can be safely neglected.1 In this thesis, we need a
slight generalization of QCD, namely to that of a gauge group SU(Nc), where
now Nc and Nf can be freely chosen as theory parameters. The Lagrangian
for this generalized QCD is

LQCD = −1

4
tr [GµνG

µν ] +

Nf∑

i=1

q̄i
(
i /D −mi

)
qi, (1.1)

with

Gµν = ∂µAν − ∂νAµ + g [Aµ, Aν ] , i /Dqi = γµ (i∂µ + gAµ) qi,

with Aµ ∈ su(Nc), and mi the mass of quark flavor i.
This theory has the property that the beta function of the coupling

αs = g2/4π is negative to first order in perturbation theory provided that
Nf/Nc < 11/2 [1,2]. A consequence of this negative beta function is that the
coupling constant decreases towards higher energies, a phenomenon known
as asymptotic freedom, and increases towards lower energies. In figure 1.1,
one can see that this is indeed also seen in experiments. It can be seen that
around 1GeV, the coupling constant becomes O(1), and the theory can no
longer be accurately described by perturbation theory. This is a huge ob-
stacle in the way of understanding QCD at low energy scales. One method
by which one can still compute certain observables in the non-perturbative
regime is lattice QCD. This method discretizes QCD on a Euclidean lattice,
enabling the computation of non-dynamical observables by Monte Carlo in-
tegration of the euclidean path integral. Lattice QCD is a reliable method to
compute not only thermal properties of QCD, but also hadron masses, which
have been favorably compared to experimental values. It is not without its
downsides though, as the Euclidean formalism makes the computation of dy-
namical processes extremely challenging. Also, for similar reasons, it turns

1Heavy quarks serve as excellent probes for energy loss in a quark-gluon plasma though,
as they retain their identities on the timescales of a heavy ion collision, and hence serve
as experimentally clean probes.

10



1.1. QCD
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Figure 1.1: Strong coupling constant as a function of the energy scale Q. One
can see that for energies smaller than about 1GeV, the coupling becomes
O(1). Figure taken from [3].

out to be rather difficult to introduce a finite baryon chemical potential, an
issue known as the sign problem [4]. A detailed discussion of lattice QCD
is beyond the scope of this thesis, but excellent introductions can be found
in [5, 6].

Two features of QCD which appear in the low energy regime are confine-
ment and chiral symmetry breaking. Confinement is the phenomenon that
states have to be color neutral, implying that particles carrying color charge,
such as quarks and gluons, can not occur as isolated particles. One example
of this which can be computed in lattice QCD is the quark-antiquark poten-
tial, which is shown in the left panel of figure 1.2 [7]. This quark-antiquark
potential quantifies the potential energy between a heavy quark paired with
an antiquark of the same flavor, and can be seen to grow linearly at large
separation. Assuming that all quarks in the theory are infinitely massive, this

11



CHAPTER 1. INTRODUCTION

Figure 1.2: Left: Quark-antiquark potential computed using lattice QCD in
the quenched approximation. Figure taken from [7]. Right: renormalized
chiral condensate 〈ψ̄ψ〉 (labeled 〈q̄q〉 in the main text), renormalized such
that 〈ψ̄ψ〉(T = 0) = 0. Figure taken from [8].

means that one would have to spend an infinite amount of energy to separate
the quark-antiquark pair. In the case of realistic quark masses, instead this
implies that once the quarks are separated far enough, the potential energy
stored in the gluon field will be large enough such that a new quark-antiquark
pair can be created. The new quarks then each pair with one of the original
quarks to create two color neutral mesons.

Chiral symmetry breaking refers to the approximate global chiral sym-
metry

SU(Nf )L × SU(Nf )R × U1(L)× U1(R),

which acts on (1.1) such that the SU(Nf )L × U(1)L generators act on the
left-handed quark components by multiplication, while the SU(Nf )R×U(1)R
generators act on the right-handed components. This symmetry is only ap-
proximate in (1.1), but becomes exact in the limit where the quarks are
massless. The QCD vacuum, however, breaks this approximate symmetry
further spontaneously. The order parameter of this chiral symmetry break-
ing is the chiral condensate operator 〈q̄iqi〉, which can be defined for each
flavor i. In the right panel of figure 1.2, one can see the chiral condensate as
a function of temperature, computed using lattice QCD [8]. Note that the

12



1.1. QCD

renormalized chiral condensate is shown, which is defined by the subtraction
of a constant such that the chiral condensate at zero temperature vanishes.
One can clearly see that indeed the order parameter 〈q̄iqi〉, which is small at
large temperatures, grows for small temperatures.

A subsequent question one can ask is whether the transition between a
chirally symmetric phase without confinement, known as the quark-gluon
plasma, at high temperatures and the chirally broken confining vacuum are
separated by a cross-over or a first order phase transition. In the Columbia
plot [9], shown in the left panel of figure 1.3, one can see that the answer
to this question depends on the masses of the quarks. One can see that for

3p/T4

ε/T4

3s/4T3

 0

 4

 8

12

16

130 170 210 250 290 330 370

T [MeV]

HRG

non-int. limit

Tc

Figure 1.3: Left: Columbia plot, showing for which values of the up and
down quark masses mu,d on the horizontal axis and the strange quark mass
ms on the vertical axis, QCD has a first order phase transition or a cross-
over. Physical values for the quark masses are indicated, yielding a cross-over.
Figure taken from [9]. Right: Equation of state at vanishing baryon chemical
potential as a function of temperature, showing the pressure p, the energy
density e, and the entropy s. The transition can clearly be seen to be a
cross-over. Figure taken from [10].

the physical values of the quark masses, the transition is a cross-over. In
the right panel of figure 1.3, one can see the equation of state as a function
of temperature for vanishing baryon chemical potential [10]. Here too, it is
apparent that the transition is a cross-over.

In the presence of a finite baryon chemical potential, the situation may
be different. In figure 1.4, a sketch is shown of what the phase diagram is

13



CHAPTER 1. INTRODUCTION

expected to look like as a function of both temperature and baryon chemical
potential. Also, the regions probed by heavy ion collision experiments at

Figure 1.4: Sketch of the expected phase diagram of QCD as a function
of temperature and chemical potential. The regions probed by heavy ion
collisions are also shown, with the corresponding center-of-mass energies in-
dicated. Figure taken from [11].

RHIC and LHC are shown, with center-of-mass energies indicated. The
cross-over seen in figure 1.3 is seen in figure 1.4 along the vertical axis. As
one moves to larger chemical potentials, the cross-over is expected to turn
into a first order phase transition at a critical endpoint. The search for such
an endpoint is the purpose of the Beam Energy Scan program at RHIC [12].
If we look at the low temperature, large chemical potential region of the
phase diagram, we see nuclear matter indicated. At chemical potential values
beyond this value, still at low temperatures, we enter the regime in which
the matter making up neutron stars exists. It is not known whether the
densities inside a neutron star are large enough to probe a potential phase
transition as indicated in figure 1.4, but at some large density it is expected
that yet a new state of matter forms, known as a color superconductor [13].
One of the main reasons why these features in the phase diagram are as
of yet unknown is the aforementioned sign problem, which precludes a first
principles calculation of these features. The two experimental probes into

14



1.2. RELATIVISTIC HYDRODYNAMICS

the phase diagram, namely heavy ion collisions and neutron stars, are both
described by relativistic hydrodynamics, which is what we will describe next.

1.2 Relativistic hydrodynamics

Relativistic hydrodynamics is an effective theory which describes the behav-
ior of fluids in local thermal equilibrium. It can be described by the conser-
vation of conserved quantities that the underlying theory has. This always
includes the conservation of the stress-energy tensor, but can also include
other conserved currents, such as baryon number density.2 Let us take this
theory as an example. We then have

∂µT
µν = 0, ∂µJ

µ = 0,

where Jµ is the conserved current associated to baryon number density. This
set of equations cannot be solved though, which can be seen by a simple
counting argument. Indeed, we have 10 independent components in the
stress-energy tensor, and 4 in the baryon current, whereas we have only 5
equations to constrain them. Further input is therefore needed. This comes
as no surprise, as it would be rather strange if the behavior of the conserved
quantities were completely determined by the conservation laws themselves,
and had no dependence on the underlying microscopic theory.

The extra input used to close the system of equations is called the consti-
tutive relations, which determine T µν and Jµ in terms of the temperature T ,
baryon chemical potential µ and fluid velocity uµ. The constitutive relations
can framed in terms of an expansion in derivatives of T , µ and uµ. Below,
we will discuss three examples of such relations, namely that of ideal hydro-
dynamics with a conserved baryon number density, first order Israel-Stewart
theory without a conserved baryon number density, and second order hydro-
dynamics, also without any conserved quantities other than the stress-energy
tensor. These three cases correspond exactly to the three cases which will
be used in the remainder of this thesis. We will however restrict ourselves
to just a description of these theories, giving just the basic idea of the in-
gredients used to derive them. There are many different detailed derivations
available in the literature, see e.g. [14–16]. Before moving on to the exam-
ples of constitutive relations however, note that one can easily couple the

2In principle, one can write down as many conserved currents as desired. We will
restrict ourselves to just the baryon number density.
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CHAPTER 1. INTRODUCTION

equations of hydrodynamics to those of general relativity by using the hy-
drodynamic stress-energy tensor defined by the constitutive relations in the
Einstein equations.

Let us now look at the first example of constitutive relations, namely
that of ideal hydrodynamics with a conserved baryon number density. In
this case, we have

T µν = e(T, µ)uµuν − P (T, µ)∆µν , Jµ = n(T, µ)uµ, (1.2)

where ∆µν = gµν − uµuν is a projector satisfying uµ∆
µν = 0, and e, P and

n are for now arbitrary functions of the temperature and chemical potential.
Note also that the metric gµν follows the mostly minus convention, in accor-
dance with most literature on hydrodynamics. Also, since the metric can in
principle be something other than Minkowski, all derivatives in this section
can be assumed to be covariant unless stated otherwise. One can check that
(1.2) are the most general expressions for T µν and Jµ which do not involve
derivatives of T , µ or uµ. For this reason this constitutive relation is zeroth
order in the derivative expansion. Now let us examine the above expression
in the fluid rest frame, in which uµ = (1, 0, 0, 0). We then have

T µν = diag(e, P, P, P ), Jµ = (n, 0, 0, 0),

which we can compare to the known result for a fluid at rest to deduce that we
should interpret the arbitrary functions e, P and n as energy density, pressure
and baryon number density, respectively. Relating these three quantities
through the equation of state, we can close the system of equations, rendering
it solvable. These constitutive relations are used for the neutron star merger
simulations in chapter 3, where they are solved together with the Einstein
equations.

For the remainder of this section, we will disregard Jµ, and consider a
theory with only a conserved stress-energy tensor. We will also add the first
order in derivative corrections. To this end, let us first introduce the following
derivatives:

∇ν ≡ ∆µν∂ν , D ≡ uµ∂µ,

where ∇ν is the gradient in the fluid rest frame, and D is the time derivative
in the fluid rest frame. We now write the first equation of (1.2) as

T µν = euµuν − (P (e) + Π)∆µν + πµν . (1.3)

16



1.2. RELATIVISTIC HYDRODYNAMICS

Here we have removed the dependence on µ as there is no more baryon
number density, and added the bulk pressure Π and the shear tensor πµν ,
where πµν is traceless (πµ

µ = 0) and orthogonal (uµπ
µν = 0). We have also

rewritten e(T ) and P (T ) as a single function P (e). For the bulk pressure
and shear tensor we have the following expression in terms of derivatives:

Π = −ζ(e)∇ · u, πµν = 2η(e)σµν , (1.4)

which is the most general expression at first order in derivatives which satis-
fies the second law of thermodynamics [16]. Here ζ(e) and η(e) are the bulk
viscosity and shear viscosity, respectively. Both η(e) and ζ(e) are required to
be positive to respect the second law of thermodynamics [16]. The σµν ten-
sor is a symmetric tensor satisfying the same tracelessness and orthogonality
conditions as πµν :

σµν = ∇〈µuν〉 =
1

2
(∇µuν +∇νuµ)− 1

3
∆µν∇ · u. (1.5)

Here we define the angled brackets as symmetrizing a tensor, and at the same
time removing the trace.

There is one big problem with these constitutive relations though, namely
that they allow for superluminal propagation, thereby violating causality.
This can be solved in the following way, which may seem ad hoc, but can be
derived in several different ways [14]. The solution is to replace the identifica-
tions in (1.4) by the following differential equations, called the Israel-Stewart
equations [17]:

DΠ = − 1

τΠ(e)
[Π + ζ(e)∇ · u] , (1.6)

∆µ
α∆

ν
βDπ

αβ = − 1

τπ(e)
[πµν − 2η(e)σµν ] , (1.7)

where the projectors in front of Dπαβ ensure that the differential equation
preserves tracelessness and orthogonality, and the positive functions τπ(e)
and τΠ(e) are called the shear relaxation time and bulk relaxation time,
respectively. Summarizing, the Israel-Stewart equations give us four param-
eters, called transport coefficients:

η(e), ζ(e), τπ(e), τΠ(e),

where the dependence on the energy density, or equivalently the temperature,
is indicated. These transport coefficients depend on the microscopic details of
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CHAPTER 1. INTRODUCTION

the theory, and hence encode information about the underlying theory. Since
they also enter the equations governing the hydrodynamical evolution, they
also have an influence on macroscopic observables, which can in principle be
measured experimentally.

Second order hydrodynamics is a generalization of the above discussion.
The stress-energy tensor is still described by (1.3), but the relaxation equa-
tions for the bulk pressure (1.6) and shear stress (1.7) are expanded to the
following form:

DΠ = − 1

τΠ(e)
[Π + ζ(e)∇ · u+ δΠΠ(e)∇ · uΠ (1.8)

− λΠπ(e)π
µνσµν ] ,

∆µ
α∆

ν
βDπ

αβ = − 1

τπ(e)
[πµν − 2η(e)σµν + δππ(e)π

µν∇ · u (1.9)

− φ7(e)π
〈µ
α π

ν〉α + τππ(e)π
〈µ
α σ

ν〉α − λπΠ(e)Πσ
µν
]
.

We can see that the second order terms add the following transport coeffi-
cients:

δΠΠ(e), λΠπ(e), δππ(e), φ7(e), τππ(e), λππ(e).

These transport coefficients can, just as the first order transport coefficients,
in principle be derived from the microscopic theory, and they also can poten-
tially be measured experimentally. Both the first and second order constitu-
tive relations will be used in chapter 4, where they will be used to describe
the quark-gluon plasma stage of simulations of heavy ion collisions.

1.3 Heavy Ion Collisions

At large temperatures, QCD matter undergoes a transition to a quark-gluon
plasma (QGP) phase, as can be seen in figure 1.4. Such large temperatures
can be achieved experimentally by depositing extreme amounts of energy
inside a small volume, and letting the system equilibrate towards a thermal
state. For this system to be able to reach a near-equilibrium state though, the
spatial extent of the system must be sufficient such that the energy density
dissipates away faster than the system takes to equilibrate. If this condition
is met, a significant portion of the system’s evolution will be described by
a QGP, which can be described using hydrodynamics as discussed above.
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1.3. HEAVY ION COLLISIONS

Systems in which this is possible are heavy ion collisions. In a heavy ion col-
lision experiment such as those conducted at RHIC and the LHC, two atomic
nuclei are accelerated in opposite directions, and collide inside a particle de-
tector. The resulting matter produced in the collision ‘hydrodynamizes’ on a
timescale of less than 1 fm/c, which is much smaller than the spatial extent
of the resulting plasma if the colliding nuclei are large and collide ‘head-on’.
An interesting question is indeed how small a collision system can be for it
to still form a QGP (See [18] for a recent review.). In the following para-
graphs, we will describe in some detail the physical processes occuring during
a heavy ion collision. We will subsequently end this section with a discussion
of experimental observables. See also [19] for a recent review of this topic.

For the discussion of the processes occuring during a heavy ion collision,
let us focus on a specific example. At the LHC, lead-208 nuclei are collided
at center-of-mass energy per nucleon of 2.76TeV and 5.02TeV. Different
snapshots of an animation of such a collision can be seen in the left panel
of figure 1.5. Here the numbers in the bottom of each snapshot indicate the

Figure 1.5: Left: Snapshots from an animation of a heavy ion collision taken
at 5 fm/c before the collision, at the moment of collision, and at 5 and 50 fm/c
after the collision, where the collision is viewed from the side, and where
quark-gluon plasma is indicated in red. In the final snapshot the approximate
rapidity y (see (1.10)) of particles is shown for y = 0, 1, 6. Figure taken from
[19], which was adapted from [20]. Right: Location of nucleons participating
in the collision, viewed in the plane transverse to the beam. Nucleons from
one nucleus are shown in blue, the ones from the other are shown in red.
Nucleons participating in the collision are shown as solid circles, while dotted
circles indicate ‘spectator’ nucleons. Figure taken from [21].
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time in fm/c, with t = 0 being defined as the moment the collision occurs,
and the collision is viewed from the side, i.e. the beam passes through the
figure from left to right. Because the nuclei each have a very large energy,
in the lab frame they appear extremely Lorentz contracted, as can be seen
in the snapshot at t = −5 fm/c. The nuclei then pass through each other,
interacting and leaving matter in their wake. This matter is what we will be
discussing the evolution of below.

Before continuing the discussion on the different stages this matter goes
through, one important point is that the two nuclei need not collide head-on,
as can be seen in the right panel of figure 1.5. In that figure, we are looking
in the direction of the beam, i.e. the two dimensions shown are transverse
to the beam. Since the nuclei are very small compared to the size of the
beam, the so-called ‘impact parameter’, or the transverse distance between
the centers of the colliding nuclei, is essentially random. As a consequence of
this, heavy ion collisions as measured in an experiment are not all of the same
type, as collisions with a small impact parameter (called central events) are
very different from those with a large impact parameter (called peripheral
or off-central events). One difference is that the number of participants in
the collision correlates with the number of particles measured in the final
state, which causes central events to have more particles in their final states.
Another difference is in the initial geometry. Lead-208 is spherical on average,
and therefore central events are also to a good approximation spherical. Off-
central events like the one shown in the right panel of 1.5 instead are quite
elongated.

Let us now consider with the discussion of what happens after the col-
lision. As was mentioned, when the nuclei pass through each other, they
leave matter in their wake. This matter is produced, to a good approxima-
tion, in a way which is invariant under boosts in the beam direction. At
some time after the initial collision, the resulting matter can be described
by hydrodynamics. This process is called ‘hydrodynamization’. Note that
this is different from thermalization, as the matter is at this stage not yet
in equilibrium, which shows itself in the fact that the matter is not homo-
geneous, and large gradients of the stress-energy tensor exist. The process
by which this hydrodynamization happens is poorly understood, and even
how fast this happens is subject to debate. Kinetic theory suggests that hy-
drodynamization occurs after roughly 1 fm/c [22]. Holography, which will be
discussed in section 1.5, predicts even earlier values of perhaps 0.35 fm/c [23].
Furthermore, different models for this pre-equilibrium stage describing this
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1.3. HEAVY ION COLLISIONS

hydrodynamization process give qualitatively different answers for the state
of the hydrodynamic fluid immediately after hydrodynamization.

The next stage in the description of a heavy ion collision is the hydro-
dynamical evolution of the fluid created in the hydrodynamization process.
For this stage, the physical description is well understood, namely viscous
hydrodynamics. What is less well understood are the values of the vari-
ous transport coefficients entering the evolution through (1.8–1.9). Of the
transport coefficients listed, the ones with the most pronounced effect on
the experimental observables are the shear and bulk viscosities. This makes
sense, because hydrodynamics is a derivative expansion, where higher order
derivatives are assumed to be less important for the evolution. The shear and
bulk viscosities are the only first order coefficients in this expansion, express-
ing the fact that they have the most influence on the evolution of the fluid
and hence on the final experimental observables. In figure 1.6, the results
from a Bayesian analysis are shown, in which among other quantities both
these viscosities were fitted to experimental data. Of theoretical interested is
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Figure 1.6: Left: Shear viscosity divided by entropy density as a function of
temperature. Right: Bulk viscosity divided by entropy density as a function
of temperature. In both figures the 90% credible interval is shown. Also
shown is the holographic result η/s = 1/4π for the shear viscosity. Both
figures taken from [24].

that these viscosities can be obtained by means of holography, which will be
discussed in section 1.5. In particular, [25–28] obtained a surprisingly small
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value for the ratio of the shear viscosity to entropy density ratio:

η

s
=

1

4π
,

where one should note that the assumption of infinite coupling strength is
an important ingredient in the holographic computation. As can be seen in
figure 1.6, this value is compatible with the results from the Bayesian analysis
for values near the QCD cross-over, where the effective coupling strength is
expected to be large. This lends credibility to the idea that holography can
be used to at least give qualitative insight into QCD.

At some point after the collision, the fluid has cooled and diluted enough
so that the interactions can no longer maintain local hydrodynamic equilib-
rium, and hydrodynamics no longer provides a good description of the fluid.
Theoretical models reflect this change by switching to a particle description
at a certain temperature called the freeze-out temperature Tfr. Note here
that this change in description depends not so much on the time, but instead
on the temperature. This means that even though the language in this sec-
tion conveys this process as occuring sequentially in time, the time at which
freeze-out occurs is not the same for different regions of the plasma.

After the system has cooled enough so that it is no longer described by
hydrodynamics, there are still interactions between the particles, which can
be well described by solving a Boltzmann equation. However, as the system
expands further, at some point the particles become far enough separated
that they no longer interact. After this time, except for the decay of unstable
particles, no further interactions occur, and the particles travel in straight
trajectories until they are detected. In fact, these final particles are all that
can be measured. None of the other processes mentioned can be directly
observed, so all conclusions about the processes described above have to be
inferred from the final state particles and their correlations. As one can
imagine, this is an enormous obstacle towards understanding the processes
involved, because the final state typically depends on all of the physical
processes involved in the collision.

Before discussing the various observables one can define in terms of the
final state particles, let us mention one more physical process, which will be
neglected in the rest of this thesis, but should nevertheless be mentioned.
During the initial collision, it is possible that two nucleons undergo a hard
scattering, creating high-momentum particles. These particles form jets,
which subsequently propagate through the medium. This process contains a
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wealth of information about the medium, but as we will not simulate jets in
chapter 4, we will not discuss them in detail.

Let us now move on to the discussion of the observables which can be
experimentally measured. This discussion will necessarily be limited to a
small subset, but this should give a good impression of the main types of
observables and the type of information they carry about the physical pro-
cesses mentioned above. Here, note that this will be a general discussion,
and the precise definitions of observables computed in this thesis and their
comparison to experimental data will be done in chapter 4. To start, let
us note that the spatial extent of the QGP is only a couple of femtometers,
which is too small to be able to measure any spatial information. Hence all
observables are defined in terms of the momenta of the final state particles,
where subtle differences between observables can be made based on which
particles to count, such as conditions on the momenta and particle species.

For these definitions, let us decompose the transverse momentum of each
particle in the following way:

px = pT cosφ, py = pT sinφ,

where pT is the transverse momentum and φ is the azimuthal angle. In
addition, we define the rapidity y and the pseudorapidity η:

y =
1

2
log

(
E + pz
E − pz

)
, η =

1

2
log

( |p|+ pz
|p|+ pz

)
, (1.10)

where E is the energy of the particle, and the z-component of the momen-
tum points along the beam axis. Note that in the case of massless particles,
we have y = η, and also note that while computing y requires knowledge of
a particle’s mass, η is a pure angle. Most observables are defined in terms
of only particles satisfying certain constraints on their momenta. The main
reason for this is that experimentally, detectors are not 100% efficient in de-
tecting every single particle from an event, where efficiencies vary depending
on particularly pT and η. One could try and correct for this, but it is easier
to just exclude particles from the most inefficient regions from the analysis.
Indeed, for theorists it is easy to simply apply the same cuts, and this allows
for a cleaner comparison.

With the momentum decomposition in hand, let us now define centrality.
As was mentioned in the beginning of this section, the amount of overlap
of the initial nuclei is very important, where central events with a small
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impact parameter produce many particles in a roughly spherical manner,
while more peripheral events produce fewer particle in a more anisotropic
way. Unfortunately, there is no way to experimentally determine the impact
parameter, and therefore the ‘centrality’ is defined in a different way. Since
we know that central events produce more particles than peripheral ones, it
makes sense to use the number of particles (most often the number of charged
particles to be precise) produced by an event as a proxy for the impact
parameter. In this way, we determine for each event how many particles it
produced, and sort all of them from many particles to few. Then we define
centrality by percentiles, i.e. the event with the most particles is by definition
0% central, while the event with the fewest is by definition 100% central, and
the other events interpolate between these extremes.

Using the above discussion, we can already define a few observables, such
as the number of particles produced per unit pseudorapidity dN/dη and the
mean transverse momentum 〈pT 〉. As it turns out, the number of particles
produced correlates well with the entropy produced in the initial stage of
the collision, because viscous corrections in the hydrodynamical evolution
are too small to generate appreciable amounts of entropy, and the final state
entropy is proportional to the number of particles. The momenta of the
particles produced in the final state are to some approximation those of a
boosted thermal ensemble. Because of this, the mean transverse momentum
is mostly sensitive to the freeze-out temperature and the velocity of the fluid
at the freeze-out surface.

It was mentioned above that the initial geometry of the plasma is generi-
cally anisotropic. It turns out that this initial spatial anisotropy is translated
by the hydrodynamic evolution into anisotropy in momentum space, specifi-
cally in the azimuthal distribution of the momenta of the final state particles.
In particular, one can perform a Fourier decomposition of the particle distri-
bution dN/dφ in an event:

dN

dφ
=
N

2π

(
1 +

∞∑

n=1

vn cos [n(φ−Ψn)]

)
,

where vn are called the anisotropic flow coefficients, and Ψn are the event
plane angles. Averaged over a large number of events, the flow coefficients
show a pronounced dependence on the centrality and hence on the impact
parameter. The reason for this is that the vn, but also correlations between
different Ψn, inherit information about the initial geometry, and this depends
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strongly on the impact parameter. This is however not the complete story.
The viscosities tend to smooth out spatial structure. As such, large values of
the viscosities tend to lower the final anisotropy present, making vn a probe
of especially the shear viscosity.

These observables will be discussed in more detail in section 4.3, along
with figures of these experimental results compared to theoretical predictions
described in section 4.2. Next, we will examine a different corner of the QCD
phase diagram, namely neutron stars.

1.4 Neutron stars

When a star burns through its supply of hydrogen, it reaches the end of
its life. In a sequence in which it starts burning ever heavier elements, it
eventually sheds its outer layers to leave behind a compact remnant. The
nature of this remnant is determined mainly by the mass of the progenitor
star. For stars like our sun, the remnant will be a so-called white dwarf: an
object with a mass in the order of magnitude of one solar mass (1M⊙) and a
radius comparable with that of the earth. Unlike an ordinary main sequence
star, a white dwarf is not held in static equilibrium by thermal pressure of gas
resisting gravitational collapse. Instead, the degeneracy pressure due to the
Pauli exclusion principle of the electrons is what resists further gravitational
collapse. There is however a limit to how much mass such an object can
have before electron degeneracy pressure becomes insufficient to maintain
hydrostatic equilibrium. This is called the Chandrasekhar limit, and is equal
to about 1.4M⊙.

Indeed, if the progenitor star is too massive, the resulting compact rem-
nant is no longer a white dwarf, but a neutron star instead. For small pres-
sures, neutrons are unstable, as they can undergo beta decay into a proton,
an electron and an anti-electronneutrino. At extreme densities, however, it
is thermodynamically favorable for the protons and electrons inside ordinary
matter to merge and form neutrons and neutrinos. This explains the name
neutron star, as a neutron star is extremely neutron-rich. Observationally, it
is known that the masses of known neutron stars are typically about 1.4M⊙,
but with masses of around 2M⊙ also occuring. The radius depends on the
mass, as we see below, and recent experimental constraints by NICER put
the radius of a typical 1.4M⊙ neutron star at around 13 km [29]. Finally,
we note that neutron stars are cold as far as QCD is concerned. This may
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seem like an odd statement given the fact that they have temperatures on the
order of 100 eV [30].3 However, since neutron stars consist of densely packed
neutron-rich matter, for which the relevant physics is QCD, one should com-
pare this temperature to the energy scale of QCD, which is around 1GeV. In
this unit, we can safely neglect the effects of temperature on the structure of
the neutron star and assume T = 0.4 This means that, given their enormous
density and cold temperature, neutron stars occupy the low temperature,
large chemical potential region of the QCD phase diagram.

Let us now show that indeed the mass and radius are related. As-
suming a non-rotating neutron star, one can assume spherical symmetry.
This, in combination with the assumption of hydrostatic equilibrium (T µν =
diag(e, P, P, P )), allows us to write down the Tolman-Oppenheimer-Volkov
(TOV) equations:

dP

dr
= −(e+ P )(Gm(r) + 4πr3GP )

r(r − 2Gm(r))
,

where r is the radial coordinate, G the gravitational constant and where the
mass m(r) enclosed within radius r satisfies

dm

dr
= 4πr2e.

Supplying these two equations with the boundary conditions at the center of
the star at r = 0 that m(0) = 0 and that the central density is some specified
value ρ∗, the differential equations can be integrated to yield P (r) and m(r).
From the solution, we can then identify the radius R of the star as the point
where P (R) = 0, and subsequently we can also find the massM = m(R).5 In
this way, we obtain R(ρ∗) and M(ρ∗) as parametric functions of the central
density ρ∗.

Note though that the TOV equations can only be solved given an equation
of state. In [31], a large number of equations of state was generated, which are
shown in the left panel of figure 1.7. Here only equations of state were used
which are causal, i.e. the speed of sound is less than the speed of light, and

3Newly formed neutron stars are much hotter, but this phase does not last very long.
4Note though that for non-QCD processes, like the emission of thermal energy in the

form of light, the temperature can most definitely not be neglected. Note also that during
a binary neutron star merger event, the temperatures cannot be neglected.

5Note that there is a subtlety here, namely that in general relativity one has to define
what one means by radius and mass. We define the radius R to be in Schwarzschild
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Figure 1.7: Left: Family of equations of state compatible with QCD con-
straints at both small and large densities. The green and purple bands lead
to neutron stars compatible with known observational constraints. The inset
shows a similar family of equations of state constructed in a slightly different
setup. Right: Mass to radius relation for the same equations of state shown
in the left panel. The color coding is the same. Both figures taken from [31].

which simultaneously satisfy constraints from nuclear matter models at low
densities and from perturbative QCD at high densities. In the right panel, the
resulting mass to radius relations are shown for the same equations of state.
One can see several important features. First of all, each equation of state has
a maximum allowed mass for neutron stars it supports, in much the same way
as we saw above for white dwarfs. It is observationally not precisely known
what this maximum mass is precisely, but it is known that a neutron star
named J0348+0432 has a precisely measured mass of 2.01 ± 0.04M⊙ [32].6

This means that all the equations of state colored blue in figure 1.7 are
excluded by this observation, as these equations of state do not support a
2M⊙ star. Similarly, the equations of state colored red are also excluded
by observational constraints, this time by the tidal deformability Λ of the
neutron stars involved in the binary neutron star merger GW170817 [34].

Let us next discuss neutron star mergers. In 2017, the first neutron star

coordinates, which implies that the area of a star of radius R equals 4πR2. For the mass,
we define that the gravitational mass, as measured by examining the Schwarzschild metric
outside the star, is the same as that of a black hole of mass M .

6An even more massive star, J0740+6620, was detected after the publication of [31],
with a mass of 2.14+0.10

−0.09 M⊙ [33].
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merger, GW170817, was discovered using gravitational waves [34], and was
accompanied by an electromagnetic counterpart [35–37]. In the remainder
of this section, we will discuss the various stages involved in such a merger,
and how QCD enters the problem. For more detailed reviews, see [38,39]. In
figure 1.8, a schematic overview is given of the different stages of a merger
event. The first stage of the merger is by far the longest lasting, as it covers

Figure 1.8: Overview of the different stages of a binary neutron star merger.
Arrows indicate the possible scenarios, where the outcome depends mostly
on the masses of the progenitors and the equation of state. Figure taken
from [39].

the inspiral. This inspiral can quite literally take billions of years, as grav-
itational wave emission circularizes the orbit and slowly but surely shrinks
the size of the orbit. As the orbits shrink, the orbital period does too, and
the amplitude of the emitted gravitational waves increases. Only in the last
minute or so does this happen to a large enough extent such that observato-
ries such as LIGO and VIRGO can detect the gravitational waves emanating
from the source. During the merger, the two stars exert a tidal force on one
another, which slightly deforms the stars. This produces an imprint in the
gravitational wave emission, the size of which depends on the equation of
state through the tidal deformability Λ [40].

When the stars touch, two things can happen. Either the stars are heavy
enough that the densities immediately exceed what the equation of state can
support, and they collapse to a black hole. In this case, very little material
will be ejected, producing only a small electromagnetic counterpart. Also,
gravitational wave emission dies down quickly, as the resulting black hole
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will ring down with its characteristic quasinormal mode frequencies. The
other option is that the stars merge to form a highly deformed object, which
loses energy by gravitational wave emission, and ejects a substantial amount
of neutron-rich matter. This matter, no longer under enormous pressure,
decays to form heavy elements, and emits electromagnetic radiation in the
process. The gravitational waves emitted during this phase are characteristic
of the equation of state.

As the deformed object circularizes over a timescale of around 10ms,
gravitational wave emission dies down, there is again the possibility of gravi-
tational collapse to a black hole. If this does not happen, the merger remnant
will slowly lose angular momentum due to various processes over the course
of a few seconds. The angular momentum effectively contributes partly to
the pressure preventing the star from collapsing, and therefore as the star
spins down, there is again the possibility of collapse to a black hole. If the
mass of the merger remnant is below the maximum allowed mass however,
the remnant will be a heavier neutron star.

To end this section, let us discuss the methods used to theoretically com-
pute a waveform. Neutron star mergers are described theoretically by rela-
tivistic hydrodynamics coupled to general relativity. In figure 1.9, one can
see the amplitude of gravitational waves emitted as a function of frequency.
The low frequencies are mostly produced during the inspiral phase, while the

Figure 1.9: Amplitude of gravitational waves emitted as a function of fre-
quency. Methods of computation are indicated, and a part of the waveform
is shown as an inset. Figure taken from [39].
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peaks at high frequencies are mostly produced during the post-merger phase.
Also indicated are the methods used, namely analytical methods for most of
the inspiral, and numerical relativity for the merger part, where there is an
overlap interval in which both methods are applicable. Numerical relativ-
ity is immensely computationally expensive, so it would be impractical to
have to compute the inspiral using numerical relativity. In this way, the two
methods neatly complement each other. Explaining either of these methods
in detail is beyond the scope of this thesis, however good introductions can
be found in [41,42].

1.5 Holography

Holography is a duality between two at first sight very different classes of
theories. To illustrate this, let us focus on the first constructed example,
namely that of N = 4 super Yang-Mills (SYM) theory living in four space-
time dimensions. For the purpose of this section, this can be seen as a highly
supersymmetric version of QCD, where we take the number of colors Nc to
be infinite. In [25], a convincing argument was made that this theory is the
same as type-IIB string theory living in an anti-de Sitter (AdS) background
with five spacetime dimensions. In other words, the string theory lives in one
dimension more than the gauge theory that it is dual to.

Furthermore, what makes this duality particularly interesting, is that the
string theory side of the duality simplifies if in addition to Nc → ∞ we also
take the ’t Hooft coupling λ ≡ g2Nc to be infinite, where g is the gauge theory
coupling constant. When taking this limit, known as the ’t Hooft limit, two
things happen: The string coupling on the string theory side of the duality
goes to zero, leaving us with a classical string theory. Additionally, also the
string length vanishes, reducing the classical string theory further to a theory
of point-like particles, which in this example is classical type IIB supergravity.

In this way, we obtain a duality between on one side a strongly coupled
quantum field theory, which we say lives on the boundary, and on the other
side a classical gravitational theory which lives in one dimension extra, which
we say lives in the bulk. This is extremely useful, because this duality relates
something difficult, namely strongly coupled QFT, to something relatively
easy, namely classical general relativity. Note that in [25], the duality was
only introduced for N = 4 SYM theory and related theories, and that there
is no known general way to obtain a holographic dual for an arbitrary QFT.
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It is expected though, both from the large Nc expansion in gauge theory [43]
and from black hole thermodynamics [44–46], that the class of theories with
holographic duals is larger. We will touch further upon this problem of con-
structing holographic duals in section 1.5.1. Before doing so however, let us
discuss some more how the duality precisely works. Indeed, for the two the-
ories on either side of the duality to be equal, one needs a precise dictionary
for how to relate quantities and problems on one side to the corresponding
quantities and problems on the other side. Such a dictionary has been de-
veloped over the years, and in the following paragraphs we will discuss a
selection of this dictionary, introducing only the quantities that will be used
in this thesis. This discussion will just describe the dictionary without going
into the derivations. An excellent review which goes in more detail can be
found in [28].

Let us start the discussion of the dictionary with a few thermodynamical
quantities. The first of these is the free energy. The starting point for this
is the observation that the partition functions of both sides of the duality
are equal [47–49]. After performing a Wick rotation, and using the fact that
the bulk theory is classical, one obtains that the free energy of the boundary
theory F obeys

F = −TS,

where T is the temperature, and S is the on-shell action of the bulk theory.
Note here that the on-shell bulk action is divergent towards the AdS bound-
ary. This problem is similar in origin to the UV divergences originating in
QFTs, and the solution is similar, namely holographic renormalization [50].
In holographic renormalization, one regularizes the divergence by introduc-
ing a cutoff ǫ in the bulk spacetime integral for the action. Subsequently, one
then compares the desired action to that of a reference solution, after which
one can take the limit ǫ→ 0 for the difference of the two regularized actions.
In this way one can compute free energies up to an overall constant, which
is for most purposes enough.

Let us next discuss temperature and entropy. In a bulk geometry with
a horizon, such as one with a planar horizon called a black brane, one can
obtain the temperature as the Hawking temperature of the horizon, which
can be expressed in terms of the local metric at the horizon by requiring that
the Wick rotated geometry has no conical singularity at the horizon [51].
The entropy can also be obtained purely from horizon data, namely by use
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of the Bekenstein-Hawking formula [44]:

S =
A

4
,

where now S is the entropy, and A is the area of the black hole. Note that
in the case of a black brane solution, the black hole is infinite in extent, in
which case it makes more sense to divide out the volume on the boundary.
Indeed, when one examines the entropy density, the result is still finite.

The next important element in the holographic dictionary that we will
need is the field-operator correspondence [47,48]. Imagine an operator O(x)
in the boundary theory that we want to compute, and imagine introducing
a source for that operator φ(x). Then the field-operator correspondence tells
us that in the corresponding bulk theory there is a field Φ(x, r), with r the
bulk coordinate, where r = 0 corresponds to the boundary of AdS. This bulk
field Φ then has the following near-boundary expansion:

Φ(x, r) = φ(x)r4−∆ +
1

2∆− 4
〈O〉(x)r∆,

where ∆ is the scaling dimension of the operator O. For most operators the
first term will be non-normalizable, and the second will be normalizable. One
can see that in this way, one obtains a way to evaluate expectation values of
operators in the boundary theory by an equivalent computation in the bulk
theory, namely by extracting the subleading behavior of the corresponding
bulk field. This result also allows for the computation of Green’s functions.
For example, by considering the appropriate space-time dependent metric
fluctuation δgµν as the source for the stress-energy tensor T µν , one can obtain
the Green’s function for the stress-energy tensor, leading to the famous result
mentioned earlier, namely that the shear viscosity divided by the entropy
density of a holographic fluid is equal to 1/4π [26–28].

Let us next move on to two non-local operators, namely the Polyakov loop
correlator and the entanglement entropy. In QCD, the Wilson line operator

trP exp

[
i

∫

C

dxµAµ(x)

]
,

where P denotes path ordering and C denotes a closed path, contains infor-
mation on among other things confinement. The reason for this is that if one
takes C to run in the time direction from −∞ to∞, and if one then takes two
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such loops at a constant distance L from each other, the expectation value
of this Polyakov loop correlator is equal to the potential energy stored in the
gluon field separating a heavy quark-antiquark pair. The holographic dual
of this operator is the on-shell action of an open string in the bulk attached
to the path C on the boundary [52, 53]. As the action of a string is just the
area measured in the string frame metric, the complicated non-perturbative
problem of evaluating the expectation value of the Polyakov loop correlator
itself is therefore replaced in the holographic dual by the much easier task of
finding a minimal surface.

A computationally related quantity to the Polyakov loop correlator is
the entanglement entropy. In a QFT, if we imagine dividing the spacetime
into a region A and its complement Ac, we can partition the Hilbert space
as H = HA ⊗ HAc , and define the reduced density matrix for a pure state
Ψ ∈ H by ρA = trAc(|Ψ〉〈Ψ|). We can subsequently define the entanglement
entropy as

SA = − trA(ρA log ρA).

For static spacetimes, [54] proposed that the holographic dual of entangle-
ment entropy is, similarly to the Wilson loop, a minimal surface in the bulk
with its ends attached to the boundary of the region A. Important differ-
ences with the Wilson loop are that in the case of entanglement entropy, the
minimal surface is a codimension 2 surface in the bulk, whereas in the case
of the Wilson loop, the minimal surface is a dimension 2 surface. Also, for
the entanglement entropy we use the Einstein frame metric, whereas for the
Wilson loop, one had to use the string frame metric. The proposition was
later generalized to non-static spacetimes in [55], and both propositions were
proven in [56] and [57], respectively.

Lastly, let us briefly discuss baryons, which are important if one aims for
a holographic description of neutron stars, as at least up to some depth these
are composed of mostly baryons. In [58,59], it was shown in the N = 4 SYM
example which was also used above, that baryons in the boundary theory can
be identified with D5-branes wrapping the 5 compact dimensions in the bulk,
which we previously neglected. In this way the baryon appears in the bulk
as a small pointlike topological defect, i.e. a soliton. This analysis was later
extended to other holographic models obtained from string theory, such as
the Witten-Sakai-Sugimoto (WSS) model [60–62], with similar conclusions
[63–81].
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1.5.1 Bottom-up holography: IHQCD and V-QCD

One issue that we have so far glossed over is the fact that even though
holography allows for an enormous simplification of certain computations,
the theories discussed so far are not QCD. For example, even though N = 4
SYM theory is in essence ‘just’ QCD with a large number of colors and a lot
of supersymmetry, phenomenologically the two theories are quite different,
most notably in the fact that N = 4 SYM theory is conformal, whereas QCD
is not. In the construction of holographic models to describe QCD, there are
two general classes of models. On the one hand, there are the ‘top-down’
approaches, which includes N = 4 SYM theory, but also the previously
mentioned WSS model. In a top-down approach, one starts from a string
theoretical construction, and in that way arrives at a precise holographic
theory. This has the obvious advantage that in this approach, the holographic
dictionary is precisely known, and the general amount of control over the
computations is larger. The main disadvantage of such theories is that, like
N = 4 SYM, the phenomenological resemblance to QCD is not very good.

An alternative approach is the so-called ‘bottom-up’ approach, where
one tries to construct a holographic model without a derivation from string
theory, where the aim is to make the model as phenomenologically accurate
as possible. Early examples of this approach are the ‘hard-wall’ models
[82, 83], which were followed by the ‘soft-wall’ model introduced in [84]. In
this subsection, we will focus on the IHQCD model, including its extension
V-QCD, as this is the model we will be using in later chapters.

In Improved Holographic QCD (IHQCD), a holographic theory is con-
structed for the fields dual to the trF 2 and T µν operators in QCD. These
fields are the dilaton Φ and the metric gµν , respectively. Note though that in
this thesis we will write Φ = log λ. The IHQCD action is the following [85,86]:

Sg =M3N2
c

∫
d5x

√−g
(
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)
, (1.11)

with R the Ricci scalar, and Vg(λ) a potential function. The choice of a
non-trivial potential Vg allows for breaking of conformality in IHQCD. One
can see this as follows: The metric which solves the IHQCD action is, near
the AdS boundary, of the form

ds2 = e2A(r)
(
−dt2 + dr2 + dx21 + dx22 + dx23

)
,

where the scale factor expA(r) = 1/r can be interpreted as the renormal-
ization scale. On the other hand, λ can be interpreted as the QCD coupling
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strength. With the appropriate choice for the small λ expansion of Vg(λ),
one can then make sure that dλ/dA is equal to the QCD β-function in the
UV.

Another demand on the potential fixes the large λ behavior of the po-
tential as well. By requiring that the theory is confining and simultaneously
has a linear glueball spectrum, the large λ behavior of Vg is restricted to be
of the form

Vg ∼ λ4/3
√

log λ.

The intermediate behavior of the potentials can still be freely chosen, but can
in principle be fixed by computing observables also computed on the lattice.
Doing this results in the conclusion that IHQCD can match very well lattice
results for pure Yang-Mills [87, 88].

IHQCD does not contain quarks. For this reason, it has been extended
to include Nf flavor D4 and D̄4 branes, yielding V-QCD [89–94]. The V in
the name stands for Veneziano, as we take Nf to be large, with xf ≡ Nf/Nc

fixed, a limit known as the Veneziano limit [95]. We then obtain the following
action in addition to the one for IHQCD (1.11):

SDBI = −1

2
M3Nc Tr

∫
d5x (1.12)

×
(
Vf (λ, T

†T )
√

− detA(L) + Vf (λ, TT
†)
√
− detA(R)

)
,

with

A
(L)
MN = gMN + w(λ, T )F

(L)
MN +

κ(λ, T )

2

[
(DMT )

†(DNT ) + (DNT )
†(DMT )

]
,

A
(R)
MN = gMN + w(λ, T )F

(R)
MN +

κ(λ, T )

2

[
(DMT )(DNT )

† + (DNT )(DMT )
†
]
,

and where the covariant derivative for the tachyon T is given by

DMT = ∂MT + iTAL
M − iAR

MT.

Here AL
M and AR

M are gauge fields corresponding to the global U(Nf )L ×
U(Nf )R flavor symmetry, and F

(L)
MN and F

(R)
MN are the corresponding field

strength tensors. This action contains 3 new phenomenological potentials:
Vf , κ and w, which we will discuss shortly. While (1.12) is required in chapter
3, in chapter 2 we can make the simplifying assumption that the non-Abelian
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parts of the gauge fields are zero, and that T = τ(r)INf
, which simplifies SDBI

to the following expression:

Sf = −xfM3N2
c

∫
d5xVf (λ, τ) (1.13)

×
√

− det [gµν + w(λ)Vµν + κ(λ)∂µτ∂ντ ],

which we will call the diagonalized action. Here V µν is the Abelian compo-
nent of both the left and right gauge fields, which are also assumed to be
equal.

As was done for IHQCD, the potentials are chosen to satisfy phenomeno-
logical properties of QCD. For the Vf -potential, the UV (small λ) behavior
is fixed by requiring that the beta function matches that of QCD for dif-
ferent values of xf . The UV behavior of the κ-potential is determined by
the RG flow of the quark mass [93], as well as the behavior at large quark
mass [96]. In the IR, the potentials are constrained to reproduce phenomeno-
logically reasonable features in the phase diagram, as well as the properties
of meson spectra [94, 97–102]. In [103], the potentials were fitted to lattice
data, resulting in a holographic model of QCD which matches with known
phenomenological constraints as much as possible.
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Chapter 2

(Inverse) Magnetic Catalysis in
Holographic QCD

Magnetic fields play an important role in two widely studied QCD systems,
namely heavy ion collisions, and neutron stars. In peripheral heavy ion
collisions, the spectator nucleons, which are charged and are moving close to
the speed of light, induce a magnetic field of 1015 T which, in the appropriate
units of the pion mass squared, gives around eB/m2

π ≈ 10 [104–110]. In
the context of neutron stars, magnetars exhibit magnetic fields of potentially
1011 T [111], which in units of the pion mass squared is about eB/m2

π ≈ 10−3.
Given that one of the salient features of QCD at vanishing magnetic field
is its phase structure, it makes sense to study the effect of the magnetic
field on the phase structure. In particular, one can study how the phase
transition temperatures, as well as the associated order parameters, change as
one applies a magnetic field. It was precisely in this context that a surprising
effect was discovered.

As was discussed in section 1.1, at low temperatures QCD spontaneously
breaks chiral symmetry. At low temperatures, one expects that the order
parameter of this chiral symmetry breaking, the chiral condensate, increases
as one applies a magnetic field [112–115]. This phenomenon is called ‘mag-
netic catalysis’, and the reason for this is that Landau quantization leads to
an effective reduction from 3 + 1 to 1 + 1 dimensions. In lower dimensions,
the gauge theory IR dynamics are stronger, leading to a strengthening of the
chiral condensate.

However, when lattice studies were done, surprisingly the opposite effect
was seen in around the crossover temperature, and this effect was named
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‘inverse magnetic catalysis’ (IMC) [116–119]. In figure 2.1, two such lattice
results are shown. In the left panel, one can see the chiral condensate as a

Figure 2.1: Left: Chiral condensate as a function of the magnetic field B,
using the normalization as in (2.22–2.23). Figure taken from [118]. Right:
Chiral cross-over temperature as a function of the magnetic field B. Figure
taken from [116].

function of B for fixed temperature. One can see that for small temperatures,
one sees magnetic catalysis, whereas for larger temperatures the condensate
instead decreases with B. In the right panel, a related quantity is shown,
namely the cross-over temperature as a function of B. One can see that the
cross-over temperature decreases with B, signalling inverse magnetic catal-
ysis. Given that IMC seems to require strong coupling to exhibit itself, it
is natural to study this effect in holography, where we can hope to obtain a
qualitative understanding of the mechanism leading to IMC.

In this chapter, which is based on [120–122] as well as upcoming work with
the authors of [122], we will address these questions. While the questions
asked in each of these papers are different, the model and the methods used
are quite similar. So similar in fact, that it is possible to write down a
‘master’ model, which contains each of the models used in the papers that
this chapter is based on by taking appropriate limits. In section 2.1, we will
discuss this master model, as well as how to obtain useful information from
it. This should allow for a streamlined treatment of computations that would
otherwise have to return in slightly different setups in sections 2.2 through
2.5. The strategy for solving the model parallels [99], where of course the
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discussion is slightly modified because our master model is more general than
the one considered there. Also, in a few places, it was necessary to make non-
trivial adjustments to the analysis. Wherever this occurs this will be clearly
stated.

2.1 Analysis of V-QCD model in the presence

of a magnetic field and anisotropy

In this section, we will go through the computations necessary to obtain the
relevant observables for sections 2.2 through 2.5. This section is written with
the aim of providing the reader with a practical guide as to how to perform
these computations. As such, it necessarily contains a lot of technical details,
which are required for the computations. The rest of this chapter has been
written to only use the results from this section, and not the computations
themselves, so it should be possible to follow the rest of this chapter without
having read this section.

2.1.1 Extending V-QCD to incorporate a magnetic field
and anisotropy

To study magnetic fields in V-QCD, we consider the diagonalized action 1.13.
A magnetic field in the x3-direction can then be introduced by changing the
ansatz for the Abelian gauge field to [120,121]

A = Φ(r) dt+Bx1 dx2, (2.1)

where we recall that Φ was dual to the baryon chemical potential. This
ansatz makes one important assumption, namely that all quark flavors have
are identical, and in particular, that they have the same electric charge. In
nature, this is of course not the case, but this assumption allows us to consider
only the Abelian part of the DBI action, greatly simplifying the analysis.

In addition to a magnetic field, we will also be adding an axion field χ to
the action [122,123], where we will use the following ansatz:

χ = a⊥x2 + a‖x3. (2.2)

In this way, we can introduce an anisotropy to the system in a way that
is different from a magnetic field. With this ansatz, the axion is dual to a
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space-dependent theta term. As the axion will only appear in the action
through a derivative, the presence of the axion does not break translation
symmetry. Instead, it breaks rotational symmetry. To determine the remain-
ing symmetry left over from rotations, we can distinguish two cases: one in
which the axion is parallel to the magnetic field (a‖ 6= 0, a⊥ = 0) or where
there is no magnetic field, and all other configurations. In the first case, the
remaining symmetry is given by axial symmetry around the x3 axis, whereas
in the latter case the rotational symmetry is completely broken. As will be-
come clear below, it turns out that to be able to use a diagonal ansatz for
the metric, we have to choose either a⊥ = 0 or a‖ = 0 if a non-zero magnetic
field is present. Also, for notational convenience, whenever no magnetic field
is present a⊥ and a‖ will both be denoted a, since in this case the orientation
of the axion is irrelevant.

With the addition of the magnetic field and the axion, the V-QCD action
becomes

S = Sg + Sf ,

with

Sg =M3N2
c

∫
d5x

√−g
(
R− 4

3

(∂λ)2

λ2
+ Vg(λ)−

1

2
Z(λ)(∂χ)2

)
, (2.3)

Sf = −xfM3N2
c

∫
d5xVf (λ, τ) (2.4)

×
√
− det [gµν + w(λ)Vµν + κ(λ)∂µτ∂ντ ],

where Vµν is the electromagnetic field strength tensor for the gauge field
given by (2.1), and the potentials Vg, Vf , κ, w and the axion potential Z are
given in appendix A.1. We will keep using these potentials throughout this
chapter. In the rest of this section, it will be explained how this model can
be solved to obtain black hole solutions which are dual to a QGP-like phase.
It is sufficient to focus on solutions containing a black hole, as horizonless
solutions must always be obtained from a black hole solution where a limit is
taken that lets the horizon shrink to zero size. This requirement ensures that
the IR singularity contained in such a horizonless geometry is of the ‘good’
type, as discussed in more detail in [124].
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2.1.2 Equations of motion and boundary conditions

To obtain the equations of motion, we first choose the following ansatz for
the metric:1

ds2 = e2A(r)

(
dr2

f(r)
− f(r) dt2 + dx21 + e2U(r)dx22 + e2W (r) dx23

)
, (2.5)

which contains the anisotropy factors U and W . These are necessary in
order for the Einstein equations to be consistent.2 Note that this is also
the reason that if a magnetic field is present, either a⊥ or a‖ must vanish,
because otherwise one of the Einstein equations cannot be satisfied. This
problem could be remedied by choosing instead a more general metric ansatz.
However this would greatly complicate the analysis, while the additional
physical insight from allowing for a general angle between a and B would
probably be limited. Note further that the metric contains a blackening
factor f . This allows for the existence of a black hole horizon at the location
where f = 0.

Before stating the Einstein equations and the equations of motion for
the dilaton, tachyon and Φ field, note that in principle B and a also have
equations of motion, so we are not completely free to choose any ansatz for
them that we want. It is important therefore that we check that our ansätze
(2.1), (2.2) are consistent with these equations of motion, and it turns out
that this is indeed the case. Using the metric ansatz (2.5) we can write the
Einstein equations as follows:

0 = Ä+ Ȧ

(
3Ȧ+ U̇ + Ẇ +

ḟ

f

)
− e2AVg(λ)

3f
(2.6)

+
e2AxfVf (λ, τ)

6QGf
√
1 +K

(
(1 +K)Q2 +G2((2 +K)Q2 − 1)

)
,

1Note that we use the Minkowski signature here. In principle one has to perform a Wick
rotation for the thermodynamical observables, but since we only consider time-independent
solutions to the equations of motion this is trivial.

2Note that if a⊥ = 0 we have U = 0 as well, and if a‖ = B = 0 we have W = 0.
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0 = Ü + U̇

(
3Ȧ+ U̇ + Ẇ +

ḟ

f

)
+
e2AY2Z(λ)

2f
,

0 = Ẅ + Ẇ

(
3Ȧ+ U̇ + Ẇ +

ḟ

f

)

− e2AGxfVf (λ, τ) (Q
2 − 1)

2
√
1 +KQf

+
e2AY3Z(λ)

2f
,

0 = f̈ + (3Ȧ+ U̇ + Ẇ )ḟ +
xfVf (λ, τ)e

2AG

Q
√
1 +K

[
1− (1 +K)Q2

]
,

0 =
2

3

λ̇2

λ2
− 6Ȧ2 − 3Ȧ

(
U̇ + Ẇ

)
− U̇Ẇ − ḟ

2f

(
3Ȧ+ U̇ + Ẇ

)
(2.7)

+
e2AVg(λ)

2f
− e2AY Z(λ)

4f
− e2AxfVf (λ, τ)Q

√
1 +K

2fG
,

where we use a dot for derivatives with respect to r, a convention we will
keep throughout this chapter. We also define

Q =
√

1 + w2(λ)B2e−4A−2U , G =
√

1 + e−2Afκ(λ)τ̇ 2,

K =
n̂2

e6A+2U+2WQ2x2fV
2
f (λ, τ)w

2(λ)
,

Y2 = a2⊥e
−2A−2U , Y3 = a2‖e

−2A−2W , Y = Y2 + Y3,

where n̂ is an integration constant that arises from integrating the Φ equation
of motion. Using the above definitions, the Φ equation of motion can now
be written as what is essentially a simple integral.

Φ̇ = − e2AG
√
K

w(λ)
√
1 +K

.

Even though Φ can be integrated out in favor of the integration constant n̂,
we still need to integrate its equation of motion, because as we will see below
the value of the chemical potential equals the difference of Φ evaluated at
the boundary and at the horizon, necessitating that we evaluate this integral.
Lastly, to complete the system, we also have equations of motion for λ and
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τ :

0 = λ̈− λ̇2

λ
+ λ̇

(
3Ȧ+ U̇ + Ẇ +

ḟ

f

)
+

3e2Aλ2

8f

(
∂λVg(λ)−

Y

2
∂λZ(λ)

)

+
3e2AxfVf (λ, τ)λ

2

8
√
1 +Kf

(−GQ∂λ log Vf (λ, τ)

+
Q(1−G2)(1 +K)

2G
∂λ log κ(λ)

+
G(1−Q2 +KQ2)

Q
∂λ logw(λ)

)
,

0 = (1 +K)τ̈ − e2AG2

fκ(λ)
∂τ log Vf (λ, τ) (2.8)

+G2τ̇

[(
1 +

(G2 − 1)(1 +K)

G2
+

2

Q2

)
Ȧ

+
U̇

Q2
+ Ẇ +

(1 +G2)(1 +K)

2G2

ḟ

f

+ λ̇

(
∂λ log Vf (λ, τ) +

(G2 + 1)(1 +K)

2G2
∂λ log κ(λ)

+

(
Q2 − 1

Q2
−K

)
∂λ logw(λ)

)]
.

Observe that we have 8 equations of motion for 7 degrees of freedom, so in
principle this system could be overconstrained. One can check however that
(2.7) is a constraint, by taking the derivative of the right hand side, and
using the other equations of motion to show that the derivative of (2.7) is
automatically zero. This implies that if (2.7) is satisfied for one particular
r, it is satisfied for any r. Therefore this equation will be trivially solved,
provided that we choose the proper boundary conditions.

Before stating the boundary conditions, it is useful to write the equations
of motion in another form. The reason why this is useful is that near the
boundary, which in r-coondinates is located at r = 0, A(r) grows like log r.
Numerically this poses a problem, as this behavior makes it difficult to satisfy
the boundary conditions at the AdS boundary to a good accuracy, and as
we shall see below, the observables that we are interested in require the
boundary conditions to be precisely met. The solution for this is to use A
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as the independent variable instead of r. We can do this as long as A is a
monotonic function of r throughout the bulk. Interestingly, this is not always
the case. For this reason, it is prudent to use r as the independent variable
near the horizon, and to do a coordinate transformation at some point in the
bulk in order to use A as the independent variable near the boundary.

Since A satisfies a second order differential equation in r-coordinates,
to perform the transformation to A-coordinates one has to introduce q ≡
eAdr/dA. Using this definition, one obtains for the Einstein equations:

0 = 4− q′

q
+ U ′ +W ′ +

f ′

f
− q2Vg(λ)

3f

+
q2xfVf (λ, τ)

6QGf
√
1 +K

(
(1 +K)Q2 +G2

(
(2 +K)Q2 − 1

))
,

0 = U ′′ + U ′

(
4− q′

q
+ U ′ +W ′ +

f ′

f

)
+
q2Y2Z(λ)

2f
,

0 = W ′′ +W ′

(
4− q′

q
+ U ′ +W ′ +

f ′

f

)

− q2GxfVf (λ, τ) (Q
2 − 1)

2
√
1 +KQf

+
q2Y3Z(λ)

2f
,

0 = f ′′ +

(
4− q′

q
+ U ′ +W ′

)
f ′ +

q2xfVf (λ, τ)G

Q
√
1 +K

[
1− (1 +K)Q2

]
,

0 =
2

3

λ′2

λ2
− 6− 3 (U ′ +W ′)− U ′W ′ − f ′

2f
(3 + U ′ +W ′)

+
q2Vg(λ)

2f
− q2Y Z(λ)

4f
− q2xfVf (λ, τ)Q

√
1 +K

2fG
,

where G is now given by

G =

√
1 +

fκ(λ)τ ′2

q2
,

and where we introduce the notational convention, which will be used for the
rest of this chapter, that a prime denotes a derivative with respect to A. For
the remaining equations of motion, one obtains:

Φ′ = − eAqG
√
K

w(λ)
√
1 +K

,
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0 = λ′′ − λ′2

λ
+ λ′

(
4− q′

q
+ U ′ +W ′ +

f ′

f

)
+

3q2λ2

8f

(
∂λVg(λ)−

Y

2
∂λZ(λ)

)

+
3q2xfVf (λ, τ)λ

2

8
√
1 +Kf

(
−GQ∂λ log Vf (λ, τ) +

Q(1−G2)(1 +K)

2G
∂λ log κ(λ)

+
G(1−Q2 +KQ2)

Q
∂λ logw(λ)

)
,

0 = (1 +K)τ ′′ − q2G2

fκ(λ)
∂τ log Vf (λ, τ) (2.9)

+G2τ ′
[
2 +K − 1 +K

G2

q′

q
+

2

Q2
+
U ′

Q2
+W ′ +

(G2 + 1)(1 +K)

2G2

f ′

f

+ λ′
(
∂λ log Vf (λ, τ) +

(G2 + 1)(1 +K)

2G2
∂λ log κ(λ)

+

(
Q2 − 1

Q2
−K

)
∂λ logw(λ)

)]
.

In addition to satisfying the equations of motion, solutions must also
obey boundary conditions. We will first discuss the boundary conditions
that need to be imposed at the horizon, before moving on the the boundary
conditions at the boundary. The first of these boundary conditions is of
course that fh = 0, where a subscript h will from now on always denote
a quantity evaluated at the horizon. This first boundary condition simply
follows from the definition of a black hole horizon, as this makes an observer
stationary at the horizon move on a lightlike trajectory. We will also assume
Ah = Wh = Uh = 0 and ḟ = 1.3 While it may seem strange to just assume
this, it turns out one can do this without loss of generality. The reason for
this is that the solutions are invariant under symmetries which can be used
to rescale the solutions to satisfy the boundary conditions at the boundary.
For this reason it is irrelevant which choice we make for these assumptions,
as any different choice will later be absorbed by these symmetries. This
will be discussed in more detail in the next subsection. The last remaining
boundary conditions are consequences of the horizon being just a coordinate
singularity. This can be imposed by requiring that all variables are smooth

3Here, we swapped the usual definition of r by a minus sign so that rb > rh. This
means that a few signs are different from other texts, but this is more convenient when
computing the solutions.
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at the horizon. Taking equation (2.6) as an example, this means that we
must require in particular that Ä is finite. Given that fh = 0 by definition,
to make sure that Ä is finite we must make sure that all terms inversely
proportional to f cancel. This leads to the following condition:

Ȧh =
Vg(λh)

3
− xfVf (λh, τh) ((3 + 2Kh)Q

2
h − 1)

6Qh

√
1 +Kh

.

Similar arguments for the other equations of motion yield

U̇h = −a
2
⊥Z(λh)

2
,

Ẇh =
xfVf (λh, τh) (Q

2
h − 1)

2Qh

√
1 +Kh

−
a2‖Z(λh)

2
,

λ̇h =
3λ2h
8

(
−∂λVg(λh) +

Yh∂λZ(λh)

2

+
xfVf (λh, τh)√

1 +Kh

(Qh∂λ log Vf (λh, τh)

− 1−Q2
h +KhQ

2
h

Qh

∂λ logw(λh)

))
,

τ̇h =
∂τ log Vf (λh, τh)

κ(λh)(1 +Kh)
. (2.10)

Note here that even though (2.7) does not contribute a non-trivial equation
of motion in the bulk, it is important to take it into account in the boundary
conditions, so in particular the constraint on λ̇h comes from (2.7). The
last boundary condition at the horizon that is required, is that Φh = 0.
This is needed because Φh is a component of the gauge field, and in the
Euclidean geometry the gauge field would not be continuous unless Φh = 0
[125]. Applying these boundary conditions one is left with the freedom to
choose λh and τh. These, together with B, n̂, and either a⊥ or a‖, determine
the entire parameter space of allowed solutions.

For the boundary conditions near the boundary, one needs to consider
the asymptotic behavior of the variables near the boundary. This asymptotic
behavior essentially boils down to that to leading order the geometry is AdS,
and it turns out that one can analytically expand around this ansatz for small
r. For the f , U and W , the result of this procedure is that these variables
approach constant values. Subleading corrections come in at O(r4), and for
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all works described in this thesis approximating them as constants is good
enough. In order to make sure that on the boundary the t, xi coordinates
agree with the familiar coordinates for Minkowski space, we require that

fb = 1, Ub = 0, Wb = 0,

where a subscript b will from now on always denote a quantity evaluated at
the boundary.

The near-boundary expansion for A and λ are a bit more complicated,
they are given by [94]:

A(r) = − log
r

LUV

+
4

9 log(rλ)

+

1
162

[
95− 64V2

V 2
1

]
+ 1

81
log [− log(rΛ)]

[
−23 + 64V2

V 2
1

]

log(rΛ)2
+O

(
1

log(rΛ)3

)
,

V1λ(r) = − 8

9 log(rΛ)
+
log [− log(rΛ)]

[
46
81

− 128V2

81V 2
1

]

log(rΛ)2
+O

(
1

log(rΛ)3

)
, (2.11)

where LUV, V1 and V2 are determined by the potentials as discussed in ap-
pendix A, and where Λ is an overall energy scale. It turns out that all
quantities one might want to compute scale with Λ to some power, so in
practice we just put Λ = 1 and if desired we can rescale later. For the
next subsections, it turns out that it is convenient to combine both of these
equations, to write A as a function of λ. Doing this, one obtains [99]:

A(λ) = log (LUVΛ) +
1

b0λ
+
b1
b20

log [b0λ(A)] +O(λ), (2.12)

where b0 and b1 are given by the potentials and can be found in appendix A.
The last near-boundary expansion that we will need is that of the tachyon
[94]:

1

LUV

τ(r) = mqr [− log(rΛ)]−γ0/b0

[
1 +O

(
1

log(rΛ)

)]

+ 〈q̄q〉r3 [− log(rΛ)]γ0/b0
[
1 +O

(
1

log(rΛ)

)]
, (2.13)

where mq is the quark mass and 〈q̄q〉 is the chiral condensate. γ0/b0 is given
by the potentials, and can be found in appendix A. In the following we will
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consider massless quarks, so we will be imposing mq = 0 as the UV boundary
condition for the tachyon. How this can be achieved will be detailed in section
2.1.5.

With this, we now have a complete list of all the equations of motion, as
well as the boundary conditions that we will need. In the next section, we will
describe a set of symmetries of these equations of motion that are necessary
to compute solutions. After that all the ingredients are set to describe the
algorithm for obtaining the geometries, and finally the observables that one
is after.

2.1.3 Symmetries of the equations of motion

Numerically, one of the simplest and best known methods to solve ODEs
such as the ones describing this model is to initialize a solver for a specific
value of the independent variable (in this case r or A), and then integrate the
equation from that value to the entire domain one is interested in. However,
we have boundary conditions on both the horizon and the boundary, and
initializing the system of equations at one of the two locations by no means
guarantees that the boundary conditions at the other location will also be
satisfied. While there are methods available for solving such problems, it
turns out we can use symmetry properties of the equations of motion to
mostly overcome this issue. This will allow us to initialize the system of
equations at the horizon, integrate towards the boundary, and rescale the
solution such that the boundary conditions at the boundary are also met.

The symmetries of the equations of motion are essentially the diffeomor-
phism invariance that is left over after choosing the metric ansatz (2.5). It
can easily be verified that the following five transformations leave the equa-
tions of motion invariant:

• Shift of r:
r 7→ r + δr.

• Shift of A:

A 7→ A+ δA, r 7→ re−δA , n̂ 7→ n̂e3δA , Φ 7→ ΦeδA ,

B 7→ Be2δA , a⊥ 7→ a⊥e
δA , a‖ 7→ a‖e

δA .

• Shift of U :

U 7→ U + δU , B 7→ BeδU , n̂ 7→ n̂eδU , a⊥ 7→ a⊥e
δU .
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• Shift of W :

W 7→ W + δW , n̂ 7→ n̂eδW , a‖ 7→ a‖e
δW .

• Scaling of f :

f 7→ f

δ2f
, q 7→ q

δf
, r 7→ r

δf
, Φ 7→ Φ

δf
.

Together, δr, δA, δU , δW and δf will denoted ‘symmetry parameters’ for the
remainder of this chapter.

Note first that these symmetries indeed justify our assumptions that Ah =
Wh = Uh = 0 and ḟ = 1, as these choices can just be absorbed into the
various deltas defined above. Next, observe that after generating a solution
that satisfies the horizon boundary conditions, one can choose δf , δU , δW
and δr to ensure that fb = 1, Ub = 0, Wb = 0, and that rb = 0. In equation
(2.12), only the left hand side transforms under these transformations, and it
is easy to see that by using the appropriate δA, one can make sure that (2.12)
is satisfied. Summarizing, we can satisfy all boundary conditions except that
of the tachyon, namely that the quark mass vanishes. This issue will be
addressed in section 2.1.5. Lastly, note that there is a price to pay for using
these symmetries. Quantities like B, a and n̂ enter in the transformations.
This implies that while we are guaranteed to get a solution that satisfies
the correct boundary conditions on both sides, we have no direct control
over for instance the value of the magnetic field we want to compute the
solution of. This need not necessarily be a bad thing though, because we are
guaranteed that together with λh, all possible values of B, n̂ and a before
any rescaling happens span the space of all possible solutions. If it is feasible
to produce solutions which explore this entire parameter space, then we will
be guaranteed to find all possible solutions for all possible rescaled values of
B, n̂ and a as well. In some of the setups that will be described below this is
indeed the case, but in other cases it is necessary to fine tune the unrescaled
values to produce the desired rescaled values. The procedure for doing so
will also be described in section 2.1.5.

2.1.4 Computing observables

Now that the equations of motion, their symmetries, and the boundary con-
ditions are established, we can describe how to obtain the solutions, and how
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to extract useful information from these solutions. As it turns out, many
quantities of interest can be expressed purely in terms of quantities defined
at the horizon, and the symmetry parameters described in the previous sec-
tion. The reason for this is that these quantities do not require the solving of
any additional differential equations or integrals on top of the ones already
mentioned in section 2.1.2.4 The quantities for which this is the case will
from now on be called ‘background’ observables, and their computation will
be discussed first. There are also observables which do require the solving
of additional equations of motion. In principle, one could follow the same
computation scheme as for the background observables, but as this would re-
quire solving the same background equations of motion multiple times with
the same boundary conditions, it is more efficient to solve the background
once, and then solve the additional equations afterward. The computations
of these non-background observables will be discussed towards the end of this
subsection.

Background observables

In this subsection, we will focus on the background observables, where for
convenience we will introduce the notation that quantities with a tilde denote
quantities before the symmetries are used to impose the boundary conditions
at the AdS boundary, and quantities without a tilde do correspond to the
quantities with the proper boundary conditions imposed. Before moving
on to the computation of these obervables, observe that the property of
only needing symmetries and horizon data is extremely useful. Because the
required symmetry transformations only depend on the non-rescaled solution
that one has computed at the boundary, there is actually no need to retain
the information about the bulk geometry at all, and therefore it can be
immediately discarded. This does away with the need for reading/writing
a lot of data to memory, making the computation faster. Of course, if one
is interested in one of the quantities that do not have this property, this
shortcut cannot be taken, but since the quark-antiquark potential and the
entanglement entropy will only be computed for zero temperature solutions,
it turns out that for a majority of the computations in this chapter, the
shortcut is possible.

4Note that for example the magnetization does require solving an integral, but this
only has to be done once, so it is done at the same time as solving the equations of motion
for the metric, dilaton and tachyon.
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From the above discussion, the strategy for computing observables be-
comes clear. Choose λh, τh, ñ, B̃ and ã, and then initialize according to the
horizon boundary conditions described above. Subsequently integrate the
equations of motion, switching from r- to A-coordinates once close enough
to the boundary, and then integrate further up to some large enough value of
A. Then extract the symmetry parameters δA, δU , δW and δf , and use them
to evaluate the desired observables.5 The next few paragraphs will describe
how to compute the following observables in this way:

• Temperature T ,

• Entropy density s,

• Baryon chemical potential µ,

• Magnetic field B,

• Anisotropies a‖ and a⊥,

• Baryon number density n,

• Magnetization M ,

• ‘Anisotropization’ Ma. This is the analog of magnetization for the
anisotropy;

• Quark mass mq,

• Chiral condensate 〈q̄q〉.

The first 5 of these are straightforward, whereas the latter 5 require a bit
more work. We will now go through each of these observables in order, after
which there will be a discussion on how to accurately determine the required
symmetry parameters.

The temperature is given by the Hawking temperature associated to the
horizon. Using the metric ansatz 2.5, this can be expressed as

T

Λ
=

ḟh
4πΛ

=
eδA

4πδfΛ

df̃(r̃)

dr̃
=

eδA

4πδfΛ
,

5It turns out that δr is not needed for any of the observables that will be listed below.
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where the Λ-dependence enters because of δA, as we will see below the discus-
sion of the observables that we can only extract δA − log Λ from the model.
Moving on to the entropy density, note that the entropy is given by the area
of the black brane. Once again using the metric ansatz 2.5 and dividing out
the overall volume factor, one obtains the entropy density

s

Λ3
=

exp(3Ah + Uh +Wh)

Λ3
=

exp(3Ãh + 3δA + Ũh + δU + W̃h + δW )

Λ3
,

=
exp(3δA + δU + δW )

Λ3
, (2.14)

where one may note that this result is different from literature by a factor
4. This amounts to choosing M3N2

c = 1/4π in the action (2.3, 2.4), and
is done for notational convenience. If desired, desired values of M3N2

c can
be reinstated by multiplying s, n, M and Ma by appropriate factors. The
chemical potential is given by the value of Φ at the boundary. As Φ can be
shifted by a constant due to gauge symmetry, naively one would say that this
is ill-defined. However, as discussed before in section 2.1.2, Φh = 0 to ensure
continuity of the gauge field at the horizon. Therefore we obtain:

µ

Λ
=

Φb

Λ
=
eδAΦ̃b

δfΛ
.

The magnetic field and the anisotropy can be obtained as follows:

B

Λ2
= B̃

e2δA+δU

Λ2
,

a⊥
Λ

= ã⊥
eδA+δU

Λ
,

a‖
Λ

= ã‖
eδA+δW

Λ
.

Next, we move on to compute the number density, magnetization and
anisotropization. These quantities have in common that they are computed
by taking derivatives of the on-shell action. Recall that

S = −Ω

T
, (2.15)

where Ω is the grand potential. By definition, the number density is given
by

nV = − dΩ

dµ

∣∣∣∣
T

, (2.16)
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which means that we can express n in terms of the action. To make this
more concrete, consider the variation of the action with respect to Φ:

δS =
V

T

∫ rh

rb

dr
δL
δΦ̇

δΦ̇ =
V

T

∫ rh

rb

dr
d

dr

(
δL
δΦ̇

δΦ

)
, (2.17)

where the last equality holds because the action is on-shell, and where the
V/T factor comes from integration over t and xi.

6 As it turns out, the
integration constant that we defined as n̂ obeys

n̂ = − 1

4π

δL
δΦ̇

,

allowing us to write

δS =
n̂V δΦb

4πT
,

where we keep δΦh = 0, and recognize δΦb as being an infinitesimal change
in baryon chemical potential. Combining the last equation with (2.15) and
(2.16), one obtains that n = n̂/4π. Applying the appropriate rescalings, one
then obtains

n =
n̂

4π
=
ñ exp(3δA + δU + δW )

4π
=
ñs

4π
,

where in the last step we used (2.14).
For the magnetization, defined by MV = −dΩ/dB, one can perform a

similar computation to obtain the following integral:

M

Λ2
=

B

4πΛ2

∫ rh

rb

dr
eA−U+WxfVf (λ, τ)w(λ)

2G

Q
√
K + 1

,

=
e2δA+δW

4πδfΛ2
B̃

∫ r̃b

r̃h

dr̃
eÃ−Ũ+W̃xfVf (λ, τ)w(λ)

2G

Q
√
K + 1

.

In this case there is no way to analytically evaluate the integral, so it has to
be integrated along with the other equations of motion. Note however that
M factorizes into a factor containing all the rescalings, and an integral that
depends only on unrescaled variables. This allows us to still perform the
integral first, without the need to retain any intermediate quantities. One
further point of interest is that M is a divergent quantity, as the integrand

6Note that the action only depends on Φ̇. This is ultimately the reason why we could
immediately integrate the equation of motion for Φ.
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diverges near the boundary. This means that in practice we can only compute
differences inM between solutions which have the same B, by cutting off the
integral at some non-zero value of A, and comparing the differences.7 Also,
defining the anisotropization MaV = −dΩ/da‖, we can obtain in a similar
fashion that

Ma⊥

Λ3
=

a⊥
4πΛ3

∫ rh

rb

dr e3A−U+WZ(λ) =
e3δA+δW a⊥
4πδfΛ3

∫ r̃h

r̃b

dr̃ e3Ã−Ũ+W̃Z(λ),

Ma‖

Λ3
=

a‖
4πΛ3

∫ rh

rb

dr e3A−WZ(λ) =
e3δAa‖
4πδfΛ3

∫ r̃h

r̃b

dr̃ e3Ã−W̃Z(λ),

where we note that U = 0 in the second case, whereas in the first case both
a non-trivial U and W can occur if both a⊥ and B are non-vanishing.

The last quantities we would like to extract are the quark mass and the
chiral condensate. Both of these can be extracted from (2.13). Given that
the term containing mq becomes dominant near the boundary, it can be
extracted by simply ignoring the term containing 〈q̄q〉, and rearranging:

mq

Λ
= lim

A→∞
τL−2

UVe
Ã+δA

(
Ã+ δA − log(LUVΛ)

)γ0/b0
. (2.18)

The procedure for extracting the chiral condensate is slightly more involved.
The problem is of course that the 〈q̄q〉 term gets smaller relative to the
mq term as one gets closer to the boundary. In [120], we developed a rel-
atively simple way to solve this problem. The trick is to divide (2.13) by
r[− log(rΛ)]−γ0/b0 , so that the mq-term is to leading order constant. Subse-
quently taking a derivative on both sides and rearranging, one obtains the
following expression:

〈q̄q〉
Λ3

= lim
A→∞

exp(2A) (A− log(LUVΛ))
−γ0/b0

2L3
UV

(
γ0
b0

− A+ log(LUVΛ)
) (2.19)

×
[
exp(A)

(
γ0
b0

+ A− log(LUVΛ)

)
τ + LUV(−A+ log(LUVΛ))τ

′

]
.

This works well enough to extract the chiral condensate reliably, but one
has to be careful not to do the extraction too close to the boundary. This

7Note here that it is important to cut off the integral at some prescribed value of A,
not Ã.
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is because (2.19) essentially computes the difference of two numbers, where
that difference tends to zero as one approaches the boundary. For this reason,
one eventually runs into accuracy issues.

To conclude this subsection, we will discuss how to obtain the symmetry
parameters required for the computation of the observables discussed above.
As an example, consider δf . The blackening factor f does not change under
any of the symmetry transformations listed in section 2.1.3 except for the one
parameterized by δf . This implies that after having computed an unrescaled
solution by shooting from the horizon, one can extract δf solely by using
information from the blackening factor. Since f approaches a constant value
with subleading corrections only entering at O(r4) as one approaches the
boundary, one can simply divide the unrescaled f̃ and rescale such that it
becomes zero:

δf =
1√
f̃
.

As the anisotropy factors U and W approach constants in the same way f
does, δU and δW can be extracted in an analogous way by demanding that
Ub and Wb both vanish to obtain

δU = Ũ , δW = W̃ .

The remaining symmetry parameter that is important for computing ob-
servables, δA, is slightly more complicated to obtain. The key is to use 2.12,
which, by substituting A = Ã+ δA, can be written in the following form:

δA − log Λ = −Ã(λ) + logLUV +
1

b0λ
+
b1
b20

log [b0λ(A)] +O(λ). (2.20)

Using this equation, we can find δA − log Λ as long as we evaluate the right
hand side close enough to the boundary. Note that this is the reason why
in the observables computed above every power of exp δA came with a factor
of 1/Λ. We can now either choose to compute observables in units of Λ,
which is something we will mostly do in this chapter, or we can try to use a
physically reasonable value for Λ, which is something we will do in chapter
3.

We will conclude this section with an improvement to the computation of
δA as described above, developed in [120]. Note that in (2.20) the subleading
corrections go like λ. Also recall that λ goes to zero on the boundary by
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equation (2.11). Taking these two facts together, one can see that if we
linearly extrapolate δA as computed by (2.20) to λ = 0, then the subleading
linear correction should cancel. We tested that this works in practice, against
the code used in [99]. We compared specifically that with the extrapolation,
where one extrapolates linearly using A = 18 and A = 20 to compute two
values of δA, one gets a 0.7% deviation from a solution computed up to
A = 400 without extrapolation. Furthermore, the deviation is an overall
deviation which is always the same regardless of input parameters like λh.
This means that such a deviation is acceptable, as it effectively amounts
to a slight redefinition of Λ. The linear extrapolation procedure presents an
immediate advantage in computation time because it is computationally a lot
cheaper. However, as it turns out, for (2.19), the accuracy issues one always
eventually runs into as one gets closer to the boundary imply that for this
observable one has to do the extraction at a value of A for which subleading
corrections are sizable. For this reason, the extrapolation procedure is also
done for (2.18) and (2.19), as both of these have subleading behavior which
is linear in λ.

Non-background observables

We will now continue with what we defined to be ‘non-background’ observ-
ables. These observables will all be computed on top of a background metric,
dilaton field and tachyon, where we can assume that the backgrounds have
been properly rescaled using the symmetries, so that all the boundary con-
ditions are satisfied. We will discuss the following observables:

• Helicity 2 glueballs,

• Quark-antiquark potential,

• Entanglement entropy.

Let us start by discussing the helicity 2 glueballs. To compute the spectral
density associated to these glueballs, one needs to examine the behavior of
the δg12 metric perturbation:

δg12 = δg21 = e2A(r)eiqµx
µ

h(r),

where by an appropriate coordinate transformation we may assume qµ =
(ω, 0, 0, q), and where the sum in the plane wave term goes over the time and
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space indices. The linearized Einstein’s equations then become

ḧ(r) + 3Ȧ(r)ḣ(r) + Ẇ (r)ḣ(r)− q2e−2W (r)h(r) + ω2h(r) = 0.

These equations can also be put in the Schrödinger form, by defining h(r) =
e−3A(r)/2−W (r)/2ψ(r):

−ψ′′(r) + Vs(r)ψ(r) = (ω2 − q2e−2W (r))ψ(r),

VS(r) =
1

2
(3A′′(r) +W ′′(r)) +

1

4
(3A′(r) +W ′(r))

2
. (2.21)

Here we can easily determine whether the spectrum is discrete by looking
at the asymptotics of Vs. In the UV, VS diverges as A ∼ − log r, and if in
the IR VS diverges as well, the spectrum will be discrete, otherwise it will be
continuous.

To extract the spectral density, we recall that it can be obtained from the
correlator of the energy-momentum tensort T12, which we can obtain from
h(r) by the following near-boundary expansion:

h(r) = 1 +O(r2) +G(ω, q)r4
[
1 +O

(
1

log r

)]
.

Here h has to satisfy infalling boundary conditions in the IR ψ(r) ∝ eiωr.
We then want to extract the imaginary part of G(ω, q), which is equal to the
spectral density. In practice, numerically, it is easier to define h(r) = ek(r),
and solve the corresponding equations of motion for k. This simplifies the
IR boundary conditions to k(r) = iωr, and more importantly it removes the
oscillatory behavior that h will usually have. Furthermore, the O(r2) terms
in the near-boundary expansion drop out as they are real, and allow one to
write:

Im [G(ω, q)] =
Im(k′)

4r3
,

where we note that this expression has the added advantage of being insensi-
tive to h having the correct normalization to 1 at the boundary. Note lastly
that because the equations of motion for h are linear, we can easily demand
that the constant term in the near-boundary expansion equals 1.

As mentioned in the introduction, the quark-antiquark potential indicates
whether it is possible to pull a quark-antiquark pair apart. In holography,
this quantity is computed by evaluating the on-shell Nambu-Goto action of
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a static string hanging in the bulk from two points on the boundary [126]. In
principle, this is a divergent quantity. However, the difference of such a solu-
tion with a solution of two strings extending infinitely deep into the IR with
non-holographic coordinates fixed is finite. By varying the distance between
the endpoints, one can then examine the free energy, and hence the potential,
associated to each quark-antiquark distance. Throughout this discussion, it
is important that we use the string frame metric for the computation, as this
is what the string ‘feels’. This amounts ro replacing the A metric factor by
AS = A+ 2

3
log λ.

As it turns out, it is not necessary to solve equations of motion for the
Nambu-Goto action, as it has been worked out that the on-shell action sat-
isfies [86, 127]:

V‖(rF )

Tf
= e2AS(rF )+W (rF )L(rF )

+ 2

∫ rF

0

dr

eW (r)

√
e4AS(r)+2W (r) − e4AS(rF )+2W (rF ) − 2

∫ ∞

0

dr e2AS(r),

L(rF ) = 2

∫ rF

0

dr

eW (r)

1√
e4AS(r)+2W (r)−4AS(rF )−2W (rF ) − 1

,

where Tf is the string tension, and rF is the turning point of the string in the
bulk. This allows us to compute V‖(L) as a parametric function by choosing
a value for rF and integrating. Also note that while the integrals above are
given for V‖, one can obtain the integral for V⊥ by setting W = 0.

The last observable we will be examining is the entanglement entropy of
the following two regions:

• A region, A, defined by 0 < x3 < L, where we note that x3 is in the
parallel to both a‖ and B. We denote the entanglement entropy of this
region by SE,‖.

• A region, B, defined by 0 < x1 < L, where we note that x1 is per-
pendicular to any source of anisotropy, be it a or B. We denote the
entanglement entropy of this region by SE,⊥.

The entanglement entropy can be computed in holography by finding a min-
imal surface with its endpoints fixed to the boundary of region A or B,
respectively. Such a surface is called a Ryu-Takayanagi (RT) surface [54].
Given the symmetries of both regions considered, this results in a similar
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computation to that for the quark-antiquark potential, with the difference
that for the entanglement entropy we need to minimize the surface in the
Einstein frame instead of the string frame. Using the same techniques as for
the quark-antiquark potential, one can find both SE,‖ and L as functions of
the turning point in the bulk rF :

8

SE,‖(rF )

4πAVM3N2
c

= e3A(rF )+W (rF )L(rF )

+ 2

∫ rF

0

dr

eW (r)

√
e6A(r)+2W (r) − e6A(rF )+2W (rF )

− 2

∫ ∞

0

dr e3A(r),

L(rF ) = 2

∫ rF

0

dr

eW (r)

1√
e6A(r)+2W (r)−6A(rF )−2W (rF ) − 1

,

with AV an infinite factor arising becaus the region is spatially infinite in two
dimension. Analogously, one obtains for SE,⊥ and L:

SE,⊥(rF )

4πAVM3N2
c

= e3A(rF )+W (rF )L(rF )

+ 2

∫ rF

0

dr
√
e6A(r)+2W (r) − e6A(rF )+2W (rF )

− 2

∫ ∞

0

dr e3A(r)+W (r),

L(rF ) = 2

∫ rF

0

dr
1√

e6A(r)+2W (r)−6A(rF )−2W (rF ) − 1
.

2.1.5 Satisfying constraints

With the above discussion, it is now possible to obtain a solution and extract
observables given the inputs λh, τh, B̃, ñ and either ã⊥ or ã‖, which together
parameterize the available space of solutions. We will now move up a level of
abstraction, treating the entire discussion above as a function which takes in
these inputs and outputs the observables listed in section 2.1.4. Here we must
also emphasize that for some of these inputs this function will fail to return
an answer, because it is not guaranteed that every set of inputs correspond

8This regularization defines the entanglement entropy of the entire boundary as 0.
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to a valid solution. All of these inputs are given at the horizon, and there
is no guarantee that the geometry near the horizon smoothly connects to a
near-boundary geometry. For example, for some of these solutions A might
grow to negative infinity instead of positive infinity, or some of the other
variables might hit poles at some point in the bulk.

One issue that arises now is that while we have an efficient way of evalu-
ating this function, we would rather have control over some of the outputs.
In particular, even one of the boundary conditions, namely mq = 0, is not
satisfied automatically. Also, it is sometimes needed to for example look at
solutions at fixed B or a, which requires to fine-tune the inputs to reproduce
the desired outputs. In this subsection, we will explain the solutions to both
of these problems, starting with fixing mq = 0.

Requiring that mq = 0 can be done in two ways, namely setting τh = 0,
and finding a non-zero τh for which mq = 0. While this seems like a trivial
distinction, making this distinction immediately leads to finding out whether
the chiral condensate is zero or not, which is one of the order parameters
we’re interested in. In the case where the chiral condensate is non-zero, it
can immediately be concluded that such a solution spontaneously breaks
chiral symmetry since mq = 0, which is one of the main features of V-QCD.
First, note that setting τh = 0 immediately implies that τ̇h = 0 by (2.10),
which by the equation of motion for τ , (2.9), implies that τ = 0 everywhere.
Then from the near-boundary expansion (2.13), it immediately follows that
mq and 〈q̄q〉 both vanish.

Finding a non-zero τh for which mq = 0, keeping the other inputs fixed, is
a more complicated procedure. The algorithm for doing so must determine
where a solution with mq = 0 exists at all. If it does, it must choose the
largest such value of τh, and then accurately determine the outputs for that
value of τh. The reason for choosing the largest such value is that one needs
to find, given T , µ, B and a, the value with the smallest grand potential. It
turns out that the value for τh which corresponds to this most stable solution
is the one with the largest τh [93,94]. The procedure to find this value is done
using the steps described below, where any failure in any of the steps will
lead to the conclusion that no solution with mq = 0 exists for a non-zero τh.

9

9Note that this algorithm, and also the algorithm for constraining other output values
like B and a to be described later, are obtained empirically. There are cases in which it
fails to find legitimate solutions or when the solution it finds does not have the largest τh
possible, but occurances of this are rare, and when they do occur the result stands out as
being wrong. Therefore the algorithm can safely be used.
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This algorithm is mostly the same as in [99], except for the last step, which is
modified in a non-trivial way. Also, several minor things like the amount of
iterations before an algorithm terminates have been changed. These changes
turn out to have little effect on the accuracy of the algorithm, but have a
large effect on execution time, as every time we generate a bulk geometry
and extract the observables takes a few milliseconds. For this reason iterating
over this process is very computationally expensive, and lowering the amount
of iterations saves a lot of computation time.

1. The first step involves finding any τh for which a bulk solution exists,
without any requirements on mq. This is done by starting with τh = 1,
and doubling τh until a solution is found, which we call τh,exist. If no
solution is found after 30 iterations, and the procedure terminates.

2. We next need to find a solution τh,min for which mq < 0. Having
found at least one solution τh,exist, we check the sign of mq(τh,exist). If
it is negative, this step is complete. If it is positive, we bisect the
interval (0, τh,exist). If mq < 0 for this solution, we found τh,min and
continue to the next step. If mq > 0, we continue searching in the
interval (0, τh,exist/2). If for this value of τh there exists no solution, we
continue searching in the interval (τh,exist/2, τh,exist). We keep bisecting
in this way until we find τh,min, or, if we haven’t found τh,min after 30
iterations, we terminate the procedure, and conclude that no solution
with mq = 0 exists.

3. After finding a value of τh for which mq < 0, we need to find a value
τh,max for which mq > 0. Doing so guarantees, by continuity, that we
will at least find one solution with mq = 0, so after this step, the
algorithm can no longer terminate with a failure to find a solution. If
mq(τh,exist) > 0, this step is trivially completed, and otherwise we keep
doubling τh,exist until a solution with positive mq is found. As in the
previous steps, if after 30 iterations no acceptable solution is found, the
algorithm terminates with a failure.

4. The next step is meant to find values of τh bracketing the largest value
of τh for which mq = 0. This means that we have to search for zeroes
between the zero that we already found and some large value of τh. It
is known that for large values of τh the quark mass increases asymp-
totically [94], so what we do is to increase τh stepwise until we see this
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asymptotic behavior. These steps need to be small enough so as to not
miss zeroes, but must also not be too small, as this would slow down
the algorithm considerably. A good compromise is to take the current
highest τh value, named τh,last, and compute mq at τh,last, τh,last + ∆τh
and τh,last + 2∆τh, for an appropriate ∆τh. If mq changes sign between
any of these three values, we found a zero, and the τh-value larger than
where the zero is located becomes the new τh,last. If mq does not change
sign, we take τh,last + 2∆τh to become the new τh,last.

To completely describe this step, we need two more things, namely
what to choose for ∆τh, and when to terminate the search. At the
start of this step, ∆τh is initialized as

∆τh = τh,min

[(
τh,max

τh,min

)10−4

− 1

]
.

Also, ∆τh is updated every time we find a new τh,last. If we found a new
τh,last because we found a new zero, then we set ∆τh to the difference
between the last found zero and τh,min, where we divide by 5 so as
not to miss any zeroes. If we found a new τh,last without a new zero,
i.e. because mq(τh,last+n∆τh) has the same sign for n = 0, 1, 2, then we
construct a parabola through these three points, and look at its zeroes.
If it has zeroes, ∆τh is set to be the difference between the two zeroes,
if there are no zeroes ∆τh is doubled from its last value.

Lastly, the search is terminated if the following three requirements are
met at the same time:

• mq has not decreased in the last iteration.

• mq > 0.

• mq is more than 100 times larger than the largest mq found in all
previous iterations.

These three conditions correspond to the ones described in [99]. Some-
times, however, this never terminates, so for these cases I have added
the condition that the search is also terminated if τh > 105, which is
large enough that the search can be safely terminated.

5. Now that we have found values of τh which bracket the largest zero of
mq, it is possible to iteratively find the zero. For this, [99] uses Brent’s

62



2.1. ANALYSIS OF V-QCD MODEL IN THE PRESENCE OF A
MAGNETIC FIELD AND ANISOTROPY

method, which combines the best properties of Newton’s method, which
doesn’t always converge, but converges fast if it does, and the bisection
method, which is guaranteed to find a zero, but does so more slowly.
In [121], we improved this algorithm slightly. Instead of using Brent’s
method to reach some small enough value ofmq, we use Brent’s method
to reach a much larger interval. We then compute at 10 intermediate
values within this interval, and perform a least square fit to a linear
function, of which we can then find the zero analytically. This enables
us to not only obtain the desired zero of mq, but also obtain an error
estimate for quantities like T and s. We shall see in the rest of this
section that this is crucial to obtain quantities like the speed of sound
numerically.

With the above discussion, one can obtain a solution satisfying the bound-
ary condition mq = 0, either by setting τh = 0 to find a chirally symmetric
solution, or by following the algorithm described above to obtain a chirally
broken solution. To conclude this section, let us go yet one level of abstrac-
tion higher, and view the result of the discussion above as two functions
(one for chirally symmetric and another for chirally broken solutions) which
take in λh, ñ, B̃ and either a⊥ or a‖, and output the desired observables for
a solution which satisfies mq = 0. The discussion below will explain how
we can iteratively call these functions to fix B or a to some specified value
by fine-tuning B̃ and ã, respectively. As the algorithm works the same for
both chirally symmetric and chirally broken solutions, I will not distinguish
between the two.

The algorithm is similar in setup, albeit simpler, than the one described
above. One starts by finding two values of the input parameters which bound
the desired solution. This is simpler than the procedure for finding τh such
that mq = 0, as generically B(B̃) and a(ã) are single-valued functions. For
B, this is done by starting from B̃ = 0, then B̃ = 1, and then doubling until
two values bracketing the desired solution are found. For a, one starts from
ã = 0, and increments ã by 0.1 until either one finds values bracketing the
solution. For both these cases, a B̃ or ã for which no solution exists will be
interpreted as potentially bracketing the true solution if its ‘neighbor’ in the
algorithm does exist. Empirically, it turns out that this scheme usually is
able to find values bracketing the true solution.

Once two values which potentially bracket the true solution are found,
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one once again uses Brent’s method to shrink the size of these brackets.10 As
soon as Brent’s method has shrunk the brackets to a small enough size, we
once again perform a fit over intermediate values in this interval, and this
is where the value of being able to compute an error bar on observables in
determining τh shows its value. As it turns out, the accuracy of observables
varies by as much as an order of magnitude for different values of τh and B̃ or
ã. This also means that the accuracy of observables obtained from the fit to
mq = 0 can vary by an order of magnitude. Now, having error bars, one can
perform a weighted fit, in which the ‘bad’ points will receive a lower weight,
enabling us to obtain a more accurate result. This turns out to be crucial
to determine quantities like the speed of sound, which ultimately depend
on quantities like dT/dλh. For such an observable to not be completely
dominated by numerical noise, one needs to be able to determine T and
other such observables to as high an accuracy as possible.

2.1.6 Obtaining a phase diagram

The above discussion enables us to construct both chirally symmetric solu-
tions and chirally broken solutions, both satisfying all the required boundary
conditions. We are also able to constrain either B or a to have a specified
value, and we can extract all the required observables from the solutions.
Only one thing remains now in order for us to determine what the observ-
ables are as functions of T , µ, B and a, which together parameterize the
phase diagram of the theory. In principle, this is an easy task; one just has
to evaluate the grand potential of every solution, and if there are multiple
solutions with the same T , µ, B and a, choose the one with the smallest
grand potential.

In practice, however, this is more complicated. The grand potential di-
verges like A4 near the boundary. In principle one could try to perform
holographic renormalization like one does for the magnetic field, but this
turns out to be very hard to do numerically. What works better numerically
is to use the first law of thermodynamics

dΩ/V = −s dT − n dµ−M dB −Ma da,

and integrate along a family of solutions where one is able to continuously
vary the input parameters. Of course, this brings with it an integration

10Note that due to missing values being interpreted as potentially bracketing the true
solution, there may be multiple such brackets per requested solution.
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constant, which we choose such that the thermal gas geometry has grand
potential equal to zero. This thermal gas geometry is obtained by taking
λh → ∞, which makes the horizon shrink to zero size.11 This corresponds to
a horizonless geometry with a ‘good singularity’, as discussed in [124].

By integrating the first law in this way, one can obtain the grand potential
for every solution. Note that this is a non-trivial statement, as it requires
the whole parameter space to be connected, and in particular it requires
that the chirally broken solutions have a limit in which they approach a
corresponding chirally symmetric solution. Both of these statements turn
out to be correct [94].

After one has computed the grand potential throughout the parameter
space in this way, one knows which geometry is the dominant one for every
T , µ, B and a. To then label the resulting phase diagram appropriately, in
this chapter we will use the following order parameters:

• Chiral condensate 〈q̄q〉: this distinguishes chirally symmetric from chi-
rally broken solutions.

• Confinement: this is defined in this chapter as the quark-antiquark
potential having a linear branch. Usually this is equivalent with the
geometry being horizonless. In section 2.4, we will find that in the
presence of anisotropy this is no longer always true. This has some
interesting consequences, which will be explored there.

This concludes the introduction into the computations needed throughout
the rest of this chapter. In the next sections, we will explore various limits
of the general model described so far, starting with one where we have only
a magnetic field, and hence set µ = 0 and a = 0.

2.2 Inverse magnetic catalysis due to a mag-

netic field

In the beginning of this chapter, the puzzle of inverse magnetic catalysis
(IMC) was introduced. An interesting possible explanation was put forward

11This limit of taking λh → ∞ is well-defined because for any µ this corresponds to the
same solution. For different B and a, the solution is not the same, but in those cases the
holographic renormalization of M and Ma, respectively, are defined with respect to these
different horizonless solutions, which hence defines the grand potentials of these solutions
to be the same.
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in [128, 129], namely that there are two competing effects at work, called
‘valence’ and ‘sea’ quark contributions. The valence quark contribution cor-
responds to the q̄q operators appearing in the path integral. This effect is
found to increase the condensate as B increases. The sea quark contribution,
instead, arises from the quark determinant. This contribution tends to de-
crease the condensate as B increases. The appearance of magnetic catalysis
or its opposite are then explained as follows: in regions of the phase dia-
gram where valence quark effects are dominant, one finds magnetic catalysis,
whereas in regions where the sea quark effects dominate, one finds inverse
magnetic catalysis. Note that the sea quark contribution is a backreaction
effect. To see that this is true, consider the quenched approximation, or the
approximation of infinitely massive quarks. In this approximation, the quark
determinant becomes a constant, and hence the sea quark contribution van-
ishes. In other words, when one takes the quarks as non-dynamical probes,
there is no sea quark contribution.

In this section, which is based on [120], we study this problem in the
holographic model introduced in section 2.1. The aim of this study is twofold:
to reproduce IMC in holography, and to investigate whether in holography
one can similarly isolate two competing effects in analogy to the findings
in [128, 129]. In earlier studies, holographic gauge theories in the presence
of a magnetic field have been investigated either in the absence of flavors, or
with Nf ≪ Nc [130–137], or with smeared backreacted flavor branes in the
Veneziano limit, which leads to a different flavor global symmetry group [138].
In our model, we have the correct flavor symmetry group, as well as a fully
backreacted flavor sector in the Veneziano limit. The model can be obtained
from the ‘master’ model introduced in section 2.1 by setting a⊥ = a‖ = µ = 0.
The baryon chemical potential can be set to zero by choosing ñ = 0.

2.2.1 Varying the w potential

An important ingredient to reproduce IMC is the choice of potentials. As
briefly mentioned in section 2.1, the potentials used in this chapter can be
found in appendix A.1. These potentials are to a large extent the same as the
ones used in [99], with one important difference. The coupling of the mag-
netic field to the flavor sector depends on the w-potential. In [99], the choice
is made that w(λ) = κ(λ). This is a natural choice, as it is expected that
κ and w have similar asymptotics in both the UV and the IR. Indeed, this
assumption is consistent with the flavor vector current two point function
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and the asymptotics of the meson spectra [98,101]. Also, QGP conductivity
and its diffusion constant [139], as well as thermal photon emission during
the QGP phase of heavy ion collisions [140], are well described by assuming
this assumption. A simple modification to w(λ) = κ(λ) is to insert a multi-
plicative constant b such that w(λ) = bκ(λ). Looking at the appearance of w
in the action (2.4) however, such a modification would just lead to a trivial
redefinition of B. Another simple modification which keeps the asymptotics
of κ and w the same is the one we will use, namely

w(λ) = κ(cλ),

with c a constant.
A first interesting question is then how various observables depend on

c. In figure 2.2, the magnetic field dependence of both the deconfinement
transition temperature and the chiral transition temperature is shown for
different choices of c. Here we have kept the number of flavors constant by
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Figure 2.2: Deconfinement transition temperature Td (left) and the chiral
transition temperature (right) as a function of the magnetic field B for dif-
ferent choices of c, with xf set to 1.

setting xf ≡ Nf/Nc = 1. An interesting observation here is that both phase
transition temperatures decrease with B for smaller values of c, whereas for
c ≃ 1 the transition temperatures generally grow with B. Given that the
chiral transition is second order in this model, this means that for smaller
values of c and temperatures slightly below the chiral transition, the chiral
condensate must continuously decrease to zero, signaling inverse magnetic
catalysis.12 An interesting sidenote is that larger values of w, which cor-

12We assume massless quarks, which implies that the condensate must vanish at the
chiral transition.
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respond to smaller values of c in our model, also match better the electric
conductivity of the QGP in the absence of a magnetic field [140].

The appearance of inverse magnetic catalysis can be seen more explicitly
in figure 2.3. Here 〈q̄q〉/Λ3 is shown as a function of T and B for xf = 1
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Figure 2.3: Chiral condensate as a function of T and B, shown as isolines of
〈q̄q〉/Λ3, with xf = 1 and c = 0.4 fixed. Shown in red and blue are the chiral
transition and the deconfinement transition, respectively.

and c = 0.4.13 Between the two phase transitions for small enough values of
the magnetic field, it can indeed be seen that the chiral condensate decreases
with increasing values of the magnetic field. In the low temperature thermal
gas phase however, the condensate increases with the magnetic field. These
two observations show good agreement with the discussion at the beginning
of this chapter. In the left panel of figure 2.4, the same chiral condensate is
shown in a different way, namely by computing the renormalization group
invariant

Σ(T,B) =
〈q̄q〉(T,B)

〈q̄q〉(0, 0) , (2.22)

13Note that xf is labeled x in the figure.
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Figure 2.4: Left: ∆Σ as defined in (2.23) as a function of B for constant T ,
xf = 1 and c = 0.4. Right: ∆Σ for different c for T = 0 and xf = 1.

and subsequently looking at the difference

∆Σ(T,B) = Σ(T,B)− Σ(T, 0). (2.23)

By looking specifically at this quantity, it is possible to compare to lattice re-
sults, and indeed we find qualitative agreement [118]. At small temperatures,
the condensate increases monotonically as a function of B, while at tempera-
tures around the phase transitions the condensate first increases, then jumps,
and then decreases. For even larger temperatures, the condensate decreases
monotonically. This is in qualitative agreement with [118], with the notable
exception that real QCD has no first order deconfinement transition, whereas
the holographic model does.14 In the right panel of figure 2.4, we show ∆Σ
at vanishing temperature for different choices of c. It can be seen that the
condensate behaves like

∆Σ(0, B) = Dq̄q(c)B
2 +O(B3),

where Dq̄q depends on c. It is clear that Dq̄q decreases as c increases.

One final quantity we examine is the magnetic susceptibility at B = 0
as a function of T for different values of c, which is shown in figure 2.5.
This is a useful quantity, as it can be used to determine the behavior of the
deconfinement transition around B = 0. This can be seen as follows: Using
the first law of thermodynamics, and using that the thermal gas has s = 0

14This artefact is due to the fact that in the holographic model we take the large Nc

limit, which leads to a first order phase transition.
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Figure 2.5: Magnetic susceptibility as a function of T for xf = 1 and different
values of c. The chiral transition is shown by the vertical dashed line.

and MB = 0, one can derive that

dTd
dB

= −MB(B)

s(B)
,

where MB and s are now taken to be observables in the deconfined phase.
Together with the observation that

MB(B) = χBB +O(B3), s(B) = s(0) +O(B2),

this leads to
d2Td
dB2

∣∣∣∣
B=0

= − χB

s(0)
. (2.24)

Knowing that the w-potential does not influence the entropy density for van-
ishing B, we can determine the dependence on c of the behavior of the phase
transition as a function of B purely from the dependence of the magnetic
susceptibility on c. In this way, we can conclude that the deconfinement
transition will decrease more sharply with B for small values of c.
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2.2.2 Varying the number of flavors

Now that we have established that it is possible to obtain IMC in V-QCD by
setting c < 1, we can further investigate the mechanism behind its appear-
ance. To do this, we vary the number of flavors by tuning xf ≡ Nf/Nc. This
has the effect of varying the amount of backreaction that the quark sector has
on the gluon sector. Indeed, examining (2.4), one can see that xf multiplies
the entire quark sector of the action, so that tuning xf ≪ 1 turns the quark
sector into a probe, whereas xf ∼ 1 allows for significant backreaction. One
of the first things one can investigate is how the phase structure changes for
different values of xf . In figure 2.6, this phase structure is shown for c = 0.4,
where we also go to larger values of B as compared to figure 2.3. The phase
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Figure 2.6: Phase diagrams for c = 0.4 and different values of xf , which is
labeled x in the figure.

diagram in figure 2.6 contains the following four phases:

• A quark-gluon plasma phase at large temperatures. This phase exhibits
chiral symmetry and is not confining.
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• An intermediate temperature phase, exhibiting chiral symmetry break-
ing, but, like the QGP-like phase, not confining. In real QCD, where
the phase transition is a crossover, both chiral symmetry breaking and
confinement set in in a smooth way. In our holographic model, since the
chiral transition and the deconfinement transition are second15 and first
order, respectively, these transitions can occur at distinct temperatures
depending on the choice of potentials.

• A low temperature thermal gas phase, exhibiting confinement and chi-
ral symmetry breaking.

• At xf = 0.1, another deconfined chirally symmetric phase exists at
intermediate temperatures, separated from the one mentioned above
by a first order phase transition. This is the same phase that was
previously found at B = 0 in [94].

In addition to the phase structure, it can be seen that around B/Λ2 ∼ 1, for
all choices of xf we see inverse magnetic catalysis, chararcterized by a de-
crease in the chiral transition temperature. Also for all considered values of
xf , we see that for still larger values of B, the chiral transition temperature
increases, signaling magnetic catalysis. For small values of B/Λ2, the behav-
ior of the chiral transition depends on xf , where we see that for xf = 1 there
is inverse magnetic catalysis, whereas for xf = 2/3 there is only slight inverse
magnetic catalysis, and for smaller values of xf the dip in transition tempera-
ture decreases to a point that it is no longer detectable.16 Another interesting
feature is the reappearance of the chirally broken deconfined plasma phase
at large B/Λ2, which seems to appear for all considered xf , but for xf = 0.1
this could not be shown conclusively due to numerical inaccuracies.

In figure 2.7, the magnetic susceptibility for c = 0.4 for the same values of
xf considered in figure 2.6 is shown. Because in this case the entropy density
at the deconfinement transition is not the same for all xf , as opposed to the
situation for figure 2.5, we can not conclude anything about the behavior of
the deconfinement transition from the magnetic susceptibility. Nevertheless,

15Note that the chiral transition is first order whenever it concides with the deconfine-
ment transition. It is only second order when it is a distinct phase transition.

16The dip can never really go away, as χ/s > 0 for all deconfined solutions, which by
(2.24) implies d2Td/dB

2 < 0. Since for x . 2/3 the chiral transition coincides with the
deconfinement transition, this implies that there sould always be slight inverse magnetic
catalysis.
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Figure 2.7: Magnetic susceptibility as a function of temperature for c = 0.4
and for different values of xf , which is labeled as x in the figure.

interesting features can be discerned. Firstly, the susceptibility becomes
larger as xf is increased. This reflects the observation that the coupling
between the magnetic field and the gluon sector becomes stronger as xf is
increased. Also, as one decreases xf , an inflection point can be seen to appear,
which eventually forms a first order phase transition somewhere between
xf = 0.1 and xf = 1/3.

The last observable we will discuss is the chiral condensate. It turns
out that by examining the xf -dependence of the chiral condensate, we can
isolate two competing effects in analogy to [128, 129]. The ‘valence’ quark
effect will be identified with the direct coupling of the magnetic field to the
tachyon field, which is dual to the chiral condensate. The ‘sea’ quark effect,
in contrast, is identified with the indirect coupling of the magnetic field to
the tachyon field through the metric. To investigate what effect these two
contributions have on the chiral condensate, we need to find a way to change
their relative contributions. Looking at the tachyon equation of motion (2.8),
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one can see that the magnetic field only enters through Q, which, for large B,
behaves as Q ∼ e−2Aw(λ)B. One can then check that the explicit dependence
of (2.8) on B vanishes for large B. In other words, the ‘valence’ quark effect
becomes constant for large B. On the other hand, we can tune the magnitude
of the ‘sea’ quark effect by changing the amount of backreaction of the flavor
sector onto the gluon sector. This can easily be achieved by changing xf .
With this in mind, in the left panel of figure 2.8, we examine ∆Σ as defined
in (2.23) as a function of B, for zero temperature, c = 0.4 and different
values of xf . Interestingly, for large B, we can see that even though the
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Figure 2.8: Left: ∆Σ as defined in (2.23) as a function of B at zero temper-
ature for c = 0.4 and different xf . Right: ∆Σ for T = 0, B/Λ2 = 3, c = 0.4
and different xf . Note that in both panels xf is denoted as x.

condensate is larger than for B = 0, the difference ∆Σ is smaller for larger
xf than for smaller xf . This can be seen more clearly in the right panel of
figure 2.8, where ∆Σ is shown for different xf , T = 0, B = 3, with c = 0.4.
Since at large B the ‘valence’ quark contribution is constant, we find that
indeed the ‘sea’ quark effect, which we control through xf , tends to lower the
condensate. This corroborates the findings of [128,129].

To conclude this section, we find that we can indeed reproduce inverse
magnetic catalysis in a holographic model, provided that we take backreac-
tion of the flavor sector onto the gluon sector into account. Furthermore,
we find, similarly to the lattice QCD studies [128, 129], that there are two
competing effects that influence the chiral condensate. Of these, the backre-
action effect associated with ‘sea’ quarks, tends to decrease the condensate,
whereas the direct ‘valence’ quark, increases it. In the next section, we will
discuss what happens to IMC in the presence of a finite baryon chemical
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potential, which, due to the sign problem, is a hard problem to address with
lattice QCD.

2.3 Inverse magnetic catalysis in the pres-

ence of a nonzero chemical potential

In this section, which is based on [121], we extend the analysis of the previous
section to also include a finite baryon chemical potential. There are several
reasons why such an extension is interesting. Of these, the most important
one is that this region of the phase diagram is explored by the two systems
mentioned at the beginning of this chapter. Indeed, low-energy heavy ion
collisions such as those performed at RHIC occur in a region of both non-
negligible baryon chemical potential [141] and magnetic field [110], whereas
neutron stars occupy the low temperature, high baryon density region of
the phase diagram, and in particular magnetars have substantial magnetic
fields.17 Additionally, it is of theoretical interest what effect the chemical
potential can have on inverse magnetic catalysis [142]. The latter is a question
that cannot be addressed using lattice QCD, due to the sign problem [4].
Because of this, attempts to explore this question have been made both with
effective models [112] and using holography [25,93,134,135,137,138,143,144].

Both the results of the previous section, as well as lattice studies [128,
129], show that the effects of backreaction are important to capture the
physics behind inverse magnetic catalysis. Therefore, we choose to study
this problem in the same setup as in the previous section, with the addition
of the baryon chemical potential. In terms of the ‘master’ model introduced
in section 2.1, this amounts to setting a⊥ = a‖ = 0. As in the rest of this
chapter, we will use the potentials from appendix A.1. Throughout this
section, we will additionally fix c = 0.4, and we keep the number of flavors
fixed to xf ≡ Nf/Nc = 1.

2.3.1 Phase diagram and thermodynamics

As before, we start the discussion of the results by examining the phase
diagram, which is shown in figure 2.9. The phases featured in the phase

17Even for magnetars the magnetic field is still small in comparison to the relevant energy
scales of QCD, but nevertheless observables can perhaps be defined which are sensitive to
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Figure 2.9: Phase diagram of V-QCD as a function of T and µ, shown for
different choices of B, c = 0.4 and xf = 1.

diagram are the same as in section 2.2, with the exception that the extra
chirally symmetric phase that appears for xf = 0.1 is not present, as we fix
xf = 1 in this section. The phase structure shows an interesting dependence
on the magnetic field. Firstly, the deconfined, chirally symmetric phase can
be seen to move down for small chemical potential values, whereas it increases
for larger µ. The behavior of the chiral transition will be examined in more
detail in section 2.3.2. In contrast to the chiral transition, the deconfinement
transition does not exhibit a large dependence on the magnetic field, with
one notable exception. From section 2.2, we already know that in the absence
of chemical potential around B/Λ2 ≈ 1, the two phase transitions join. As
the deconfined, chirally symmetric phase continues to exist for larger values

such effects.
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of B, there is a triple point. Interestingly, as this triple point forms around
B/Λ2 ≈ 1, the second order transition between both deconfined phases turns
first order. After this, as can be seen in the inset in figure 2.9, another
triple point forms, after which the first order transition becomes a transition
between two deconfined, chirally broken phases, before ending in a critical
point.

An interesting observable which encodes much of the thermodynamical
information is the speed of sound. In figure 2.10, we show the speed of sound
in the direction of the magnetic field.18 The speed of sound cs is given by
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Figure 2.10: The speed of sound squared c2s as a function of temperature for
different values of chemical potential and magnetic field.

18Due to the anisotropy induced by the magnetic field the speed of sound can take a
different value perpendicular to B.
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c2s =
s dT + n dµ

T ds+ µ dn+B dM

∣∣∣∣
n/s,B

.

Note that since cs depends on derivatives of thermodynamic variables, it is
crucial to obtain accurate estimates for these quantities, as any numerical
noise will cause the derivative to be unusable. For this reason, the fitting
procedure described at the end of section 2.1.5 is essential to obtain the
speed of sound, although even with the improved accuracy obtained from
this method the speed of sound still has some numerical noise, which was
removed artificially from the curves in figure 2.10. Rather surprisingly, the
speed of sound squared is, for certain values of the chemical potential and
magnetic field, larger than the conformal value of 1/3, which is surprising
given [145, 146], though it does not contradict their findings. Finally, note
that at large T , outside the range of figure 2.10, the speed of sound approaches
the conformal value from below, consistent with [145,146].

2.3.2 Chiral condensate and inverse magnetic catalysis

As the chiral transition is second order in a large part of the phase diagram,
we can use the behavior of the chiral transition temperature as a function
of chemical potential and magnetic field to study inverse magnetic catalysis.
In the left panel of figure 2.11, the chiral transition temperature is shown as
a function of µ for different values of B. For small values of the chemical
potential, the chiral transition temperature decreases as a function of B for
the values of B considered in the left panel of figure 2.11. This signals
inverse magnetic catalysis, and is in line with expectation from section 2.2.
Interestingly, for larger values of the chemical potential, the exact opposite
behavior is seen, signaling magnetic catalysis instead.

Looking explicitly at the change in the condensate around B = 0, we can
examine in more detail where we have (inverse) magnetic catalysis. We do
this by looking at the sign of

〈q̄q〉B/Λ2=0.1 − 〈q̄q〉B/Λ2=0,

where a positive sign signals magnetic catalysis, a negative sign signals in-
verse magnetic catalysis, and zero signals no change.19 Using this quantity,

19The latter mostly happens in the chirally symmetric phase, where the constant van-
ishes independently of B.
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Figure 2.11: Left: The chiral transition temperature Tχ as a function of
chemical potential for different values of the magnetic field. Right: Region
in the T–µ plane around B = 0 where (inverse) magnetic catalysis occurs,
where we define by looking at the sign of 〈q̄q〉B/Λ2=0.1 − 〈q̄q〉B/Λ2=0.

we obtain the right panel of figure 2.11. We can clearly see now that for tem-
peratures well below the phase transitions, magnetic catalysis occurs, and
that for a small region below the chiral transition inverse magnetic catalysis
occurs, but only for small enough chemical potential.

For larger values of B, this behavior continues. This can be seen both
from the left panel of figure 2.11 and from figure 2.12, where Σ is shown, as
defined in (2.22). One can see that the chiral condensate always decreases
with temperature, and for most values of T and µ, the chiral condensate
increases with B. However, for certain values of T , µ and B, the condensate
decreases. One can check that indeed that for small B this is consistent
with the right panel of figure 2.11, but also for larger values B, one can find
examples of inverse magnetic catalysis. Indeed, one can see that for example
for TΛ = 0.12, µ/Λ = 0.05, the chiral condensate has a finite value for
B/Λ2 = 5, whereas the condensate vanishes for B/Λ2 = 10.

In figure 2.13, we show the magnetization divided by the magnetic field
as a function of temperature for different values of the chemical potential and
magnetic field. In section 2.2, we saw that for the first order deconfinement
transition, one can predict the slope of the transition temperature dTd/dB
from the sign of the jump of the magnetization across the transition. This
was studied in more detail in [143]. It turns out one can extend the argument
to second order transitions as well. In this case one looks at the difference
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Figure 2.12: Chiral condensate, normalized as in (2.22), as a function of
temperature for different values of chemical potential and magnetic field.

in entropy densities ∆s, which must be zero along the phase transition line.
Then by using a Maxwell relation and using that ∂s/∂T is always larger for
the higher temperature phase, one arrives at the following formula,

sign

(
dTχ
dB

)
= sign

(
dM(Tχ + ǫ)

dT
− dM(Tχ − ǫ)

dT

)
,

where ǫ approaches zero from above. In other words, from the direction of the
kinks of M(T ), we can infer whether the chiral transition moves up or down.
Indeed, this formula correctly predicts the behavior of the chiral transition
temperature, even though many of the kinks in figure 2.13 are too small to
be visible.

In conclusion, we find that in our holographic model, at finite chemical
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Figure 2.13: Magnetization divided by the magnetic field as a function of T ,
µ and B. The crosses denote the locations of the chiral transition.

potential inverse magnetic catalysis persists up to some value of the chemical
potential, after which magnetic catalysis sets in. Also, the region of the
phase diagram covered by deconfined, chirally broken matter, grows in size
at finite B. In the next section, we will take a different look at inverse
magnetic catalysis. Instead of applying an external magnetic field, we turn
on a different source of anisotropy, and we examine how different this is from
applying a magnetic field.
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2.4 Inverse anisotropic catalysis due to an

anisotropy

When we apply an external magnetic field to a quark-gluon plasma, this
breaks rotational invariance of the system, as the magnetic field is a vector.
It is then an interesting question to what extent phenomena associated to
magnetic fields, like (inverse) magnetic catalysis, are in fact more general
phenomena. In other words, are these phenomena caused by anisotropy being
introduced into the system, or does that anisotropy need to specifically be a
magnetic field in order for these phenomena to appear? In this section, which
is based on [122], we will introduce anisotropy by means of the anisotropy
parameter a introduced in section 2.1, which is dual to a space-dependent
θ-term. Note that this way of introducing anisotropy is very different from a
magnetic field, as a couples to the gluon sector directly, while the magnetic
field couples indirectly through the quark sector.

In terms of the ‘master’ model from section 2.1, we set the magnetic field
B to zero, while also setting ñ = 0 to ensure a vanishing chemical potential.
In this section, we will not distinguish between a‖ and a⊥. This is possible
because in this section we set the magnetic field to zero, which means that
there is no other source of anisotropy, and we can choose the x3-axis to align
with a. The choice of potentials is the same as in previous sections, namely
those in appendix A.1. Most of these potentials have been used in previous
sections, and their asymptotics have been motivated in section 1.5.1. This is
not true for the Z potential though. We choose it to be of the same form as
what was used in [144, 147], where we have set the constant term [85] to 1,
as an overall factor can always be absorbed into a. In the IR, we must have
λ ∼ λ4 to ensure a linear glueball spectrum for the 0−+ glueballs [86,147–149],
and the choice

Z(λ) = 1 +
λ4

α

is the simplest choice that satisfies these constraints. We subsequently choose
α = 10 [150].

Before discussing physical observables, will next discuss the IR asymp-
totics of the geometry, as the geometry in the presence of a is drastically
different from the geometry at vanishing a. Next, we will discuss the ther-
modynamics, and we will conclude by examining various observables, many
of which turn out to have interesting properties as a consequence of the
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different geometry at non-zero a.

2.4.1 IR behavior

To examine the IR behavior of the geometry, we choose f = 1 so that there
will not be a horizon capping the geometry off. We also set the tachyon τ
to zero, as the tachyon decouples from the other variables in the IR [93,98].
Before continuing, it is also convenient to define λ = eφ, dr

dA
eA = q = −ep,

and W̃ = W + A. In terms of these quantities, the equations of motion
become

8φ′2 = e2p
(
3a2e−2W̃Z(φ)− 6Vg(φ)

)
+ 36

(
W̃ ′ + 1

)
,

p′ =
1

6

(
−2e2pVg(φ) + 6

(
W̃ ′ − 1

)
+ 24

)
,

W̃ ′′ = −1

6
e2p
(
3a2e−2W̃Z(φ) + 2Vg(φ)

(
W̃ ′ − 1

))
.

It is not difficult to see that these equations admit fixed point solutions
provided that

e2p∗Vg(λ∗) = 9, 3a2Z(λ∗) = 2Vg(λ∗), (2.25)

with W̃ a constant which we can set to zero, as it can be absorbed into a.
First note that this solution describes an AdS4×R solution, as eA ∼ 1/r and
eA+W is constant. Also, this solution turns out to be unstable. This can be
seen from the second order dilaton EoM:

12φ′′φ′ =
9

4
e2pφ′

[
a2e−2W̃Z ′(φ)− 2V ′

g (φ)
]

+ e2pVg(φ)

[
e2p
(
−3

2
a2e−2W̃Z(φ) + Vg(φ)

)

+
(
2e2pVg(φ)− 18

)
− 18W̃ ′

]
.

The term in the second square brackets vanishes at the fixed point, but the
term in the first square brackets does not. Because of this a small φ′ will
cause φ′′ to be non-zero as well, which implies an instability. The stability
can be restored by requiring

d

dφ
logZ(φ∗) = 3

d

dφ
log Vg(φ∗)
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in addition to (2.25), which can only be satisfied for specific a∗. It turns out
that this fixed point is realized by a chirally symmetric vacuum that exists
for xf = 1/3, as we will see later. Note that in this case one has to replace
Vg in the analysis by Veff = Vg − xfVf0, where Vf0(λ) = Vf (λ, τ = 0) [93].

To find the IR behavior satisfied by the chirally broken vacuum, we need
to generalize the fixed point to a ‘slow roll’ solution around the fixed point.
In other words, we assume that deviations from the fixed point solution are
small and linear in A. To do this, we set all second derivatives to zero, which,
from the argument above, requires that Z(φ) ∝ Vg(φ)

3, which, for our choice
potentials, holds to good enough precision. Under these assumptions, one
can obtain that

φ′ =
6
(

d
dφ

logZ(φ)− 3 d
dφ

log Vg(φ)
)

D , (2.26)

W̃ ′ =
3
(

d
dφ

log Vg(φ)− d
dφ

logZ(φ)
)(

3 d
dφ

log Vg(φ)− d
dφ

logZ(φ)
)

D ,

(2.27)

p′ =
3 d
dφ

log Vg(φ)
(
3 d
dφ

log Vg(φ)− d
dφ

logZ(φ)
)

D , (2.28)

e2p =

18

(
8− 3 d

dφ
log Vg(φ)

d
dφ

logZ(φ) + 2
(

d
dφ

logZ(φ)
)2)

Vg(φ)D
, (2.29)

a2e−2W̃ =

2Vg(φ)

(
16 + 9 d

dφ
log Vg(φ)

d
dφ

logZ(φ)− 9
(

d
dφ

log Vg(φ)
)2)

3Z(φ)D ,

(2.30)

where

D = 16− 3
d

dφ
log Vg(φ)

d

dφ
logZ(φ) + 3

(
d

dφ
logZ(φ)

)2

.

Furthermore, by substituting the asymptotic behavior of the potentials Vg ∝
VIRe

4φ/3
√
φ, Z ∝ ZIRe

4φ, we can obtain analytically that

eA ∼ 1

r
e−

√
(log r)/6−(log log r)/8, eW+A = eW̃ ∼ e

√
(2 log r)/3−(log log r)/8,

(2.31)
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φ ∼
√
(3 log r)/8. (2.32)

This has been investigavted for more generic potentials in [151]. Indeed, the
above asymptotics describe an approximately AdS4 × R metric.

To check that these asymptotics indeed describe the IR behavior displayed
by the model, we compare the solutions of (2.26–2.30) to the full numerical
solution of the equations of motion given in section 2.1.2. In the left panel of
figure 2.14, this comparison is shown for different values of a, and for xf = 0.
One can see that far enough into the IR, the solution of (2.26–2.30) agrees
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Figure 2.14: Left: RG flow of the coupling φ in the IR as a function of
A for different values of a, and xf = 0. The solid curves correspond to the
exact equations of motion from section 2.1.2, whereas the dashed curves were
obtained by numerically solving (2.26–2.30). Right: RG flow of the coupling
φ in the deep IR as a function of A for different values of a, and xf = 0,
where we compare the numerical solution obtained from (2.26–2.30) to the
asymptotic result in (2.31–2.32).

well with the exact numerical solution of the equations of motion given in
section 2.1.2. In the right panel of figure 2.14, the solution of (2.26–2.30) is
compared to the analytical asymptotics obtained in (2.31–2.32). These can
be seen to eventually agree, but only for extremely large values of −A.

2.4.2 Thermodynamics

We will continue the discussion by examining various thermodynamical prop-
erties of the system at different values of a. As was mentioned before, some
of these properties are substantially altered by the modifications to the IR
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geometry discussed in section 2.4.1. In figure 2.15, we show the free energy
as a function of temperature for various values of a, and for xf = 0. As
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Figure 2.15: Free energy F as a function of T for xf = 0 and different values
of a.

different values of xf show the same qualitative behavior, we will show only
the result for xf = 0. One can see that generally there are three branches of
black hole solutions: one small black hole branch (labeled I in figure 2.15),
one big black hole branch (labeled II in figure 2.15), and an unstable branch
(unlabeled). If the anisotropy parameter a vanishes, the result qualitatively
agrees with earlier results [87,88].20 In this case, the small black hole branch
in fact has infinitesimal area, and corresponds to the horizonless thermal gas
solution. As one turns on a non-trivial a, however, the behavior is qualita-
tively different, as a black hole solution now always dominates in region I.
This is due to the AdS4 × R geometry in the IR.

In figure 2.16, we show the phase diagram as a function of temperature
and anisotropy parameter for different values of xf . In this figure, as in the
rest of this section, we define a phase to be confining if the quark-antiquark

20The result is not exactly the same because the potentials are different.
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Figure 2.16: Phase diagram as a function of T and a for several different xf .
Note that xf is labeled x in the figure.

potential has a linear branch. As the system is anisotropic, this need not hap-
pen in every direction. This leads to a phase with anisotropic confinement,
which is confining in the direction parallel to the magnetic field, and decon-
fined perpendicular to it. Also note that with this definition of confinement,
the transition between a confining geometry and a deconfined geometry is a
crossover. We will discuss the confinement properties of the system in more
detail in section 2.4.3, but it can already be seen using this definition that
for xf & 1/3, the geometries become deconfined, i.e. the quark-antiquark
potential has no linear branch.

Another interesting observation is that the first order phase transitions
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which exist at a = 0 disappear at sufficiently large a for xf & 1/3. In the
cases of xf = 1/3 and xf = 2/3, the first order transition turns into a second
order one, while for xf = 1 the first order transition ends in a critical point.
For large values of a, in the case of xf = 1, a first order transition reappears.
The numerics were not stable enough to determine whether this also happens
for the other values of xf considered. Also, note that for xf = 1/3, the chiral
transition decreases to zero temperature around a/Λ ∼ 1, and at some larger
a the chiral transition reappears. In between these two values, the vacuum
is the chirally symmetric vacuum mentioned above.

The last feature that can be seen in figure 2.16 is the behavior of the chiral
transition. Comparing to figure 2.6, we can see that in both cases the chiral
transition temperature first decreases as a function of a and B, respectively.
After this decrease, an increase follows in both cases. This tells us that a
magnetic field and an anisotropy have similar effects on the resulting chiral
transition temperature. We will examine the chiral condensate explicitly in
section 2.4.3.

Lastly, in figure 2.17 we show the ‘anisotropic susceptibility’ χa, which
we define by
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Figure 2.17: Anisotropic susceptibility χa as a function of T for xf = 0 and
different values of a. The color coding is the same as in figure 2.15.
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χa =
Ma

a
,

with Ma as defined in section 2.1.4. This definition agrees with the standard
definition of a susceptibility in the limit where a → 0. In the same way as
what we did in the previous two sections, we can derive for the first order
transition that

dTc
da

= −∆Ma

∆s
.

Noting that the higher temperature phase at the phase transition always
has the largest entropy, we can read off from the jump of χa whether Tc is
increasing or decreasing with a. Indeed, this agrees between figures 2.16 and
2.17.

2.4.3 Observables

Next, we examine in some more detail the chiral condensate, after which
we will look at some more consequences of the IR geometry. The chiral
condensate is shown in figure 2.18. Just as in the previous sections, the
chiral condensate decreases with temperature. Also, at xf = 0 the condensate
always decreases with a, while for larger xf , the condensate first decreases as
a function of a, and then increases again. The latter behavior can be studied
in more detail by defining

Σ(T, a) =
〈q̄q〉(T, a)
〈q̄q〉(0, 0) , ∆Σ(T, a) = Σ(T, a)− Σ(T, 0), (2.33)

in analogy with (2.22–2.23). This quantity is shown as a function of a for
various fixed temperatures in figure 2.19, where we keep xf = 1. For all
values shown, one can see first a decrease in ∆Σ, which is then followed by an
increase. In particular, the decrease in ∆Σ is greatest for temperatures just
below the chiral transition. This gives evidence that indeed an anisotropy as
introduced in this section leads to similar physical consequences for the chiral
condensate, leading to the claim that indeed the cause of inverse magnetic
catalysis may be the presence of anisotropy induced by the magnetic field.

Next, we will investigate the spectrum of helicity 2 glueballs. As was
mentioned in section 2.1.4, we can infer from the Schrödinger potential (2.21)
whether the spectrum is discrete or continuous. For the geometry without
the anisotropy, the Schrödinger potential diverges towards the IR, creating a
discrete spectrum. In the presence of a though, we have VS(r) ∼ 2/r2 due to
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Figure 2.18: Chiral condensate 〈q̄q〉 as a function of temperature for different
values of a and xf . Note that xf is labeled x in the figure.

the AdS4×R geometry, leading to a continuous spectrum. Such a dissociation
of mesons due to anistropy has been studied earlier in holographic models
in [152, 153]. In the left panel of figure 2.20, the resulting spectral density
is shown for xf = 0, normalized by ω4. It can be seen that for small a, the
glueballs have small but finite widths, whereas they would be described by
delta functions at a = 0. As one increases a, the widths grow larger, and the
peaks melt. Still, the mass gap which is exact at a = 0 is still approximately
present even at a = 1. Note that the peak appearing around ω = 0 arises
because due to the AdS4 × R geometry changing the power law behavior
around the origin to G ∝ ω3. In the right panel of figure 2.20, the widths of
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the first glueball peak are shown for different values of a and xf . The widths
can be seen to be getting wider with a power-law dependence on a.

Since the helicity 2 glueballs are not stable for a 6= 0, it is interesting
to examine another quantity related to the stability of mesons, namely the
quark-antiquark potential V . This observable quantifies the potential energy
of a quark-antiquark pair at some distance, where we assume the quarks to
be infinitely heavy. If the quark-antiquark potential grows infinitely with
distance, it is impossible to pull the quarks apart, and in this case they are
confined into mesons.21 However, if the potential is bounded from above, at
some distance the force between the quarks will vanish, and in this case it is
possible to pull the quarks apart.

In [86,127], a simple criterion was found to describe whether there is a lin-
early growing branch of the quark-antiquark potential which, in figure 2.16,
is used as the criterion to label confinement. In our case, this implies that if

21In reality, a new quark-antiquark pair will nucleate between the original quarks, and
one ends up with two mesons. However, if we assume that no light enough quarks exist
for this to happen, it is impossible to pull the heavy quarks apart.
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Figure 2.20: Left: spectral density for helicity 2 glueballs at xf = 0 for
different a. Right: widths of the lowest helicity two glueball states as a
function of a for various different xf , which is labeled x in the figure. The
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AS ≡ A+ 2
3
log λ has a local minimum, then the quark-antiquark in the direc-

tion perpendicular to the anistropy V⊥ will have a linear branch. Similarly,
if AS +W/2 has a local minimum, then the quark-antiquark potential in the
direction of the anisotropy V‖ will have a linear branch. In figure 2.21, we
show the entire quark-antiquark potential for different values of a and with
xf = 1. One can see that in both the parallel and perpendicular cases, the
solutions have multiple branches, with in particular the perpendicular case
showing multiple swallowtail structures. Of these branches, we are supposed
to pick the smallest one, which is stable. A consequence of this is that even
if AS resp. AS + W/2 have local minima, the linear branch which is then
guaranteed to exist may not be stable. As with the previous quantities we
examined, the reason behind this is the AdS4 × R geometry, which causes
the AS minimum to be only a local one. However, even if the linear branch
is not stable, for small enough a there is still a large potential barrier for the
string to decay to the stable configuration. This may indicate that the decay
is not very fast, in line with the observations from the glueball spectrum that
the glueballs are stable but long-lived.

The last observable we will examine is the entanglement entropy of regions
A and B as defined in section 2.1.4. The result is shown in figure 2.22. First,
note that there are multiple branches, the lowest of which is the stable one.
Up to about a/Λ ∼ 0.1, the results are similar to isotropic results [154,155].
For large values of L, the result depends strongly on the orientation of the
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Figure 2.21: Quark-antiquark potential parallel and perpendicular to the
anisotropy, denoted V‖ and V⊥, respectively, for different a and xf = 1. Note
that also unstable branches are shown. Note that in the parallel case, all
shown solutions have a branch equal to zero.

entangling region even when a is small. Specifically, for SE,⊥, the curve of
the connected surfaces always goes to (L = 0, SE,⊥ = 0, where the branch of
disconnected solutions with SE,⊥ = 0 connects. However, for SE,‖ the point
(L = 0, SE,‖ = 0) is never reached. Instead, the swallowtail structure present
without anisotropy quickly gets smaller, and then vanishes.

As a/Λ & 1, the result becomes very different for the different entangling
regions. SE,‖ crosses zero for a smaller value of L, whereas SE,⊥ moves in
the opposite direction. Such behavior has also been observed for a mag-
netic field [156]. Overall, the dependence of the entanglement entropy on
the anisotropy is less pronounced than that of the quark-antiquark poten-
tial. A possible explanation for this is that the characteristic scale of the
entanglement entropy is LΛ ∼ 1, causing the Ryu-Takayanagi surface to re-
main relatively close to the boundary, whereas the characteristic scale of the
quark-antiquark potential is roughly LΛ ∼ 10. As the modification to the
geometry due to the anisotropy is most pronounced in the IR, this implies
that the quark-antiquark is more drastically modified even for small a, while
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Figure 2.22: Entanglement entropy SE,‖ and SE,⊥ for regions A and B defined
in section 2.1.4, for different values of a and with xf = 1.

the entanglement entropy needs rather large values of a for a modification to
become pronounced.

2.5 Interplay between magnetic field and an-

isotropy

In the final section of this chapter, we will investigate the interplay of both
sources of anisotropy introduced before. From the discussion in section 2.1,
this gives us two options, namely to have a parallel to B, or to have it
perpendicular to B. Recall that we were unable to put the two anisotropies
at an arbitrary angle, but this is likely not an issue, as one expects to be able
to already infer a lot of information from these two cases.

In terms of the ‘master’ model introduced in section 2.1, we set ñ = 0 to
ensure µ = 0, and we allow B̃, ã‖ and ã⊥ to be non-zero. However, ã‖ and ã⊥
can not both be non-zero at the same time. We also set xf = 1 throughout
this section. The potentials will be kept the same as in the previous sections,
i.e. the ones from appendix A.1. We do re-examine the c-parameter from the
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w-potential again though. In the previous sections, we took c = 0.4 as this
matches lattice results for the chiral transition reasonably well, while keeping
c = O(1). Even lower values match the chiral transition results better, but
this may result in too large of a departure from c = O(1).

To determine whether lower values of c match other lattice results better
as well, let us first examine the quark-antiquark potential at zero temperature
for xf = 1, a = 0 and c = 0.4, which is shown in the left panel of figure 2.23.
Firstly note that since we put a = 0, the linear branch exists for any B, and

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  5  10  15  20  25  30

V
/(

T
fΛ

)

LΛ

0
B = 0

B∥ = 0.1
B⟂ = 0.1

B∥ = 1
B⟂ = 1

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  5  10  15  20  25  30

0

1

2

3

4

5

6

0.001 0.01 0.1 1 10

σ(
B

)/
σ(

0
)

B/Λ2

c = 0.25, ∥
c = 0.25, ⟂

c = 0.4, ∥
c = 0.4, ⟂

c = 1, ∥
c = 1, ⟂

0

1

2

3

4

5

6

0.001 0.01 0.1 1 10

Figure 2.23: Left: Quark-antiquark potential at zero temperature for various
values of B, with a = 0, c = 0.4 and xf = 1, where the ‖ and ⊥ signs signify
whether the quarks are separated parallel to the magnetic field or perpen-
dicular to it, respectively. The dashed lines indicate the asymptotic linear
behavior of the various curves at large separation. Right: String tension
between the quark-antiquark pair at asymptotic distances, as a function of
B for different c, with T = 0, a = 0 and xf = 1, in both the parallel and
perpendicular cases.

is always the stable branch. One can see that in this case, at B = 0.1, the
quark-antiquark potential gets steeper perpendicular to the magnetic field,
while parallel to it the potential gets slightly shallower. For larger values of
B the quark-antiquark potential gets steeper in both directions.

As the quark-antiquark potential has a linear branch in all the cases
considered here, one can also compute the slope of the asymptotic linear
behavior. This slope is called the ‘string tension’, and is shown in the right
panel of figure 2.23, again for T = 0, a = 0 and xf = 1, but now as a
function of B and for different values of c. One can see that as c decreases,
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the perpendicular string tension increases faster as a function of B, whereas
the parallel string tension increases more slowly, and even decreases as a
function of B for a part of the range of magnetic field shown for c = 0.4, and
for all of the range shown for c = 0.25. In [157], it was found on the lattice
that the perpendicular string tension increases as a function of B, while the
parallel string tension decreases. This is most in line with the result for the
holographic model for c = 0.25, and therefore in the rest of the section, we
will show results for both c = 0.25 and c = 0.4.

Next, in figure 2.24, we will examine the behavior of the chiral transition
temperature as a function of B for different values of a, where we show the
result for both a‖ and a⊥. At the values of a shown in figure 2.24, the chiral
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Figure 2.24: Chiral transition temperature as a function of B for different
a⊥, a‖, with xf = 1 and c = 0.25 (left) and c = 0.4 (right).

transition is the only feature in the phase diagram. Therefore we do not show
a separate phase diagram. We can see several qualitative features from the
chiral transitions. Firstly, we observe that around a ∼ B, there is equality
between T (a⊥) and T (a‖). Also, a seems to effectively decrease the value of
B for a > B, which seems to be most pronounced for a‖.

In conclusion, in this chapter we constructed a bottom-up holographic
theory based on V-QCD which includes two different sources of anisotropy,
namely the magnetic field B and the axion a. We were able to show that
in this theory at zero chemical potential and zero a, it is possible to obtain
inverse magnetic catalysis. Furthermore, here are two contributions to the
chiral condensate which have competing effects, in support of the analysis
done on the lattice in [128, 129], namely that inverse magnetic catalysis is
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caused by ‘sea’ quark effects, which in our model correspond to the backre-
action of the gluon sector onto the flavor sector. Next, we generalized the
discussion to finite chemical potential, thereby for the first time giving in-
sight into the fate of inverse magnetic catalysis at finite µ. Also, we found
evidence to support the claim first made in [123] that IMC is a more gen-
eral effect caused by the anisotropy induced by the magnetic field. Lastly,
we investigated the interplay between both sources of anisotropy, yielding
interesting dependence on the angle between both sources.
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Chapter 3

Holographic Baryons and
Neutron Stars

In the study of neutron stars, some of the most basic questions are the
following:

• Given the mass, what is the radius of the star?

• What is the maximum mass?

• How large is the tidal deformability?

• What is the post-merger gravitational wave spectrum?

• Do neutron stars contain deconfined quark matter cores?

As was discussed in the introduction, these quantities depend on two things.
The first is general relativity, which we understand well, and of which we
believe it holds in the regime of neutron stars to a high degree of confidence.
The second is the neutron star equation of state, something we cannot com-
pute from first principles in a controlled way. This provides us with both a
challenge and an opportunity. On the one hand we are obviously challenged
to find what the true EoS is. On the other hand, neutron stars provide us
with a novel laboratory to learn something about QCD. As more data will
be collected in the future, some candidate equations of state will be ruled
out, while others will remain compatible with observations. Subsequently
one can start looking into the assumptions that went into these equations
of state, to hopefully learn something about which of these assumptions are
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viable, and which are not. For this to work however, it is important that a
wide range of such models become available.

In this chapter, we will construct such an equation of state from holog-
raphy, which hence takes non-perturbative effects into account. In [103,158,
159], holography has been used to model the deconfined phase which one
expects at extreme densities, while these models have continued to rely on
more traditional approaches for the nuclear matter phase, which is expected
to make up the bulk of the neutron star. In this chapter, we in addition also
model most of the nuclear matter phase using holography. The holographic
model we will use for this purpose is, as in the previous chapter, V-QCD.
For the choice of potentials, however, we make a different choice from the
previous chapter. In [103], observables at vanishing baryon chemical poten-
tial were compared to lattice data, and the potentials were tuned to reach a
good agreement. Recall also from the introduction that various qualitative
features of QCD are matched by a judicious choice of asymptotic behavior of
the potentials, such as that chosen in V-QCD. This means that by choosing
a set of potentials from [103], we can do the computations in this chapter
with a holographic model of QCD which matches real QCD to the largest
extent possible at the time of this writing.

In particular, we will use potentials 7a from [103], which for convenience
can be found in appendix A.2. In upcoming work which is not part of this
thesis, the analysis from this chapter will be repeated for several other pos-
sible choices to investigate to what extent our prediction from this chapter
is a generic prediction from V-QCD as opposed to one for this specific set of
potentials.

By the procedure outlined in this chapter it turns out to indeed be possible
to construct an equation of state, which, in some sense, one can then see as a
sort of ‘extrapolation’ of lattice data to the neutron star regime. Moreover,
it turns out that the EoS one obtains in this way is compatible with all
presently known constraints, and is hence a viable candidate. One thing
that should also be emphasised though, is that constructing this EoS can
not yet be done from the V-QCD action plus the chosen potentials without
making approximations. Wherever these approximations occur they will be
pointed out, but the task of improving the approximations further will be
left for future work.

In the first section of this chapter, which is based on [160], we will obtain
the holographic equation of state directly from the V-QCD action. This EoS
will, for reasons we will see below, be assumed to approximate the true EoS
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best in the regime of high density, and is expected to not work very well in the
low density regime. In the second section, based on [161], we will introduce a
matching procedure between the EoS from holography, and a nuclear matter
equation of state coming from an effective Skyrme nucleon-nucleon interac-
tion which is expected to work better in the low density regime [162,163]. We
will then conclude this chapter by exploring the observational consequences
of the resulting hybrid equation of state. For completeness, note that section
3 of [160] will not be covered, as it does not lead to reasonable neutron star
physics.

3.1 Baryons in V-QCD

As was discussed in the introduction, baryons arise in holography as solitonic
objects living in the bulk. In V-QCD, the fields responsible for this are the
gauge fields (Aµ

L)
ij and (Aµ

R)
ij, where the i and j are flavor indices. These

fields are dual to the globally conserved currents

q̄iγµ(1± γ5)q
j/2.

In the previous chapter, the trace part of AL +AR has already been used as
the source for the conserved total baryon number, i.e. the baryon chemical
potential. In that analysis however, the other components of AL/R were set
to zero. In this section, we do need to take those components into account.

Before moving on to a brief summary of the steps required for performing
this analysis, let us first fix a few conventions that will be used throughout
this section. This is to keep notational consistency with [160]. Firstly, we
will denote spacetime indices with capital latin characters, and we keep the
following convention for the field strength tensors:

F(L/R) = dAL/R − iAL/R ∧ AL/R .

Also, note that when refering to an expression which applies to both left
and right handed gauge fields, we will use L/R to denote this. Furthermore,
since the L and R labels are indeed just labels, we will not be consistent in
putting them up or down. Instead they will be put in whichever place is
visually convenient for a given formula. Lastly note that since we use capital
latin characters for spacetime indices, the labels for left and right handed
gauge fields will be denoted with brackets as (L) and (R) whenever there is
a possibility for confusion.
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In the following subsections, we will first expand the non-Abelian part of
the DBI action to first order in the gauge fields, after which we will examine
the Chern-Simons terms. After that, we will introduce a homogeneous ap-
proximation, which reduces the degrees of freedom to a single field h. This
field is discontinuous at some point in the bulk, where the discontinuity can
be related to the baryon number density. To treat the discontinuity properly,
one it is therefore hard to perform the computation in the grand canonical
ensemble where we derive the action. For this reason we proceed to take a
Legendre transform, and we finally derive an action involving h which, when
integrated on-shell, gives one the free energy density (in the canonical en-
semble). We will briefly discuss how this is done numerically, and finally the
result is Legendre transformed back into the grand canonical ensemble, hence
giving us the phase diagram and the equation of state. The last subsection
will then be devoted to a discussion of these results.

3.1.1 Expansion of the DBI action

The starting point for this subsection is the full flavored DBI action (1.12)
introduced in section 1.5.1, which we repeat here for convenience:

SDBI = −1

2
M3Nc Tr

∫
d5x (3.1)

×
(
Vf (λ, T

†T )
√
− detA(L) + Vf (λ, TT

†)
√
− detA(R)

)
,

where we have

A
(L)
MN = gMN + w(λ, T )F

(L)
MN +

κ(λ, T )

2

[
(DMT )

†(DNT ) + (DNT )
†(DMT )

]
,

A
(R)
MN = gMN + w(λ, T )F

(R)
MN +

κ(λ, T )

2

[
(DMT )(DNT )

† + (DNT )(DMT )
†
]
,

(3.2)

and the covariant derivative for T is given by

DMT = ∂MT + iTAL
M − iAR

MT.

Note that the non-Abelian part of this action is in principle ambiguous be-
cause the order of the gauge fields is not specified, and its full form is not
completely known. The first few terms as a series in F are known precisely
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though [164–167], and hence we will here also use a series expansion in F .
In fact, we will consider only the first non-Abelian correction on top of an
Abelian background. Using this restriction, the ambiguities are absent, and
the trace in 3.1 does not require a special prescription, and can be taken
to be an ordinary trace. Obviously, using an expansion in the non-Abelian
field strengths assumes implicitly that these fields are small. This is one of
the points where the present analysis could potentially be improved in the
future, as it would be interesting to take the next order in the expansion into
account to see by how much the result changes. An additional simplifying
assumption we make is to take the tachyon to be flavor independent

T = τ(r)INf
,

just as what was done in the diagonalized DBI action used in chapter 2.

The first step towards expanding in the non-Abelian part of the gauge
field is to split up AL/R into an Abelian part, which contains the Φ field
familiar from chapter 2, and a non-Abelian part. To do this, we employ a
slight abuse of notation and substitute

AL/R 7→ INf
Φ dt+ AL/R, (3.3)

where we treat AL/R as small perturbations, while Φ is kept to all orders.
This split is artificial, however, and to make the following well-defined we
have to impose the following condition on the non-Abelian part of the gauge
field: ∫

d4xTr
(
F

(L)
rt + F

(R)
rt

)
= 0. (3.4)

After performing the substitution (3.3) into (3.2) and expanding for small
AL/R, we obtain

A
(L)
MN = gMN + κ(λ)δrMδ

r
N(τ

′)2 + w(λ)(δrMδ
t
N − δtMδ

r
N)Φ

′ + w(λ)F
(L)
MN

+
κ(λ)τ 2

2
(AMAN + ANAM) , (3.5)

where we define A = AL − AR.
1 One can obtain a similar expression for

A
(R)
MN . One next has to substitute this last expression into (3.1) to obtain an

1In this chapter, the prime always denotes a derivative with respect to r.

103



CHAPTER 3. HOLOGRAPHIC BARYONS AND NEUTRON STARS

action quadratic in the non-Abelian gauge fields. To do this, it is convenient
to define the ‘effective metric’:

g̃MN ≡ gMN + κ(λ)δrMδ
r
N(τ

′)2 + w(λ)(δrMδ
t
N − δtMδ

r
N)Φ

′,

which leads to the following two identities:
(
g̃−1
)MP

A
(L)
PN = δMN + w(λ)

(
g̃−1
)MP

F
(L)
PN

+
κ(λ)τ 2

2

(
g̃−1
)MP

(APAN + ANAP ) ,
(
g̃−1
)MN

F
(L)
NM = 2Ξ−1e−4Aw(λ)Φ′F

(L)
rt ,

where

Ξ =
det g̃

det g
= 1 + e−2Afκ(λ)(τ ′)2 − e−4Aw(λ)2(Φ′)2.

This subsequently leads to the following expression, where we keep all terms
quadratic in AL/R and FL/R:

√
− detA(L) ≃

√
− det g̃

[
1 + Ξ−1e−4Aw(λ)2Φ′F

(L)
rt

+
κ(λ)τ 2

2

(
g̃−1
)MN

s
AMAN

− w(λ)2

4

(
g̃−1
)MN

s
F

(L)
NP

(
g̃−1
)PQ

s
F

(L)
QM

]
,

where we define the diagonal part of the effective metric as

(g̃−1)s = e−2A diag
(
−f−1Ξ−1(1 + e−2Afκ(λ)(τ ′)2), 1, 1, 1, fΞ−1

)
,

with the indices ordered as (t, x1, x2, x3, r).
Putting this all together, including the analogous term for A(R), one

obtains

S
(0)
DBI = −M3NcNf

∫
d5xVf (λ)

√
− det g

×
√
1 + e−2Afκ(λ)(τ ′)2 − e−4Aw(λ)2(Φ′)2, (3.6)

S
(1)
DBI = −M3Nc

∫
d5xVf (λ)

√
− det g

√
Ξ

[
κ(λ)τ 2

2

(
g̃−1
)MN

s
TrAMAN

− w(λ)2

8

(
g̃−1
)MN

s

(
g̃−1
)PQ

s
Tr
(
F

(L)
NPF

(L)
QM + F

(R)
NPF

(R)
QM

)]
, (3.7)
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where the terms involving F
(L/R)
rt cancel due to (3.4), and where we split up

the zeroth and first order in the expansion. With the last expression we have
found the first part of the action for the non-Abelian gauge fields. In the
next subsection, we will discuss the terms coming from the Chern-Simons
section of V-QCD.

3.1.2 Obtaining baryon number from the Chern-Simons
action

Before stating the Chern-Simons (CS) action, let us first discuss why this
part of the V-QCD action is important for describing baryons. In the ap-
proximations that follow, we will not attempt to backreact the baryons onto
the background geometry, which is taken to be a thermal gas. In particular,
this means that Φ′ will be taken to be zero throughout the bulk in the compu-
tation of the background geometry. This would mean that the gauge fields
don’t respond to a change in chemical potential, which is something they
should do since they carry the correct charge. The Chern-Simons action pro-
vide such a coupling, and indeed coupling Φ to AL/R is entirely appropriate,
as we will see that the baryon number one can derive from the Chern-Simons
action is a total derivative, and hence counts solitons, which is exactly how
baryons arise.

We will now state the Chern-Simons action itself, which depends on a CP-
odd potential Va(λ, τ) [150]. This dependence is highly non-trivial though, as
the explicit form of the Chern-Simons action changes with different choices
of Va. The reason for this is that as one changes Va in a non-trivial way,
gauge invariance and other essential properties are usually spoiled. In this
chapter, we choose a string motivated ansatz, namely

Va(λ, τ) = e−bτ2 , (3.8)

where the constant b is introduced with the motivation that if one is to have
regular IR solutions at a finite QCD θ-angle, the contributions from the DBI
action need to dominate over those coming from the CS action, which is
achieved provided that b > 1 [150]. We will now set b = 1 for notational
simplicity. Later we will restore b by rescaling τ .2 The CS action is now
given by [92]:

SCS =
iNc

4π2

∫
Ω5,

2Note that this rescaling happens only in the CS action.
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where

Ω5 =
1

6
Tr e−τ2

{
−iAL ∧ F (L) ∧ F (L) +

1

2
AL ∧ AL ∧ AL ∧ F (L)

+
i

10
AL ∧ AL ∧ AL ∧ AL ∧ AL + iAR ∧ F (R) ∧ F (R)

− 1

2
AR ∧ AR ∧ AR ∧ F (R) − i

10
AR ∧ AR ∧ AR ∧ AR ∧ AR

+ τ 2
[
iAL ∧ F (R) ∧ F (R) − iAR ∧ F (L) ∧ F (L)

+
i

2
(AL−AR) ∧ (F (L) ∧ F (R) + F (R) ∧ F (L))

+
1

2
AL ∧ AL ∧ AL ∧ F (L) − 1

2
AR ∧ AR ∧ AR ∧ F (R)

+
i

10
AL ∧ AL ∧ AL ∧ AL ∧ AL − i

10
AR ∧ AR ∧ AR ∧ AR ∧ AR

]

+ iτ 3 dτ ∧
[
(AL ∧ AR − AR ∧ AL) ∧ (F (L) + F (R))

+ iAL ∧ AL ∧ AL ∧ AR − i

2
AL ∧ AR ∧ AL ∧ AR

+ iAL ∧ AR ∧ AR ∧ AR

]

+
i

20
τ 4(AL − AR) ∧ (AL − AR) ∧ (AL − AR) ∧ (AL − AR) ∧ (AL − AR)

}

Now, to extract the coupling between Φ and the non-Abelian terms in Ω5,
we make the same substitution (3.3) as in the previous subsection, and collect
all terms involving Φ. To do this, it turns out to be useful to first modify Ω5

by a total derivative, since Ω5 is only defined up to total derivatives. The
modification made is the following:

12Ω̃5 = 12Ω5 + iTr d
[
e−τ2Φdt ∧ (4AL ∧ F (L) + iAL ∧ AL ∧ AL − 4AR ∧ F (R)

− iAR ∧ AR ∧ AR)
]
+ iTr d

[
e−τ2τ 2Φdt ∧ (−2AL ∧ F (L) − 6AL ∧ F (R)

+ iAL ∧ AL ∧ AL + 6AR ∧ F (L) + 2AR ∧ F (R) − iAR ∧ AR ∧ AR)
]
.
(3.9)

Now one can check that

Ω̃5 = Ω5

∣∣
Φ=0

+
1

6
Φ dt ∧H(Φ)

4 ,
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with3

eτ
2

H
(Φ)
4 = Tr

[
− 3iF (L) ∧ F (L) + 3iF (R) ∧ F (R)

+ 6iτdτ ∧ (AL − AR) ∧ (F (L) + F (R))

+ 3τ 2(AL − AR) ∧ (AL − AR) ∧ (F (L) − F (R))

+ τ 3dτ ∧ (−4iAL ∧ F (R) + 4iAR ∧ F (L) + 2AR ∧ AL ∧ AL

− 2AR ∧ AR ∧ AL − 2AL ∧ AL ∧ AL + 2AR ∧ AR ∧ AR)
]
.

Using a variation of the action with respect to Φ just as in section 2.1.4, one
obtains the number density

̺ = − δSV−QCD

δΦ′

∣∣∣∣
bdry

=

∫
dr
δSV−QCD

δΦ
,

where we have used the Φ equation of motion in the last equality. The baryon
number is therefore now given by:

NcNb =

∫
drd3x

δSCS

δΦ
=

iNc

24π2

∫
H

(Φ)
4 , (3.10)

where Nb is the total baryon number. To conclude this discussion of the CS
action, note that indeed, as was mentioned at the start of this subsection,
that H

(Φ)
4 is indeed exact:

H
(Φ)
4 = Tr d

[
e−τ2

(
− 3iAL ∧ F (L) + 3iAR ∧ F (R)

+ AL ∧ AL ∧ AL − AR ∧ AR ∧ AR

+ τ 2(AL − AR) ∧ (AL − AR) ∧ (AL − AR)

+ 3iτdτ ∧ (AL ∧ AR − AR ∧ AL)

− 2iτ 3dτ ∧ (AL ∧ AR − AR ∧ AL)
)]
. (3.11)

In the next subsection, we will take the next step towards including a
holographic treatment of baryons in V-QCD, namely the introduction of a
homogeneous approximation. This will reduce the degrees of freedom to one
single field h.

3Note that one has to use that τ and Φ both only depend on the bulk coordinate, and
hence dτ ∧ dΦ = 0.
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3.1.3 The homogeneous approximation

In principle, we could now attempt to construct a soliton dual to a baryon in
V-QCD by solving the action defined by (3.6) and (3.7), while using (3.10)
as a boundary condition to impose a fixed baryon number. One could sub-
sequently put many such solitons together to achieve a finite baryon number
density. While this has been successfully done using approximate methods
in for example the Witten-Sakai-Sugimoto (WSS) model [60–62], this is very
challenging. The reason for this is that the required solutions have non-trivial
spatial profiles, and hence to obtain them one needs to solve PDEs, and not
only that, the requirement of imposing a fixed number of baryons turns the
problem into a particularly hard one.

To make progress, we once again look to the WSS model for inspiration, as
approximations have been developed there in a controlled setup [63–81]. The
particular approach we will follow is a homogeneous approach [78,80], and as
the name suggests, this reduces the problem to a spatially homogeneous one,
which simplifies the problem to the solving of ODEs, for which we can use
standard techniques. This is not the only possible way forward though. A
similar approach to the one we will follow was developed in the WSS model
in [81], and this approach can also be adapted for V-QCD using similar
techniques to the ones that will be described below, but doing so is beyond
the scope of this thesis.

The idea behind our homogeneous approach is to assume a high density
of baryons. These will energetically prefer to be located at some coordinate
distance rc in the bulk.4 At r = rc, there will therefore be a very non-trivial
and highly inhomogeneous configuration of gauge fields. Far enough away
from this region, however, one can approximate the gauge fields as being
homogeneous, just as when describing an electrically charged plate one does
not have to worry that the plate is made up out of atoms if one is solely
interested in the electric field far enough away.

The assumption we will now make is to divide the bulk into three regions:
two regions away from rc where the gauge field is homogeneous, and a region
around rc which we ignore, and which we take to be infinitesimally thin. We
replace instead this region around rc by a discontinuity in h at rc. If one

4Note that this is non-trivial. It could well happen that there exists no such rc, and
in that case the baryonic phase is unstable. As we shall see, in our setup the baryons
are stable, and only in the region in the phase diagram where one would expect this to
happen.
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once again looks at the electric plate analogy, this means that if asked what
for example the total energy stored in the electric field is, we choose to only
include the field outside the plate, which we assume to be homogeneous, and
we ignore the fields inside the plate, which we cannot easily describe. Of
course this approach is not perfect, but it is expected that one does obtain a
qualitatively correct description. In the same way, we will likely not obtain
the correct on-shell action in this manner, but we can still hope that the de-
pendence of the on-shell action on the baryon chemical potential is captured.
Of course we have no way of checking whether this actually happens without
doing the full calculation, but if this happens we can already learn valuable
information about the equation of state this way. In particular, while the
equation of state would only be reliable up to an overall factor, the speed of
sound would be unaffected by such a deviation. Indeed, in section 3.2, we
will make precisely this assumption, and take the speed of sound as input
from the holographic model.

Concretely, the discussion from the previous chapter means that we set
Nf = 2 and hence take

Ai
L = −Ai

R = h(r)σi, (3.12)

with σi the Pauli matrices. Here it is important to note that (3.12) respects
chiral symmetry and parity [168,169]. We take all integrals to mean

∫ ∞

0

dr 7→
(∫ r−c

0

+

∫ ∞

r+c

)
dr ≡ lim

ǫ→0+

(∫ rc−ǫ

0

+

∫ ∞

rc+ǫ

)
dr.

Specifically, this means that there are no delta function contributions at rc,
which would otherwise come from various derivatives appearing in equations
of motion.

Now that the prescription is known, we can start substituting (3.12) into
(3.7) and (3.11). Doing this yields

S
(1)
DBI = −12M3Nc

∫
d5xVf (λ)e

5A
√
Ξ

[
κ(λ)τ 2e−2Ah2 + w(λ)2e−4Ah4

+
1

4
w(λ)2e−4AfΞ−1 (h′)

2

]
, (3.13)

and
∫
dt ∧H(Φ)

4 = 48i

∫
d5x

d

dr

[
e−b τ(r)2h(r)3(1− 2b τ(r)2)

]
, (3.14)
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respectively. Before collecting these two results into the complete action for h,
note that, were it not for the discontinuity at rc, (3.14) would always evaluate
to zero due to the asymptotic behavior of the tachyon, which diverges towards
the IR, and h, which should vanish on the boundary because we do not want
to introduce a source for the baryon charge. This is not surprising given that
H

(Φ)
4 is exact, but it does show that the baryon number in the solutions is

indeed sourced at the discontinuity, as is appropriate in this approximation.

We conclude this subsection by substituting (3.14) into (3.10), and then
combining this result with (3.6) and (3.13). This results in the action for the
homogeneous gauge field h:

Sh = S
(0)
DBI + S

(1)
DBI + SCS = −2M3Nc

∫
d5xVf (λ)e

5A
√
Ξ

×
[
1 + 6κ(λ)τ 2e−2Ah2 + 6w(λ)2e−4Ah4 +

3

2
w(λ)2e−4AfΞ−1 (h′)

2

]

− 2Nc

π2

∫
d5xΦ

d

dr

[
e−b τ2h3(1− 2b τ 2)

]
. (3.15)

This puts the action for the non-Abelian gauge fields in a relatively simple
form, containing just a single field h. In the next subsection, we will continue
the analysis by examining the discontinuity, as we will need to decide by how
much h should be discontinuous.

3.1.4 The Legendre transformed action

In this subsection, we will derive a condition that needs to be satisfied at the
discontinuity. In fact, this condition will completely fix the available freedom
at the discontinuity, except for its location, which we’ll get back to in the
next subsection. We will also see that this condition relates the jump in h
at the discontinuity to the baryon number density. This makes it hard to
perform the calculation in the grand canonical ensemble, as we would need
to extract the baryon number density from the solution, and simultaneously
also impose it as a condition at the discontinuity. The solution to this will
be to perform a Legendre transform, after which we eliminate Φ in favor of
the baryon number density. This gives us a different action, namely one in
the canonical ensemble, which we will then solve in the next subsection.

To start, we derive the baryon number density from (3.15) in the same
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way as before:

ρ = −δSh

δΦ′
= −Vρw(λ)

2e−4AΦ′

√
Ξ

(3.16)

×
[
1 + 6κ(λ)τ 2e−2Ah2 + 6w(λ)2e−4Ah4 − 3

2
w(λ)2e−4AfΞ−1 (h′)

2

]
,

where we recall that Ξ depends on Φ′. Here we also introduced the abbrevi-
ation

Vρ = 2M3NcVf (λ)e
5A. (3.17)

From the Φ equation of motion, we can obtain the following:

ρ′ = − d

dr

δSh

δΦ′
= −δSh

δΦ
=

2Nc

π2

d

dr

[
e−b τ2h3(1− 2b τ 2)

]
.

Since we can ignore any delta function contributions at rc, ρ is continuous,
and we can then derive

ρ =

{
̺+ 2Nc

π2 e
−b τ2h3(1− 2b τ 2) , (r < rc)

2Nc

π2 e
−b τ2h3(1− 2b τ 2) , (r > rc)

(3.18)

where we can immediately read off ̺ as the baryon number density on the
boundary, which is the physical baryon number density. Since ρ is continuous,
this implies that h is discontinuous, and from the above equation one can
derive that

̺ =
2Nc

π2
e−b τ(rc)2(1− 2b τ(rc)

2) Disch3(rc), (3.19)

where we define the discontinuity as

Disc g(r) ≡ lim
ǫ→0+

(g(r + ǫ)− g(r − ǫ)) .

Next, we perform the Legendre transformation to the action S̃h, whose
on-shell value will correspond to the free energy, as follows:

S̃h = Sh −
∫
d4xΦ(0)ρ(0) = Sh +

∫
d5x

d

dr
[Φρ] ,

where we notice that

SCS =

∫
d5xΦρ′.
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Putting these two equations together, one obtains

S̃h = SDBI +

∫
d5xΦ′ρ. (3.20)

To arrive at the final Legendre transformed action, there is one last non-trivial
step. We need to eliminate Φ′ from the action. The way to do this is to solve
(3.16) for Φ′. This cannot be done analytically, but one can obtain Φ′ as a
series expansion, where higher order terms correspond to higher powers of
FL/R, which can by our assumptions be ignored. Performing this calculation
leads to

Φ′ = − Gρ

Vρw2e−4A

√
1 + ρ2 (Vρwe−2A)−2

(3.21)

×
[
1− 6κτ 2e−2Ah2 + 6w2e−4Ah4

1 + ρ2 (Vρwe−2A)−2 +
3

2

w2e−4Af(h′)2

G2

]
,

with

G =

√
1 + fκe−2A (τ ′)2

as in chapter 2. Finally, we can substitute (3.21) into (3.20) to obtain the
Legendre transformed action:

S̃h = −
∫
d5xVρG

√
1 +

ρ2

(Vρwe−2A)2
(3.22)

×
[
1 +

6w2e−4Ah4 + 6κτ 2e−2Ah2

1 + ρ2 (Vρwe−2A)−2 +
3

2

w2e−4Af(h′)2

G2

]
.

We have now arrived at the action that we will solve numerically. In the
next section, some important points regarding how this should be done will
be given.

3.1.5 Numerical method

With (3.22), we now have an action for h, which, by substituting (3.18), we
can solve. In this subsection, we will discuss step by step how this is done,
and how one can finally obtain the grand potential density of the baryonic

112



3.1. BARYONS IN V-QCD

phase as a function of the baryon chemical potential. Using this, one can
construct the phase diagram and compute the equation of state.

We start the process by computing a background metric and profiles for
λ(r), τ(r) and Φ(r) in the same way as done in chapter 2. For this background
we will use the thermal gas background, as this is expected to be the only
type of solution that will be dominant in the phase diagram.5 Recall that we
will not backreact the non-Abelian gauge fields onto these background fields,
which means that we will use the same pre-computed background for all the
solutions for h that we will generate in the rest of this subsection.

The general idea for computing the solutions for h is that we want to
minimize the baryon action (3.22) while keeping ̺ fixed in (3.18). In the
continuous sections of the bulk, this means that we simply have to satisfy
the equations of motion, but this also means that we have to minimize other
free parameters other than ̺. In particular, h has boundary conditions at
the boundary and in the deep IR. Another remaining free parameter appears
to be the location of the discontinuity. The location, however, is completely
fixed by the two boundary conditions for h and (3.19).

At the boundary, the equations of motion imply that

h(r) = C1 + C2r
2 +O(r3).

However a non-vanishing C1 would imply a source for the non-Abelian gauge
field, and hence we set C1 = 0. This leaves us with a boundary condition at
the boundary parameterized by C2. In the deep IR, it turns out that

h ∼ h0 exp
[
−Cττ(r)

2/r2
]
,

where Cτ is a constant that can be expressed in terms of the potentials. This
in principle gives us a second boundary condition h0. However, such solutions
will be left out of the remainder of the discussion, as we have numerically
checked that the value of h0 which minimizes the action is consistent with
zero. Hence, for simplicity, we will just set h(r) = 0 for r > rc. If desired,
the discussion below can be easily extended to reinstate h0. With h0 set to
zero, (3.19) reduces to

̺ = −2Nc

π2
e−b τ(rc)2(1− 2b τ(rc)

2)h3(rc). (3.23)

5Note that this means that Φ = 0.
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This means that in order to find rc, we just monitor (3.23) as we solve for h
by shooting from the boundary, and when we detect a sign change, we iterate
to find the rc where (3.23) is satisfied.

Summarizing the previous discussion, we now need to shoot from the
boundary, solving the equations of motion for h until we find rc by means of
(3.23). All of this we have to do for different C2, where in the end we must
minimize the on-shell action with respect to C2. For this, there is one hurdle
remaining, namely that the action diverges towards the boundary, implying
that we need holographic renormalization to evaluate it. There is a natural
choice to use for the subtraction, and that is to subtract the on-shell action
for h = 0. This corresponds to the on-shell action of a solution without
baryons, namely the thermal gas. In this way, by subtracting the action
with h set to zero from the on-shell action with non-zero h, we find exactly
the difference in free energy density between the baryonic solutions and the
thermal gas solution.6

Using all of the steps above, one is able to compute the free energy
F (̺, C2) for any desired ̺ and C2. In the final step towards minimizing
the free energy, one performs this computation for a wide range of values for
C2 given a fixed ̺. The minimal value found in this way then yields the true
free energy F (̺), where we note that this minimal value is a stable minimum.
Finally, performing a Legendre transform on this last result enables one to
obtain the grand potential, or equivalently, the pressure p(µ), as desired.

3.1.6 Results

We are now ready to discuss the results. For this, we will fill in the value of
M corresponding to potentials 7a from [103], and we will also set Nc = 3.
Note though that our value for Nf is not entirely consistent between the
backgrounds, which are used also for the deconfined phase, and the baryonic
solutions. For the baryonic solutions we use Nf = 2, while the backgrounds
use Nf = 3, which is the most appropriate given that the potentials were
fitted to lattice data. This is another source of uncertainty, that ultimately
ends up modifying the overall normalization of the pressure. Lastly, note that
for all the results in this section, we use b = 10 for the parameter introduced
in (3.8).

6Note that this subtraction, as it does not depend on h, does not alter any of the above
discussion.
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As a first step in examining the consequences of including baryons into
V-QCD, let us examine the resulting phase diagram, which is shown in figure
3.1. Note that only the baryonic phase in this phase diagram was computed
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Figure 3.1: Phase diagram of V-QCD including the baryonic phase, with the
free parameter b = 10.

using the methods described in this chapter. The other phases were computed
using the methods described in chapter 2. The phase diagram itself contains
three phases:

• A thermal gas phase at small temperatures and chemical potentials.
This phase features confinement and chiral symmetry breaking, similar
to the vacuum of real QCD. This phase does not feature any temper-
ature dependence though, as this is suppressed by powers of Nc [102],
and hence doesn’t appear in the large Nc limit.

• A baryonic phase at small temperatures and intermediate chemical po-
tentials. This phase shares the features of the thermal gas phase that
were mentioned above, and in addition also has condensed baryons.

• A deconfined, chirally symmetric phase at large temperatures and/or
large chemical potentials. This phase is akin to the quark-gluon plasma
phase found in real QCD. Due to the construction of the potentials,
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this phase also has an equation of state at vanishing chemical potential
which is fitted to that of real QCD.

The resulting appears to be qualitatively reasonable within the limitations
of the approach, such as the large Nc limit. The baryonic phase appears in
the right place in the phase diagram, and importantly, the baryonic phase
eventually yields to a deconfined phase at some large chemical potential.
This is in contrast to a similar approach in the WSS model [80].

Before moving on to the equation of state, it is a good check to look at
the location of the discontinuity. This is shown in figure 3.2. One can see
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Figure 3.2: Location of the discontinuity in the bulk as a function of baryon
chemical potential µ, with b = 10.

that the discontinuity sits at a ‘natural’ location, as in units of Λ, which was
introduced in chapter 2, this distance is O(1).

To conclude this section, we will examine the equation of state at zero
temperature. The pressure as a function of chemical potential is shown in fig-
ure 3.3. The phase transitions can clearly be seen, and the latent heat associ-
ated to the vacuum to baryon transition is ∆ǫ ≈ 51MeV/fm3, while the latent
heat for the baryonic to deconfined phase transition is ∆ǫ ≈ 687MeV/fm3.
In figure 3.4, we show the isothermal speed of sound at zero temperature,
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Figure 3.3: Pressure as a function of chemical potential at T = 0, and using
b = 10. Unstable branches are denoted with dashed lines.

given by

c2s =

(
∂p

∂ǫ

)

T=0

,

with p and ǫ the pressure and energy density, respectively. While this is
equivalent to figure 3.3 up to an integration constant, this is a convenient
additional way of visualizing the equation of state. In the thermal gas phase,
the pressure and energy density are both zero, so the speed of sound vanishes.
In the baryonic and deconfined phases, it can be seen that the speed of sound
exceeds the conformal value in two places. This indicates a very stiff equation
of state. As it turns out, a stiff equation of state is likely needed to pass
astrophysical constraints [170,171].

Summarizing, in this section we have constructed baryonic solutions in
V-QCD using a homogeneous approximation. In the next section, we will
use the resulting equation of state to compute neutron star properties, and
thereby investigate the potentially observable consequences from such a strongly
coupled approach.
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Figure 3.4: Speed of sound squared at T = 0. For reference the conformal
value of c2s = 1/3 is shown as a dashed line.

3.2 Hybrid neutron star equations of state

In the previous section, we constructed an equation of state in V-QCD using
a homogeneous approach. This equation of state is likely to be most accu-
rate in the regime of large chemical potential, as the homogeneous ansatz
assumes a large baryon density. Also, we reasoned that because the homoge-
neous ansatz only really looks at the tails of the soltions, the on-shell action,
and hence the pressure, is probably not correct by an overall factor. Mo-
tivated by this, in this section, based on [161], we will construct a hybrid
equation of state, which is equal to a nuclear matter model at low densities,
and has speed of sound equal to the one constructed in the previous section
at high densities. We will then examine the potentially observable conse-
quences from this hybrid equation of state, namely the mass-radius relation,
the tidal deformability, and post-merger gravitational waveforms resulting
from a binary neutron star merger.

3.2.1 Matching procedure

As briefly mentioned above, there are two ingredients that go into the hybrid
equation of state, namely a low density nuclear matter model, and V-QCD.
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For the nuclear matter model, we will use the SLy equation of state [162,163].
This EoS is based on effective Skyrme interactions between nucleons. For the
V-QCD part of the EoS, we develop a family of solutions, parameterized by
varying the parameter b as defined in (3.8).

To perform the matching, we take the two equations of state,

pSLy(µ), pV-QCD(µ, b),

with b fixed. We then multiply the pressure belonging to the baryonic phase7

in V-QCD with a constant cb to reflect that we take only the speed of sound
as input from V-QCD, and then we demand that

pSLy(µ
∗) = cb pV-QCD(µ

∗, b),

∂µpSLy(µ
∗) = cb ∂µpV-QCD(µ

∗, b),

by choosing appropriate µ∗ and cb. These two conditions together guarantee
that the phase transition between the SLy and V-QCD parts of the equation
of state is second order. The final equation of state is then given by

phybrid(µ) =

{
pSLy(µ) µ < µ∗,

cb pV-QCD(µ) µ ≥ µ∗.

Of course, these two parts should both just be different descriptions of the
same phase, so ideally there would be no phase transition at all. However,
a second order phase transition is the best one can do if one is only allowed
to change the location of the matching µ∗ and the normalization cb. One
could probably make the transition even smoother, but that would require
more ad hoc modifications of both EoS ingredients, for which we have no
justification.

In this way, for every chosen value of b, one obtains a hybrid EoS. This
resulting hybrid EoS is shown for several choices of b in figure 3.5. At low
densities, one can see that the hybrid EoS agrees with constraints coming
from effective low-density methods, indicated by the blue band. This is of
course true by construction, as this part of the EoS is equal to the SLy EoS,
which is itself constrained to satisfy this constraint. At high densities, the
hybrid EoS can be seen to agree with constraints from perturbative QCD at

7Note that we do not modify the pressure of the deconfined phase, as this has been
matched to lattice data in [103].
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Figure 3.5: Hybrid equation of state for different values of b. The blue
and orange bands show the constraints coming from effective low-density
methods and perturbative QCD, respectively. It can be seen that the hybrid
construction satisfies both of these constraints.

extremely large densities, indicated by the orange band. This is also true
by construction, because the asymptotics of the V-QCD potentials are con-
strained such that the deconfined phase of V-QCD satisfies this constraint.
Another interesting feature that one can see is that as b increases, the match-
ing chemical potential µ∗ increases as well. This effectively means that as
b increases, the proportion of the neutron stars described by SLy increases,
and equations of state with smaller b describe neutron stars with a relatively
larger part described by holography.

3.2.2 Mass-radius relation and tidal deformability

Now that we have a family of equations of state with input from hologra-
phy, one can start computing its observable consequences to compare how
well the equations of state compare to presently known constraints. One of
these observables is the mass-radius relation. Given an equation of state, the
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Tolman-Oppenheimer-Volkov equations can be solved to yield a relation be-
tween the mass and radius of a non-rotating neutron star. This mass-radius
relation is shown for the hybrid equations of state in figure 3.6. At some
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Figure 3.6: Mass-radius relation for the hybrid equation of state, for the
values of b also shown in figure 3.5. Also shown as a dashed line is the
observational lower bound on the maximum neutron star mass given by [32].

central density, the matter inside the neutron star undergoes a transition to
deconfined matter, corresponding to the horizontal lines in figure 3.5. The
kink that is visible in figure 3.6 corresponds to the central density at which
this happens, and the solutions to the left of this kink have a deconfined
quark matter core. The negative slope of the M–R relation for these neu-
tron stars with quark matter cores implies that these solutions are unstable
though, so the family of hybrid equations of state does not allow for stable
quark matter cores.

One observable that can be read off from the mass-radius relation is
the maximum mass of neutron stars, which for our family of equations of
state decreases with increasing b. This is an important observable, as the
mass of a neutron star is a quantity that can be experimentally measured
with a reasonably good accuracy. Indeed, [32] measured the mass of the
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pulsar J0348+0432 to be 2.01 ± 0.04M⊙. This immediately implies that
any equation of state that does not permit a stable neutron star of at least
about 2M⊙ is incompatible with this observation. Of course, due to the
uncertainty in the measurement of [32] it is not precisely clear where one
should draw the line, but for our equations of state this means that the EoS
corresponding to b = 10.65 is near the edge of exclusion at Mmax = 2.00M⊙.
In 2019, [33] measured a potentially even heavier neutron star, J0740+6620,
at M = 2.14+0.10

−0.09M⊙. Including this measurement, the hybrid EoS for b =
10.6 is about one standard deviation lighter than the one measured in [33],
so we will take b = 10.6 as our upper bound for b.

As it turns out, we can also obtain a lower bound for b. The reason
for this is that using the equation of state one can also compute the tidal
deformability Λ.8 The tidal deformability is a dimensionless number, which
for our family of hybrid equations of state decreases as a function of b. The
tidal deformability, as the name suggests, describes how easy it is for another
object to gravitationally deform the star, and in fact this quantity has an
influence on the gravitational wave signal of the inspiral phase of binary
neutron star mergers. From GW170817 as measured by LIGO/VIRGO, it
was not possible to measure the magnitude of Λ, but it was possible to extract
an upper bound of Λ . 580 at 90% confidence level for a neutron star of mass
1.4M⊙ [172]. For the hybrid equations of state, it turns out the b = 10.45
corresponds to Λ ≃ 680 for such a neutron star, which would be ruled out,
but b = 10.5 has Λ ≃ 550.

In this way we obtain a family of equations of state with input from
holography with 10.5 . b . 10.6 which are compatible with current (2020)
observational data. It is possible that future observations can constrain these
values further though. In particular, future results from NICER, which re-
cently published its first results [29], could potentially constrain the radius,
thereby putting another constraint on the equation of state. Also, with more
data, it is possible that the maximum mass constraint becomes more strin-
gent, and also tighter constraints on Λ could potentially rule out more, or
even perhaps all, values of b.

8This is not the same lambda as the one used in chapter 2.
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3.2.3 Holographic neutron star mergers

We saw in the previous subsection that the hybrid EoS does not exhibit
quark matter cores.9 An interesting question is whether there are any circum-
stances in which the phase transition would lead to observable consequences.
As there are no static solutions with deconfined matter, such circumstances
would have to be fleeting moments in a dynamical process. One such pro-
cess is a binary neutron star merger. The gravitational waves from such a
merger can be detected in LIGO/VIRGO, and as these detectors are up-
graded, and as new ones are built, detection capabilities continue to grow.
The gravitational waveform contains information about the equation of state,
both in the inspiral, as in the post-merger signal. In the inspiral part of the
waveform, the equation of state manifests itself mainly through the tidal
deformability Λ, which in fact we have already used to constrain the param-
eter b. Right after the merger, the single object is in a highly excited state,
and vibrates with characteristic frequencies, which depend on the equation
of state. These frequencies can in principle be detected in the corresponding
part of the waveform, though as of 2020 the post-merger signal has not been
detected.

In this subsection, we will perform simulations of equal mass neutron star
mergers, with the aim of extracting observable consequences of the hybrid
EoS from the resulting waveforms. We will restrict ourselves to equal mass
mergers, and the stars will be initialized on quasi-circular orbits with a diam-
eter of 45 km. Here the reason why the orbits are only quasi-circular instead
of circular is that the system continuously loses energy due to gravitational
wave emission, and the reason to assume vanishing eccentricity is that the
same gravitational wave emission tends to have circularized the orbits well
before the merger takes place [39, 173]. To generate these initial conditions,
we will use the publicly available LORENE pseudospectral code [174]. As
explained in the introduction, the subsequent merger is described by gen-
eral relativity plus general relativistic hydrodynamics [175]. To solve these
equations, we use the Einstein Toolkit [176–178], where we use the high-
order, high-resolution shock-capturing code WhiskyTHC [179–183], which
solves the ideal general relativistic hydrodynamics equations in conservative
form [184]. For the solution of the Einstein equations themselves, we use the
fourth-order finite differencing McLachlan code [185, 186], which solves the
Einstein equations in the CCZ4 formulation [187]. Here we use a “1 + log”

9This is not expected to change for rotating neutron stars.
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slicing condition, and a “Gamma-driver” shift condition [188,189].

In figure 3.7, one can see the result of such a simulation for a binary
neutron star merger where the two stars have mass equal to 1.3M⊙. The

Figure 3.7: Snapshots of the baryon number density at different times during
the merger of two M = 1.3M⊙ neutron stars, together with the resulting
gravitational wave signal. The gravitational wave signal is extrapolated to
an assumed distance of 40Mpc.

equation of state used for this simulation is the hybrid EoS with b = 10.5.
One can see that the signal starts with an inspiral phase where the stars
get increasingly close together as they radiate away energy in the form of
gravitational waves. Subsequently, when the stars touch, a highly excited
object forms, which continues to emit gravitational waves until it settles
down to a stable state. In this simulation, 40 ms after the merger no horizon
has yet formed, but it is unclear whether this simulation would eventually
collapse to a black hole. To investigate this, one would have to continue
the simulation for much longer past 40 ms, which is computationally very
expensive. For this reason, it is not clear whether the final state of this
merger simulation would be a neutron star or a black hole.

If the initial neutron stars are taken to be much heavier, an event horizon
will form immediately after the stars touch, and in this case the gravitational
wave signal dies down quickly after that. For the hybrid equation of state
with b = 10.5, we see this happening when the stars both have mass M =
1.5M⊙. In the intermediate case, something very interesting happens. In
figure 3.8, the result of a simulation of two neutron stars with masses equal
to 1.4M⊙ is shown, again with b = 10.5. In this case, after the merger a
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Figure 3.8: 3D snapshots of the baryon number density at different times
during the merger of two M = 1.4M⊙ neutron stars, where one quadrant
has been omitted for visibility, together with the gravitational wave signal
extrapolated to an assumed distance of 40Mpc.

highly excited object forms just as with the lighter stars, but now at 7.6ms,
some of the matter in the middle of the resulting object reaches densities large
enough to cross the phase transition into quark matter, which immediately
causes a collapse to a black hole. This is an example of phase transition
triggered collapse [190].

Together, these three cases describe the possible outcomes from a neutron
star merger for the hybrid equations of state.10 A quantity which contains a
lot of information is the power spectral density (PSD) [191]:

h̃(f) ≡
√

|
∫
h+(t)e−i2πft dt|2 + |

∫
h×(t)e−i2πft dt|2

2
,

where the integrations are performed from −7 to 24ms around the merger,
where t = 0 is defined as the maximum of the gravitational wave amplitude.
In figure 3.9, the PSD is shown for the three possible cases discussed above,
each with the hybrid equation of state with b = 10.5. Generically, the post-
merger signal contains three characteristic frequencies, labeled f1, f2 and
f3 [38]. Here f1 is a universal value which is determined by the compactness
M/R [191]. This implies that from f1 no information from the equation of
state can be obtained that couldn’t already be obtained from the mass-radius
relation. The other frequencies f2 and f3 depend on the equation of state

10In [190] there are also options which form remnants with quark matter cores, but this
is not possible for our equations of state, as these remnants would be unstable.
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Figure 3.9: Power spectrum density (PSD) for the hybrid EoS with b = 10.5.
The dotted lines indicate Gaussian fits to the curves, which determine the
characteristic frequencies f1, f2 and f3.

in a more non-trivial way, and therefore these frequencies would in principle
allow one to obtain additional information regarding the EoS. Note also that
the M = 1.5M⊙ case does not contain the characteristic frequencies in its
PSD. The reason for this is that the characteristic frequencies are caused by
oscillations of the dense matter, which are absent in this case, because the
configuration promptly collapses to a black hole.

A final interesting thing one can do, is to compare mergers of equal mass
neutron stars where one keeps the mass fixed at 1.3M⊙, while changing the
equation of state. In figure 3.10, the resulting PSD of such a comparison is
shown. Here we show the resulting PSD for the hybrid equations of state with
b = 10.5 and b = 10.6, as well as the SLy equation of state for comparison, so
that we can clearly see what the impact is of including input from holography
into the equation of state. The resulting f1 frequencies lie on the universal
curve proposed in [191]. The f2 peak shifts to significantly lower frequencies
for the hybrid equation of state. Note that this shift is larger for the b = 10.5
case, which has a smaller matching density, and therefore contains more input
from holography. Also, the f3 peak has a smaller amplitude for the hybrid
equations of state as compared to the pure SLy case.

In conclusion, the hybrid equation of state makes testable predictions
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Figure 3.10: Power spectrum density (PSD) for mergers of two M = 1.3M⊙

stars, with two hybrid equations of state, with b = 10.5 (red) and b =
10.6 (blue), and one with the SLy equation of state (green) for comparison.
The dotted lines indicate Gaussian fits to the curves, which determine the
characteristic frequencies f1, f2 and f3.

for various neutron star observables. The interesting aspect of this is that
holography gives us for the first time an approach to the EoS which is inher-
ently strongly coupled. In the future, one could refine the analysis from both
sections of this chapter to perhaps improve the reliability of the result.
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Chapter 4

Simulation of Heavy Ion
Collisions with Trajectum

In the last chapter, we studied the low-temperature, large chemical potential
region of the phase diagram using holography. This gave us insights on
how an explicitly strongly coupled framework such as holography can yield
observationally testable predictions. In this chapter, we will focus on another
region in the phase diagram, namely that of high temperature and close
to vanishing chemical potential, where a quark-gluon plasma (QGP) exists
(see [192] and references therein). To be precise, we will take the chemical
potential to be zero, but a small chemical potential could in principle be
added to the analysis presented here in the future. QCD matter in this
region of the phase diagram can be created in heavy ion collisions, such
as the ones performed at RHIC and LHC. At the LHC, the collisions are
performed at 2.76TeV and 5.02TeV, using lead-208 and xenon-129 nuclei,
as well as protons. In the future it is considered to collide oxygen-16 and
argon-40 as well, but as of 2020 no decision has been made.

Heavy ion collisions are able to provide us a unique insight into QCD,
and many quantities of theoretical interest can in principle be observed in
this way. Examples of these are the following questions:

• What does the initial state of a heavy ion collision look like?

• How can the dynamics of the matter created at the collision be de-
scribed before it can be described by hydrodynamics? After which
time does hydrodynamics apply?
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• What are the values of QGP transport coefficients like the shear viscos-
ity η and the bulk viscosity ζ? Can higher order transport coefficients
and relaxation times like τπ and τΠ be measured?

One first thing to note is that the question as to the nature of the equation of
state at vanishing chemical potential is not included. The reason for this is
that the finite temperature equation of state is well known from lattice QCD
computations [10,193]. While it is true that the dependence of the EoS on the
chemical potential is less well known,1 this is beyond the scope of this chapter,
since we will not consider finite chemical potential. A second thing to note
is that out of equilibrium properties, like how the initial state reaches local
equilibrium, and even near-equilibrium properties like transport coefficients,
are very difficult to compute on the lattice. In holography, however, many
of these quantities can be computed, and often give surprising results. A
famous example of this is the prediction that the ratio of the shear viscosity
over the entropy density of the QGP is given by [25–28]

η

s
=

1

4π
.

Another result from holography is that the matter created in the collision can
be described using hydrodynamics a very short time after the collision [23].
However, all of these results are computed under the assumption of infinite
coupling and infinite number of colors, so it is an interesting question how
well these results match the properties of an actual QGP.

Measuring these quantities of interest, however, is not as easy as it may
seem. Most observables in the final state of a heavy ion collision depend on
more than just one of the quantities of interest, making it difficult to mea-
sure an observable and subsequently inferring something about the quantity
of interest. What is possible though is to create a detailed model which sim-
ulates heavy ion collisions for different choices of the quantities of interest,
which we will from now on call ‘input parameters’. Such a model can then
produce predictions for many different observables for each particular set of
input parameters. By using such a model in a Bayesian analysis, it is then
possible to fit the input parameters to real experimental data, allowing one
to learn something about which input parameters fit the data best [196–204].

1This is only known on the lattice for relatively small values of the chemical potential
[194,195].
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In this chapter, we will construct such a model, called Trajectum, which
also includes code to analyze the results.2 While it will not perform any com-
putations using holography, many of its inputs will be inspired by holographic
results of which we would like to test the validity in experiments. The actual
Bayesian analysis will not be performed in this chapter, but the results will
be compared to section 5.3 of [24] as a check that Trajectum is able to repro-
duce known results. In the next section, we will explain the overall design
of Trajectum, after which we will explain the various components that work
together to create the simulation of the heavy ion collisions. Finally, we will
explain the observables which can be extracted from the resulting collisions,
and compare them to previous work.

4.1 Overall design of Trajectum

Of course, Trajectum is not the first code to perform the tasks described
above. Many codes exist which perform parts of the computation necessary
to simulate a collision [24, 205–230]. These codes then need to made to
work together though, where care must be taken to hand over the result of
each step to the next step in the computation in the right format.3 The
aim of Trajectum is to collect all of these steps and to reimplement them
into a framework which provides a standard interface between the various
required components. In this way, one ends up with two executables, collide
and analyze. The first of these computes some desired number of heavy
ion collisions with input parameters according to the user’s preference. At
the time of writing, collide does not provide a hadronic afterburner, but the
output of collide is in the correct format for use in UrQMD [228, 229]. The
output of UrQMD can subsequently be used in analyze, which is able to
compute a range of observables, which will be discussed below.

The advantage of enforcing a standard interface between the components
has one very clear advantage. For each component required for the simula-
tion, several choices are available. As an example, the simulation requires
initial conditions, for which several models exist. Of these, the following are

2Trajectum is the Roman name for the city of Utrecht, where this code was developed.
It also means bridge, which is appropriate, as the aim of Trajectum is to bridge the gap
between theory and experiment.

3Recently, a framework [231, 232] has been developed which automates this process,
but this was not known to the author during the development of Trajectum.
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implemented in collide:

• Monte Carlo Glauber [209–212],

• Ohio State University [213,214],

• TRENTo [215],

• Gubser flow [233–235].

When using collide, the user can choose which of these to use, and as they
adhere to the standard interface, they are guaranteed to work together cor-
rectly with the other components. Similarly, all the other components of
collide can be interchanged for various different options. The standard in-
terface is implemented in C++ using polymorphism.

As was mentioned above, many of the components implemented in Tra-
jectum are reimplementations of existing earlier work. In the sections below,
we will discuss each of the various components in detail. In certain places,
the original works have been extended or modified in order to address some
of the holography-inspired questions posed above. Wherever the implemen-
tation of an algorithm in Trajectum differs significantly from the one in the
corresponding earlier work, this will be clearly stated.

4.2 collide executable

As was mentioned in the introduction, a heavy ion collision is simulated
in several stages. This consists of a pre-equilibrium stage which provides
initial conditions for the hydrodynamical simulation of the QGP, followed by
a hydrodynamical evolution. From the hydrodynamical evolution a freeze-
out surface is computed, which is defined as an isotherm called Tfr. At this
freeze-out surface, the code translates from a continuous fluid description to
a discrete particle description. The particles must subsequently be written
to a file, so that they can be further processed by the hadronic afterburner
UrQMD, which simulates interactions between the particles produced up
to the point in time where they can be taken to be non-interacting. The
afterburner also simulates the decay of unstable particles.

These stages each translate into one or more components in collide. An
event is simulated in collide as follows: The component responsible for the
pre-equilibrium stage (called ‘initial conditions’) generates initial conditions
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for the hydrodynamical evolution. This is then passed to the component
for the hydrodynamical evolution. The component for the hydrodynamical
evolution (called ‘hydrodynamics model’) then evolves the evolution in time
step by step. For this it depends on two auxiliary components:

• A component (called ‘transport coefficients’) containing the equation
of state, as well as first and (if needed) second order transport coeffi-
cients.4

• A component (called ‘PDE solver’) which implements an algorithm for
solving partial differential equations.

By splitting off these components from the hydrodynamical evolution itself,
it becomes easier to alter the simulation, as one can easily implement a new
solver or set of transport coefficients. In principle, to do this it is not even
necessary to understand how each of the other components works. One only
needs to know how for example the transport coefficients should interface
with the framework provided by collide, which then guarantees that the new
set of transport coefficients correctly works together with the other compo-
nents.

After each time step is computed, the hydrodynamics model hands the
new state of the fluid over to the last component (called ‘hadronizer’), which
is responsible for computing the freeze-out surface and generating particles
from the fluid. When the hadronizer determines that after the last computed
time step there is no new addition to the freeze-out surface, the hadronizer
causes the entire computation to terminate, and collide will move on to the
next event. An important note here is that even though the wording in the
last sentence may suggest that collide waits for each event to be completed
before moving on to the next event, collide is actually multithreaded, and
will compute 20 simulations simultaneously.5

Summarizing, we have 5 different components which together simulate a
collision:

• Initial conditions,

• Hydrodynamics models,

4Note the slight abuse of terminology here. Usually the equation of state is not consid-
ered a transport coefficient, but for all purposes one could consider it a 0th order transport
coefficient, and we will do so throughout this chapter.

5If desired, multithreading can be turned off when compiling Trajectum.
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• Transport coefficients,

• PDE solvers,

• Hadronizers.

In the following subsections, each of these components will be explained. In
particular, all currently available options that the user can choose from will
be covered. Also, an important point to mention at this point is that we will
assume boost invariance, i.e. we solve hydrodynamics in 2+1D. This is done
by taking the following metric (called the Milne metric):

ds2 = dτ 2 − dx2 − dy2 − dη2

τ 2
, (4.1)

which is related to the Minkowski metric by the coordinate transformation

τ =
√
t2 − z2, η =

1

2
log

(
t+ z

t− z

)
,

with τ the proper time, and η the pseudorapidity. With this metric, boosts
correspond to shifts in η, and we can implement boost invariance by assuming
that all of the variables constituting the fluid have no η-dependence. Also, for
the rest of this section, we define the canonical order of variables (τ, x, y, η) =
(0, 1, 2, 3).

4.2.1 Initial conditions

As was briefly mentioned before, the aim of the initial conditions component
is to provide initial conditions to the hydrodynamical evolution. In collide,
there are four different sets of initial conditions implemented:

• Monte Carlo Glauber [209–212],

• Ohio State University [213,214],

• TRENTo [215],

• Gubser flow [233–235].
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In [233, 234], an analytical solution of viscous hydrodynamics was derived
under the assumption of a conformal equation of state, constant η/s and
ζ/s = 0. Gubser flow initial conditions implement initial conditions as a
time slice of this analytical solution. This provides a good non-trivial check
on the implementation of the numerical code to solve the hydrodynamical
evolution [235]. The other three initial conditions are phenomenological mod-
els attempting to describe the initial state of a heavy ion collision as well as
possible. They also include a model of the evolution from the proper time of
collision (τ = 0+) to the moment that the hydrodynamical evolution is ini-
tiated (denoted τfs). In the remaining paragraphs of this subsection, we will
discuss the various steps involved in all of these models. As the models are
rather similar in setup, this will be done for all three models simultaneously,
where we point out the differences where they occur.

The first step in all three remaining models is to determine the positions
of nucleons in both nuclei. For protons, this is simple. As there is only
one nucleon inside the nucleus, the single nucleon just sits in the center of
the nucleus. For the other nuclei impemented in collide, we assume that the
nucleons are distributed according to a Saxon-Woods distribution [236,237]:6

ρ(r, θ, φ) = ρ0
1 + w(r/R(θ))2

1 + exp
(

r−R(θ)
a

) , (4.2)

where ρ is the probability density to find a nucleon at radial distance r,
polar angle θ and azimuthal angle φ, ρ0 is a normalization factor, w and a
are parameters, and

R(θ) = R (1 + β2Y20(θ) + β4Y40(θ) + · · · ) .

Here R, β2 and β4 are more parameters, and Ynm are spherical harmonics.
The values for these parameters for the nuclei implemented in collide are
given in table 4.1. The nucleons constituting the two nuclei are sampled
from the corresponding Saxon-Woods distribution. In doing this care must be
taken that the axis of symmetry of the non-spherically symmetric nuclei needs
to point in a random direction. In TRENTo initial conditions, the nucleons

6Note that this is a probability density in Cartesian coordinates. When sampling from
the distribution, one can either sample x, y, z, then covert to r, θ, φ and accept with a
probability given by (4.2), or one can introduce a Jacobian to (4.2) and sample from it
directly.
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Nucleus R (fm) a (fm) w (fm) β2 β4
16O 2.608 0.513 -0.051 0 0

40Ar 3.73 0.62 -0.19 0 0
129Xe 5.36 0.59 0 0.161 -0.003
208Pb 6.62 0.546 0 0 0

Table 4.1: Saxon-Woods parameters for the different nuclei available in col-
lide.

also have to satisfy the property that the distance between two nucleons has
to be larger than a minimal distance dmin. This is enforced as follows: One
samples coordinates r, θ and φ according to (4.2). Then, starting from the
nucleons with the smallest r, φ is resampled in such a way that the nucleon
satisfies the minimal distance requirement with respect to all nucleons with
smaller r than itself. For all initial conditions, the sampled nucleons are
subsequently converted into Cartesian coordinates, where the z-coordinate
which points along the beam is discarded. The remaining coordinates are
given a random offset, reflecting the fact that the nuclei collide with a random
impact parameter.

The next step is to determine the locations of the constituents of each
nucleon. Here there is a difference between the initial conditions models
we are considering, as the Monte Carlo glauber model does not have nu-
clear substructure, the Ohio State University model has substructure with 3
constituents per nucleon, and the TRENTo model only optionally has sub-
structure, but with an arbitrary number of nucleons Nconst. For the initial
conditions without substructure, one can simply skip this step, and consider
a single constituent of each nucleon, located at the location of the corre-
sponding nucleon which was computed in the previous step. The procedure
below describes how constituents are sampled in the TRENTo model for ini-
tial conditions. The procedure for Ohio State University initial conditions
is parameterized differently, but is physically equivalent. In the TRENTo
model without substructure, nucleons are modelled as Gaussian blobs of
density with width w.7 In the version with substructure, there are Nconst

constituents, which are modelled as Gaussians blobs of density with width
v, sampled from a Gaussian distribution around the center of the nucleon,

7This is the standard notation. Note that this w is not the same as the one appearing
in the Saxon-Woods distribution.
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with width r. As it is convenient that the width parameter w from the model
without substructure corresponds roughly to the one with substructure, the
model with substructure is parameterized in terms of w and v, where v < w.
The width of the distribution of constituents r is then chosen as

r2 =
w2 − v2

1− 1
Nconst

. (4.3)

For each constituent in each nucleon, the position is sampled from a gaussian
with width r around the center of the corresponding nucleon. However, the
average of these sampled constituents does not necessarily correspond to the
center of the corresponding nucleon. Therefore, the constituents are moved
by such an amount so that the center does coincide with the center of the
corresponding nucleon. Then, because of the choice of r from (4.3), the
nucleons will on average have width w.8

Now that we have the positions of all the nucleons and (depending on the
choice of initial conditions) their constituents, we have to determine which
nucleons become ‘wounded’. Wounded nucleons are precisely the nucleons
that participate in the collision. To determine which nucleons participate,
we examine all pairs of nucleons, where we take the first nucleon (nucleon A)
from the first nucleus (which we will call nucleus A), and the second nucleon
(nucleon B)) from the second nucleus (which we will call nucleus B). For
each such pair, we then compute the overlap function

TAB =
Nconst∑

i=1

Nconst∑

j=1

1

4πv2
exp

(−(xA,i − xB,j)
2 − (yA,i − yB,j)

2

4v2

)
,

where xA,i are the x-coordinates of the constituents of nucleon A, yA,i the
y-coordinates of the constituents of nucleon A, and similarly for xB,j and
yB,j. For the initial conditions without substructure, this overlap function
is to be interpreted to have a single constituent for each nucleon, where we
also have to replace v by w. Now that we have the overlap function, the
probability that these two nucleons participate in the collision is

Pcoll = 1− exp(−σggTAB),

8Here width is taken to be the RMS of the nucleon. This is not the same RMS of the
deposited energy in the fluid though, as we will later fluctuate how much density each
constituent deposits according to a Gamma distribution.
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where σgg is a constant. In accordance with this probability, the nucleons are
both marked as being ‘wounded’ with probability Pcoll.

9 If the two nucleons
are marked as wounded, the corresponding nucleon pair is also marked as
being a ‘binary collision pair’. We have here introduced the parameter σgg.
In principle, we could leave this as a parameter to be determined by the
user. Instead of this, however, we choose σgg precisely such that the average
cross-section of proton-proton collisions is the same as the parameter σNN ,
which is available to the user to specify.

Knowing which nucleons participate in the collision, we can start con-
structing a ‘density’ to initialize the plasma. Note that this density is just
a function T (x, y). Depending on the model, it can be interpreted as an
entropy density, energy density, or specific component of the stress-energy
tensor. How exactly the different models interpret T will be discussed to-
wards the end of this section. To compute T , let us first define the ‘thickness
functions’ TA(x, y), TB(x, y) and TAB(x, y):

TA(x, y) =
∑

i∈wounded nucleons

Nconst∑

j=0

γij
2πv2Nconst

exp

(−(xij − x)2 − (yij − y)2

2v2

)
,

where xij, and yij denote the x and y-coordinates of constituent j of nucleon
i, and the outer sum goes over all wounded nucleons in nucleus A. What the
weight γij is, depends on the initial conditions. For the Monte Carlo Glauber
model, it is equal to 1, whereas for both the Ohio State University model
and the TRENTo model it is a random number, which for each constituent
is drawn from a Gamma distribution with mean equal to 1, and standard
deviation equal to a parameter called σfluct. An analogous expression holds
for TB(x, y) in terms of the wounded nucleons in nucleus B. The last function,
TAB(x, y), is not determined in terms of the wounded nucleons, but in terms
of the binary collision pairs. As TAB will only be used by the Monte Carlo
Glauber, and since this model does not have constituents, the expression
below is given in terms of the nucleon positions themselves:

TAB =
∑

(i,j)∈binary collision pairs

1

2πv2
exp

(−(1
2
(xi + xj)− x)2 − (1

2
(yi + yj)− y)2

2w2

)
,

where (xi, yi) are the coordinates of the nucleon from nucleus A participating
in the binary collision, and (xj, yj) are the coordinates of the nucleon from

9Note that they are either both marked as wounded, or both not. They are not sepa-
rately marked with probability Pcoll.
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nucleus B. In words, the wounded nucleons deposit density into the thickness
functions TA and TB at the location of the constituents, and each binary
collision pair deposits density into the thickness function TAB.

How the three thickness functions are subsequently combined into one
density T again depends on the specific model. In the Monte Carlo Glauber
model, we have

T (x, y) =
1− α

2
(TA(x, y) + TB(x, y)) + αTAB(x, y),

with α a parameter. In the Ohio State University model, the TAB-contribution
is ignored, and we have

T (x, y) = TA(x, y) + TB(x, y).

In the TRENTo model, we have

T (x, y) =

(
T p
A(x, y) + T p

B(x, y)

2

)1/p

,

with p a parameter. Note that in the limit p = 0, this reduces to the geometric
mean

T (x, y) =
√
TA(x, y)TB(x, y).

At this point, for all models considered, we have a function T (x, y) with
the dimension of inverse area. We now have several options for how to
interpret this function. In both the Monte Carlo Glauber and Ohio State
University models, T is interpreted as an entropy density as follows:

s(x, y) =
nT (x, y)

τfs
,

where n is a dimensionless number called the norm, and τfs is the proper time
at which the hydrodynamical evolution is initialized. Using the equation
of state, this can then be used to determine energy density and pressure.
This does not completely fix the initial condition for the hydrodynamical
evolution though, as the stress-energy tensor has 7 independent components,
and fixing the energy density only fixes one.10 In collide, there are two

10Note that assuming boost invariance reduces the number of components by 3, as
Tµη = 0 for µ = τ, x, y.
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options to determine the other coefficients. The first sets the velocities to
uµ = (1, 0, 0, 0), sets bulk pressure Π = 0, and subsequently computes the
shear tensor as11

πµν = 2ησµν , (4.4)

where the code gets the shear viscosity η from the transport coefficients model
chosen by the user, and σµν is defined as in equation 1.5. The second option
sets πµν = 0, Π = 0, and [23]:

ui = −τfs
3

d log e(x, y)

dxi
,

with e the energy density, x1 = x and x2 = y.
In the TRENTo model, a different approach is taken. Here, the stress-

energy tensor is initialized as [24]:

T µν(x, y) =
n

τfs

∫ 2π

0

dφ p̂µp̂ν T (x− vfs∆τfs cosφ, y − vfs∆τfs sinφ), (4.5)

where n is now a parameter, also called the norm, with dimension of inverse
length. For p̂µp̂ν , we have

p̂µp̂ν =




1 vfs cosφ vfs sinφ
vfs cosφ v2fs cos

2 φ v2fs cosφ sinφ
vfs sinφ v2fs cosφ sinφ v2fs sin

2 φ


 ,

where the rows and columns of the matrix correspond to µ, ν = 0, 1, 2. At
this point, we deviate from the original implementation of TRENTo. In the
original implementation, the parameter we call vfs is set to 1, in which case
(4.5) corresponds some density of massless particles determined by T free
streaming from time τ = 0+ to τfs. Indeed, this reflects in the name of the
initialization time, where the fs stands for free streaming. The parameter
vfs ∈ [0, 1], which we call the free streaming velocity, generalizes this ansatz
by allowing free streaming to occur with a speed lower than that of the speed
of light.

Another deviation from the original TRENTo is in the initialization of the
shear tensor and bulk pressure. In [23], it was observed that using holography
to model the initial stage leads to a smooth transition to hydrodynamics.
The energy density and velocity profile is identical to first order in proper

11Note that in Milne coordinates (4.1), σµν can be non-zero even if uµ = (1, 0, 0, 0).
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time to that obtained by free streaming, but the shear tensor obtained from
holography is given by (4.4).12 In order so that a future Bayesian analysis
can potentially be used to decide whether free streaming or holography fits
experimental data best, we introduce a parameter α ∈ [0, 1] with which we
can interpolate between free streaming and holography.

The procedure to obtain the stress tensor then becomes the following.
We first construct the stress tensor as given by free streaming (4.5), and
decompose the stress tensor in terms of e, uµ, πµν

fs and Πfs. We then compute
πµν
holographic and Πholographic as

πµν
holographic = 2ησµν , Πholographic = −ζ∇ · u.

We subsequently compute

πµν = απµν
holographic + (1− α)πµν

fs , Π = αΠholographic + (1− α)Πfs,

and reconstruct T µν using e, uµ, πµν and Π. In this way, by choosing α,
we can interpolate between weakly coupled initial conditions (α = 0) and
strongly coupled initial conditions (α = 1).

A final feature that is new in collide, which is available for all initial
conditions models discussed above, is the ability to optionally bias the distri-
bution of events generated by the initial conditions. To illustrate what this
is and why one would want this, consider proton-lead collisions. Typically,
for such collisions, we are interested in collisions which generate a lot of par-
ticles in the final state. These events correlate fairly well with the initial
entropy deposited in the plasma by the initial conditions.13 However, events
which generate a lot of particles in the final state are rare. This leads to
the inconvenient situation that to get a good amount of data to be able to
achieve small statistical uncertainties for the observables one is interested in,
one has to generate even more events, the vast majority of which will not be
useful. The bias that we introduce now is based on the following idea. Of the
entire collision simulation, the initial conditions are by far computationally
the cheapest to compute. Since the initial entropy correlates well with the
number of particles in the final state, we can compute the initial conditions

12The model in [23] is conformal, and therefore has no bulk pressure.
13The correlation is not as good as for lead-lead collisions because the total number of

particles produced is lower, and therefore statistical fluctuations from Poisson statistics
make the correlation less pronounced.

141



CHAPTER 4. SIMULATION OF HEAVY ION COLLISIONS WITH
TRAJECTUM

for the hydrodynamical evolution, and then accept the event for further com-
putation with a probability P (s), which depends on its initial entropy. By
choosing the acceptance function P appropriately, we can selectively compute
events which will have a large amount of particles in the final state, thereby
improving statistics for observables relating to such events without needing
to spend much more in computation time. Of course, when computing these
observables, we need to be careful that our bias in the events that we gen-
erate does not translate into a bias in the final computed observable. This
can easily be achieved by making sure that each event analyzed by analyze
is weighted with weight 1/P (s). Also, care has to be taken when computing
centrality classes, as these weights also have to be taken into account when
determining them.

4.2.2 Hydrodynamics models

The next component we will describe is the hydrodynamics model itself. In
collide, two models are available:

• First order hydrodynamics, which solves the first order Israel-Stewart
equations with only first order transport coefficients [17, 238–240],

• Second order hydrodynamics, which also includes some second order
coefficients.

Of course, one can just obtain the first order hydrodynamics equations by
setting all the second order coefficients to zero. However, there is still a good
reason to have two separate classes, namely that setting the second order co-
efficients to zero when running the code is a lot slower than explicitly leaving
those coefficients out of the code to be evaluated, and solving the simplified
equations. Since the equations which determine the hydrodynamical evolu-
tion are used by the solver every time step at every grid point, their speed of
execution greatly impacts the overall execution time of the whole program.
However, to explain how these two models work, we will just explain how the
second order hydrodynamics model works, as the workings of the first order
model can be easily determined by setting the second order coefficients to
zero.

In hydrodynamics, one of the first things we have to decide when solving
the equations numerically is which variables to choose. To illustrate this,
one could imagine solving for each of the 7 components of the stress-energy
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tensor. However, one could equivalently solve for the energy density e, two
velocities vx and vy, the bulk pressure Π and the components πxx, πxy, πyy.14

A convenient choice of variables turns out to be [240]

T̃ ττ , T̃ τx, T̃ τy, Π, π̃µν , (4.6)

where we define T̃ µν = τT µν , and π̃ηη = τ 2πηη, with π̃µν = πµν for the other
components. Just by counting, one can see that this number of variables is
larger than the number of independent variables, as we are evolving every
non-zero component of the shear tensor. It turns out however, that for the
first step of solving the hydrodynamical equations, which will be discussed
below, it is easier if these redundant components are evolved as well, so
that they can be used in that step. Another question one might ask is why
certain variables are defined by incorporating a factor τ into their definition.
The reason for this is twofold. On the one hand, it reduces the number of
Christoffel symbols entering the equations, and on the other hand it removes
some general behavior of the variables. To see what is meant by this, consider
T ττ . By energy-momentum conservation, T ττ will behave roughly like 1/τ .
By instead evolving T̃ ττ , this dependence is removed, making it easier to
obtain a good accuracy in the numerics.

Solving the hydrodynamical equations themselves involves two steps. The
second step depends for its computation on quantities like the velocity and
the energy density, which are quantities that are not listed in (4.6). This
immediately explains the need for the first step, which is to reconstruct these
quantities, which we will call ‘auxiliary variables’ from now on, from the
variables in (4.6), which we will call the ‘primary variables’. What the second
step does depends on which solver is used. The finite difference solver requires
for its algorithm a function which takes in all current values of the primary
variables, as well as the auxiliary variables mentioned above, and outputs the
proper time derivatives of the primary variables. The MUSCL solver instead
requires the equations to be put in the form

∂τU
k + ∂x(vxU

k) + ∂y(vyU
k) = S(Uk), (4.7)

where Uk is an array of all variables in (4.6), vx = ux/uτ and vy = uy/uτ are
the fluid velocities in the x and y directions, and where we call S the source

14Note that by tracelessness and orthogonality one can reconstruct πµν completely from
these components.
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term. What the MUSCL solver then needs for its evaluation is the function
S. The hydrodynamics models hence expose three functions to the collide
framework: one function which reconstructs the auxiliary variables from the
primary variables, and two functions which compute the the time derivative,
and the source term, respectively. In the remainder of the discussion of the
hydrodynamics model, we will only discuss the equations for source terms,
as the equations for the proper time derivatives can be easily obtained from
these.

As mentioned above, the first function necessary to solve the hydrody-
namical evolution is one that takes in the primary variables and computes
from them the auxiliary variables. To do this, we define [205]

M0 = T ττ − πττ , M1 = T τx − πτx, M2 = T τy − πτy.

Using the decomposition of the stress tensor 1.3, we can then obtain

M0 = (e+ P (e) + Π)(uτ )2 − P (e)− Π,

M1 = (e+ P (e) + Π)uτux, (4.8)

M2 = (e+ P (e) + Π)uτuy,

where P (e) is the pressure. These equations can be rearranged to give

e =M0 − (M1)2 + (M2)2

M0 + P (e) + Π
.

This equation can be solved iteratively for e as follows. The function

f(e) = (M0 − e)(M0 + P (e) + Π)− (M1)2 − (M2)2

has the property that f(0) ≥ 0, whereas f(M0) ≤ 0. The physical solution
for e corresponds to the solution of f(e) = 0, which lies between those values,
and can be solved by an algorithm like Brent’s method, which was also used
in chapter 2. Subsequently, once e is known, one can derive from (4.8) that

uτ =

√
M0 + P (e) + Π

e+ P (e) + Π
, ui =

M i

√
M0 + P (e) + Π

√
e+ P (e) + Π

,

where u1 = ux and u2 = uy, completing the task of computing the energy
density and the velocity. Note that during both the iterative solving of
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f(e) = 0 and the computation of uµ requires the pressure to be known as
a function of the energy density, which is a task which is performed by the
transport coefficients component.

Next, we describe the computation of the source terms. For T̃ τµ, we
have [240]

S(T̃ ττ ) = −p− Π− π̃ηη − τ∂x ((p+Π)vx + πτx − vxπ
ττ )

− τ∂y ((p+Π)vy + πτy − vyπ
ττ ) ,

S(T̃ τx) = −τ∂x (p+Π+ πxx − vxπ
τx)− τ∂y (π

xy − vyπ
τx) ,

S(T̃ τy) = −τ∂x (πxy − vxπ
τy)− τ∂y (p+Π+ πyy − vyπ

τy) .

For the bulk pressure Π, we have used not all the second order expressions,
but just the ones also kept by [24] (The full second order expressions can be
found in [241–243]):

S(Π) = Π∇ · v − 1

uττΠ
(Π + ζ∇ · u+ δΠΠ∇ · uΠ− λΠππ̃

µν σ̃µν) ,

where σ̃ηη = τ 2σηη, with σ̃µν = σµν for the other components similar to the
definition of π̃µν , and

∇ · v = ∂xvx + ∂yvy, ∇ · u = ∂µu
µ.

Lastly, for the shear tensor, we have

S(π̃µν) = π̃µν∇ · v −
(
uµπ̃ν

ρ + uν π̃µ
ρ

)
(∂τ + vx∂x + vy∂y) u

ρ

− 1

uττπ

(
π̃µν − 2ησ̃µν + δπππ̃

µν∇ · u

− φ7π̃
〈µ
α π̃

ν〉α + τπππ̃
〈µ
α σ̃

ν〉α − λπΠΠσ̃
µν
)
.

Here the second order coefficients, which are set to zero for the first order
model, are the coefficients δΠΠ, λΠπ, δππ, φ7, τππ and λπΠ.

4.2.3 Transport coefficients

The task of the transport coefficients model is twofold. It needs to compute
the pressure by means of an equation of state, and it should compute the
transport coefficients appearing at the end of the last subsection. In collide,
there are three available transport coefficient models:
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• Ideal gas equation of state with ‘constant’ transport coefficients.

• Lattice QCD equation of state with ‘constant’ transport coefficients.

• Lattice QCD equation of state with temperature dependence in some
of the transport coefficients.

Here ‘constant’ means that the transport coefficients are described by a sin-
gle parameter. For example, for the shear viscosity η, ‘constant’ transport
coefficients do not imply that η(T ) itself is constant as a function of tem-
perature, but rather that η(T )/s(T ) is, where s(T ) is the entropy density
specified by the equation of state. We will now describe each of the available
models in some detail, starting with the ideal gas equations of state with
‘constant’ transport coefficients.

For the ideal gas equation of state, we assume an equation of state of the
form

P (T ) = α · T 4,

with P the pressure, and α a constant which can be specified by the user.
Additionally, the shear and bulk viscosities can be specified by the user by
means the following constant combinations:

η

s
,

ζ

s
.

The shear and bulk relaxation times τπ and τΠ, respectively, are specified as
the following constant combinations:

τπsT

η
,

τΠsT

ζ
. (4.9)

The second order coefficients are given by the following constant combina-
tions:15

δππ
τπ
,

φ7

P
,

τππ
τπ
,

λπΠ
τπ

,
δΠΠ

τΠ
,

λΠπ

τΠ
, (4.10)

with P the pressure. Note that if one specifies ζ/s = 0, τπsT/η small enough,
and all other coefficients zero, one can use this model for transport coefficients
in combination with the Gubser flow initial conditions to obtain the analytical

15If the user specified that the first order hydrodynamics model should be used, collide
does not request the second order coefficients of the user.
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solution [233–235], with which one can check the accuracy of the numerical
solution.

For both models which use a lattice QCD equations of state, we actu-
ally use a hybrid of a hadron resonance gas (HRG) for temperatures below
165MeV, an analytical fit to a numerically constructed lattice QCD equation
of state for temperatures above 200MeV, and a polynomial interpolation of
the trace anomaly in the intermediate temperature regime [24, 244]. The
polynomial interpolation is taken such that at the matching points, 165MeV
and 200MeV, the trace anomaly, as well as its first 4 derivatives, is continu-
ous. The hadron resonance gas equation of state can be computed from

e =
∑

i∈species

gi

∫
d3p

(2π)3
Ei(p)

1

exp(Ei(p)/T )± 1
,

P =
∑

i∈species

gi

∫
d3p

(2π)3
p2

3Ei(p)

1

exp(Ei(p)/T )± 1
,

with the + for fermions, and the − for bosons. Also, Ei(p) = m2
i + p

2, where
mi and gi are the mass16 and number of degrees of freedom of species i,
respectively. The species used in the sum are precisely the particle content
of UrQMD, which is necessary for consistency between the different stages
of both collide and UrQMD itself.

The lattice QCD part of the equation of state is described by the following
parameterization [10]:

P

T 4
=

1

2
(1 + tanh [ct(t− t0)])

(
pid + an/t+ bn/t

2 + dn/t
4

1 + ad/t+ bd/t2 + dd/t4

)
,

with
t = T/Tc, Tc = 154MeV, pid = 95π2/180, (4.11)

and the fit coefficients

ct = 3.8706, an = −8.7704, bn = 3.9200, dn = 0.3419,

16In the actual implementation, the particle masses of the unstable particles are taken
from a modified Breit-Wigner distribution, and quantities like the energy density and the
pressure are averaged over all masses, where the average is weighted according to the
distribution. This is implemented properly in collide, but to simplify the discussion, we
leave this detail out of the discussion. An excellent explanation can be found in section
3.4 of [24].
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t0 = 0.9761, ad = −1.2600, bd = 0.8425, dd = −0.0475.

The discussion so far fixes the equation of state of the two lattice EoS
based transport coefficient models. Let us next discuss the first and second
order transport coefficients, where we start with the shear and bulk viscosi-
ties. These two transport coefficients are the only difference between the two
lattice EoS based models. In the model without temperature dependence,
the two viscosities are given by the same constant combinations as for the
ideal gas based model:

η

s
,

ζ

s
.

In the model with temperature dependence, we have [24]:

η

s
(T ) =




(η/s)hrg T < Tc,

(η/s)min + (η/s)slope · (T − Tc) ·
(

T
Tc

)(η/s)crv
T > Tc,

ζ

s
(T ) =

(ζ/s)max

1 +
(

T−(ζ/s)T0
(ζ/s)

width

)2 ,

with Tc as given in (4.11), and

(η/s)hrg , (η/s)min , (η/s)slope , (η/s)slope ,

(ζ/s)max , (ζ/s)T0
, (ζ/s)width

parameters to be specified by the user. The shear and bulk relaxation times
are defined by the following constants [243]:17

τπsT

η
,

τΠsT
(
1
3
− c2s

)2

ζ
,

which differ slightly from those in (4.9). The second order coefficients are
then specified by the following constants [243]:

δππ
τπ
,

φ7

P
,

τππ
τπ
,

λπΠ
τπ

,
δΠΠ

τΠ
,

λΠπ

τΠ
(
1
3
− c2s

) ,

which again differ slightly from those in (4.10).

17To ensure the stability of the numerics, it is important that timescales, like 1/τπ and
1/τΠ, are larger (with some margin) than the time step size ∆τ used by the PDE solver.
To ensure this, collide always enforces 1/τπ > 2∆τ and 1/τΠ > 2∆τ .
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4.2.4 PDE solvers

The PDE solver performs the task of solving the hydrodynamics equations.
To do this it interfaces with the hydrodynamics model, which provides the
necessary functions, as discussed above. The PDE solver then updates the
state of the fluid from proper time τ to τ +∆τ , where the size of ∆τ can be
chosen by the user. In collide, there are two main types of PDE solvers:

• Finite difference solver,

• MUSCL solver.

Both of these solvers have slight variations implemented, which allow the
user even more flexibility. Each of the solvers has their advantages and
disadvantages, so one should pick carefully when using collide on a problem.
The finite difference solver uses a very simple algorithm, as we will see below.
This has the advantage that, due to its low complexity, it is faster by about
a factor 2 as compared to the MUSCL solver. The disadvantage of the
finite difference solver is that it is not guaranteed to be stable. Under certain
circumstances, like the presence of shocks or when using transport coefficients
with extremely small viscosities, numerical instabilities may appear, which
grow exponentially. The MUSCL solver, instead, is guaranteed to be stable.
Indeed, the algorithm that it uses is stable by construction, as it was designed
with stability in mind. For this reason, one can use MUSCL even for an ideal
fluid, with all viscosities set to zero. The disadvantage that accompanies
this stability, however, is increased execution time. Depending on the type
of problem, one can choose which of these benifits outweigh the associated
costs. In the following few paragraphs, we will discuss both of these solvers,
pointing out the available variations along the way.

Now let us first discuss the finite difference solver. One can write the
hydrodynamics equations for the ‘primary variables’ defined in section 4.2.2
as follows:

∂τU
k
i,j(τ) = f

(
Uk
i,j(τ), ∂xU

k
i,j(τ), ∂yU

k
i,j(τ)

)
,

with f a function, and where Uk
ij is the collection of primary variables at

grid site (i, j). Here the first entry corresponds to the x-coordinate, and the
second corresponds to the y-coordinate. One can then perform the following
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discretization [245]:

Uk
i,j(τ +∆τ) = Uk

i,j(τ) + ∆τf
(
Uk
i,j(τ),

Uk
i+1,j(τ)− Uk

i−1,j(τ)

2a
,
Uk
i,j+1(τ)− Uk

i,j−1(τ)

2a

)
,

where a is the spacing between grid points. In other words, one simply
replaces the spatial derivatives by the second order accurate discrete deriva-
tives, and one replaces the time derivative by a linear approximation. While
this may seem a little naive, this works quite well under most circumstances,
and as mentioned before, due to its simplicity, is very fast. In collide there are
also variations implemented which replace the second order accurate spatial
derivatives with fourth or even eighth order accurate ones. This is however
slightly smaller, and seems to be less numerically stable than the second
order spatial derivatives, so one should not use it.

The MUSCL solver has a more sophisticated algorithm, which is based on
the idea that the equations can ‘almost’ be written as a set of conservation
equations (4.7). A remarks are in order here. First of all, it may seem a bit
strange to write for example ∂τ (T

ττ ) + ∂x(vxT
ττ ) + ∂y(vyT

ττ ) = S, while we
know that ∂µT

µτ = 0. However, the latter equation is a tensor conservation
equation. Numerically, it is simpler to implement the first option, because
this guarantees that the same velocities (vx, vy) can be used for all primary
variables. How the algorithm updates the primary variables is only different
from how the finite difference solver performs the update is in the ∂x(vxU

k)
and ∂y(vyU

k) terms. The source term is added in the same way as for the
finite difference solver, where when needed, we also replace derivatives by
their second order accurate approximations. The two terms mentioned are
replaced following the Kurganov-Tadmor (KT) algorithm [219,246]:18

∂x(vxU
k
i,j) 7→

Hx
i+1/2,j −Hx

i−1/2,j

a
,

with a similar expression for the y-derivative term. We will continue the
discussion only for the x-derivative term, the formulas for y are analogously
defined. In the above expression, Hx

i+1/2,j is defined as

Hx
i+1/2,j =

F x(Uk,+
i+1/2,j) + F x(Uk,−

i+1/2,j)

2
− axi+1/2,j

Uk,+
i+1/2,j − Uk,−

i+1/2,j

2
,

18An alternative to KT, known as the HLL two-state formula, is also available in collide

[220].
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where ax is equal to vx, and where F x(Uk) = vxU
k is the flux of Uk at the

cell’s interface. At this point, an optional shortcut is available in collide. To
properly evaluate the flux for a specific set of primary variables, one needs
to find vx and vy, which implies that one has to find the auxiliary variables,
which is numerically expensive. The shortcut taken is that we compute v+x
and v−x in an analogous way to the computation of Uk,+ and Uk,−, thereby
limiting the amount of times one has to solve for auxiliary variables.19 For
Uk,+ and Uk,−, we have:

Uk,+
i+1/2,j = Uk

i+1,j −
a

2
Ũk
i+1,j, Uk,−

i+1/2,j = Uk
i,j +

a

2
Ũk
i,j,

with the quantity Ũk being roughly equal to the second order accurate deriva-
tive with respect to x. If one would take this rough equality to be exact, the
algorithm would become identical to the finite difference method described
above. This would then however also inherit the stability issues of that
method. It turns out that the crucial element to achieve stability is the ad-
dition of a flux limiter. In the MUSCL implementation in collide, we use the
minmod flux limiter:

Ũk
i,j = minmod

(
Uk
i,j − Ui−1,j

a
,
Uk
i+1,j − Uk

i−1,j

2a
,
Uk
i+1,j − Uk

i,j

a

)
,

where the minmod flux limiter function is defined as

minmod(x, y, z) = minmod(x,minmod(y, z)),

minmod(x, y) = [sign(x) + sign(y)] · min(|x|, |y|)
2

.

Finally, note that in collide, one has the option to either integrate the time
derivatives using the forward Euler algorithm, which is first order accurate,
or with the midpoint method, which is second order accurate. In the results
shown in section 4.3, we used the KT solver with the shortcut for the solving
of auxiliary variables.

4.2.5 Hadronizers

After each update that the PDE solver makes to the fluid, the hydrodynam-
ics model hands the new fluid state to the hadronizer. The hadronizer is

19We checked that neither the accuracy nor the stability is negatively impacted by this
trick.
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then tasked with generating particles, which are output in a format compat-
ible with UrQMD. In collide, at the time of writing, only one hadronizer
is available, namely Cooper-Frye [223]. The hadronization procedure con-
sists of several steps. First, the hadronizer computes a freeze-out surface.
Subsequently, particles are produced at the freeze-out surface according to
a modified thermal distribution, where the modifications encode the pres-
ence of shear stress and bulk pressure into the final state particles. In the
paragraphs below, we will explain each of these steps in more detail.

The first step to turn the fluid into particles is to compute the freeze-
out surface. This is an isotherm of a specific temperature Tfr that the user
can specify. At the freeze-out surface, a number of particles are produced
according to a Poisson distribution, which has the property that the sum
of Poisson distributed processes again follows a Poisson distribution. As a
consequence of this, we can subdivide the freeze-out surface into triangles,
and sample particles from each triangle individually. After this, we can
even discard the freeze-out surface from which particles have already been
sampled, as it is no longer necessary. This is exactly how collide tackles the
problem. When the hydrodynamics model computes the state of the fluid
at proper time τ + ∆τ , it gives the state of the fluid to the Cooper-Frye
hadronizer, which still has in its memory the state of the fluid at proper
time τ . Using the Cornelius algorithm, it then computes a triangulation of
the freeze-out surface [222].20 For each triangle, it also computes a surface
normal ∆σµ [24].

The next step is to generate particles for each triangle. This is done using
the Cooper-Frye formula [223]:

E
dNi

d3p
=

gi
(2π)3

∫

σ

1

exp(p · u/T )± 1
pµ d3σµ, (4.12)

where gi is the number of degrees of freedom for species i. The idea behind
this formula is that the hadronization procedure should be not a change in
physical process, but rather a change in description of that process. The
particle species used in the formula are precisely the ones that are used
in the HRG equation of state which describes the fluid, and because they
are sampled from a thermal distribution, they indeed describe precisely the

20Note that for a 2 + 1D description like the one in collide, freeze-out surface elements
are triangles. A more general treatment for 3 + 1D can be found in [222].
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HRG.21 This ensures that, in the absence of shear stress or bulk pressure,
the stress energy tensor of the fluid will be on average the same as that of
the sampled particles.22 In this sense, the sampled particles form a different
description of the fluid, and when one then only keeps particles which move
out of the fluid, one thereby obtains a consistent transition between the fluid
and the HRG.

Everything described so far assumes that πµν = 0 and Π = 0. If this is
not the case, the sampling of the particles needs to be adjusted so that the
stress-energy tensor of the fluid still matches the average stress-energy tensor
of the sampled particles. The way this is done in collide is by rescaling the
momentum of each sampled particle in the fluid rest frame [24]:

pi 7→ pi +
∑

j

λijpj, λij = (λshear)ij + λbulkδij,

where (λshear)ij ∝ πij with a proportionality constant that can be computed
by a hadron resonance gas computation, and λbulk depends in a non-trivial
way on Π.23 For bulk corrections, also the particle density obtained from the
Cooper-Frye formula (4.12) needs to be modified, as with the rescaling of the
particle momenta described above the energy density is also modified. The
way to correct this is to modify the number density [24].

We now have produced particles in a way such that the stress-energy
tensor is on average continuous across the freeze-out surface. There is one
final step, however, namely decaying the f0(500) particle. This particle is not
treated by UrQMD, but given its light mass is produced in large quantities
during an event [24,247]. In collide, the f0(500) can be optionally taken into
account when compiling Trajectum. If the user includes the f0(500), it is
immediately decayed into pions, which is justified given its short lifetime.

4.3 analyze executable

The analyze executable is tasked with computing the observables according
to their proper definitions from the result of the hadronic afterburner. Ad-
ditionally, it obtains from the output of collide each event’s weight. The

21The freeze-out temperature is required to be below 165MeV, i.e. in a temperature
regime where the equation of state is that of the hadron resonance gas.

22The sampled particles are, of course, subject to Poisson statistics.
23For details on how to obtain the proportionality constant for (λshear)ij as well as for

how precisely to obtain λbulk(Π), see [24].
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executable does this in two passes over the data file. The first pass reads
every event, and computes quantities that will allow us to group the parti-
cles into centrality and Noff

trk bins during the second pass. During the second
pass, each event is read again, and based on its Noff

trk value is placed in a bin
together with similar events, after which each event is analyzed by the ob-
servables that the user requested. In the next few paragraphs, each of these
two passes will be described in some more detail, after which a selection of
observables will be shown.

The first pass over the data has the task to determine the centrality
classes. This is done by counting Noff

trk for each event, which is a measure of
the number of particles produced in the event. The definition of Noff

trk differs
from experiment to experiment, and is usually defined in such a way that
only particles are counted which are charged, and have kinematics such that
the detector is able to detect them efficiently. Of course, in the output of
collide and UrQMD, we are able to detect any particle whatsoever with 100%
efficiency, but for comparison with the experiments it is still important to
make the same cuts, so that we are comparing the exact same observable.
This will be a recurring theme throughout this section. As briefly mentioned
already, Noff

trk is defined by the number of charged particles in an event, and
the kinematic cuts usually require that for a particle to be counted, the
transverse momentum pT needs to be between a certain lower bound and a
certain upper bound, and that the pseudorapidity η needs to have an absolute
value below some upper bound. For example, the cuts used in this section
are

0.4GeV ≤ pT ≤ 10GeV, |η| ≤ 2.4.

After Noff
trk has been counted for each event, the events are sorted from the

largest Noff
trk to the smallest. This ordering then determines the centrality

bins, and for each centrality bin, analyze then saves between which values
Noff

trk should be such that the event is within that particular bin. Of course,
when events are weighted according to their initial entropy, it is important
to take these weights into account when computing the centrality bins, so as
not to bias the binning. For example, 5% central would no longer mean that
5% of the events have a larger Noff

trk, but instead it means that 5% of the total
weights belong to events with a larger Noff

trk.
After the centrality bins24 have been determined, a second pass over all

24In analyze it is also possible to bin particles based on Noff
trk directly. For notational

convenience, we will just refer to both of these binning options as ‘centrality’ bins, as for
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events is made, in which each observable that the user requested can examine
each event. Each observable again, typically, makes some cuts on which
particles it counts. All of these cuts, namely cuts on transverse momentum,
pseudorapidity, but also which type of particles to count, can be set by
the user, where different settings can be chosen per observable. This may
seem like a lot of flexibility, but this is necessary, as different experimental
measurements often have different cuts, and as was mentioned before, to be
able to compare to experimental values it is extremely important to use the
exact same cuts as the experiment in question. In this way, the flexibility
given to the user allows to compute a large number of observables at the
same time, where each observable is precisely defined, by a single use of
analyze,i.e. there is no need to run the executable multiple times. Another
advantage of this flexibility is that the cuts on which types of particles to
count makes it possible to compute observables defined in terms of ‘identified
particles’, i.e. one can compute for example the mean transverse momentum
of only charged pions, or of only protons.

In the framework provided by analyze during the second pass, each ob-
servable is allowed to output an array of what we will define ‘intermediate
quantities’, along with a weight for each such quantity. The framework pro-
vided by analyze will then compute a weighted average for each element in
the array, where not only the weights provided by the observable are taken
into account, but also the weights for each event based on its initial entropy.
The weighted averages are then given back to the observable, along with
errors and correlations between the elements in the array, which provide the
observable with all the information it needs to compute its final outputs.
Also, the individual values for each event are given, which allows to, for ex-
ample, compute event-by-event v2 distributions [248]. To illustrate this, let
us take the quantities v2{2} and v2{4} as examples [249]. These are both
computed by the ‘v2’ component in analyze. For each event, ‘v2’ computes
quantities known as 〈2〉 and 〈4〉, which come with weights w2 = M(M − 1)
and w4 = M(M − 1)(M − 2)(M − 3), respectively, where M is the num-
ber of particles which satisfy the various cuts.25 After each event has been
computed, analyze computes the averages

〈〈2〉〉 =
∑

i∈events w̃iw2,i〈2i〉∑
i∈events w̃iw2,i

, 〈〈4〉〉 =
∑

i∈events w̃iw4,i〈4i〉∑
i∈events w̃iw4,i

,

the remainder of the discussion the distinction is not important.
25Precise definitions of 〈2〉 and 〈4〉 will be given in section 4.3.3.

155



CHAPTER 4. SIMULATION OF HEAVY ION COLLISIONS WITH
TRAJECTUM

along with the standard deviations of the averages and correlations between
the two measured averages. Here w̃i stands for the event weight of event i
based on its initial entropy, i.e. w̃i = 1/P (si). The averages are then given
back to the ‘v2’ component, which computes the final outputs

v2{2} =
√
〈〈2〉〉, v2{4} = 4

√
2 · 〈〈2〉〉2 − 〈〈4〉〉,

where care is taken to estimate the final errors by standard error propagation
methods.

In the remainder of this section, we will use analyze to compute a selection
of available observables, which we will compare to available experimental
data.26 The aim of this is twofold. Firstly, as Trajectum is a new code,
checking its predictions against known results is a good check that the code is
relatively free of serious mistakes. For this purpose, we choose the maximum
a posteriori (MAP) values obtained for

√
s = 2.76TeV in [24]. For certain

choices of parameters of collide, the predictions of Trajectum should be the
same as, or at least compatible with, to the result from [24]. As we will see
below, this is the case. The MAP values we are using for the computation
have been obtained by means of a Bayesian fit to experimental data, and as
such represent some of the most state-of-the-art knowledge concerning which
inputs to the simulation fit the data best. However, we would like to improve
this analysis further by adding additional experimental data to the analysis.
This brings us to the second aim of the remainder of this section.

Any additional experimental data should have the following properties
to be useful in the Bayesian analysis, where by useful we mean that the
additional observable provides an additional constraint to data. Firstly, the
observable should have small statistical uncertainties for the number of events
that we can feasibly generate for each set of input parameters to collide. The
results shown below have been generated using 10000 minimal-bias events,
and with limited computation time available it is not feasible to perform
the Bayesian analysis with significantly more events. This means that the
error bars shown in the plots below are what we can reasonably expect to
achieve in the Bayesian analysis. In such an analysis, we need to be able to
decide whether a particular observable is well-described by a particular set of

26At the time of writing, there are 3132 observables available in analyze. This may seem
like a very large number, but this is mainly due to the fact that many observables have
a large number of possible variations. However, this large number does mean that not all
observables can be shown here.
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inputs to collide, or whether there is enough tension to exclude a particular
parameter set. If the error bars are too large, this can not be achieved, and
hence the particular observable will not give an additional constraint.

Another requirement for an observable to be useful in the Bayesian analy-
sis is that the constraints it gives on the input parameters should not coincide
with the constraints which are already given by other observables. To give
an obvious example of this, imagine we would like to use the mean trans-
verse momentum of positive pions in the analysis. This gives a constraint
on the input parameters. In particular, it will constrain the bulk viscosity ζ.
However, given that the mean transverse momentum of all pions is already
being used in the fit, and since there is no significant difference in particles
and their antiparticles in collisions at 2.76TeV, the constraint given by the
positive pions will completely coincide with the constraint from all pions.
With regards to this requirement, the most interesting outcome of the anal-
ysis of the MAP values would be to find an observable which is completely
incompatible with the prediction from [24]. Such an outcome could mean
two things. Either there is a subset of input parameters to collide which
is compatible with the data used in [24], or the model used to simulate the
events is missing an ingredient which is essential to describe the new variable.

4.3.1 Charged particle multiplicities and spectra

Let us now start with the comparison of Trajectum to experimental data. In
figure 4.1, the charged particle multiplicity is shown, where we only include
particles which satisfy |η| ≤ 0.5. The resulting multiplicity is then divided by
the size of this pseudorapidity range, so that we arrive at a quantity which
is relatively independent of the particular pseudorapidity cut. In figure 4.1,
also the experimental result from ALICE is shown [250]. One can see that
Trajectum underestimates the experimental result by about 5–10%. This is
no cause for alarm though, as [24] shows a compatible underestimation.

An observable which was not used in [24] is the transverse momentum
spectrum, which is shown in figure 4.2 for events in the 0–5% centrality
interval. Note that this figure shows the transverse momentum spectrum of
identified particles, which reflects in the fact that not a cut in pseudorapidity,
but in rapidity (see (1.10)) has been made. Also, in order to define the
spectrum in such a way that it does not scale significantly with the size of the
transverse momentum bins and the rapidity cut, the multiplicity in each bin
has been divided by both the bin size and the rapidity range. Even though
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Figure 4.1: Multiplicity of charged particles with |η| ≤ 0.5. Both the result
from Trajectum using the 2.76TeVMAP values from [24], and experimentally
measured data from ALICE [250], are shown.

we don’t compare the transverse momentum spectrum with experimental
data, one can see that for heavier masses the momenta shift to higher values,
something we will see quantatively in the next subsection. Also, one can
clearly see that even for rare particles like Ξ or maybe even Ω, it is possible to
obtain reasonable statistics for the transverse momentum spectra of identified
particles.

4.3.2 Mean transverse momentum

In figure 4.3, we show the mean transverse momentum of charged identified
particles, where we have a rapidity cut of |y| ≤ 0.5. The mean transverse
momentum is quite simply defined as the mean of the transverse momentum
of all particles satisfying the cuts in all events. To mold this definition into
a weighted average over events, we define for each event

〈pT 〉event =
1

M

M∑

i=1

pT,i, wevent =M,

with w the weight associated to the event, and M the number of particles
in the event which satisfy the cuts. This definition guarantees that if we
then average 〈pT 〉event over all events with the given weights, the method
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Figure 4.2: Transverse momentum spectrum of various identified charged
particles with |y| ≤ 0.8 for events in the 0–5% centrality interval, computed
with Trajectum using the 2.76TeV MAP values from [24].

agrees with the experimental one. Figure 4.3 shows excellent agreement
with [251]. This is no surprise however, as the result from [24] agrees with
the experimental data equally well, because 〈pT 〉 was used in their Bayesian
analysis.

Another observable we will examine is the mean transverse momentum
fluctuations, which is shown in figure 4.4, where we include only charged
particles with pseudorapidity |η| ≤ 0.8. The mean transverse momentum
fluctuations are defined as [252]:

(δpT )
2 = 〈〈(pT,i − 〈pT 〉) (pT,j − 〈pT 〉)〉〉 ,

where we average over all particle pairs (i, j) occuring in the same event.
To write this in the form required by analyze, we define the following two
quantities for each event, in addition to the mean transverse momentum:

C1 =
1

M(M − 1)



(

M∑

i=1

pT,i

)2

−
M∑

i=1

p2T,i


 ,

C2 =
2

M

M∑

i=1

pT,i,
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Figure 4.3: Mean transverse momentum of various identified charged parti-
cles with |y| ≤ 0.5. Both the result from Trajectum using the 2.76TeV MAP
values from [24], and experimentally measured data from ALICE [251], are
shown.

where each of these quantities have weight M(M − 1) and where M is the
number of particles in the event which satisfy the cuts.27 With these defini-
tions, we now have that

(
δpT
〈pT 〉

)2

=
〈C1〉
〈pT 〉2

− 〈C2〉
〈pT 〉

+ 1,

where the angle brackets are the properly weighted averages of C1 and C2

over all events. The result from Trajectum shown in figure 4.4 is in good
agreement with [252], which is again unsurprising, because this observable
was also used in the Bayesian analysis of [24], with good results.

4.3.3 Anisotropic flow

The anisotropic flow measures how anisotropic the azimuthal distribution of
particles emitted from an event is. As this can vary substantially on an event-
by-event basis, one usually defines observables as an average over a large
number of events in a centrality class. Additional observables look at the
amount of variation of anisotropic flow within a centrality class, which will be

27Note that while it may seem that 〈C2〉 = 2〈pT 〉, the weighting for C2 is different
compared to that of the mean transverse momentum, invalidating this equality.
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Figure 4.4: Fluctuations of mean transverse momentum of charged particles
with |η| ≤ 0.8. Both the result from Trajectum using the 2.76TeV MAP
values from [24], and experimentally measured data from ALICE [252], are
shown.

covered in the next subsection. In this section, we define the flow coefficients
vn{k}. Several of these are shown in figure 4.5 for charged particles with
0.2GeV ≤ pT ≤ 5GeV and |η| ≤ 0.8. To define the flow coefficients, let us
first define for each event the cumulants [253]:

Qn =
M∑

i=1

einφi , (4.13)

where M is again the number of particles in the event which satisfy the cuts,
and φi is the azimuthal angle of particle i. We subsequently define for each
n:

〈2〉 = |Qn|2 −M

M(M − 1)
,

〈4〉 = |Qn|4 + |Q2n|2 − 2 ·Re [Q2nQ
∗
nQ

∗
n]− 4(M − 2) · |Qn|2 + 2M(M − 3)

M(M − 1)(M − 2)(M − 3)
,

and we also define the weights

w〈2〉 =M(M − 1), w〈4〉 =M(M − 1)(M − 2)(M − 3).
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Figure 4.5: Anisotropic flow coefficients v2{2}, v2{4}, v3{2} and v4{2} for
charged particles with 0.2GeV ≤ pT ≤ 5GeV and |η| ≤ 0.8. Both the result
from Trajectum using the 2.76TeVMAP values from [24], and experimentally
measured data from ALICE [249], are shown.

If we now average 〈2〉 and 〈4〉 with these weights, then for each n we obtain
〈〈2〉〉 and 〈〈4〉〉, in terms of which are defined

vn{2} =
√

〈〈2〉〉, vn{4} = 4
√
2 · 〈〈2〉〉2 − 〈〈4〉〉.

In figure 4.5, one can see that, as with the previous observables, there is
excellent agreement between Trajectum and experimental data [249]. Again,
this is in agreement with [24] as well, who used exactly these experimental
findings in their analysis.

4.3.4 Event-by-event anisotropic flow

As briefly mentioned above, one can also look at the amount by which the
anisotropic flow, in this case specifically v2, fluctuates event by event. This
event-by-event v2 is shown in figure 4.6 for charged particles with |η| ≤ 2.5 for
events in the 30–35% centrality interval. The method used in this figure for
computing the v2 of a single event is called the single particle method [248].
It can be defined in terms of the cumulants (4.13) as

v2 =
|Q2|
M

, (4.14)
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Figure 4.6: Event-by-event v2 of charged particles with |η| ≤ 2.5 for events
in the 30–35% centrality interval, using the single particle method. Both
the result from Trajectum using the 2.76TeV MAP values from [24], and
experimentally measured data from ATLAS [248], are shown.

where M is again the number of particles in the event which satisfy the
cuts. We can then store the v2 values for each event, and then compute a
probability distribution around the average value as in figure 4.6. As can
be seen, even though this observable was not used in the Bayesian fit in
[24], there is agreement with the experimental value [248], but the error
bars are quite large. Also, the tail of the distribution is expected to be the
most constraining [254], especially to the initial condition, but this is entirely
missing from the Trajectum prediction, and would require more events to
compute. Maybe one could still achieve a non-trivial constraint on the inputs
by choosing larger centrality bins though.

Another potential issue with this observable is that the experimental value
[248] has been modified using an unfolding procedure, which attempts to
remove the bias inherent in defining v2 through (4.14). This implies that
the two observables shown in figure 4.6 are not the same, and should not
be compared. However, in the limit of the number of particles per event
going to infinity, this mentioned bias in defining v2 through (4.14) vanishes.
Therefore, by studying the dependence of the Trajectum result shown in
figure 4.6 on the acceptance cuts, particularly on the pseudorapidity, it may
be possible to extrapolate the result to this desired limit. This would allow
the comparison to the ATLAS data, but we leave this for future work.
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Chapter 5

Discussion and Outlook

In this thesis, we have studied QCD from three different angles, correspond-
ing to the three main chapters. A recurring theme throughout this has been
the idea to use holography to study QCD-like theories in a genuinely strongly
coupled setup. We saw that this works rather well in many cases. In the case
of observables at zero chemical potential, one can obtain qualitatively reason-
able results which match results from lattice QCD, in which case holography
can be used to try to understand the mechanisms behind those phenom-
ena seen on the lattice. In the case of finite chemical potential, one can use
holography in a regime where no results from other strongly coupled methods
exist. This also gives qualitatively reasonable results, which do not directly
contradict known experimental results. In this chapter, we will briefly sum-
marize the main results, and provide an outlook for how the work in this
thesis could be improved or extended in the future.

5.1 (Inverse) magnetic catalysis in holograph-

ic QCD

In chapter 2, we studied the V-QCD model in the presence of a magnetic field
B and anisotropy a, which could be either parallel or perpendicular to B.
This model is constructed such that it matches qualitative features of QCD,
like the running of certain coupling constants in the UV, glueball spectra,
and the phase structure at finite temperature. In particular, V-QCD displays
confinement and spontaneous chiral symmetry breaking at low temperatures,
while these features are lacking at high temperatures. This makes V-QCD a
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good tool to study the behavior of the chiral condensate associated to chiral
symmetry breaking in the presence of a magnetic field. At zero temperature
in a perturbative setting, one expects the chiral condensate to increase as a
function of B. However, in lattice QCD studies, the opposite effect was seen,
called inverse magnetic catalysis.

In section 2.2, we saw that with a judicious choice of the parameter c
occuring in the w-potential of V-QCD, it is possible to obtain the same
behavior of the chiral condensate as seen on the lattice. Indeed, we saw that
at small temperatures, the condensate increases as a function of B, whereas in
a region between the chiral phase transition and the deconfinement transition,
the condensate decreases as a function of B. We also saw that at larger values
of B, eventually inverse magnetic catalysis disappears, and the condensate
starts increasing again. Furthermore, we were able to identify two competing
effects, namely a direct effect of B on the condensate which tends to increase
the condensate, and an indirect effect which tends to decrease it. This was
in agreement with earlier studies on the lattice.

We subsequently extended the analysis to include a finite baryon chemical
potential µ in section 2.3. In this region of the phase diagram, lattice QCD
is affected by the sign problem. In holography, however, there are no major
technical issues preventing us from exploring this region. We found that the
region of chirally broken deconfined plasma which exists at zero B extends
in seze at finite B, particularly at large values of the chemical potential. In
contrast, in the region between the chiral transition and the deconfinement
transition, the condensate decreases as seen earlier in section 2.2, but now we
can also conclude that this region of inverse magnetic catalysis only extends
to a finite µ, after which the region of inverse magnetic catalysis disappears.

Section 2.4 explores a different approach, by adding an anisotropy a,
which is dual to a space-dependent theta term. This way we can examine
the effects that anisotropy has on QCD, without that anisotropy being a
magnetic field. In other words, we can investigate whether the effects that a
magnetic field has on the plasma are due to the magnetic field specifically,
or whether they apply more generally for other sources of anisotropy. We
saw several interesting effects. The chiral condensate behaved in much the
same way as it did in the presence of a magnetic field, giving evidence for the
conjecture first proposed in [123] that inverse magnetic catalysis is caused
by the anisotropy induced by the magnetic field. We named this conjectured
effect ‘inverse anisotropic catalysis’.

Finally in section 2.5, we explored the interplay between a magnetic field
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B and anisotropy a, where we considered both the B ‖ a and B ⊥ a cases.
We find that the presence of a seems to effectively decrease the value of
B, especially for the parallel case. We also see that the chiral transition
temperature for B ‖ a seems to cross that of B ⊥ a roughly where B ∼ a.

In the future it would be very interesting to determine whether it is pos-
sible to find an explanation for the observed behavior in section 2.5. Another
interesting avenue of research would be to see if other sources of anisotropy
can be added to lattice studies, thereby testing the conjecture of ‘inverse
anisotropic catalysis’. Additionally, the holographic model itself can be im-
proved. For the studies presented in this thesis, the quark flavors are as-
sumed to all be identical. In particular, the baryon number is assumed to be
equal to the electric charge. In the future, one could attempt to couple the
magnetic field to the quarks in a different way for different flavors, thereby
getting closer to a model for QCD. This is however likely a very challenging
extension. A future study which is simpler to achieve is to use the exist-
ing model to study transport coefficients in the presence of a magnetic field.
In [255,256], the complete set of hydrodynamic transport coefficients for rel-
ativistic magnetohydrodynamics was derived to first order, but the values
that these coefficients take are model-dependent. In principle, by studying
perturbations around the background space-times constructed in section 2.1,
one can derive the values for the transport coefficients in V-QCD.

5.2 Holographic baryons and neutron stars

In neutron star physics, one of the most basic questions is one of the biggest
question marks. This question is what the neutron star equation of state is.
The equation of state governs observables like the maximum possible mass
of a neutron star, the mass to radius relation and tidal deformability, and
the post-merger spectrum of a binary neutron star merger. On the other
hand the answer to the question what the equation of state is would give us
valuable information about QCD, including potentially the density at which
a phase transition to deconfined matter occurs. Many models exist which
derive an equation of state, but none so far have used explicitly strongly
coupled methods. For this reason, in chapter 3, we used holography to study
the equation of state and the resulting model for neutron stars.

In the Witten-Sakai-Sugimoto model, several approximations exist to in-
corporate baryons into the holographic model. In section 3.1, we adapted
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one such approximation into V-QCD. As it turns out, this gives a qualita-
tively reasonable phase diagram, with baryons condensing in the region in
the phase diagram where one would expect this to happen. We also saw that
the distance into the holographic direction where the baryons are located is
O(1), giving confidence that indeed the approximation is reasonable. Look-
ing at the zero temperature equation of state itself, we see that it exceeds the
conformal value for the speed of sound in two places, a feature that is difficult
to obtain in weakly coupled theories. This lends confidence to the idea that
the assumption of strong coupling leads to genuinely different predictions for
the equation of state as compared to weak coupling.

In section 3.2, we used the speed of sound of the resulting equation of
state, and used it as the high-density part of a hybrid equation of state, the
low density part coming from the SLy equation of state. This hybrid equa-
tion of state was shown to be compatible with currently existing constraints,
including the maximum mass, mass to radius relation, and tidal deformabil-
ity. Subsequently a merger simulation using the hybrid equation of state was
shown, which included an example of phase transition induced collapse. We
also examined the post-merger spectrum, finding a value for the frequency f1
which is compatible with a universal relation, and a value for f2 which shifts
to lower frequencies as the hybrid equation of state is changed to incorporate
the holographic part of the equation of state up to lower densities.

There are many opportunities in the future to improve the analysis from
chapter 3. One example is ongoing work to repeat the analysis for different
choices of potentials for V-QCD, where the potentials are taken from [103].
This analysis will also include different choices for the part of the equation
of state used for the low-density part. Another extension already being done
is to extend the analysis to the presence of a magnetic field, to see whether
the equation of state changes as a function of B. Further in the future, it is
important to investigate how good the various approximations made in sec-
tion 3.1 are and, where possible, to improve them. This will likely be a large
effort, but this is worth doing if it increases the reliability of the results. The
merger simulation can also be improved, for example by including neutrinos
and increasing the resolution. One particular effect which is very important
for the outcome of a merger simulation is the temperature dependence of the
equation of state. This is hard to do in bottom-up holographic models such
as V-QCD since this requires stringy corrections, which are hard to obtain
in a bottom-up model. It may be possible though to obtain a reasonable
approximation, which can then be used in a merger simulation.
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5.3 Simulation of heavy ion collisions with

Trajectum

In chapter 4, the new Trajectum framework was introduce, which provides
a consistent interface between the various components necessary to simulate
heavy ion collisions. This framework consists of two executables, collide and
analyze, to simulate collisions and to analyze the result, respectively. Also,
several examples of components which fit into the Trajectum framework.
Most of these are reimplementations of existing models, but some have been
modified in non-trivial ways. The aim of these extensions is to incorporate
results from AdS/CFT, such as the way the fluid should be initialized at the
start of the hydrodynamical evolution. Subsequently, a Bayesian analysis
will be performed to attempt to infer whether experimental data shows a
preference for AdS/CFT, or whether it points into another direction.

We then tested the code using the maximum a posteriori (MAP) values
obtained from a Bayesian analysis in [24]. This yielded excellent agreement.
We also added new observables, which were not used in the analysis of [24].
This therefore potentially adds new constraints to the Bayesian analysis to
be performed, which can then be used to learn something about the various
parameters used in the simulation in collide.

In the future, there are several ways in which Trajectum can be improved.
An interesting option is to include thermal photon emission by the fluid.
This could give interesting new constraints, as it is directly sensitive to fluid
quantities in the center of the collision, in contrast to the quantities we are
using now, which are all produced at the edge of the quark-gluon plasma.
Other obvious extensions are to extend the code to optionally work in 3+1D,
which provides a better physical description of the collisions, as well as adding
conserved quantities other than the stress-energy tensor. The latter include
baryon number density and electric charge. With the inclusion of electric
charge, it would also become possible to further extend the hydrodynamics
into full magnetohydrodynamics, which could be used for various interesting
problems [110, 257, 258]. A final interesting possibility is to include critical
fluctuations which occur around a potential critical point [259, 260]. This
would allow us to study what the effect of a critical point on observables is,
and these observables could then also be used in a future Bayesian analysis.

Throughout these chapters, the overarching theme has been that holog-
raphy can be used as a tool to gain qualitative insight into strongly coupled
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theories such as QCD. This results both in new explanations of existing
observations and in new qualitative predictions in areas where holography is
so far the only way to gain insight in an explicitly strongly coupled setting.
Furthermore, by simulating neutron star mergers and heavy ion collisions,
the ideas coming from holography can be compared to experimental observa-
tions. All of these avenues taken together have taught us a lot about strongly
coupled physics, and will surely teach us much more in the future.
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Samenvatting

In dit proefschrift wordt QCD bestudeerd uit drie verschillende richtingen,
met één overkoepelend thema: holografie. De holografische dualiteit maakt
dat sommige sterk gekoppelde kwantumveldentheoriën beschreven kunnen
worden in termen van veel eenvoudigere klassieke zwaartekracht in één di-
mensie extra. De eerste richting van waaruit QCD bestudeerd wordt in dit
proefschrift is door de effecten van een extern magnetisch veld op een spec-
ifiek holografisch model van QCD te bestuderen, wat interessant kwalitatief
inzicht geeft. De tweede richting bestudeert hoe, in hetzelfde model, het mo-
gelijk is om baryonische configuraties met grote dichtheid te beschrijven, wat
een nieuwe manier oplevert om de materie te bestuderen waar neutronen-
sterren uit bestaan. De toestandsvergelijking die op deze manier verkregen
wordt wordt vervolgens inderdaad gebruikt om verscheidene eigenschappen
van neutronensterren te berekenen die geobserveerd kunnen worden, of geob-
serveerd zullen kunnen worden in de nabije toekomst. De laatste richting be-
vat op zichzelf geen holografische berekeningen, maar bevat wel verscheidene
kwalitatieve inzichten vanuit holografie die worden toegepast in een nieuwe
zware-ionen code genaamd Trajectum. Dit zal in de nabije toekomst gebruikt
worden om een Bayesiaanse analyse te doen, waar gehoopt wordt dat deze
kwalitatieve inzichten uit holografie getest kunnen worden op experimentele
data, om te zien hoe goed de ideeën uit holografie met het experiment in
overeenstemming zijn.
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Appendix A

V-QCD potentials

In this appendix, we discuss the potentials which appear in the V-QCD
action defined by (1.11) and (1.12). Furthermore, we will discuss the various
constants [94] which appear in the near-boundary expansions discussed in
2.1.2. First, we will discuss some general statements which apply to both of
the sets of potentials that will be considered here, before moving on two the
two specific cases used in chapters 2 and 3.

In V-QCD, there are 5 potentials which enter the action, namely Vg(λ),
Vf (λ, τ), κ(λ), w(λ) and Z(λ). Firstly, let us restrict ourselves to Vf of the
form

Vf (λ, τ) = Vf0(λ)e
−a(λ)τ2 .

Using this, we then define

Veff(λ) = Vg(λ)− xfVf0(λ),

and we obtain the following expansion:

Veff(λ) =
12

L2
UV

[
1 + V1λ+ V2λ

2 +O(λ3)
]
,

which defines the constants LUV, V1 and V2. In terms of these constants, one
can also define

b0 =
9

8
V1, b1 = − 9

256

[
23V 2

1 − 64V2
]
.

Another expansion we can obtain is:

κ(λ)

a(λ)
=

2L2
UV

3

[
1 + κ1λ+ κ2λ

2 +O(λ3)
]
,
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from which we can obtain

γ0
b0

= −4

3
− 4κ1

3V1
.

For both of the sets of potentials considered below, we will have

b0 =
11− 2xf

3
, b1 =

34− 13xf
6

,
γ0
b0

=
9

22− 4xf
,

which matches the perturbative QCD beta function, as well as the perturba-
tive anomalous dimension of the quark mass in QCD. Since the potentials
from section A.2 are only meant to be used for xf = 1, these potentials only
satisfy these properties at this precise value of xf .

A.1 Inverse magnetic catalysis

In chapter 2, we use the following potentials [94, 99, 120,122]:

Vg(λ) =
12

L2
0

[
1 +

88λ

27
+

4619λ2

729

√
1 + log(1 + λ)

(1 + λ)2/3

]
,

Vf (λ, τ) =
12

xfL2
UV

[L2
UV

L2
0

− 1 +
8

27

(
11

L2
UV

L2
0

− 11 + 2xf

)
λ

+
1

729

(
4619

L2
UV

L2
0

− 4619 + 1714xf − 92x2f

)
λ2
]
e−a0τ2 ,

κ(λ) =
[1 + log(1 + λ)]−1/2

[1 + 3
4
(
115−16xf

27
− 1

2
)λ]4/3

,

w(λ) = κ(cλ),

Z(λ) = 1 +
λ4

10
,

where

a0 =
3

2L2
UV

, L3
UV = L3

0

(
1 +

7xf
4

)
,

and c is a free constant which has different values in different parts of chapter
2.
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A.2 Baryons

In chapter 3, we use the potential which were fitted to lattice data in [103].
In particular, we use potentials 7a, where the notation ‘7a’ follows [103]. As
we will not use the Z potential in chapter 3, we will also not define it. The
potentials are:1

Vg(λ) = 12

[
1 +

88

27
λ+

4619λ2

729(1 + λ/λ0)

+ VIRe
−λ0/λ (λ/λ0)

4/3
√

log (1 + λ/λ0)
]
,

Vf (λ, τ) = e−τ2
[
W0 +W1λ+

W2λ
2

1 + λ/λ0
+WIRe

−λ0/λ (λ/λ0)
2

]
,

1

κ(λ)
=

(
3

2
− W0

8

)[
1 +

11

3
λ+ κ̃0

(
1 +

κ̃1λ0
λ

)
e−λ0/λ

(λ/λ0)
4/3

√
log (1 + λ/λ0)

]
,

1

w(λ)
= w0

[
1 +

w1λ/λ0
1 + λ/λ0

+ w̃0e
−λ0/λws

(wsλ/λ0)
4/3

log (1 + wsλ/λ0)

]
,

with

λ0 =
1

3
, VIR = 2.05, W0 = 2.5, W1 =

64 + 24W0

9
,

W2 =
6488 + 999W0

243
, WIR = 0.9, κ̃0 = 1.5, κ̃1 = −0.047,

w0 = 0.83, 3ws = 0.925, w1 = 2, w̃0 = 45.

Compared to the potentials from appendix A.1, b0, b1 and γ0/b0 are un-
changed, provided we compare at xf = 1. However, we have

L2
UV =

12

12−W0

≈ 1.26.

These potentials will be used in a setting where the planck mass M enters
non-trivially into the computation through (3.17). For these potentials, we
have

M3 =
11 · 1.32
180π2L3

UV

.

1Note that there is a factor 8π2 difference in the definition of λ with respect to [103].

177





Bibliography

[1] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge
Theories, Phys. Rev. Lett. 30 (1973) 1343.

[2] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?,
Phys. Rev. Lett. 30 (1973) 1346.

[3] S. Bethke, Determination of the QCD coupling αs, J. Phys. G26
(2000) R27 [hep-ex/0004021].

[4] G. Aarts, Introductory lectures on lattice QCD at nonzero baryon
number, J. Phys. Conf. Ser. 706 (2016) 022004 [1512.05145].

[5] J. Smit, Introduction to quantum fields on a lattice: A robust mate,
Cambridge Lect. Notes Phys. 15 (2002) 1.

[6] C. Gattringer and C. B. Lang, Quantum chromodynamics on the
lattice, Lect. Notes Phys. 788 (2010) 1.

[7] G. S. Bali, The Running coupling from lattice QCD, in Problems on
high energy physics and field theory. Proceedings, 16th Workshop,
Serpukhov, Protvino, Russia, September 14-17, 1993, pp. 147–163,
1993, hep-lat/9311009.

[8] G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, The QCD phase
diagram at nonzero quark density, JHEP 04 (2011) 001 [1102.1356].

[9] P. de Forcrand and M. D’Elia, Continuum limit and universality of
the Columbia plot, PoS LATTICE2016 (2017) 081 [1702.00330].

[10] HotQCD collaboration, Equation of state in ( 2+1 )-flavor QCD,
Phys. Rev. D90 (2014) 094503 [1407.6387].

179

https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1088/0954-3899/26/7/201
https://doi.org/10.1088/0954-3899/26/7/201
https://arxiv.org/abs/hep-ex/0004021
https://doi.org/10.1088/1742-6596/706/2/022004
https://arxiv.org/abs/1512.05145
https://doi.org/10.1007/978-3-642-01850-3
https://arxiv.org/abs/hep-lat/9311009
https://doi.org/10.1007/JHEP04(2011)001
https://arxiv.org/abs/1102.1356
https://doi.org/10.22323/1.256.0081
https://arxiv.org/abs/1702.00330
https://doi.org/10.1103/PhysRevD.90.094503
https://arxiv.org/abs/1407.6387


BIBLIOGRAPHY

[11] http://inspirehep.net/record/1398831/files/2015_LRPNS_
091815.pdf.

[12] X. Luo, Exploring the QCD Phase Structure with Beam Energy Scan
in Heavy-ion Collisions, Nucl. Phys. A956 (2016) 75 [1512.09215].

[13] M. G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color
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