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The physical properties of Reissner-Nordstrblack holes in 1+ 1)-dimensional anti—de Sitter spacetime
are related, by a holographic map, to the physics of a class-dimensional field theories coupled to a
background global current. Motivated by that fact, and the recent observations of the striking similarity
between the thermodynamic phase structure of these black (wlése canonical ensembland that of the
van der Waals—Maxwell liquid-gas system, we explore the physics in more detail. We study fluctuations and
stability within the equilibrium thermodynamics, examining the specific heats and electrical permittivity of the
holes, and consider the analogue of the Clayperon equation at the phase boundaries. Consequently, we refine
the phase diagrams in the canonical and grand canonical ensembles. We study the interesting physics in the
neighborhood of the critical point in the canonical ensemble. There is a second order phase transition found
there, and that region is characterized by a Landau-Ginzburg modelAyitiotential. The holographically
dual field theories provide the description of the microscopic degrees of freedom which underlie all of the
thermodynamics, as can be seen by examining the form of the microscopic fluctuations.
[S0556-282(199)06820-4

PACS numbd(s): 04.65+¢€, 04.404+Nr, 04.62+v, 11.10.Wx

I. INTRODUCTION AND SUMMARY theory”) supplies a microscopic description of the underly-
ing degrees of freedom upon which a statistical description

Explaining the thermodynamic nature of black holes wasof the laws of black hole thermodynamics can be based. This
recognized as an essential hallmark of any complete quars true even though we do not yet have a satisfactory way of
tum theory of gravity long before such a theory was con-writing the theory in all regimes: the “D-brane calculuf3]
structed. The semiclassical approach to quantum gravityprovides a robust framework within which to describe many
which has become quite a mature subject over the yeansroperties of black hole§6], while in turn being firmly
[1,2], allows for the computation of a number of physical rooted in the dynamical framework of string duality and,
quantities. These treatments ignore the details of how a spedtimately, M theory[7]. Typically, the description of black
cific solution of Einstein’s equationgegarded as the effec- holes (and other important geometrical backgroungso-
tive low energy truncation of the complete quantum gravity ceeds by translating their properties into features of an aux-
arises, and instead perform a quantum treatment of field dekary field theory, identified as residing on the world volume
grees of freedom in a fixed classical space-time backgrounaf some collection ofD- or M-) branes.

In that way it was learned that the entropy of Bekenstein One of the succinct ways of organizing this microscopic
[3] and the temperature of Hawkirg], for example, fitinto  description of the properties of black holes is via “anti—de
an elegant thermodynamic framework, with questiGmsch  Sitter (AdS) holography”[8—12]. Then, the thermodynamic
as scattering, unitarity, edcconcerning the underlying mi- properties of black holes in anti—de Sitter spacetime are dual
croscopic description—which we might use to construct theio those of a field theory in one dimension fewé0,11].
underlying “statistical mechanics”—best left for the future The fact that the thermodynamic properties of the AdS black
development of a quantum theory of gravity. holes[13] are organized by an effective field theory is not

That future is now here. String theorgand/or “M implausible, in light of the fact that AdS spacetime acts like

a natural “box” (with reflecting wall$ which neutralizes the
tendency of gravitational interactions to render a canonical

*Email address: H.A.Chamblin@dampt.cam.ac.uk thermodynamic ensemble unstable. The fact that the effec-
"Email address: Roberto.emparan@durham.ac.uk tive field theory is one which does not contain gravity and
*Email address: cvj@pa.uky.edu that it is actually a “holographically” dual four dimensional
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another striking example of the fundamental role that gaugéneory relevant to EMAdSshould be considered in a similar
theory plays in duality in various situatiohs. manner.

That the AdS arena stabilizes the thermodynamics of A truly rich phase structure for the field theoriésith
black holes is especially apparent when one discovers phasgnsition temperatures away frof+ 0) is obtained only for
structures completely analogous to familiar thermodynamidinite volume, which is the case we concentrate on here. Our
systems from elsewhere in nature. Such an example can udies correspond to the study of black holes with spherical
found in the Reissner—Nordstre-anti-de Sitter(RNAdS)  horizons,S" 1. The field theory resides oRxS"" 1. The
systems in various dimension47]. There, the Q,T) dia- case of infinite volume corresponds to black holes with ho-
gram showing the thermally stable phases for a fixed chargézonsR"~* and to field theory orR". This is of course the
(canonical ensemble turns out to be completely analogous t€ase which comes from taking directly the near horizon limit
that of the {T,P) phase diagram of the liquid-gas system.Of explicit brane solutions.

The structure of the first order phase transitions, etc., is con- AS shown in Ref[17], the results for infinite volume may

trolled by a “cusp” catastrophgl8], common in the theory be easily obtained as a scallng limit of the results of finite
of discontinuous transitions in thermodynamics and many©/Ume, and so we will not discuss them here. Of course,
other field? Meanwhile the free energy as a function of €VeN though we are in finite volume for much of our discus-

temperatureE(T), displays the characteristic “swallowtail” sion, the thermodynamic limit is still valid here, because the
shape A dual field theory is at largé&, and a positive power ofl

. . measures the number of degrees of freedom in the field
In this paper, we report the results of our further exami- 5 .
. . A theory (for example,N“ in the case of gauge theory, far
nation of these structures, exploring the equilibrium thermo-:4 here
dlynetlmlcls Tobr_le_tcloszlyt,hlncludllgg tthe t?ffeCti_r?f cqn;lldgtr_lng The structure of the paper is as follows: In Sec. Il we
electrical stability and thermal fluctuations. The SImianties, o o)) yne charged black solutions of the Einstein—Maxwell—

noted between the RNAdS physics and that of well-defined, i 4e sitter system. We also recall the results of performing
systems such as the liquid-gas system are more than mejigs £y clidean section and ensuring its regularity. In Sec. Ill,
analogies\We find that everything has a very natural place ye translate these results into a statement about the relation
in classic equilibrium thermodynamics, as is consistent withhetween the thermodynamic variables of the black hole sys-
a holographic duality to thermal field theory without gravity. tem in thermodynamic equilibrium, i.e., the “equation of
Accordingly, using the techniques of equilibrium thermody-state.” In Sec. IV, we define the grand canonical and canoni-
namics, we refine the phase diagrams which we found ial thermodynamic ensembles and compute the associated
Ref.[17] somewhat, and identify the generic physical prop-Gibbs and Helmholtz thermodynamic potentials, contrasting
erties which give rise to the cusp and swallowtail structuresthe techniques usetand results obtaine@do those of our

As discussed in our previous papéd7], the thermody- previous work. In particular, we note that we can obtain an
namics of the Reissner-Nordstnoblack holes in the pres- intrinsic definition of these quantities in Euclidean quantum
ence of a negative cosmological constant in various dimengravity, by sidestepping some of the technical subtleties—
sions is pertinentbecause of the holographic mam the  encountered in the “background subtraction” technique for
thermodynamics of families of field theories found on theregularizing the action—in favor of the “counterterm sub-
common world volume of collections of large numbers oftraction” technique[21,22. In the rest of the section, we
branes(for example M2- and D3-brangsin the situation examine the features of these potentials quite closely, in
where a global background currefar its canonical conju-  preparation for later detailed studies. In Sec. V, we use the
gate chargehas been switched on and held fixed. equation of state and the first law of thermodynamics to

Geometrically this is performed by simply setting the M2- identify the origins of the crucial features of the shape of the
and D3-branes rotating equally in each of the available trans-ielmholtz potentialfree energy. This “swallowtail” shape
verse orthogonal two-planes. The higher dimensional angulds responsible for the interesting phase structure in the ca-
momentum becomes the Maxwell(1) charge after the nonical ensemble. Section VI examines the conditions for
Kaluza-Klein reduction on thénow twisted sphere, which  thermodynamic stability of the black holes, examining the
yields the gauged supergravity. Obtaining a pure Maxwelkpecific heats and permittivity of the black holes. In this way,
term in this way is not possible starting with the M5-brane,we identify the stable regions of the solution space of the
and so the seven dimensional Einstein—Maxwell-anti-de Sitequation of state. We use this stability information, together
ter (EMAdS)) theory defines at best a close cousin to thewith the information gained in earlier sections, to deduce the
field theory found on the M5-brane world volumes. The dualrefined phase diagrams exhibited in Sec. VII, and some de-

tails of the phase diagranithe slope and convexity of the
coexistence curvesare refined by using the Clayperon equa-

Isee also Refd14—1§ for a discussion of how this extends to 10N in Sec. VIII. o _ _
relating the physics of linear dilaton backgrounds to theories on the AS already stressed in this section, the thermodynamic
world volumes of Neveu-Schwarz bran@$S-branes quantities and studies performed in those sections are rooted

%Recently, the cusp catastrophe has appeared again in the Adimly in a microscopic description. This is ensured by the
conformal field theory(CFT) context, in Ref[19]. fact that we can in principle embed this entire discussion into

3See[20] for additional work on how to relate charged AdS black @ complete theory of quantum gravity: striignd/oy M
holes to string or M theory. theory. In practical terms, this microscopic description—the
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“statistical mechanics” underlying the thermodynamics—is phase structure resulting from a competition between these
summarized neatly in terms of the holographically dual fieldtwo pieces of the action.

theory. In this way, therefore, we may carry our calculations Such reasoning on its own would not be enough to genu-
further and examine the nature and magnitude of the microinely fill out the whole Q,T) phase diagram, as the equation
scopic fluctuations of the various thermodynamic quantitie®f state needs additional structure. It is the presence of a
we have computed, knowing that we have a description ofnegativeé cosmological constant which provides this final
their origin in field theory. Thus, we find in Sec. IX that the Part: First, it provides black hole solutions which are ther-
fluctuations behave in a way consistent with the underlyingh@lly stable in ensembles involving fixed temperatiit8],
microscopic physics being supplied by the field theory: th ut second, as it defines a new length scale, it allows the

size of the(squaredi fluctuations is controlled by a prefactor SYStém to distinguish, on the one hand, black holes which are

which corresponds to precisely the inverse of the number Olfarge from those which are small and, on the other hand,

degrees of freedom of the dual field theory. We observe thagLa‘a?rEQOIeS which have small charge from those with large

the size of the ﬂuctuaﬂons diverges as the system approach€s It is because of these features that the charged black hole
a critical point in the Q,T) plane. . thermodynamics has a chance to be similar to the van der
3 . . SVvaals model of the liquid-gas system. Recall that without
for the four dimensional case, in order to keep many of OUtne jnclusion of the effects of the length scales set by a finite
formulas simple. Section X collects together some of theyarticle size, on the one hand, and attractive inter-particle
results for the computation of various quantities. We stresgprces on the other, that system would have only the much
that the qualitative structure Of the phySiCS iS the same fOI‘ a||less interesting physics of the ideal gas: there would be no
dimensiongd=4, whered=n+ 1. Briefly, we also discuss in  competing effects, as a function of length scale, with which
that same section the issue of the meaning of the formab trigger a phase transition. These basic features of AdS
definition of other thermodynamic ensembles by Legendr&pacetime give holography a chance to work in a way which
transform. It is not always the case that the thermodynamigs consistent with our intuition that the microscopic physics
quantities thus defined may be arrived at (Bmown) com-  should be modelled by ordinary field theory.
putations in Euclidean quantum gravity. Therefore, interpre-
tations of the physics of such ensembles are to be taken with Il. CHARGED AdS BLACK HOLES
(at least a pinch of salt, until such time as new technology
becomes available to compute the relevant quantities directly
in quantum gravity, as we have done here for the fixed po@"
tential (grand canonicaland fixed chargegcanonical en- 1
sembles. = —
Section XI discusses the underlying structure of the phase 167G
structure of the canonical ensemble in the neighborhood of
the critical point. In particular, the physics local to critical with A =—n(n—1)/22 being the cosmological constant as-
point is universal for all of dimensiond=4. The critical  sociated with the characteristic length scal@hen the met-
point is a second order phase transition point at the end of &¢ on the RNAdS solution may be written in static coordi-
coexistence line of first order phase transitions. As such, inates a$23,24,17
has a universal description in terms of a Landau-Ginzburg
model, with a quartic potentialA3 in the A-D-E classifi-
cation of such potentials. The deformation of this potential
gives the classic “cusp” catastrophe which underlies the
critical behavior, as is well known from the van der Waals—\,\,heredgﬁ_1 is the metric on the round unib¢ 1)-sphere,
Maxwell description of the liquid-gas system, with which and the functionv(r) takes the form
our black hole physics shares many features, as originally
reported in Ref[17]. m q? r2
In closing the Introduction, we would like to stress once VIN=1- 5=+ =3tz ()
again how elegantly the properties of anti—de Sitter space

yield charged black hole physics so closely akin in StrucCture .« 1 is related to the Arnowitt-Deser-MisngiADM )

to that of ordinary field-theory-like systems, with which we mass of the holeyl (appropriately generalized to geometries

have more intuition. : :
From the point of view of the Maxwell part of the action, asymptotic o AdS spacetinies]), as

the black holes are nothing more than spherical capacitors,
and as such, the amount of energy they can store grows with
the charge on them, but falls with increasing hole radius.
From the point of view of the Einstein-Hilbert action, how-
ever, the black holes store an amount of energy which grows
with radius. After a little thought, one might expect on gen- “we scale the gauge field, so as to absorb the prefactors in-
eral grounds, therefore, that there might be an interestingolving theU(1) gauge coupling into the action.

For spacetime dimension+1, the Einstein—Maxwell—
ti-de Sitter (EMAdS, ;) action may be written 4s

n(n—1)

fMd”“x\/—g R—F2+|—2, (1)

2

_ dr 2
dsz——V(r)dt2+W+r2dQn_l, 2

(N—1wp_1
=—————m

167G ' @
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where w,_4 is the volume of the uniti{—1)-sphere. The Our analysis is further simplified by adopting the following
parametenq yields the charge rescalinggonce we have sat=3):

Q=2(n—1)(n—2)

Wp_1 5) 2l V3
g-c /4 THET, Q—+GQ, d-d, (12)

of the (pure electri¢ gauge potential, which is . . - .
(P & gauge p and for the various thermodynamic quantities used in Ref.
1 q [17],
A=| — E rn—_2 + o

[2(n—2) and
€= n-1" ™

and® is a constantto be fixed below. If r , is the largest
real positive root ofV(r), then in order for this RNAdS
metric to describe a charged black hole with a non-singulaEssentially we are introducing a system of dimensionless
horizon atr=r , , the latter must satisfy quantities in which everything is measured in units of the

AdS scalel. This scaling is chosen so that the thermody-

dt, (6)

V3 3G
{W,F,E}— —G{W,F,E}, S—-—3S (13
where I 2l

V3
r+_>|_r+. (14)

n namic formulas still all have their standard form, i.e.,
(n_z)rin2+|2rin4>q2|2_ (8)
dE=TdS+®dQ, dF=-SdT+ddQ,
Finally, we choose
dW=-SdT-Qd®d, etc. (15
b= ! _zq 9
B ©) In the following, all of the quantities which follow are the

+

rescaled dimensionless quantities, unless stated otherwise.
which then fixesA(r .)=0, as is required byEuclidean
regularity of the one-form potenti&b) at the fixed point set
of the Killing vector d;. The physical significance of the Ill. EQUATION OF STATE
quantity ®, which plays an important role later, is that it is
the electrostatic potential difference between the horizon and The Euclidean regularity at the horizon discussed at Eg.
infinity. (10) is equivalent to the condition that the black hole be in

If the inequality in Eq.(8) is saturated, the horizon is thermodynamical equilibrium. The resulting equatiti0)

degenerate and we get an extremal black hole. This inequalay therefore be written as an equation of state
ity imposes a bound on the black hole mass parameter of the T(®,Q) [analogous td'=T(P,V) for, say, a gas at pres-

form m=mg(q,l). sureP and volumeV]. For n=3, one finds
In passing to the thermodynamic discussion, we define the 5 5 )
Euclidean sectiont(~i7) of the solution, and identify the T PH(1-d)+Q 16
period, B, of the imaginary time with the inverse tempera- 2Qd '
ture. Using the wusual formula for the periodB
=47/V'(r ), which arises from the requirement of regular- One can also solve fa@ as
ity of the solution, we obtain
427203 Q=TO+=DT?+P>—1. (17
n
B= nra" 2+ (n—2)1%r3" 4~ (n—2)q?%" (10 From this equation of state we see that for fixedve get
two branches, one for each sign, when the discriminant under
This may be rewritten in terms of the potential as the square root is positive. For fixed, T(P) has three
branches foQ< Q. and one forQ>Q.;;, where the criti-
4rl?r (11) cal charge is determined solving for the “point of inflection”

where @Q/dd)r=(5°Q/d®?)1+=0. In the dimensionless
units used here, one findQ.i=1/(2v3), Tgi=2v2/3,

For simplicity, we will specialize ton=3 (therefore  ®,=1/\/6, E;=v2/3, andr , in=1n2. It is useful to
working with EMAdS;) to avoid cluttering our expressions plot the @,Q) isotherms, i.e., ploQ(®) for fixed T, and
with complicated dependences onOur results will remain  we exhibit these in Fig. 1.
qualitatively the same for higher (see the comments in Sec.  As T goes to zero, we approach the extremal black holes.
XI), and we list some of the-dependent formulas in Sec. X. Their equation of state is

A= 21— 2
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FIG. 1. Plots of the equation of state ®fvs Q, showing isotherms above and below the critical temperalwe For T<T.;, there
is only one branch of solutions, while far>T;, there are three branches. The value§ dbr the isotherms plotted argop down T
=0, 0.8, T, 1.0, 1.2. The centrddotted curve is at the critical temperature.

, 1 , _ potential at infinity—as the reference background.
Pe=5(1+y1+4Q%, for arbitrary T. (18 Remarkably AdS spacetime provides for another regular-
ization which yields arintrinsic definition of the action. In

For some later computations, it is often convenient to use a8ther words, the computation makes no reference to any

an additional, non-independent parameter, the black hole r&ther solution of the equations of motion. Instead, the
diusr , , in terms of which method [21,22 proceeds by adding a series of boundary

counterterms to the action. We refer to this as the “counter-
1 Q2 term subtraction” method of defining the action, a technique
Q=r+\/ri—2r+T+1, 2T=r,+———=, (19  tailored to spacetimes which are locally asymptotic to
Fe Ty anti—de Sitter spacetime, as the counterterms are defined on
the natural boundary, with which such spaces are endowed,
using the AdS scalé. Also note that the inclusion of addi-
tional sectors to the gravitational and cosmological parts of
b= g: JrZ—2r, T+1. (20)  the action, such as Maxwell terms, does not affect the defi-
Iy nitions and therefore we can still use the same counterterms
in the present context.

and

IV. GRAND CANONICAL AND CANONICAL ENSEMBLES

In thermodynamic parlance, the “grand canonical en-

semble” is defined by coupling the system to energy and 0.2
charge reservoirs at fixed temperatilireand potentiakb (an

intensive variable The associated thermodynamic potential 0.1
is the Gibbs free energWV[T,®]=E—TS—®Q. Holding

the extensive variable, fixed, on the other hand, defines wo
the canonical ensemble, with its associated thermodynamic

potential the Helmholtz free enerdy[T,Q]=E—TS. See -0.11
Sec. X for a brief discussion of other ensembles.

In Ref.[17], the calculation at fixed potential was carried B2
out by computing the action in the manner of Gibbons and
Hawking (see Ref[26] for related calculations With that
technique, one must regularize the computatasithe action
is formally infinite) by subtracting a contribution from a
“reference” background which matches the solution of in-
terest asymptotically, giving a definition of the action rela-
tive to that of the reference spacetime. In this case it is ap- FIG. 2. Plots of the Gibbs potenti&¥[®,T] in three dimen-
propriate to use AdS spacetime—uwith a fixguire gauge  sions.
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The results, using either the reference background or thand it is plotted in Fig. 2, with choice slices displayed in
counterterm subtraction methods, are identical for the parFig. 3.
ticular case in which we want to fix the potentiaince it is

bitrary temperature ancconstant potential (but, crucially,

Turning to the canonicalfixed chargeé ensemble, we
possible to have AdS space as a background solution at awish to compute the Helmholtz potenti®[Q,T] (also
known as the “free energy)! In Ref.[17], where we used
see later. In the present notation, the answer is the reference background method to compute this, it was
necessary to compute the action using an extremal black hole
3
%) . (21)

1] Q as the reference background. This is because anti—de Sitter
WP, T]= -
12
Here,Q is given asfQ(®,T) by the equation of state 7). In
terms ofr, , this is

35(1—<D2)—

space with a fixed charg@, as measured at infinity, isota

solution of the equations of motion and so is not an appro-

priate background. In order to get an intrinsic definition of
the action for fixed charge, therefore, we employ the method
of counterterm subtraction, yielding
1 2y_ .3
W= [3r,(1-9?)—rd], (22) o 232 (2, 900 s
SFor even values oh there appears a Casimir energy tei],
which is immaterial for the discussion of thermodynamics here.

where® is given asb(Q,T) by the equation of statd 7). In
terms ofr ., F[Q,T] may be written as
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1
FIQTI= 5

s 2 That such a shape appears in the thermodynatatosve
3ry—ri+9-—. (24 T, or below aQg;) can be shown to follow from the first
* law of thermodynamics, the definition of the thermodynamic

As a consistency check that we have performed the c:Or.nr_)ot_entials, and the form of the par_ticular equation_s of state
putation correctly, note that this result may be obtained fromfvich the black holes obey. We will show how this comes
the result for the Gibbs potential by formally calculating the 220Ut next.

Legendre transfornF[Q,T]=W[®,T]+Q®. When com-

puting F from a Euclidean action, the addition@® term V. SWALLOW TALES

has its origin in the boundary term introduced so as to re-
cover the correct variational problem from the action. It is

especially satisfying to see that the counterterm Sup.tr"’l.c'['oexistence of the previously mentioned three branches of so-
method places such intuitive relationships from equilibrium

thermodvnamics on a firm footing. We shall have more toIutions to the equation of state. We have from the first law,
ynamic 9 and the definition of the thermodynamic potential, td&t
say about this in Sec. X.

In Ref.[17], where we computed the action using an ex- —SdT+®dQ. Therefore, for fixedr we find
tremal reference background, we obtained the following ex-

The sections of swallowtails in thHe(Q) andF(T) plots
g]above al .,;; or below aQ,;;) can be seen to come from the

pression for the free energyhich we denote here d5): F(T)=f ®(Q)dQ+f(T), (26)
3
F[Q,T]= 1{39_ 9) +9Q<I>—43— 8Q® wheref(T) is an arbitrary function ofr. The integral func-
' 1270 \o P, e tion can be obtained by looking at the plot of isotherms.

(25  When we have three branchése., T>T.), the curve
_ ®(Q) winds back and forth in a way that the integral de-
Note that in this case one should consider ® —®. as the  scribes a shape with three connected branches, constituting a
state variable, instead df. Then, the first law is in this case section of the “swallowtail” shape. This can be seen by
dE=TdS+®dQ, andE measures the energy above the ex-examination of the plots of the equation of state in Fig. 1 and
tremal state. Furthermore, it is with thatW[T,®] of Eq.  the plots of the slice§(T) displayed in Fig. 4

— Equation(26) is usually employed to formulate an “equal
(21) andF[T,Q] are Le_gendre transforms of each other, area law” governing the phase transitions of the system. The

they should be. While=[Q,T] as computed in Refl17]  |5tter occur at the point where the free energies of two
using the extremal .background is in no way problematic, W&yranchessay A and B are equalf ,=Fg. From Eq.(26)
shall not examine it further here, as the new technology ofyis equality may be translated into a statement about the
the counterterm subtraction method has supplied us with agquality of the areas enclosed by the isotherm curves and a
intrinsic definition of the Helmholtz potential, which is the |ine of constantQ in the (@,Q) plane, as shown in the
more natural Legepdre-transform partner of the Gibbs potensyatch on the left in Fig. 7. There is a subtlety, though, in
tial (21) found earlier. o using Eq.(26) with the isotherm curves of Eq17) for T

We shall see that the qualitative features of the results, 1 (Recall that isotherms witi=1 go through the origin
o_btained in Ref.[17] for the canonical ensemble using ®=Q=0. See Fig. 3. Given that the transition is gov-
F[Q,T] will persist here, as the extremal background suberned by the equal area law, it would seem from the curves
traction essentially redefines the absolute normalization ofn the right in Fig. 7 and the area law deduced from 26)
some results[ The later analysis of intrinsic stability which that even forT> 1, for which a minimum value of> ceases
we do in Sec. VI would have to be somewhat modified beto exist, one can always find a phase transition point for
fore direct comparison to the extremal subtraction resultsarbitrarily large temperatures and small enough charge. This
however, as we will make heavy use of the equation of statehust be wrong since it contradicts what we know about the
in terms of the variables &,Q,T), and not the triple phase transition from the curves & for constantQ,
(P,Q,T) appropriate to that cade. namely, that the phase transition takes place at a temperature

We now return to the analysis of the intrinsically definedthat is smaller(or equal, atQ=0) than the Hawking-Page
Helmholtz potentiaF[ Q,T]. It was noticed in Refl17] that  temperaturel p. (See Ref[17] and the upcoming Sec. VII
a plot of F(T) for various values of) reveals(below aQ,;;) ~ for & detailed discussion of the phase strucjure.
a section of “swallowtail” shape, which controls much of ~ The resolution of this puzzle is instructive, and is made
the phase structurén the canonical ensemblaliscussed Manifest most clearly by working in terms of the parameter
there, and to be discussed later héfee Figs. 5 and 6 of I+, Using Egs(19), (20) and(24). We can explicitly com-
Ref.[17] and associated text for detajlfhe same may be PuteF using Eq.(26) as
observed here fof(T) for varying Q, as shown in Fig. 4.

It may be further observed that a plotle{Q) for fixed T

reveals(above al ) a similar swallowtail section, as shown s visual differentiation is often easier to perform than integra-

in Fig. 5. tion, we gently remind the reader that the defining relatibn
The full three dimensional shape BfQ,T] is plotted in  =(4F/9Q); may be of use here, in conjunction with the snapshots
Fig. 6. of F(Q) for fixed T given in Fig. 5.
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temperature for the fixed charge
ensemble, in a series of snapshots
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=0, 0.15 and)=0.299. Note that
Qqit=0.289, so in the last plot,

the bend(nearT.;=0.943) is in

the neighborhood of the critical
N
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point of second order.
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r Let us now turn to the study of the free energy for fixed
F:fo O(r,)(dQ/dr)dr (27) Q. We have

to recover precisely Eq(24). So what is the reason that
“naive integration” using the “equal area law” yields a
different result?

F(Q)=—J S(T)dT+g(Q).

The point is that forT>1 the functionF(Q) is discon-

tinuous atQ=0, where branches 2 and 3 separaee, for In this case we nee§(T). Since

example, the last plot of Fig.)5For those isotherms, there is

a range of values for, , T— JTZ=1<r,<T+T2-1 for

which Q and® become imaginary. Nonetheless, the product
ddQ is real throughout, and so 5. Then,F(Q) would be
a continuous function if we plotted it in the comple&X

S= E(
plane. In performing the integration above for-1 we have
implicitly included the points wheréd andQ are imaginary.

(28)

2 2

) > (29
we can use the equation of state to pB§ir) for fixed Q,

Notice that it is by including these points that we recoverwhich is shown in Fig. 8.

sensible physics, since we want the critical line to en@at It can be readily seen that fa@<Q;; we get three

=0 at the point of the Hawking-Page phase transition. Théranchegnotice that the qualitative features of the plot of

“equal area law,” as it is, fails in this instance.

S(T) follow from those ofr . (T) orr . (B) plotted in Fig. 3
104026-8
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FIG. 5. The free energy vs charge for the fixed charge ensemble, in a series of snapshots for varying temperature, fbr values
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FIG. 7. The figure on the left shows how the condition for a

phase transition may be interpreted in terms of an “equal area law”
analogous to that due to Maxwell for the van der Waals liquid-gas
model. ForT=1, though, the isotherms have a very different quali-
tative structure. The equal area law one might formulate, deducing
a phase transition for arbitrarily high>1, for small enoughQ,
actually is incorrect. See text for the resolution of the puzzle.

FIG. 6. Plots of the Helmholtz potenti#[Q,T], in three di-  SPecific heats, etcwhich we discuss here, without any ref-
mensions, clearly showing the swallowtail shape TorT,; and  €rence to an underlying microscopic description. This has
Q<Qqit - been done in the context of black hole thermodynamics since

time immemorial.The difference here is that we know the

of Ref.[17], where it has a resemblance to the van der Waalgature of the microscopic degrees of freedom which supply
P(V) curvel. A section of the swallowtail again follows: the underlying “s_tatlstlcal mechanlcs” Whl_ch gives rise to
The astute reader may wonder why the swallowtail Shap_éhese macroscopic thermodynamics quantitiése underly-
(and the resulting liquid-gas-likephase diagram occurs in NG Physics is that of the gauge theory to which this system is
the canonical ensemble, where in additiotahe extensive Nolographically dual, which in turn is the physics of coinci-
variable Q is an external control parameter, and not in thedent branes. This will become more apparent in Sec. IX
grand canonical ensemble, where the intensive varidble When we explicitly study the fluctuations themselves.
would be the control. This is of course what happens in the 1hermodynamic stability may be phrased in many differ-
case of the van der Waals—Maxwell system, where the pha't Ways31,33, depending on which thermodynamic func-
diagram is in P,T) space, and not\(,T) space27,28. The tion we choose to use, and how obscure we are att_emptmg to
swallowtail shapes occur there in the Gibbs potential. It isS€€M- For example, it can be seen as minimization of the
now hopefully clear that the answer follows from the fact ®N€rgy,E, as a function of §,Q), or maximization of the
that our equation of state yields three branches of solution€tropyS, as a function of £,Q), etc. In any case, one is
for the intensive variabl@ (or T) as a function of the fixed considering an infinitesimal variation of the state function

extensive variabl® (or S), as can be seen by examining the 2VaY from equilibrium. The first lawl5) will ensure that the
curves displayed in Figs. 1 and 8. first order terms vanish. Stability is then a statement about

That there are no swallowtail shapes in any of the othefhe second order variations. Generally then the stability con-
ensembles follows from the fact that no more than twoditions are phrased in terms of the restriction that the Hessian

branches occur for the equation of state written in terms o the state function be positiver negative, depending on
other variables. the context semidefinite.
An equivalent but physically more transparent way of
writing the stability conditions is in terms of specific heats
VI. INTRINSIC STABILITY and other “compressibilities,” to wit:

Given that we have the full power of the thermodynamic

framework at our dispos#thanks to the stabilizing influence dS 9S JQ

of a negative cosmological constarit is interesting to con- o=T|=5| =0, Co=T|=| =0, &r=|-5| =0.
) ) > : . aT aT L)

sider the thermodynamic stability of our various solutions Q @ T

against microscopic fluctuatiofid\otice that one can always (30

formally compute the relevant macroscopic quantifidese
The first two, the specific heats at constant electric charge
and potential, are familiar analogues of the specific heats at
Again, one can use Fig. 8 to reconstréi¢Q) visually using the ~ constant volume and pressure in fluid systems. In the case in
integral relation, or one may use the definition of the entrgpy hand, they determine the thermal stability of the black holes,

=(JF/dT)q to reconstruct Fig. 8 from Fig. 4. indicating whether a thermal fluctuation results in an in-
8See Refs[29,3( for analyses which overlap with those pre- crease or decrease in the size of the black Hdleis follows
sented here, in a similar context. from the fact that the entropy is proportional to the size of
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T Stability follows, equivalently, from the concavity or con-
vexity of the plots ofF andW as functions ofT. In fact, the
specific heat conditions are equivalent to

9°F 9*W
1.5 (W)Qso and (W q)so, (31
whereas the permittivity condition is
(92F 2
T (TQZ)TZO or (W Tso. (32

' By examining the isotherms displayed in Fig. 1, we see
that there are a number of features in tiig T) plane which
i govern electrical stability. Generically, let us describe the
three branches of an isotherm as follows: We call “branch
3" the branch of solutions which extends all the way from
Q=o, terminating wheradQ/d® =0. From there, “branch
2" takes over, terminating where agait®Q)/d® =0. The iso-
o -+ + o+ 3 therm continues with “branch 1” until the poin@=0,®
s =1 is reached. This terminology matches that of R&7).
From this definition, then, branch 3 is electrically stable
FIG. 8. Plots of the equation of state 8fvs T, showing iso-  for most of its extent, except for a small region near the join
charge lines above and below the critical cha@gq. FOor Q  \jith branch 2. In this case, before reaching the point where
>Qqrit, there is only one branch of solutions, while R<Qcit.  §Q/dd =0 the permittivity changes sign at a point where
there are three branches. The valueofor the isocharge curves dQ/dd =0 and renders branch 3 electrically unstable there-
ﬁ:gtstfgu?\rlz(t;ﬁ’osv(:’\fg@(g::ooégs'io’V%Ci’gr'] 2i5ivg(;88r';ii)eusp$ﬁg after. This is a feature that is absent from the standard van
central(dotted curve is at the cr{tical charge. ' der Waals—Maxwell systertin the latter there are no points
in the isotherms wherd P/dV=2), and which will intro-
duce a significant modification of the phase diagram.
the black hOle Stab”lty follows from CcC=0, given the fact Branch 2, being between two p|aces th[@/dq)zo'
that black holes radiate at higher temperatures when they affys positive definite slope and hence is electrically stable
smaller. everywhere, while branch 1 is electrically unstable every-
The last quantityg 7, has the following physical interpre- \where, having negative definite slope. To compute precisely
tation. It is negative if the black hole is electrically unstablehere the electrical instability begins, we need only find the
to electrical fluctuationgif they are possible; see later dis- |gcation of the minimum of the isotherms, that is, the above-
cussion. This happens if the potential of the black hale-  mentioned point wherelQ/d® =<, which is given by the
creasesas a result of placing more charge on it. The potentialequationQ=T/I— T2. With the segment of th& axis from
should of courséncrease in an attempt to make it harder to g 1, this forms a region in theQ,T) plane within which
move the system from equilibriufhe 1 therefore deserves to pranch 3 and branch 1 are unstable to electric fluctuations.
be called the “isothermalrelative permittivity” of the  Branch 2 is electrically stable everywhere, as mentioned be-
black hole. . _ fore, but as already pointed out in RgL7], and as a quick
~ There are of course other interesting “response funcyyamination of Fig. 8 of the isochargs,T) curves reveals,
tions” for the system, such as the adiabatic permittivity, ranch 2 is unstable to thermal fluctuations, and so never
(9Q/9®)s, or the quantity analogous to the coefficient of pjays a role in the canonical and grand canonical ensembles.
thermal expansion in liquid-gas systems,=(JQ/dT)s, |t is also entertaining to subject by eye the snapshofs of
which are not all independent. The ones which we have diszg\w taken in Figs. 3, 4 and 5 to the convexity and con-
cussed above will suffice for the physics that we study in thi%avity conditions31) and(32). We find that the shapes &f

paper. _ _ o andW do indeed confirm our conclusions about the stability
We may examine the plots of the isotherms in Fig. 1 andyt the various branches.

deduce that the negatively sloped branches are electrically ¢ js very instructive to plot the boundaries of the various

unstable if there are electrical fluctuations possible. Simiyyanches in the®,T) plane(see Fig. 9.

larly, we may deduce that the negatively sloped branches of i particularly interesting to note that the plots in Fig. 9

the (S, T) isocharge curves in Fig. 8 are thermally unstable ¢ simply the three sheets of an underlying “cusp catastro-

and so on. phe” shape, as can be seen by assembling them in three
dimensions to reconstruct the equation of state in Fig. 1.
Indeed, it is highly instructive to align the surfadg Q,T)

This follows from common sense or, more formally, Le Chat- describing the equation of state and the surfa®,T] giv-
elier’s principle. ing the swallowtail shape of the free energy, in such a way as
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Q Q

critical d
point Q\\ _Q = O
\\

FIG. 9. The demarcation of the various branches of black holes inQLi€)(plane. Points on branches 1 and 3 which lie inside the solid
curved line are unstable to electric fluctuations. Branch 2 is electrically stable but thermally unstable everywhere.

to project some of their important features to th@,7) mation uncovered in this paper.
plane, as done in Fig. 10. This gives rise to the critical phase The dashed line in theQ,T) plane shows the boundary
diagram which we will discuss in the next section. of the region multiply covered bsp, in the state curve, and
As anticipated, the shape formed by the equation of stateorrespondingly, the free energy has three possible values in

in the neighborhood of the critical point is merely a distor- that region alsgsee Fig. 1% which constitutes the swallow-
tion of the standard cusp shape, which was encountered il region. The free energy of branch 2 is always greater
the variables I(,.,Q,3) in our previous papef17]. Figure  than that of either branch 1 or 3, however, and so there is no
11 shows this standard shape with two sample trajectories ifansition along the dashed lines. Along the solid line, the
state space. It will be discussed further in Sec. XI. free energies of branches 1 and 3 are equal, and there is a

_As a final comment, in cases where one of the local Stag g orger phase transitiotthe first derivative of the free
bility cr_ltena (30) is violated, we are not always abl_e o energy is discontinuolisalong this line. Also note that the
determine the stable ground state. However, the precise na- o dimensionalD=0 situation is the familiar Hawking-

ture of the stability violation is providing information about i .
how the system will relax to a new stable configuration. ForPage transitior{13] between AdS and AdS-Schwarzschild

example, one has’Eocz15Q2 and soer<0 indicates that SPacetimes, which happefis our unity at T=Tp=2K3

the black hole should relax by reducing its charge; i.e., it will ~ 1194, forn=3." o 5

emit charged particlef possible. The solid line is the coemstence.curve of the tyvp

phases of allowed black holes. The line ends in a critical

point. Above this point, there is no transition, and one goes

from large to small black holes continuougiie distinction
Figures 10 and 6, together with the slices displayed irbetween branch 1 and branch 3 is remgvedhe reader

Figs. 4 and 5, show how the free energy curve determines thghould compare this to the physics of the liquid-gas system

phase structure of the black holes as one moves around dar an exact analogue in classic thermodynamiés the

the state curve in the canonical ensemble, while Fig. 2 anfirst derivative(but not the secondof the free energy is

the slices displayed in Fig. 3 determine the phase diagram farontinuous at the critical point, there is a second order phase

the grand canonical ensemble. We performed this analysis itnansition there, about which we will have some more to say

Ref.[17], and we recall it here for completeness, before goin Secs. IX and XI.

ing on to refine the resulting phase diagram using the infor- This physics is all summarized in Fig. 12, where we have

VIl. PHASE STRUCTURE
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FIG. 11. A sketch of the cusp catastrophe in actign
(ry,Q,8) spaceg. Two sample trajectories are shown, on@ (
<Qgi) encountering a phase transition, while the oth€) (
>Q¢i) does not. The precise location of the line across which the
transition happens is given by the minimum free energy condition
or, equivalently, an appropriately formulated “equal area law.”

the black holes emitting or absorbing such quanta, introduc-
ing the possibility of electrical fluctuations. Such a possibil-
ity must be considered iffor example the case when the
EMAJS system is considered to be a Kaluza-Klein trunca-
tion of some higher dimensional theory, as discussed in our
FIG. 10. The swallowtail shapéree energy and cusp shape previous worl{17]. Then, the electrically charged black hole
(equation of stafefor the charged black hole thermodynamic sys- can in principle emit or absorb electrically charged Kaluza-
tem. Note the features which result in the critical line and point inKlein particles in order to allow its charge to fluctuate.
the Q,T) plane. In the particular case of four dimensions, however, there
is also the possibility that we can exchange, by electric-
also displayed the phase diagram in the grand canonical emagnetic duality, the electric chargand vector potential
semble[the (@, T) pland, which is straightforward to deter- that we have been considering here for a magnetic charge
mine. Some of the details of the shape of these curves will béand vector potential In this case, we have instead that the
confirmed by calculations in Sec. VIII. For most of the restonly way for the magnetically charged black holes to change
of the paper, we will not have much more to say about theheir charge is to emit or absorb Kaluza-Klein monopoles,
phase diagram in thed(,T) plane, and refer the reader to which are not fundamental quanta, as they are very massive,
Ref. [17] for discussions of its featuréS.Note, however, the further we are below the Kaluza-Klein scale.
that the boundary in this figure marks the line where the In general, when there are allowed electrical fluctuations
Gibbs free energy of the black holes equals that of AdSby whatever mechanism is appropriate to the situation in
spacetime. That is, the boundary dasst denote a curve hand we must also take into account on the phase diagram,
where one of the local stability criteria begins to be violated.the electrical stability of the solutions as determined in the
Depending upon the situation, there may or may not berevious section. Including those regions, we obtain the
the possibility of electrical fluctuations. This depends veryphase diagram shown in Fig. 13.
much upon the setting within which we are considering these The question arises as to what the equilibrium system is
black holes. In a theory without charged particles, the blackvhich resides in the shaded regions. The electrically unstable
hole charge would be fixed and electrical stability need noblack holes cannot reside there, and so we must search for
be considered. In general, however, if there are fundamentaither possibilities. One formal possibility is that extremal
charged quanta in the theory, then there is the possibility oblack holes reside there, because formally they can exist at
any temperature for any charge. However, we do not find
this possibility very attractive. We expect that the permission
1iscussed in Ref[17], for example, is the issue of the line of that the Euclidean cpmputatipn appears to give them to exist
extremal black holes fof=0 and ®>1. The calculation of &t any temper_ature IS an artifact, and that_they_ShOUId natu-
W[T,®] yields a nonzero result on this line, which is the contribu- rally be associated W't,h zero temperature, in \_Nh'Ch case they
tion from the extremal black holes. We expect that this does nofan only occupy the lind =0 on our phase diagram in the
represent the equilibrium situation, because they will decay due t§anonical ensemble, which they do. In any event, one can
“super-radiance” effects on the approach to zero temperature, aifer from the calculations of Ref17] that extremal black
the charge in them is not fixed in this ensemble. This is an artifacholes actually have a higher free energy than the unstable
of the failure of the Euclidean quantum gravity techniques that wehonextremal black holes. Another possibility is that the pre-
have used to take into account such processes. ferred state is simply anti—de Sitter spagehich can also
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its thermodynamic instability. It may be that the onset of a
phase transition to a state of lower free energy actually oc-
curs outside of the boundary in Fig. 13, just as it does for the
grand canonical ensemble in Fig. 12.

VIIl. COEXISTENCE OF PHASES
AND THE CLAPEYRON EQUATION

Let us study further the coexistence lines which we dis-
covered in the phase diagrams, both in the canonical en-
semble and in the grand canonical ensenibke Fig. 12
We can use straightforward thermodynamics to determine
the shape of the lines.

Let us start with the grand canonical ensemble, with
Gibbs potentialW[®,T], with dW=—-SdT-Qd®. An
equation can be derived for the line separating two phases A
and B in the (b,T) phase diagram as follows. Along such a
coexistence line the phasfer given (®,T)] have the same
W, and so the slope of the cun@(T) is related to the
change in entropy an@ by

do
dT

Sa—Sg
OnQs' 33

FIG. 12. Sketches of the thermally stable phases in the canonical

ensemble and in the grand canonical ensemble, respectively.

In the case at hand, one of the phases is AdS which has zero
entropy and zero charge. So we find tkfat all n)

exist at arbitrary temperaturélled with a charged gas. This

is certainly the case @=0[11,13. However, when the gas
carries a non-negligible chargand hence magsits backre-
action on the AdS geometry can not be neglected in deter-

dd B Sbh_
dT  Qun

2
B cd

n—-1

cq

1 ( q )(n—l)/(n—2)

(39

mining the free energy. Another interesting possibility is thatHere,q(T,cI)) is obtained from the equation of state for the
of a black hole surrounded by a gas of particles. Again, if thecorresponding branch. Equatié4) is the precise analogue
gas component carries a sizable fraction of the charge angf the Clapeyron equation. From it, we see that the slope of
mass, its backreaction on the geometry would modify thehe curve is negative. For the case mf3 we can give
equation of state and may then re-establish thermodynamigxplicit expressions. In rescaled units, we have

stability. Pursuing either of these possibilities lies beyond the
scope of the present paper, and so we will leave the settling
of this interesting issue to a future date. Hence we must
simply regard the shaded region as a sorteofa incognita

dd Q

B B 1(T T 1 1
at 202 2l " Ne2 T g2

(39

with regard to black hole physics. As a final note, we remindye see from here that the curve intersects the axes orthogo-

the reader that this is only the region in which we are certairha”y and its convexity, sketched in Fig. 12, follows from
that the black holes do not minimize the free energy due tQne fact thatd2d/dT2< 0. '

Next (assuming the issue of electrical stability can be ig-
nored, we consider the canonical ensemble, defined by the

Q
extremal Helmholtz thermodynamic potentiaF[Q,T], with dF
black holes criiegl =SdT-®dQ. Along any line of coexistence of two phases,
we have
Qi _ng;v-el:(t
ac d Sp—S
hole _Q _ A B . (36)
non-extremal dT dp— Dy
blacé(holes
© The phase diagram is sketched in Fig. 12.
The Clapeyron equation can be used to find the slope of

T

crit HP

the curve atQ=0 andQ=Q,; for the line separating the
two black hole phase@ve show the expressions for ai):

FIG. 13. The phase diagram in the canonical ensemble, showing

the disallowed shaded regions where the solutions are unstable to
electrical fluctuations. Note that the critical point and part of the a7 ~ T 4G

coexistence line lies within the unstable region.

dQ __wnl(n_l) rin(gr?t)' 37)

n—-2 Ocrit

crit
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dQ ®no1 the thermodynamic ensemil&l]. Hence we denote the gen-
aTl =7 e (38)  eral extensive variables that are free to varyXas and the
Q=0 Fi’s are their conjugate intensive variables defineddsy
(where we have used here tmaqf)zq nearq=0, as is easy FdXy. Equation(39) then become$31,32
to obtain. On the scale at which we have sketched the co- X X
existence curve in the previous section, it is essentially a (XX, )= — a—sz = (40)
|

straight line, and we have drawn it as such in Fig. 12.
Now, these fluctuations are given practical meaning when

IX. FLUCTUATIONS FOR CHARGED AdS they are compared to, for example, their equilibrium values.
BLACK HOLES For example, the relative root mean square of the fluctua-
In Sec. VI, we discussed and computed the thermody!OnS:
namic quantitiegspecific heats and permittivityvhich sig- oo
nal the stability(or not) of a black hole against fluctuations. (0X7) (41)
While these quantities pertain to the response of the system Xi

to macroscopic thermodynamic processes which may be per- o

formed, in Euclidean quantum gravity, where we ordinarinWh'Ch tells us about the sharpness of the c_hstnbunob(iln

do not have a description of the microscopic degrees of free- Note that by the formulg40) the above ratio goes roughly

dom, we usually cannot relate them directly to microscopic2S the extensive parameters to the powér2, and therefore

fluctuations, as we can in ordinary thermal physics. f[he distribution is increasingly sharp as the size of the system
However, we can go further in this paper. Many of the!Ncreases.

AdS models which we have here can be embedded into a full Now, in the present problem of charged black holes,

theory of quantum gravity—string and/or M theory—and . B
where the holographic duality tells us precisely that the mi- dS=(1MdE-(2/T)dQ. (42)

croscopic description is organized neatly in terms of a dua|-|ence, for the canonicafixed Q) ensemblefour analogue

(gaugg field theory. , of a fixed volume systemthe only free extensive variable is
So we may go and boldly study the fluctuations of they, . energy, and the above formulas yield

thermodynamic quantities in our theory, and we should see

earmarks of the underlyinggauge theory in our quantities, JE JE
connecting the microscopic to the macroscopic. (SE?)=— %) =T2(ﬁ) =TCq. (43
Here, one uses the entropy to define a probability distri- Q Q

bution on the space of independent thermodynamic quanti'gOr the grand canonicafixed ®) ensemble(analogue of a

ties .[32]: P(Xi)=exf SX)]. With the assumption that fluc- g o g pressure systenthe energy and the charge are free to
tuations are small, we can work with a quadratic expansion

of the entropy in deviations from the equilibrium values. Thevary, and one has
stability analysis of Sec. VI establishes that the HessiaB® of JE
is negative semidefinite, and so we have a normalizable <5E2)=—<a—) :Tz(ﬁ—)

Gaussian distribution within this approximation. One then Blar /T
finds that the fluctuations are given by

25 |-1 =TCyp+ TP %) : (44)
<5XI 5Xk> - axlaxk) (39) T
- . . 9Q
where §X; denotes the deviation of; from its equilibrium (5Q2>:T<£) =Ter, (45
value, and the notation of the left-hand side denotes a matrix T
inverse.
Implicit above is the assumption that we have a closed (5E5Q)=T<E)
system that can be divided into a number of subsystems. In b/
the AdS context, the natural decomposition is the black hole
and the thermodynamic reservotfsin this situation where Q JQ
the subsystem of interest is really the entire object under =T2(ﬁ +TO %) =T?aq+Tder.
[ T

study, the most reasonable approach is to consider fluctua-
tions in only the extensive variables that are free to vary in

We have recovered the fact that the thermodynamic fluctua-
tions are controlled by the same generalized
we are neglecting the contributions of any gas componen€ompressibilities—specific heats permittivity, etc.—that de-
around the black hole in all of our calculations in this paper. Furthet€rmine the intrinsic stability in Sec. VI. This follows since
we should be able to consider smaller subdivisions with the duaboth analyses can be phrased in terms of the Hessian of the
field theory in mind. entropy.

(46)

104026-15



CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 104026

Above we have presented a general thermodynamic dis- 81
cussion. Let us now focus on the case 3 and present our
results in terms of the dimensionless variables introduced in 7
Sec. I. Note that translating the above thermodynamic for-
mulas to the dimensionless variables, there are extra factors, 6
giving, e.g.,
5_
SE?)= 36 TzaE 4
(OB = a2 T 57 47 A+
For the fixed charge ensemble, a]
2\ 3
q
2
re+1-— 2
(6E?) 3G 1 * rs
EZ  2ml%2 2 2\ n
- (ri—1+3q—2 ri+1+q—2
re re

(48 0702

For the fixed potential ensemble, . . .
FIG. 14. The squared fluctuatiof€T) in the energy, relative to

the equilibrium energy, for varyin@=Q;. The values of) plot-
ted here arg¢bottom up Q=0.49, 0.44, 0.39, 0.34);. The dot-
ted curve shows that the fluctuations divergeQat Q;, at the
critical temperaturd =T .

(5E?) 3G 1 (ri+1-0?
E*  2@l%r] (ri —1+d?)

(13 +1- 0?2+ 40%(1-d?)

: (49
ﬁﬂ_qﬂ)z (€% 36 T° 1 -
2 - 2 2 .
3 EZ 2wl rZ(T+9§) (ﬂ)
. * r ar
(3Q%) 3G 1 [(ri+1-®%)(ri-1+3d? * a
Q*  4ml® 7 (ri—1+®?) ] From this form, one can pick out some of the interesting
(50 behavior. The fluctuations go to zero at zero temperature as
) ) 5 ) T2. For largeT (and hence largg), the fluctuations also go
(0E8Q) 3G 1- (ri+1-o°) to zero now as T (since for larger ., 2T=r,). An inter-
EQ @2 2 , r2 esting factor is T/dr,) ' which can change sign fa®
(ri—1+d?) ?+1—q>2 <Qerit=1/(2v3).

So for Q>Qgit, the fluctuations rise from zero at the
extremal black hole T=0), go through a maximum, and

Note that all of these results are proportional@gl2  then die down for large temperatures. Ay approaches
~N~32 s0 for largeN the fluctuations are suppressed. ForQcrit,» the maximum grows larger and larger, and actually
n=3, the dual field theorysupplying our microscopic de- becomes a divergence &= Q. [We have plotted these
scription is the field theory of Ref[33], associated wittN ~ squared fluctuations in Fig. 14, where they are denoted
coincident M2-branes. The number of degrees of freedom ifh(T).] This is actually the same divergence as thaCat
this theory grows adl®? (as seen for example in the black the critical point, which was commented on in RgL7].
hole entropy at h|gh temperaturéo the Squared fluctua- Hence one finds from there that near the critical pOint,
tions are controlled by the inverse of the number of degrees )
of freedom of the field theory, which is precisely what we (oE >~(T—T 28 (53
expect from standard kinetic theory connecting the micro- E? e
scopic to the macroscopic. Note here that we see these un-
confined degrees of freedom appearing in our formulas at This divergence of the energy fluctuations signals the
arbitrary temperature in this ensemble. This is because bladireakdown of the Gaussian approximation considered in
holes dominate the thermodynamics for all values of the temthese calculations. It is also the classic behavior of a second
perature: the presence of charge affects a deconfinement ofder phase transition point, where correlation lengths, etc.,
the theory at all temperatures, even in finite volulffdnis is  diverge as an order parameter vanishes. Here, the order pa-
to be contrasted to the case @0, where AdS spacetime rameter can be taken to be a homogenous function, pf,
dominates the physics for sonle<Typ, representing the —r,(q), the difference between horizon radii of the branches

(5

“confined” phase)

To gain more insight into these results, let us rewrite Eq.

(47) for the energy fluctuations as

3 and 1.
For Q<Qgit, the fluctuations rise from zero at the ex-
tremal black hole and diverge at the first zeroddt/ or . .
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Between the two zeros of T/dr, , (SE2)/E? is negative. the present workgives the same result as the intrinsic defi-

This is simply an indication that we are in the thermally nition by “counterterm subtraction” methods.

unstable regime, otherwise known as “branch 2.” Fbr The Helmholtz free energy which is the Legendre trans-

larger than the second zero &f/4r , , the fluctuations are form of W[ T,®] may be computed with an explicit action

monotonically decreasin¢from infinity at the zero, to zero calculation, using the counterterm subtraction method to give

asT—x). As we know from the minimum free energy con- an intrinsic(“backgroundless’} definition. The result is

dition, we are protected from the unstable regime t;y mzaking in-2)

serr)gjss_le_ transition from branch 1 and 3. So, iho&)/ E F[T.0]= wn—12 |2i_<i) +(2n—3)I%cqd .
plot, the fluctuations rise from zero to the phase 167Gl c® \cd

transition point anddiscontinuously jump to the decreasing (59

curve.

Again, ®=®(T,Q) is obtained from the equation of state.
X. HIGHER DIMENSIONS AND OTHER Notice that AdS spacetime with nonzero charge is not a so-
THERMODYNAMIC FUNCTIONS AND ENSEMBLES lution of the equations of motion and so cannot be consid-
ered as the “ground state” or reference background for this
In this section, we collect together some results for variresylt. Indeed, this result cannot be obtained by an action
ous thermodynamic quantities computed for arbitrrvith  cajculation which uses a matching to a background, precisely
all of the factors explicitly included. The thermodynamic for this reason. The counterterm subtraction technique is
functions are written in terms of their canonical state Vari'therefore necessary here to Supply the honest action Compu_
ables. We do not use the physical cha@énstead ofg, for  tation for this thermodynamic potential. It is satisfying to
simplicity of presentation. In any expressid@,may be re-  note thatW[T,®] and F[T,Q] are Legendre transforms of
stored by recalling that each otherW=F +Q®, as they should be.
We can arrive at a variety of other ensembles, with their
wn_l(n—l)c A /2(”_2) corresponding associated potentials, by formal Legendre
g and c . (59 .
87G -1 transforms. For example, we can consider the enthalpy
o ) H[S,®], a function of entropy and potentiéhis notation is
Similarly, we also introduce the parameteas not to be confused with the HamiltonianStarting from
W[T,®] we can construdd =W+ TS, finding

Q=

Wn-1

S= s. 55
4G 59 (N—wn_1 _ _ _
H[S,q)]: > [Sn/(n 1)+|25(n 2)/[(n—1)
Notice that it does make sense to write physical quantities in 167Gl
terms ofg ands, since they are related to the charge and X (1—c2d?)]. (60)
entropy densities. This follows from the fact that we may
replacel” *w,,_; by the field theory volume/,, ;. Note that this functiorcannotbe obtained by performing a
The equation of state, following from EL0), is proper background subtraction in Euclidean gravity, since
_ _ for any given solution we cannot find another regular solu-
_ 201 _ ~2d2 2/(n—2) 2/(n—2)
T= (n=2)I%(1-c q2> )(C(DL . +thg . (56) tion with the same values of the entropy and the potential.
471?(cqd)Hn=2 However, the enthalpy vanishes for AdS spacetime, which
) . could therefore be regarded as the ground state or reference
The equation of state for extremal black holes is background here.
PN Another thermodynamic function in terms of its canonical
q2/(n—2): n - |2(02<D§— 1) variables is thdinterna) energyE=W+ TS+ Q®,
_ . —1w,_
X(c®,)?"=2 for T arbitrary. (5 _ (=D gy 2gn-200-1)
(cd) y. (57) E[SQl=—5gz (S +12%s
The Gibbs t.hermodynamlc potential for the grand canoni- + 2~ (n-2I(n-1)], 61)
cal ensemble i§17]
®n_1 q n/(n—2) which vanishes as well for AdS spacetime. This function
W[T,®]= lG;GIZ Izcj{)(l—czdbz)—(@ would define the thermodynamic potential for the microca-

59 nonical ensemble, and as for the enthalpy above, a calcula-
tion from Euclidean gravity should proceed by fixing the

where Q=Q(T,®) is obtained from the equation of state. entropy of the state—the bl_ack hole area, if we neglect the
Notice thatW[T,®] vanishes for anti—de Sitter spacetime €Ntropy of the charged gas in AdS spacetirhe.

(which hasQ=0), and so AdS spacetime may be thought of

as the reference background for the calculation of the action,

and indeedV[T,®] was computed in this way in Regf17], 125ee[34] for work on defining the microcanonical ensemble in
using the background subtraction method, which we(gee gravity.
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% 1 ! which has a single positive roat,, whereg diverges. This

P 1 corresponds to th€=0 situation, and is the radius of the

} \ corresponding extremal black hole. Given the above, any
L turning points for finiter . must come in pairs, and the con-

\ dition 9B/dr ., =0 shows that there are only two real, posi-

, tive such solutions, which we call, 1y andr (3, labeling

i where branch 1 ends and, respectively, where branch 3 be-
\ gins. Branch 2 lies between these roots. The equations deter-
mining those roots also have an elegant fdfor the same
rescaling as befoje

r"?—ri"*+(2n-3)¢®=0. (63)

The two roots coalesce at the critical poirie.,
&Zﬁ/ari =0 alsg whereq=(qg;;. The value of the radius of
this critical black hole isr | (i and it is at(inverse tem-
peratureB;. For example, in the case= 3, the quantities
{QeritsT + (erity - Berip take the values(1/\12,182,3/(2v2)},

. . while for n=4 they have the values

FIG. 15. A family of isocharge curves for thg(r,) form of ! ) ) ; -
the equation of state. Note that the middle curve is for the criticaI{Z/V135*V(2/3)'5/(4\/6)}' The basic point here is that while
value of the chargeQ.;, below which multiple branches of,  the critical values themselves vary, the important structures
solutions appear. The neighborhood of the critical point is a univerd0 not depend upon in any essential way.

r

sal cubic, true for all dimensions. The neighborhood of the critical point is extremely inter-
esting. Because of the fact that for althere are at most two
XI. UNIVERSAL NEIGHBORHOOD turning points belowge, it is clear that this neighborhood
OF THE CRITICAL POINT can be better written as a cubic, in terms of local coordinates

_ _ near the point. To this end, writp=r, —r iy, 8=
In Sec. IX, we saw that fluctuations diverge as we ap-_ Burit, andd=q— e, and rewrite the equation of state in

proach the critical point in the canonical ensemble. Thishese coordinates. The neighborhood of the critical point is
point represents a second order phase transition, as can

5 king th di B.q) to b I

seen from the fact that the free energy’s first derivative ound by taking these cioor inateg, 6,9) to be small. .
ceases to have a discontinuity thésee Figs. 4 and 5 for For the example oh=3, after some algebra, we obtain
visual confirmatioin while the divergences of the last section 1 23 B . 1 E}
signal a discontinuity in the second derivative. 0:(‘/2_ Zp3 2= p24+v2=p— i+ -z

While much of the detailed discussion of the paper has B B B~ 2v3 3B
been forn=3, we emphasize here again that the results ex- ) ) . )
tend to alln>2. This is most clearly seen from the important Note that the quadratic and linear terms vanish with an ap-
features of the equation of state. Let us examine some gfroach to the critical temperatug— 0, and the term which
these more closely. containsp® does not vanish in this way, and so we neglect

Consider Eqg.(10). Originating as the condition for Eu- higher powers op in favor of this one in order to study the
clidean regularity, and hence thermodynamic equilibriumnear-critical behavior. Here, and in what follows, we will
the qualitative features q8(r ) for varyingq are shown in  ajso neglect terms which are not linear gnand 3. This
Fig. 15. These features are the same fornallThere is a  cubic form(64) may always be obtained in this limit for all
critical charge,qerii, below which there are three solutions n, because of the observations made in the preceding few
for r, for a range of values g6, corresponding to the small paragraphs. From this, certain universal behavior can be eas-
(branch 3, branch 2, and largéoranch 3 black holes, in the jly deduced, such as the critical exponent characterizing how
language of Refl17], and in this paper. fast our “order parameter,’p, vanishes(Recall thatp rep-

That this shape persists for arbitranycan be seen as resents the difference in equilibrium radius between the
follows. First, note that for large, , B(r,) goes as~1/r .  black holes of branch 1 and that of branch 3; it measures the
Second, note that the denominator of the right hand side distance from the analogue of the “fluid” phase in liquid-gas

Eq. (10), after choosing scalings similar to those done forlanguage, where the two forms are indistinguishatSetting

n=3 at the beginning of Sec. IlIl, B=0, we see that the critical exponentis since

(64)

P24 p2n74_g2=0, (62) p=

3 1/6
§> ql/3~ (Q— chit) 1 (65

Performing this computation for otherwill change the nu-
3That is, we absorb a factor dBl~*\Jn/(n—2) into Q and  merical prefactor, but not the exponent, which in this sense
I=YJ/n/(n—2) intor_., etc. deserves to be called universal.
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That a cubic equation controls the phase structure can be Vo)
traced back a step further. First, notice that the three dimen-
sional plot of the curve in@,r. ,Q) space is the cusp ca- — ]
tastrophe, as drawn in Fig. 11, with some sample state space
trajectories. We can remove the quadratic term in our cubic N B
polynomial by shiftingp by an appropriate amount. Multi- DN
plying overall by a normalizing factor, our cubic may be S
written as Ve ! \ ’

Vo

0=p%+Ap+B, (66) \ J Y

with ’ \
/7 AY
7/ N
7 AN

R 4. 3
A=4v2B and B=B- \éq. L N

Equation(66) is actually telling us about the location of the
turning points of aquartic function FIG. 16. The behavior of the Landau-Ginzbukg potential at
various points in the 4,B) plane. This plane maps to th&(T)
1 A plane of the charged black hole system. The lide<Q, B=0)
W(p)= ZP4+ §P2+ Bp, (67) maps to the critical coexistence line found in that system.

. ) . At the critical point @=0, B=0), the maximum and the
where we have discarded an arbitrary additive constantyg minima merge into a single minimum of the potential.
Treated as gotential (for reasons which will be clear be- notice that the well formed by the potential is very flat there,
low), it is the generic ]‘Qrm Oﬂ/(p). as'A and B' vary that  gnd so the range of allowed fluctuations within it is larger at
contrqlg much of the critical behavior in the nelghborhqod Ofthis point than at any other point in the plane, as they are less
the critical point[As A andB are functions oQ andT, this  confined. We have seen this physics before as the divergence
critical behavior in &,B) space translates directly into the of the fluctuations of the microscopic degrees of freedom at
earlier discussed critical behavior iQ(T) space} _the critical point. The potential(p) is an effective potential

The functionV(p) deserves to be treated as an effectivefor the uncharged microscopic degrees of freedom of the
potential which organizes the description of much of the l0-theory in the neighborhood of the critical poifgee Fig. 16
cal physics. In particular, away from the critical point, wherefor 3 summary of these critical points of the potential.
A andB are both nonzero, the potential generically has two  ajsp, in this language, the meaning of the swallowtalil

[)ninirrlna alnd one rfnaximum, thellocstion ﬁf Whlich are givenshape for the thermodynamic potenflQ, T] is now clear:
y the solutions of our universal cubic. These locations may, . = _. . oA .
be smoothly visualized in the form of a cusp, sketched irift is simply the actuabalueof the potentialX(p; 5,) at its

Fio. 11. The location of the minima ip are the values maxima and minima: the critical line is the place where these
9. 11 I p i (1) two values at the minima are equal, the place whéteas
andr , 3y, of the equilibrium black hole radii of branch 1

and branch 3, while the location of the maximunr is degenerate minima.
’ 2) ’ H H H _Ci H
the branch 2 black hole radius. The thermal stability of th This function(p) is the A; Landau-Ginzburg potential

branches correlates with whether the turning point is a max(-i:‘:rhe effective Landau-Ginzburg theory which we can write

mum or a minimum of(p), further justifying its treatment here is an effective theory of the uncharged microscopic de-

as a potential grees of freedom underlying the thermodynamics. Kinetic

Thg bo Indér of the reaion where there are three sol terms to complete the Landau-Ginzburg model would have
. u y ot the region w o Yheir origins in the holographically dual field theory. One can
tions marks the situation where one of the minima of the.

tential V(p) ith th ; d di in principle derive additional potential terms governing the
potential Vip) merges with the maximum an Isappears'charged degrees of freedom as well, in order to model the
This boundary is simply given by the values Afand B

where the cubic’s discriminants 2782+ 4A°%, vanishes. stability structure uncovered in Sec. VI, but we will not do

Thi ly happen foh<0, therefore telling us that we % ere:

E‘ IS f:n c(i)'nty ?Epen hégel , (nere O'rl'i € '?g us fihf’ve In the language of catastrophe thedtg], the termp* is
ave the distinct branché OW fBeiie.) The in enor ot thiS e pasic “germ” of the cusp catastrophe, afchnd B are

region may be translated int@Q(T) space, where it gives the

S S : he “unfolding parameters” which deform the potential, giv-
f:;gzg region in the third diagram of Fig. 9 where branch ng a line of first order phase transition points along the line

o R (B=0, A<0) where its mimima are degenerate. The
Along the line in the §,B) plane[or the Q,T) pland  (A-D-E) classification of such potentials is isomorphic to
whereB vanishes, given bg=/(32/27)3, the two minima  that of certain geometrical singulariti€35]. We cannot help
of the potentialV(p) are degenerate. This is the point at but wonder if this story marks the beginning of a richer tale
which there is a phase transition, as the system moves froimvolving a more profound underlying geometrical structure
one minimum of the potential to the other. into which this physics is all embedded. As all of the physics
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