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The physical properties of Reissner-Nordstro¨m black holes in (n11)-dimensional anti–de Sitter spacetime
are related, by a holographic map, to the physics of a class ofn-dimensional field theories coupled to a
background global current. Motivated by that fact, and the recent observations of the striking similarity
between the thermodynamic phase structure of these black holes~in the canonical ensemble! and that of the
van der Waals–Maxwell liquid-gas system, we explore the physics in more detail. We study fluctuations and
stability within the equilibrium thermodynamics, examining the specific heats and electrical permittivity of the
holes, and consider the analogue of the Clayperon equation at the phase boundaries. Consequently, we refine
the phase diagrams in the canonical and grand canonical ensembles. We study the interesting physics in the
neighborhood of the critical point in the canonical ensemble. There is a second order phase transition found
there, and that region is characterized by a Landau-Ginzburg model withA3 potential. The holographically
dual field theories provide the description of the microscopic degrees of freedom which underlie all of the
thermodynamics, as can be seen by examining the form of the microscopic fluctuations.
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I. INTRODUCTION AND SUMMARY

Explaining the thermodynamic nature of black holes w
recognized as an essential hallmark of any complete qu
tum theory of gravity long before such a theory was co
structed. The semiclassical approach to quantum gra
which has become quite a mature subject over the y
@1,2#, allows for the computation of a number of physic
quantities. These treatments ignore the details of how a
cific solution of Einstein’s equations~regarded as the effec
tive low energy truncation of the complete quantum gravi!
arises, and instead perform a quantum treatment of field
grees of freedom in a fixed classical space-time backgrou

In that way it was learned that the entropy of Bekenst
@3# and the temperature of Hawking@4#, for example, fit into
an elegant thermodynamic framework, with questions~such
as scattering, unitarity, etc.! concerning the underlying mi
croscopic description—which we might use to construct
underlying ‘‘statistical mechanics’’—best left for the futur
development of a quantum theory of gravity.

That future is now here. String theory~and/or ‘‘M
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theory’’! supplies a microscopic description of the under
ing degrees of freedom upon which a statistical descript
of the laws of black hole thermodynamics can be based. T
is true even though we do not yet have a satisfactory way
writing the theory in all regimes: the ‘‘D-brane calculus’’@5#
provides a robust framework within which to describe ma
properties of black holes@6#, while in turn being firmly
rooted in the dynamical framework of string duality an
ultimately, M theory@7#. Typically, the description of black
holes ~and other important geometrical backgrounds! pro-
ceeds by translating their properties into features of an a
iliary field theory, identified as residing on the world volum
of some collection of~D- or M-! branes.

One of the succinct ways of organizing this microscop
description of the properties of black holes is via ‘‘anti–
Sitter ~AdS! holography’’ @8–12#. Then, the thermodynamic
properties of black holes in anti–de Sitter spacetime are d
to those of a field theory in one dimension fewer@10,11#.
The fact that the thermodynamic properties of the AdS bla
holes @13# are organized by an effective field theory is n
implausible, in light of the fact that AdS spacetime acts li
a natural ‘‘box’’ ~with reflecting walls! which neutralizes the
tendency of gravitational interactions to render a canon
thermodynamic ensemble unstable. The fact that the ef
tive field theory is one which does not contain gravity a
that it is actually a ‘‘holographically’’ dual four dimensiona
gauge theory~with suitable generalizations beyondD54) is
©1999 The American Physical Society26-1
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another striking example of the fundamental role that ga
theory plays in duality in various situations.1

That the AdS arena stabilizes the thermodynamics
black holes is especially apparent when one discovers p
structures completely analogous to familiar thermodyna
systems from elsewhere in nature. Such an example ca
found in the Reissner–Nordstro¨m–anti-de Sitter~RNAdS!
systems in various dimensions@17#. There, the (Q,T) dia-
gram showing the thermally stable phases for a fixed cha
~canonical! ensemble turns out to be completely analogous
that of the (T,P) phase diagram of the liquid-gas syste
The structure of the first order phase transitions, etc., is c
trolled by a ‘‘cusp’’ catastrophe@18#, common in the theory
of discontinuous transitions in thermodynamics and ma
other fields.2 Meanwhile the free energy as a function
temperature,F(T), displays the characteristic ‘‘swallowtail’
shape.

In this paper, we report the results of our further exam
nation of these structures, exploring the equilibrium therm
dynamics more closely, including the effects of consider
electrical stability and thermal fluctuations. The similariti
noted between the RNAdS physics and that of well-defin
systems such as the liquid-gas system are more than
analogies:We find that everything has a very natural pla
in classic equilibrium thermodynamics, as is consistent w
a holographic duality to thermal field theory without gravit
Accordingly, using the techniques of equilibrium thermod
namics, we refine the phase diagrams which we found
Ref. @17# somewhat, and identify the generic physical pro
erties which give rise to the cusp and swallowtail structur

As discussed in our previous paper@17#, the thermody-
namics of the Reissner-Nordstro¨m black holes in the pres
ence of a negative cosmological constant in various dim
sions is pertinent~because of the holographic map! to the
thermodynamics of families of field theories found on t
common world volume of collections of large numbers
branes~for example M2- and D3-branes!, in the situation
where a global background current~or its canonical conju-
gate charge! has been switched on and held fixed.3

Geometrically this is performed by simply setting the M
and D3-branes rotating equally in each of the available tra
verse orthogonal two-planes. The higher dimensional ang
momentum becomes the MaxwellU(1) charge after the
Kaluza-Klein reduction on the~now twisted! sphere, which
yields the gauged supergravity. Obtaining a pure Maxw
term in this way is not possible starting with the M5-bran
and so the seven dimensional Einstein–Maxwell–anti-de
ter (EMAdS7) theory defines at best a close cousin to
field theory found on the M5-brane world volumes. The du

1See also Refs.@14–16# for a discussion of how this extends t
relating the physics of linear dilaton backgrounds to theories on
world volumes of Neveu-Schwarz branes~NS-branes!.

2Recently, the cusp catastrophe has appeared again in the
conformal field theory~CFT! context, in Ref.@19#.

3See@20# for additional work on how to relate charged AdS bla
holes to string or M theory.
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theory relevant to EMAdS6 should be considered in a simila
manner.

A truly rich phase structure for the field theories~with
transition temperatures away fromT50) is obtained only for
finite volume, which is the case we concentrate on here.
studies correspond to the study of black holes with spher
horizons,Sn21. The field theory resides onR3Sn21. The
case of infinite volume corresponds to black holes with h
rizonsRn21 and to field theory onRn. This is of course the
case which comes from taking directly the near horizon lim
of explicit brane solutions.

As shown in Ref.@17#, the results for infinite volume may
be easily obtained as a scaling limit of the results of fin
volume, and so we will not discuss them here. Of cour
even though we are in finite volume for much of our discu
sion, the thermodynamic limit is still valid here, because
dual field theory is at largeN, and a positive power ofN
measures the number of degrees of freedom in the fi
theory ~for example,N2 in the case of gauge theory, forn
54 here!.

The structure of the paper is as follows: In Sec. II w
recall the charged black solutions of the Einstein–Maxwe
anti-de Sitter system. We also recall the results of perform
the Euclidean section and ensuring its regularity. In Sec.
we translate these results into a statement about the rela
between the thermodynamic variables of the black hole s
tem in thermodynamic equilibrium, i.e., the ‘‘equation
state.’’ In Sec. IV, we define the grand canonical and cano
cal thermodynamic ensembles and compute the assoc
Gibbs and Helmholtz thermodynamic potentials, contrast
the techniques used~and results obtained! to those of our
previous work. In particular, we note that we can obtain
intrinsic definition of these quantities in Euclidean quantu
gravity, by sidestepping some of the technical subtletie
encountered in the ‘‘background subtraction’’ technique
regularizing the action—in favor of the ‘‘counterterm su
traction’’ technique@21,22#. In the rest of the section, we
examine the features of these potentials quite closely
preparation for later detailed studies. In Sec. V, we use
equation of state and the first law of thermodynamics
identify the origins of the crucial features of the shape of
Helmholtz potential~free energy!. This ‘‘swallowtail’’ shape
is responsible for the interesting phase structure in the
nonical ensemble. Section VI examines the conditions
thermodynamic stability of the black holes, examining t
specific heats and permittivity of the black holes. In this wa
we identify the stable regions of the solution space of
equation of state. We use this stability information, toget
with the information gained in earlier sections, to deduce
refined phase diagrams exhibited in Sec. VII, and some
tails of the phase diagrams~the slope and convexity of the
coexistence curves! are refined by using the Clayperon equ
tion in Sec. VIII.

As already stressed in this section, the thermodyna
quantities and studies performed in those sections are ro
firmly in a microscopic description. This is ensured by t
fact that we can in principle embed this entire discussion i
a complete theory of quantum gravity: string~and/or! M
theory. In practical terms, this microscopic description—t
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HOLOGRAPHY, THERMODYNAMICS, AND . . . PHYSICAL REVIEW D60 104026
‘‘statistical mechanics’’ underlying the thermodynamics—
summarized neatly in terms of the holographically dual fi
theory. In this way, therefore, we may carry our calculatio
further and examine the nature and magnitude of the mi
scopic fluctuations of the various thermodynamic quanti
we have computed, knowing that we have a description
their origin in field theory. Thus, we find in Sec. IX that th
fluctuations behave in a way consistent with the underly
microscopic physics being supplied by the field theory:
size of the~squared! fluctuations is controlled by a prefacto
which corresponds to precisely the inverse of the numbe
degrees of freedom of the dual field theory. We observe
the size of the fluctuations diverges as the system approa
a critical point in the (Q,T) plane.

Through most of the paper, we carry out our computatio
for the four dimensional case, in order to keep many of
formulas simple. Section X collects together some of
results for the computation of various quantities. We str
that the qualitative structure of the physics is the same fo
dimensionsd>4, whered5n11. Briefly, we also discuss in
that same section the issue of the meaning of the for
definition of other thermodynamic ensembles by Legen
transform. It is not always the case that the thermodyna
quantities thus defined may be arrived at by~known! com-
putations in Euclidean quantum gravity. Therefore, interp
tations of the physics of such ensembles are to be taken
~at least! a pinch of salt, until such time as new technolo
becomes available to compute the relevant quantities dire
in quantum gravity, as we have done here for the fixed
tential ~grand canonical! and fixed charge~canonical! en-
sembles.

Section XI discusses the underlying structure of the ph
structure of the canonical ensemble in the neighborhood
the critical point. In particular, the physics local to critic
point is universal for all of dimensionsd>4. The critical
point is a second order phase transition point at the end
coexistence line of first order phase transitions. As such
has a universal description in terms of a Landau-Ginzb
model, with a quartic potential—A3 in the A-D-E classifi-
cation of such potentials. The deformation of this poten
gives the classic ‘‘cusp’’ catastrophe which underlies
critical behavior, as is well known from the van der Waal
Maxwell description of the liquid-gas system, with whic
our black hole physics shares many features, as origin
reported in Ref.@17#.

In closing the Introduction, we would like to stress on
again how elegantly the properties of anti–de Sitter sp
yield charged black hole physics so closely akin in struct
to that of ordinary field-theory-like systems, with which w
have more intuition.

From the point of view of the Maxwell part of the action
the black holes are nothing more than spherical capacit
and as such, the amount of energy they can store grows
the charge on them, but falls with increasing hole radi
From the point of view of the Einstein-Hilbert action, how
ever, the black holes store an amount of energy which gr
with radius. After a little thought, one might expect on ge
eral grounds, therefore, that there might be an interes
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phase structure resulting from a competition between th
two pieces of the action.

Such reasoning on its own would not be enough to ge
inely fill out the whole (Q,T) phase diagram, as the equatio
of state needs additional structure. It is the presence o
~negative! cosmological constant which provides this fin
part: First, it provides black hole solutions which are the
mally stable in ensembles involving fixed temperature@13#,
but second, as it defines a new length scale, it allows
system to distinguish, on the one hand, black holes which
large from those which are small and, on the other ha
black holes which have small charge from those with la
charge.

It is because of these features that the charged black
thermodynamics has a chance to be similar to the van
Waals model of the liquid-gas system. Recall that witho
the inclusion of the effects of the length scales set by a fin
particle size, on the one hand, and attractive inter-part
forces on the other, that system would have only the m
less interesting physics of the ideal gas: there would be
competing effects, as a function of length scale, with wh
to trigger a phase transition. These basic features of A
spacetime give holography a chance to work in a way wh
is consistent with our intuition that the microscopic phys
should be modelled by ordinary field theory.

II. CHARGED AdS BLACK HOLES

For spacetime dimensionn11, the Einstein–Maxwell–
anti-de Sitter (EMAdSn11) action may be written as4

I 52
1

16pG E
M

dn11xA2gFR2F21
n~n21!

l 2 G , ~1!

with L52n(n21)/2l 2 being the cosmological constant a
sociated with the characteristic length scalel . Then the met-
ric on the RNAdS solution may be written in static coord
nates as@23,24,17#

ds252V~r !dt21
dr2

V~r !
1r 2 dVn21

2 , ~2!

wheredVn21
2 is the metric on the round unit (n21)-sphere,

and the functionV(r ) takes the form

V~r !512
m

r n22 1
q2

r 2n24 1
r 2

l 2 . ~3!

Here, m is related to the Arnowitt-Deser-Misner~ADM !
mass of the hole,M ~appropriately generalized to geometri
asymptotic to AdS spacetime@25#!, as

M5
~n21!vn21

16pG
m, ~4!

4We scale the gauge fieldAm so as to absorb the prefactors in
volving theU(1) gauge coupling into the action.
6-3
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 104026
where vn21 is the volume of the unit (n21)-sphere. The
parameterq yields the charge

Q5A2~n21!~n22!S vn21

8pG Dq ~5!

of the ~pure electric! gauge potential, which is

A5S 2
1

c

q

r n22 1F Ddt, ~6!

where

c5A2~n22!

n21
, ~7!

andF is a constant~to be fixed below!. If r 1 is the largest
real positive root ofV(r ), then in order for this RNAdS
metric to describe a charged black hole with a non-singu
horizon atr 5r 1 , the latter must satisfy

S n

n22D r 1
2n221 l 2r 1

2n24>q2l 2. ~8!

Finally, we choose

F5
1

c

q

r 1
n22 , ~9!

which then fixesAt(r 1)50, as is required by~Euclidean!
regularity of the one-form potential~6! at the fixed point set
of the Killing vector ] t . The physical significance of th
quantityF, which plays an important role later, is that it
the electrostatic potential difference between the horizon
infinity.

If the inequality in Eq.~8! is saturated, the horizon i
degenerate and we get an extremal black hole. This ineq
ity imposes a bound on the black hole mass parameter o
form m>me(q,l ).

In passing to the thermodynamic discussion, we define
Euclidean section (t→ i t) of the solution, and identify the
period, b, of the imaginary time with the inverse temper
ture. Using the usual formula for the period,b
54p/V8(r 1), which arises from the requirement of regula
ity of the solution, we obtain

b5
4p l 2r 1

2n23

nr1
2n221~n22!l 2r 1

2n242~n22!q2l 2 . ~10!

This may be rewritten in terms of the potential as

b5
4p l 2r 1

~n22!l 2~12c2F2!1nr1
2 . ~11!

For simplicity, we will specialize ton53 ~therefore
working with EMAdS4) to avoid cluttering our expression
with complicated dependences onn. Our results will remain
qualitatively the same for highern ~see the comments in Se
XI !, and we list some of then-dependent formulas in Sec. X
10402
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Our analysis is further simplified by adopting the followin
rescalings~once we have setn53):

T→ 2p l

)
T, Q→)

l
GQ, F→F, ~12!

and for the various thermodynamic quantities used in R
@17#,

$W,F,E%→)
l

G$W,F,E%, S→ 3G

2p l 2 S ~13!

and

r 1→)
l

r 1 . ~14!

Essentially we are introducing a system of dimensionl
quantities in which everything is measured in units of t
AdS scalel . This scaling is chosen so that the thermod
namic formulas still all have their standard form, i.e.,

dE5TdS1FdQ, dF52SdT1FdQ,

dW52SdT2QdF, etc. ~15!

In the following, all of the quantities which follow are th
rescaled dimensionless quantities, unless stated otherwi

III. EQUATION OF STATE

The Euclidean regularity at the horizon discussed at
~10! is equivalent to the condition that the black hole be
thermodynamical equilibrium. The resulting equation~10!
may therefore be written as an equation of stateT
5T(F,Q) @analogous toT5T(P,V) for, say, a gas at pres
sureP and volumeV#. For n53, one finds

T5
F2~12F2!1Q2

2QF
. ~16!

One can also solve forQ as

Q5TF6FAT21F221. ~17!

From this equation of state we see that for fixedF we get
two branches, one for each sign, when the discriminant un
the square root is positive. For fixedQ, T(F) has three
branches forQ,Qcrit and one forQ.Qcrit , where the criti-
cal charge is determined solving for the ‘‘point of inflection
where (]Q/]F)T5(]2Q/]F2)T50. In the dimensionless
units used here, one findsQcrit51/(2)), Tcrit52&/3,
Fcrit51/A6, Ecrit5&/3, and r 1(crit)51/&. It is useful to
plot the (F,Q) isotherms, i.e., plotQ(F) for fixed T, and
we exhibit these in Fig. 1.

As T goes to zero, we approach the extremal black ho
Their equation of state is
6-4



HOLOGRAPHY, THERMODYNAMICS, AND . . . PHYSICAL REVIEW D60 104026
FIG. 1. Plots of the equation of state ofF vs Q, showing isotherms above and below the critical temperatureTcrit . For T,Tcrit , there
is only one branch of solutions, while forT.Tcrit , there are three branches. The values ofT for the isotherms plotted are~top down! T
50, 0.8,Tcrit , 1.0, 1.2. The central~dotted! curve is at the critical temperature.
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1

2
~11A114Q2!, for arbitrary T. ~18!

For some later computations, it is often convenient to use
an additional, non-independent parameter, the black hole
dius r 1 , in terms of which

Q5r 1Ar 1
2 22r 1T11, 2T5r 11

1

r 1
2

Q2

r 1
3 , ~19!

and

F5
Q

r 1
5Ar 1

2 22r 1T11. ~20!

IV. GRAND CANONICAL AND CANONICAL ENSEMBLES

In thermodynamic parlance, the ‘‘grand canonical e
semble’’ is defined by coupling the system to energy a
charge reservoirs at fixed temperatureT and potentialF ~an
intensive variable!. The associated thermodynamic potent
is the Gibbs free energy,W@T,F#5E2TS2FQ. Holding
the extensive variable,Q, fixed, on the other hand, define
the canonical ensemble, with its associated thermodyna
potential the Helmholtz free energyF@T,Q#5E2TS. See
Sec. X for a brief discussion of other ensembles.

In Ref. @17#, the calculation at fixed potential was carrie
out by computing the action in the manner of Gibbons a
Hawking ~see Ref.@26# for related calculations!. With that
technique, one must regularize the computation~as the action
is formally infinite! by subtracting a contribution from
‘‘reference’’ background which matches the solution of i
terest asymptotically, giving a definition of the action re
tive to that of the reference spacetime. In this case it is
propriate to use AdS spacetime—with a fixed~pure gauge!
10402
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potential at infinity—as the reference background.
Remarkably AdS spacetime provides for another regu

ization which yields anintrinsic definition of the action. In
other words, the computation makes no reference to
other solution of the equations of motion. Instead, t
method @21,22# proceeds by adding a series of bounda
counterterms to the action. We refer to this as the ‘‘count
term subtraction’’ method of defining the action, a techniq
tailored to spacetimes which are locally asymptotic
anti–de Sitter spacetime, as the counterterms are define
the natural boundary, with which such spaces are endow
using the AdS scalel . Also note that the inclusion of addi
tional sectors to the gravitational and cosmological parts
the action, such as Maxwell terms, does not affect the d
nitions and therefore we can still use the same counterte
in the present context.

FIG. 2. Plots of the Gibbs potentialW@F,T# in three dimen-
sions.
6-5
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FIG. 3. Slices of the Gibbs po
tential W@F,T#, for F50, F
50.7 andF51.
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The results, using either the reference background or
counterterm subtraction methods, are identical for the p
ticular case in which we want to fix the potential,5 since it is
possible to have AdS space as a background solution a
bitrary temperature and~constant! potential ~but, crucially,
see later!. In the present notation, the answer is

W@F,T#5
1

12F3
Q

F
~12F2!2S Q

F D 3G . ~21!

Here,Q is given asQ(F,T) by the equation of state~17!. In
terms ofr 1 , this is

W5
1

12
@3r 1~12F2!2r 1

3 #, ~22!

5For even values ofn there appears a Casimir energy term@21#,
which is immaterial for the discussion of thermodynamics here
10402
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and it is plotted in Fig. 2, with choice slices displayed
Fig. 3.

Turning to the canonical~fixed charge! ensemble, we
wish to compute the Helmholtz potentialF@Q,T# ~also
known as the ‘‘free energy’’!. In Ref. @17#, where we used
the reference background method to compute this, it w
necessary to compute the action using an extremal black
as the reference background. This is because anti–de S
space with a fixed chargeQ, as measured at infinity, isnot a
solution of the equations of motion and so is not an app
priate background. In order to get an intrinsic definition
the action for fixed charge, therefore, we employ the meth
of counterterm subtraction, yielding

F@Q,T#5
1

12F3
Q

F
2S Q

F D 3

19QFG , ~23!

whereF is given asF(Q,T) by the equation of state~17!. In
terms ofr 1 , F@Q,T# may be written as
6-6



om
om
he

re
is
tio
m
t

x
ex

e
x

a

w
o
a

e
te

ul
g
b

h
e
lt
ta

ed

f

f

n

t
ic

ate
es

e
so-
w,

s.

e-
ing a
by
nd

l
he

wo

the
d a

in

-
ves

for
his

the

ture

I

de
ter

ra-

ots

HOLOGRAPHY, THERMODYNAMICS, AND . . . PHYSICAL REVIEW D60 104026
F@Q,T#5
1

12F3r 12r 1
3 19

Q2

r 1
G . ~24!

As a consistency check that we have performed the c
putation correctly, note that this result may be obtained fr
the result for the Gibbs potential by formally calculating t
Legendre transformF@Q,T#5W@F,T#1QF. When com-
puting F from a Euclidean action, the additionalQF term
has its origin in the boundary term introduced so as to
cover the correct variational problem from the action. It
especially satisfying to see that the counterterm subtrac
method places such intuitive relationships from equilibriu
thermodynamics on a firm footing. We shall have more
say about this in Sec. X.

In Ref. @17#, where we computed the action using an e
tremal reference background, we obtained the following
pression for the free energy~which we denote here asF̄):

F̄@Q,T#5
1

12F3
Q

F
2S Q

F D 3

19QF24
Q

Fe
28QFeG .

~25!

Note that in this case one should considerF̄5F2Fe as the
state variable, instead ofF. Then, the first law is in this cas
dE5TdS1F̄dQ, andE measures the energy above the e
tremal state. Furthermore, it is withF̄ that W@T,F# of Eq.
~21! and F̄@T,Q# are Legendre transforms of each other,
they should be. WhileF̄@Q,T# as computed in Ref.@17#
using the extremal background is in no way problematic,
shall not examine it further here, as the new technology
the counterterm subtraction method has supplied us with
intrinsic definition of the Helmholtz potential, which is th
more natural Legendre-transform partner of the Gibbs po
tial ~21! found earlier.

We shall see that the qualitative features of the res
obtained in Ref.@17# for the canonical ensemble usin
F̄@Q,T# will persist here, as the extremal background su
traction essentially redefines the absolute normalization
some results.@The later analysis of intrinsic stability whic
we do in Sec. VI would have to be somewhat modified b
fore direct comparison to the extremal subtraction resu
however, as we will make heavy use of the equation of s
in terms of the variables (F,Q,T), and not the triple
(F̄,Q,T) appropriate to that case.#

We now return to the analysis of the intrinsically defin
Helmholtz potentialF@Q,T#. It was noticed in Ref.@17# that
a plot ofF̄(T) for various values ofQ reveals~below aQcrit)
a section of ‘‘swallowtail’’ shape, which controls much o
the phase structure~in the canonical ensemble! discussed
there, and to be discussed later here.~See Figs. 5 and 6 o
Ref. @17# and associated text for details.! The same may be
observed here forF(T) for varying Q, as shown in Fig. 4.

It may be further observed that a plot ofF(Q) for fixed T
reveals~above aTcrit) a similar swallowtail section, as show
in Fig. 5.

The full three dimensional shape ofF@Q,T# is plotted in
Fig. 6.
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That such a shape appears in the thermodynamics~above
Tcrit or below aQcrit) can be shown to follow from the firs
law of thermodynamics, the definition of the thermodynam
potentials, and the form of the particular equations of st
which the black holes obey. We will show how this com
about next.

V. SWALLOW TALES

The sections of swallowtails in theF(Q) andF(T) plots
~above aTcrit or below aQcrit) can be seen to come from th
existence of the previously mentioned three branches of
lutions to the equation of state. We have from the first la
and the definition of the thermodynamic potential, thatdF
52SdT1FdQ. Therefore, for fixedT we find

F~T!5E F~Q!dQ1 f ~T!, ~26!

where f (T) is an arbitrary function ofT. The integral func-
tion can be obtained by looking at the plot of isotherm
When we have three branches~i.e., T.Tcrit), the curve
F(Q) winds back and forth in a way that the integral d
scribes a shape with three connected branches, constitut
section of the ‘‘swallowtail’’ shape. This can be seen
examination of the plots of the equation of state in Fig. 1 a
the plots of the slicesF(T) displayed in Fig. 4.6

Equation~26! is usually employed to formulate an ‘‘equa
area law’’ governing the phase transitions of the system. T
latter occur at the point where the free energies of t
branches~say A and B! are equal:FA5FB . From Eq.~26!
this equality may be translated into a statement about
equality of the areas enclosed by the isotherm curves an
line of constantQ in the (F,Q) plane, as shown in the
sketch on the left in Fig. 7. There is a subtlety, though,
using Eq.~26! with the isotherm curves of Eq.~17! for T
.1. ~Recall that isotherms withT>1 go through the origin
F5Q50. See Fig. 1.! Given that the transition is gov
erned by the equal area law, it would seem from the cur
on the right in Fig. 7 and the area law deduced from Eq.~26!
that even forT.1, for which a minimum value ofF ceases
to exist, one can always find a phase transition point
arbitrarily large temperatures and small enough charge. T
must be wrong since it contradicts what we know about
phase transition from the curves ofF for constant Q,
namely, that the phase transition takes place at a tempera
that is smaller~or equal, atQ50) than the Hawking-Page
temperatureTHP. ~See Ref.@17# and the upcoming Sec. VI
for a detailed discussion of the phase structure.!

The resolution of this puzzle is instructive, and is ma
manifest most clearly by working in terms of the parame
r 1 , using Eqs.~19!, ~20! and ~24!. We can explicitly com-
puteF using Eq.~26! as

6As visual differentiation is often easier to perform than integ
tion, we gently remind the reader that the defining relationF
[(]F/]Q)T may be of use here, in conjunction with the snapsh
of F(Q) for fixed T given in Fig. 5.
6-7
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FIG. 4. The free energy vs
temperature for the fixed charg
ensemble, in a series of snapsho
for varying charge, for valuesQ
50, 0.15 andQ50.299. Note that
Qcrit50.289, so in the last plot,
the bend~nearTcrit50.943) is in
the neighborhood of the critica
point of second order.
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F5E
0

r 1

F~ r̄ 1!~dQ/dr̄1!dr̄1 ~27!

to recover precisely Eq.~24!. So what is the reason tha
‘‘naive integration’’ using the ‘‘equal area law’’ yields a
different result?

The point is that forT.1 the functionF(Q) is discon-
tinuous atQ50, where branches 2 and 3 separate~see, for
example, the last plot of Fig. 5!. For those isotherms, there
a range of values forr 1 , T2AT221,r 1,T1AT221 for
which Q andF become imaginary. Nonetheless, the prod
FdQ is real throughout, and so isF. Then,F(Q) would be
a continuous function if we plotted it in the complexQ
plane. In performing the integration above forT.1 we have
implicitly included the points whereF andQ are imaginary.
Notice that it is by including these points that we recov
sensible physics, since we want the critical line to end aQ
50 at the point of the Hawking-Page phase transition. T
‘‘equal area law,’’ as it is, fails in this instance.
10402
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Let us now turn to the study of the free energy for fix
Q. We have

F~Q!52E S~T!dT1g~Q!. ~28!

In this case we needS(T). Since

S5
1

2 S Q

F D 2

5
r 1

2

2
, ~29!

we can use the equation of state to plotS(T) for fixed Q,
which is shown in Fig. 8.

It can be readily seen that forQ,Qcrit we get three
branches@notice that the qualitative features of the plot
S(T) follow from those ofr 1(T) or r 1(b) plotted in Fig. 3
6-8
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FIG. 5. The free energy vs charge for the fixed charge ensemble, in a series of snapshots for varying temperature, forT
50.943, 0.997, 1.00, 1.10, and~for the ‘‘Zorro’’ plot ! T5THP51.154, and finallyT51.20. Note thatTcrit50.943, and so in the first plot
the bend~nearQcrit50.289) is in the neighborhood of the critical point of second order.
104026-9
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 104026
of Ref. @17#, where it has a resemblance to the van der Wa
P(V) curve#. A section of the swallowtail again follows:7

The astute reader may wonder why the swallowtail sh
~and the resulting liquid-gas-like! phase diagram occurs i
the canonical ensemble, where in addition toT, the extensive
variableQ is an external control parameter, and not in t
grand canonical ensemble, where the intensive variablF
would be the control. This is of course what happens in
case of the van der Waals–Maxwell system, where the ph
diagram is in (P,T) space, and not (V,T) space@27,28#. The
swallowtail shapes occur there in the Gibbs potential. I
now hopefully clear that the answer follows from the fa
that our equation of state yields three branches of solut
for the intensive variableF ~or T) as a function of the fixed
extensive variableQ ~or S), as can be seen by examining th
curves displayed in Figs. 1 and 8.

That there are no swallowtail shapes in any of the ot
ensembles follows from the fact that no more than t
branches occur for the equation of state written in terms
other variables.

VI. INTRINSIC STABILITY

Given that we have the full power of the thermodynam
framework at our disposal~thanks to the stabilizing influenc
of a negative cosmological constant!, it is interesting to con-
sider the thermodynamic stability of our various solutio
against microscopic fluctuations.8 Notice that one can alway
formally compute the relevant macroscopic quantities~like

7Again, one can use Fig. 8 to reconstructF(Q) visually using the
integral relation, or one may use the definition of the entropyS
[(]F/]T)Q to reconstruct Fig. 8 from Fig. 4.

8See Refs.@29,30# for analyses which overlap with those pr
sented here, in a similar context.

FIG. 6. Plots of the Helmholtz potentialF@Q,T#, in three di-
mensions, clearly showing the swallowtail shape forT.Tcrit and
Q,Qcrit .
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specific heats, etc.! which we discuss here, without any re
erence to an underlying microscopic description. This h
been done in the context of black hole thermodynamics si
time immemorial.The difference here is that we know th
nature of the microscopic degrees of freedom which sup
the underlying ‘‘statistical mechanics’’ which gives rise
these macroscopic thermodynamics quantities.The underly-
ing physics is that of the gauge theory to which this system
holographically dual, which in turn is the physics of coinc
dent branes. This will become more apparent in Sec.
when we explicitly study the fluctuations themselves.

Thermodynamic stability may be phrased in many diffe
ent ways@31,32#, depending on which thermodynamic fun
tion we choose to use, and how obscure we are attemptin
seem. For example, it can be seen as minimization of
energy,E, as a function of (S,Q), or maximization of the
entropyS, as a function of (E,Q), etc. In any case, one i
considering an infinitesimal variation of the state functi
away from equilibrium. The first law~15! will ensure that the
first order terms vanish. Stability is then a statement ab
the second order variations. Generally then the stability c
ditions are phrased in terms of the restriction that the Hes
of the state function be positive~or negative, depending on
the context! semidefinite.

An equivalent but physically more transparent way
writing the stability conditions is in terms of specific hea
and other ‘‘compressibilities,’’ to wit:

CQ[TS ]S

]TD
Q

>0, CF[TS ]S

]TD
F

>0, «T[S ]Q

]F D
T

>0.

~30!

The first two, the specific heats at constant electric cha
and potential, are familiar analogues of the specific heat
constant volume and pressure in fluid systems. In the cas
hand, they determine the thermal stability of the black ho
indicating whether a thermal fluctuation results in an
crease or decrease in the size of the black hole.~This follows
from the fact that the entropy is proportional to the size

FIG. 7. The figure on the left shows how the condition for
phase transition may be interpreted in terms of an ‘‘equal area la
analogous to that due to Maxwell for the van der Waals liquid-g
model. ForT>1, though, the isotherms have a very different qua
tative structure. The equal area law one might formulate, dedu
a phase transition for arbitrarily highT.1, for small enoughQ,
actually is incorrect. See text for the resolution of the puzzle.
6-10
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HOLOGRAPHY, THERMODYNAMICS, AND . . . PHYSICAL REVIEW D60 104026
the black hole.! Stability follows fromC>0, given the fact
that black holes radiate at higher temperatures when they
smaller.

The last quantity,«T , has the following physical interpre
tation. It is negative if the black hole is electrically unstab
to electrical fluctuations~if they are possible; see later dis
cussion!. This happens if the potential of the black holede-
creasesas a result of placing more charge on it. The poten
should of courseincrease, in an attempt to make it harder t
move the system from equilibrium.9 «T therefore deserves t
be called the ‘‘isothermal~relative! permittivity’’ of the
black hole.

There are of course other interesting ‘‘response fu
tions’’ for the system, such as the adiabatic permittivi
(]Q/]F)S , or the quantity analogous to the coefficient
thermal expansion in liquid-gas systems,aF5(]Q/]T)F ,
which are not all independent. The ones which we have
cussed above will suffice for the physics that we study in t
paper.

We may examine the plots of the isotherms in Fig. 1 a
deduce that the negatively sloped branches are electric
unstable if there are electrical fluctuations possible. Si
larly, we may deduce that the negatively sloped branche
the (S,T) isocharge curves in Fig. 8 are thermally unstab
and so on.

9This follows from common sense or, more formally, Le Ch
elier’s principle.

FIG. 8. Plots of the equation of state ofS vs T, showing iso-
charge lines above and below the critical chargeQcrit . For Q
.Qcrit , there is only one branch of solutions, while forQ,Qcrit ,
there are three branches. The values ofQ for the isocharge curves
plotted are~top down! Q50, 0.20,Qcrit , 0.45, 0.80.~The upper-
most curve shows theQ50 case, which has two branches.! The
central~dotted! curve is at the critical charge.
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Stability follows, equivalently, from the concavity or con
vexity of the plots ofF andW as functions ofT. In fact, the
specific heat conditions are equivalent to

S ]2F

]T2D
Q

<0 and S ]2W

]T2 D
F

<0, ~31!

whereas the permittivity condition is

S ]2F

]Q2D
T

>0 or S ]2W

]F2D
T

<0. ~32!

By examining the isotherms displayed in Fig. 1, we s
that there are a number of features in the (Q,T) plane which
govern electrical stability. Generically, let us describe t
three branches of an isotherm as follows: We call ‘‘bran
3’’ the branch of solutions which extends all the way fro
Q5`, terminating wheredQ/dF50. From there, ‘‘branch
2’’ takes over, terminating where againdQ/dF50. The iso-
therm continues with ‘‘branch 1’’ until the pointQ50,F
51 is reached. This terminology matches that of Ref.@17#.

From this definition, then, branch 3 is electrically stab
for most of its extent, except for a small region near the jo
with branch 2. In this case, before reaching the point wh
dQ/dF50 the permittivity changes sign at a point whe
dQ/dF5` and renders branch 3 electrically unstable the
after. This is a feature that is absent from the standard
der Waals–Maxwell system~in the latter there are no point
in the isotherms wheredP/dV5`), and which will intro-
duce a significant modification of the phase diagram.

Branch 2, being between two places wheredQ/dF50,
has positive definite slope and hence is electrically sta
everywhere, while branch 1 is electrically unstable eve
where, having negative definite slope. To compute precis
where the electrical instability begins, we need only find t
location of the minimum of the isotherms, that is, the abo
mentioned point wheredQ/dF5`, which is given by the
equationQ5TA12T2. With the segment of theT axis from
0 to 1, this forms a region in the (Q,T) plane within which
branch 3 and branch 1 are unstable to electric fluctuatio
Branch 2 is electrically stable everywhere, as mentioned
fore, but as already pointed out in Ref.@17#, and as a quick
examination of Fig. 8 of the isocharge (S,T) curves reveals,
branch 2 is unstable to thermal fluctuations, and so ne
plays a role in the canonical and grand canonical ensemb

It is also entertaining to subject by eye the snapshots oF
and W taken in Figs. 3, 4 and 5 to the convexity and co
cavity conditions~31! and~32!. We find that the shapes ofF
andW do indeed confirm our conclusions about the stabi
of the various branches.

It is very instructive to plot the boundaries of the vario
branches in the (Q,T) plane~see Fig. 9!.

It is particularly interesting to note that the plots in Fig.
are simply the three sheets of an underlying ‘‘cusp catas
phe’’ shape, as can be seen by assembling them in t
dimensions to reconstruct the equation of state in Fig.
Indeed, it is highly instructive to align the surfaceF(Q,T)
describing the equation of state and the surfaceF@Q,T# giv-
ing the swallowtail shape of the free energy, in such a way
6-11
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FIG. 9. The demarcation of the various branches of black holes in the (Q,T) plane. Points on branches 1 and 3 which lie inside the s
curved line are unstable to electric fluctuations. Branch 2 is electrically stable but thermally unstable everywhere.
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to project some of their important features to the (Q,T)
plane, as done in Fig. 10. This gives rise to the critical ph
diagram which we will discuss in the next section.

As anticipated, the shape formed by the equation of s
in the neighborhood of the critical point is merely a disto
tion of the standard cusp shape, which was encountere
the variables (r 1 ,Q,b) in our previous paper@17#. Figure
11 shows this standard shape with two sample trajectorie
state space. It will be discussed further in Sec. XI.

As a final comment, in cases where one of the local s
bility criteria ~30! is violated, we are not always able t
determine the stable ground state. However, the precise
ture of the stability violation is providing information abou
how the system will relax to a new stable configuration. F
example, one hasd2E}«TdQ2 and so«T,0 indicates that
the black hole should relax by reducing its charge; i.e., it w
emit charged particles~if possible!.

VII. PHASE STRUCTURE

Figures 10 and 6, together with the slices displayed
Figs. 4 and 5, show how the free energy curve determines
phase structure of the black holes as one moves aroun
the state curve in the canonical ensemble, while Fig. 2
the slices displayed in Fig. 3 determine the phase diagram
the grand canonical ensemble. We performed this analys
Ref. @17#, and we recall it here for completeness, before
ing on to refine the resulting phase diagram using the in
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mation uncovered in this paper.
The dashed line in the (Q,T) plane shows the boundar

of the region multiply covered byF, in the state curve, and
correspondingly, the free energy has three possible value
that region also~see Fig. 10!, which constitutes the swallow
tail region. The free energy of branch 2 is always grea
than that of either branch 1 or 3, however, and so there is
transition along the dashed lines. Along the solid line,
free energies of branches 1 and 3 are equal, and there
first order phase transition~the first derivative of the free
energy is discontinuous! along this line. Also note that the
one dimensionalQ50 situation is the familiar Hawking-
Page transition@13# between AdS and AdS-Schwarzschi
spacetimes, which happens~in our units! at T5THP52/)
'1.154, forn53.

The solid line is the ‘‘coexistence curve’’ of the tw
phases of allowed black holes. The line ends in a criti
point. Above this point, there is no transition, and one go
from large to small black holes continuously~the distinction
between branch 1 and branch 3 is removed!. ~The reader
should compare this to the physics of the liquid-gas sys
for an exact analogue in classic thermodynamics.! As the
first derivative~but not the second! of the free energyF is
continuous at the critical point, there is a second order ph
transition there, about which we will have some more to s
in Secs. IX and XI.

This physics is all summarized in Fig. 12, where we ha
6-12
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also displayed the phase diagram in the grand canonica
semble@the (F,T) plane#, which is straightforward to deter
mine. Some of the details of the shape of these curves wi
confirmed by calculations in Sec. VIII. For most of the re
of the paper, we will not have much more to say about
phase diagram in the (F,T) plane, and refer the reader t
Ref. @17# for discussions of its features.10 Note, however,
that the boundary in this figure marks the line where
Gibbs free energy of the black holes equals that of A
spacetime. That is, the boundary doesnot denote a curve
where one of the local stability criteria begins to be violate

Depending upon the situation, there may or may not
the possibility of electrical fluctuations. This depends ve
much upon the setting within which we are considering th
black holes. In a theory without charged particles, the bl
hole charge would be fixed and electrical stability need
be considered. In general, however, if there are fundame
charged quanta in the theory, then there is the possibility

10Discussed in Ref.@17#, for example, is the issue of the line o
extremal black holes forT50 and F.1. The calculation of
W@T,F# yields a nonzero result on this line, which is the contrib
tion from the extremal black holes. We expect that this does
represent the equilibrium situation, because they will decay du
‘‘super-radiance’’ effects on the approach to zero temperature
the charge in them is not fixed in this ensemble. This is an arti
of the failure of the Euclidean quantum gravity techniques that
have used to take into account such processes.

FIG. 10. The swallowtail shape~free energy! and cusp shape
~equation of state! for the charged black hole thermodynamic sy
tem. Note the features which result in the critical line and point
the (Q,T) plane.
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the black holes emitting or absorbing such quanta, introd
ing the possibility of electrical fluctuations. Such a possib
ity must be considered in~for example! the case when the
EMAdS system is considered to be a Kaluza-Klein trun
tion of some higher dimensional theory, as discussed in
previous work@17#. Then, the electrically charged black ho
can in principle emit or absorb electrically charged Kaluz
Klein particles in order to allow its charge to fluctuate.

In the particular case of four dimensions, however, th
is also the possibility that we can exchange, by elect
magnetic duality, the electric charge~and vector potential!
that we have been considering here for a magnetic cha
~and vector potential!. In this case, we have instead that t
only way for the magnetically charged black holes to chan
their charge is to emit or absorb Kaluza-Klein monopol
which are not fundamental quanta, as they are very mass
the further we are below the Kaluza-Klein scale.

In general, when there are allowed electrical fluctuatio
~by whatever mechanism is appropriate to the situation
hand! we must also take into account on the phase diagr
the electrical stability of the solutions as determined in
previous section. Including those regions, we obtain
phase diagram shown in Fig. 13.

The question arises as to what the equilibrium system
which resides in the shaded regions. The electrically unsta
black holes cannot reside there, and so we must search
other possibilities. One formal possibility is that extrem
black holes reside there, because formally they can exis
any temperature for any charge. However, we do not fi
this possibility very attractive. We expect that the permiss
that the Euclidean computation appears to give them to e
at any temperature is an artifact, and that they should n
rally be associated with zero temperature, in which case t
can only occupy the lineT50 on our phase diagram in th
canonical ensemble, which they do. In any event, one
infer from the calculations of Ref.@17# that extremal black
holes actually have a higher free energy than the unst
nonextremal black holes. Another possibility is that the p
ferred state is simply anti–de Sitter space~which can also
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ct
e

FIG. 11. A sketch of the cusp catastrophe in action@in
(r 1 ,Q,b) space#. Two sample trajectories are shown, one (Q
,Qcrit) encountering a phase transition, while the otherQ
.Qcrit) does not. The precise location of the line across which
transition happens is given by the minimum free energy condit
or, equivalently, an appropriately formulated ‘‘equal area law.’’
6-13
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 104026
exist at arbitrary temperature! filled with a charged gas. This
is certainly the case atQ50 @11,13#. However, when the ga
carries a non-negligible charge~and hence mass!, its backre-
action on the AdS geometry can not be neglected in de
mining the free energy. Another interesting possibility is th
of a black hole surrounded by a gas of particles. Again, if
gas component carries a sizable fraction of the charge
mass, its backreaction on the geometry would modify
equation of state and may then re-establish thermodyna
stability. Pursuing either of these possibilities lies beyond
scope of the present paper, and so we will leave the set
of this interesting issue to a future date. Hence we m
simply regard the shaded region as a sort ofterra incognita
with regard to black hole physics. As a final note, we rem
the reader that this is only the region in which we are cert
that the black holes do not minimize the free energy due

FIG. 12. Sketches of the thermally stable phases in the cano
ensemble and in the grand canonical ensemble, respectively.

FIG. 13. The phase diagram in the canonical ensemble, show
the disallowed~shaded! regions where the solutions are unstable
electrical fluctuations. Note that the critical point and part of t
coexistence line lies within the unstable region.
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its thermodynamic instability. It may be that the onset o
phase transition to a state of lower free energy actually
curs outside of the boundary in Fig. 13, just as it does for
grand canonical ensemble in Fig. 12.

VIII. COEXISTENCE OF PHASES
AND THE CLAPEYRON EQUATION

Let us study further the coexistence lines which we d
covered in the phase diagrams, both in the canonical
semble and in the grand canonical ensemble~see Fig. 12!.
We can use straightforward thermodynamics to determ
the shape of the lines.

Let us start with the grand canonical ensemble, w
Gibbs potential W@F,T#, with dW52SdT2QdF. An
equation can be derived for the line separating two phase
and B in the (F,T) phase diagram as follows. Along such
coexistence line the phases@for given (F,T)# have the same
W, and so the slope of the curveQ(T) is related to the
change in entropy andQ by

dF

dT
52

SA2SB

QA2QB
. ~33!

In the case at hand, one of the phases is AdS which has
entropy and zero charge. So we find that~for all n)

dF

dT
52

Sbh

Qbh
52S 2p

n21D 1

cq S q

cF D ~n21!/~n22!

. ~34!

Here,q(T,F) is obtained from the equation of state for th
corresponding branch. Equation~34! is the precise analogu
of the Clapeyron equation. From it, we see that the slope
the curve is negative. For the case ofn53 we can give
explicit expressions. In rescaled units, we have

dF

dT
52

Q

2F2 52
1

2 S T

F
1AT2

F2 112
1

F2D . ~35!

We see from here that the curve intersects the axes orth
nally, and its convexity, sketched in Fig. 12, follows fro
the fact thatd2F/dT2,0.

Next ~assuming the issue of electrical stability can be
nored!, we consider the canonical ensemble, defined by
Helmholtz thermodynamic potentialF@Q,T#, with dF
5SdT2FdQ. Along any line of coexistence of two phase
we have

dQ

dT
5

SA2SB

FA2FB
. ~36!

The phase diagram is sketched in Fig. 12.
The Clapeyron equation can be used to find the slope

the curve atQ50 andQ5Qcrit for the line separating the
two black hole phases~we show the expressions for alln):

dQ

dT U
Qcrit

52
vn21

4G S n21

n22D r 1(crit)
2n23

qcrit
, ~37!
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dQ

dT U
Q50

52
vn21

4G
r 1(3)

n21 ~38!

~where we have used here thatr 1(1)
n22 .q nearq50, as is easy

to obtain!. On the scale at which we have sketched the
existence curve in the previous section, it is essentiall
straight line, and we have drawn it as such in Fig. 12.

IX. FLUCTUATIONS FOR CHARGED AdS
BLACK HOLES

In Sec. VI, we discussed and computed the thermo
namic quantities~specific heats and permittivity! which sig-
nal the stability~or not! of a black hole against fluctuations
While these quantities pertain to the response of the sys
to macroscopic thermodynamic processes which may be
formed, in Euclidean quantum gravity, where we ordinar
do not have a description of the microscopic degrees of f
dom, we usually cannot relate them directly to microsco
fluctuations, as we can in ordinary thermal physics.

However, we can go further in this paper. Many of t
AdS models which we have here can be embedded into a
theory of quantum gravity—string and/or M theory—an
where the holographic duality tells us precisely that the
croscopic description is organized neatly in terms of a d
~gauge! field theory.

So we may go and boldly study the fluctuations of t
thermodynamic quantities in our theory, and we should
earmarks of the underlying~gauge! theory in our quantities,
connecting the microscopic to the macroscopic.

Here, one uses the entropy to define a probability dis
bution on the space of independent thermodynamic qua
ties @32#: p(Xi)}exp@S(Xi)#. With the assumption that fluc
tuations are small, we can work with a quadratic expans
of the entropy in deviations from the equilibrium values. T
stability analysis of Sec. VI establishes that the Hessian oS
is negative semidefinite, and so we have a normaliza
Gaussian distribution within this approximation. One th
finds that the fluctuations are given by

^dXidXk&52S ]2S

]Xi]Xk
D 21

~39!

wheredXi denotes the deviation ofXi from its equilibrium
value, and the notation of the left-hand side denotes a ma
inverse.

Implicit above is the assumption that we have a clos
system that can be divided into a number of subsystems
the AdS context, the natural decomposition is the black h
and the thermodynamic reservoirs.11 In this situation where
the subsystem of interest is really the entire object un
study, the most reasonable approach is to consider fluc
tions in only the extensive variables that are free to vary

11We are neglecting the contributions of any gas compon
around the black hole in all of our calculations in this paper. Furt
we should be able to consider smaller subdivisions with the d
field theory in mind.
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the thermodynamic ensemble@31#. Hence we denote the gen
eral extensive variables that are free to vary asXi , and the
Fi ’s are their conjugate intensive variables defined bydS
5FkdXk . Equation~39! then becomes@31,32#

^dXidXk&52
]Xi

]Fk
52

]Xk

]Fi
. ~40!

Now, these fluctuations are given practical meaning wh
they are compared to, for example, their equilibrium valu
For example, the relative root mean square of the fluct
tions,

A^dXi
2&

Xi
, ~41!

which tells us about the sharpness of the distribution inXi .
Note that by the formula~40! the above ratio goes roughl

as the extensive parameters to the power21/2, and therefore
the distribution is increasingly sharp as the size of the sys
increases.

Now, in the present problem of charged black holes,

dS5~1/T!dE2~F/T!dQ. ~42!

Hence, for the canonical~fixed Q) ensemble~our analogue
of a fixed volume system!, the only free extensive variable i
the energy, and the above formulas yield

^dE2&52S ]E

]b D
Q

5T2S ]E

]TD
Q

5TCQ . ~43!

For the grand canonical~fixed F! ensemble~analogue of a
fixed pressure system!, the energy and the charge are free
vary, and one has

^dE2&52S ]E

]b D
F/T

5T2S ]E

]TD
F/T

5TCF1TFS ]E

]F D
T

, ~44!

^dQ2&5TS ]Q

]F D
T

5T«T , ~45!

^dEdQ&5TS ]E

]F D
T

5T2S ]Q

]T D
F

1TFS ]Q

]F D
T

5T2aF1TF«T .

~46!

We have recovered the fact that the thermodynamic fluc
tions are controlled by the same generaliz
compressibilities—specific heats permittivity, etc.—that d
termine the intrinsic stability in Sec. VI. This follows sinc
both analyses can be phrased in terms of the Hessian o
entropy.
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Above we have presented a general thermodynamic
cussion. Let us now focus on the casen53 and present ou
results in terms of the dimensionless variables introduce
Sec. I. Note that translating the above thermodynamic
mulas to the dimensionless variables, there are extra fac
giving, e.g.,

^dE2&5
3G

2p l 2 T2
]E

]T
. ~47!

For the fixed charge ensemble,

^dE2&
E2 5

3G

2p l 2

1

r 1
2

S r 1
2 112

q2

r 1
2 D 3

S r 1
2 2113

q2

r 1
2 D S r 1

2 111
q2

r 1
2 D 2 .

~48!

For the fixed potential ensemble,

^dE2&
E2 5

3G

2p l 2

1

r 1
2

~r 1
2 112F2!

~r 1
2 211F2!

3 F ~r 1
2 112F2!214F2~12F2!

S r 1
2

3
112F2D 2 G , ~49!

^dQ2&
Q2 5

3G

4p l 2

1

F2r 1
2 F ~r 1

2 112F2!~r 1
2 2113F2!

~r 1
2 211F2! G .

~50!

^dEdQ&
EQ

5
3G

p l 2

12F2

r 1
2 F ~r 1

2 112F2!

~r 1
2 211F2!S r 1

2

3
112F2D G .

~51!

Note that all of these results are proportional toG/ l 2

;N23/2, so for largeN the fluctuations are suppressed. F
n53, the dual field theory~supplying our microscopic de
scription! is the field theory of Ref.@33#, associated withN
coincident M2-branes. The number of degrees of freedom
this theory grows asN3/2 ~as seen for example in the blac
hole entropy at high temperature!. So the squared fluctua
tions are controlled by the inverse of the number of degr
of freedom of the field theory, which is precisely what w
expect from standard kinetic theory connecting the mic
scopic to the macroscopic. Note here that we see these
confined degrees of freedom appearing in our formulas
arbitrary temperature in this ensemble. This is because b
holes dominate the thermodynamics for all values of the te
perature: the presence of charge affects a deconfineme
the theory at all temperatures, even in finite volume.~This is
to be contrasted to the case ofQ50, where AdS spacetime
dominates the physics for someT,THP, representing the
‘‘confined’’ phase.!

To gain more insight into these results, let us rewrite E
~47! for the energy fluctuations as
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^dE2&
E2 5

3G

2p l 2

T3

r 1
2 S T1

Q

r 1
3 D 2

1

S ]T

]r 1
D

Q

. ~52!

From this form, one can pick out some of the interesti
behavior. The fluctuations go to zero at zero temperature
T3. For largeT ~and hence largeE), the fluctuations also go
to zero now as 1/T ~since for larger 1 , 2T.r 1). An inter-
esting factor is (]T/]r 1)21 which can change sign forQ
,Qcrit51/(2)).

So for Q.Qcrit , the fluctuations rise from zero at th
extremal black hole (T50), go through a maximum, an
then die down for large temperatures. AsQ approaches
Qcrit , the maximum grows larger and larger, and actua
becomes a divergence atQ5Qcrit . @We have plotted these
squared fluctuations in Fig. 14, where they are deno
f (T).# This is actually the same divergence as that inCQ at
the critical point, which was commented on in Ref.@17#.
Hence one finds from there that near the critical point,

^dE2&
E2 ;~T2Tcrit!

22/3. ~53!

This divergence of the energy fluctuations signals
breakdown of the Gaussian approximation considered
these calculations. It is also the classic behavior of a sec
order phase transition point, where correlation lengths, e
diverge as an order parameter vanishes. Here, the orde
rameter can be taken to be a homogenous function ofr 1(3)
2r 1(1) , the difference between horizon radii of the branch
3 and 1.

For Q,Qcrit , the fluctuations rise from zero at the e
tremal black hole and diverge at the first zero of]T/]r 1 .

FIG. 14. The squared fluctuationsf (T) in the energy, relative to
the equilibrium energy, for varyingQ>Qcrit . The values ofQ plot-
ted here are~bottom up! Q50.49, 0.44, 0.39, 0.34,Qcrit . The dot-
ted curve shows that the fluctuations diverge atQ5Qcrit , at the
critical temperatureT5Tcrit .
6-16
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Between the two zeros of]T/]r 1 , ^dE2&/E2 is negative.
This is simply an indication that we are in the therma
unstable regime, otherwise known as ‘‘branch 2.’’ ForT
larger than the second zero of]T/]r 1 , the fluctuations are
monotonically decreasing~from infinity at the zero, to zero
asT→`). As we know from the minimum free energy con
dition, we are protected from the unstable regime by mak
a phase transition from branch 1 and 3. So, in a^dE2&/E2

versusT plot, the fluctuations rise from zero to the pha
transition point and~discontinuously! jump to the decreasing
curve.

X. HIGHER DIMENSIONS AND OTHER
THERMODYNAMIC FUNCTIONS AND ENSEMBLES

In this section, we collect together some results for va
ous thermodynamic quantities computed for arbitraryn, with
all of the factors explicitly included. The thermodynam
functions are written in terms of their canonical state va
ables. We do not use the physical chargeQ instead ofq, for
simplicity of presentation. In any expression,Q may be re-
stored by recalling that

Q5
vn21

8pG
~n21!cq and c5A2~n22!

n21
. ~54!

Similarly, we also introduce the parameters as

S5
vn21

4G
s. ~55!

Notice that it does make sense to write physical quantitie
terms ofq and s, since they are related to the charge a
entropy densities. This follows from the fact that we m
replacel n21vn21 by the field theory volumeVn21 .

The equation of state, following from Eq.~10!, is

T5
~n22!l 2~12c2F2!~cF!2/~n22!1nq2/~n22!

4p l 2~cqF!1/~n22! . ~56!

The equation of state for extremal black holes is

q2/~n22!5
n22

n
l 2~c2Fe

221!

3~cFe!
2/~n22! for T arbitrary. ~57!

The Gibbs thermodynamic potential for the grand cano
cal ensemble is@17#

W@T,F#5
vn21

16pGl2 F l 2
q

cF
~12c2F2!2S q

cF D n/~n22!G
~58!

whereQ5Q(T,F) is obtained from the equation of stat
Notice thatW@T,F# vanishes for anti–de Sitter spacetim
~which hasQ50), and so AdS spacetime may be thought
as the reference background for the calculation of the act
and indeedW@T,F# was computed in this way in Ref.@17#,
using the background subtraction method, which we see~in
10402
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the present work! gives the same result as the intrinsic de
nition by ‘‘counterterm subtraction’’ methods.

The Helmholtz free energy which is the Legendre tra
form of W@T,F# may be computed with an explicit actio
calculation, using the counterterm subtraction method to g
an intrinsic~‘‘backgroundless’’! definition. The result is

F@T,Q#5
vn21

16pGl2 F l 2
q

cF
2S q

cF D n/~n22!

1~2n23!l 2cqFG .
~59!

Again, F5F(T,Q) is obtained from the equation of stat
Notice that AdS spacetime with nonzero charge is not a
lution of the equations of motion and so cannot be cons
ered as the ‘‘ground state’’ or reference background for t
result. Indeed, this result cannot be obtained by an ac
calculation which uses a matching to a background, precis
for this reason. The counterterm subtraction technique
therefore necessary here to supply the honest action com
tation for this thermodynamic potential. It is satisfying
note thatW@T,F# and F@T,Q# are Legendre transforms o
each other,W5F1QF, as they should be.

We can arrive at a variety of other ensembles, with th
corresponding associated potentials, by formal Legen
transforms. For example, we can consider the entha
H@S,F#, a function of entropy and potential~this notation is
not to be confused with the Hamiltonian!. Starting from
W@T,F# we can constructH5W1TS, finding

H@S,F#5
~n21!vn21

16pGl2
@sn/~n21!1 l 2s~n22!/~n21!

3~12c2F2!#. ~60!

Note that this functioncannotbe obtained by performing a
proper background subtraction in Euclidean gravity, sin
for any given solution we cannot find another regular so
tion with the same values of the entropy and the potent
However, the enthalpy vanishes for AdS spacetime, wh
could therefore be regarded as the ground state or refer
background here.

Another thermodynamic function in terms of its canonic
variables is the~internal! energyE5W1TS1QF,

E@S,Q#5
~n21!vn21

16pGl2
@sn/~n21!1 l 2s~n22!/~n21!

1q2l 2s2~n22!/~n21!#, ~61!

which vanishes as well for AdS spacetime. This functi
would define the thermodynamic potential for the microc
nonical ensemble, and as for the enthalpy above, a calc
tion from Euclidean gravity should proceed by fixing th
entropy of the state—the black hole area, if we neglect
entropy of the charged gas in AdS spacetime.12

12See@34# for work on defining the microcanonical ensemble
gravity.
6-17
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XI. UNIVERSAL NEIGHBORHOOD
OF THE CRITICAL POINT

In Sec. IX, we saw that fluctuations diverge as we a
proach the critical point in the canonical ensemble. T
point represents a second order phase transition, as ca
seen from the fact that the free energy’s first derivat
ceases to have a discontinuity there~see Figs. 4 and 5 fo
visual confirmation!, while the divergences of the last sectio
signal a discontinuity in the second derivative.

While much of the detailed discussion of the paper h
been forn53, we emphasize here again that the results
tend to alln.2. This is most clearly seen from the importa
features of the equation of state. Let us examine some
these more closely.

Consider Eq.~10!. Originating as the condition for Eu
clidean regularity, and hence thermodynamic equilibriu
the qualitative features ofb(r 1) for varying q are shown in
Fig. 15. These features are the same for alln: There is a
critical charge,qcrit , below which there are three solution
for r 1 for a range of values ofb, corresponding to the sma
~branch 1!, branch 2, and large~branch 3! black holes, in the
language of Ref.@17#, and in this paper.

That this shape persists for arbitraryn can be seen a
follows. First, note that for larger 1 , b(r 1) goes as;1/r 1 .
Second, note that the denominator of the right hand sid
Eq. ~10!, after choosing scalings similar to those done
n53 at the beginning of Sec. III, is13

r 1
2n221r 1

2n242q250, ~62!

13That is, we absorb a factor ofGl21An/(n22) into Q and
l 21An/(n22) into r 1 , etc.

FIG. 15. A family of isocharge curves for the (b,r 1) form of
the equation of state. Note that the middle curve is for the crit
value of the charge,Qcrit , below which multiple branches ofr 1

solutions appear. The neighborhood of the critical point is a univ
sal cubic, true for all dimensions.
10402
-
s
be

e

s
x-

of

,

of
r

which has a single positive root,r e , whereb diverges. This
corresponds to theT50 situation, andr e is the radius of the
corresponding extremal black hole. Given the above,
turning points for finiter 1 must come in pairs, and the con
dition ]b/]r 150 shows that there are only two real, pos
tive such solutions, which we callr 1(1) and r 1(3) , labeling
where branch 1 ends and, respectively, where branch 3
gins. Branch 2 lies between these roots. The equations d
mining those roots also have an elegant form~for the same
rescaling as before!:

r 1
2n222r 1

2n241~2n23!q250. ~63!

The two roots coalesce at the critical point~i.e.,
]2b/]r 1

2 50 also! whereq5qcrit . The value of the radius o
this critical black hole isr 1(crit) and it is at~inverse! tem-
peraturebcrit . For example, in the casen53, the quantities
$qcrit ,r 1(crit) ,bcrit% take the values$1/A12,1/&,3/(2&)%,
while for n54, they have the values
$2/A135,A(2/3),5/(4A6)%. The basic point here is that whil
the critical values themselves vary, the important structu
do not depend uponn in any essential way.

The neighborhood of the critical point is extremely inte
esting. Because of the fact that for alln there are at most two
turning points belowqcrit , it is clear that this neighborhood
can be better written as a cubic, in terms of local coordina
near the point. To this end, writer5r 12r 1(crit) , b̂5b
2bcrit , andq̂5q2qcrit , and rewrite the equation of state i
these coordinates. The neighborhood of the critical poin
found by taking these coordinates (r,b̂,q̂) to be small.

For the example ofn53, after some algebra, we obtain

05S&2
1

b D r312
b̂

b
r21&

b̂

b
r2

q̂

2)
1

1

3

b̂

b
. ~64!

Note that the quadratic and linear terms vanish with an
proach to the critical temperatureb̂→0, and the term which
containsr3 does not vanish in this way, and so we negle
higher powers ofr in favor of this one in order to study th
near-critical behavior. Here, and in what follows, we w
also neglect terms which are not linear inq̂ and b̂. This
cubic form ~64! may always be obtained in this limit for a
n, because of the observations made in the preceding
paragraphs. From this, certain universal behavior can be
ily deduced, such as the critical exponent characterizing h
fast our ‘‘order parameter,’’r, vanishes.~Recall thatr rep-
resents the difference in equilibrium radius between
black holes of branch 1 and that of branch 3; it measures
distance from the analogue of the ‘‘fluid’’ phase in liquid-g
language, where the two forms are indistinguishable.! Setting
b̂50, we see that the critical exponent is1

3 , since

r.S 3

8D 1/6

q̂1/3;~Q2Qcrit!
1/3. ~65!

Performing this computation for othern will change the nu-
merical prefactor, but not the exponent, which in this se
deserves to be called universal.

l
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6-18



n
e
-
pa
b
-
e

e

an
-

o

e

ive
lo
re
w
en
a
i

1

th
ax

olu
th
rs

e
h

at
ro

l.
re,
at

less
ence

at

the

ail

se

.
ite
de-
tic
ve

an
he
the
o

-
ine
he
to

le
re
ics

HOLOGRAPHY, THERMODYNAMICS, AND . . . PHYSICAL REVIEW D60 104026
That a cubic equation controls the phase structure ca
traced back a step further. First, notice that the three dim
sional plot of the curve in (b,r 1 ,Q) space is the cusp ca
tastrophe, as drawn in Fig. 11, with some sample state s
trajectories. We can remove the quadratic term in our cu
polynomial by shiftingr by an appropriate amount. Multi
plying overall by a normalizing factor, our cubic may b
written as

05r31Ar1B, ~66!

with

A.4&b̂ and B.
4

3
b̂2A3

2
q̂.

Equation~66! is actually telling us about the location of th
turning points of aquartic function

V~r!5
1

4
r41

A

2
r21Br, ~67!

where we have discarded an arbitrary additive const
Treated as apotential ~for reasons which will be clear be
low!, it is the generic form ofV~r! as A and B vary that
controls much of the critical behavior in the neighborhood
the critical point.@As A andB are functions ofQ andT, this
critical behavior in (A,B) space translates directly into th
earlier discussed critical behavior in (Q,T) space.#

The functionV~r! deserves to be treated as an effect
potential which organizes the description of much of the
cal physics. In particular, away from the critical point, whe
A andB are both nonzero, the potential generically has t
minima and one maximum, the location of which are giv
by the solutions of our universal cubic. These locations m
be smoothly visualized in the form of a cusp, sketched
Fig. 11. The location of the minima inr are the valuesr 1(1)
and r 1(3) , of the equilibrium black hole radii of branch
and branch 3, while the location of the maximum isr 1(2) ,
the branch 2 black hole radius. The thermal stability of
branches correlates with whether the turning point is a m
mum or a minimum ofV~r!, further justifying its treatment
as a potential.

The boundary of the region where there are three s
tions marks the situation where one of the minima of
potential V~r! merges with the maximum and disappea
This boundary is simply given by the values ofA and B
where the cubic’s discriminant,D527B214A3, vanishes.
~This can only happen forA,0, therefore telling us that we
have the distinct branchesbelow bcrit .) The interior of this
region may be translated into (Q,T) space, where it gives th
shaded region in the third diagram of Fig. 9 where branc
resides.

Along the line in the (q̂,b̂) plane @or the (Q,T) plane#
whereB vanishes, given byq̂5A(32/27)b̂, the two minima
of the potentialV~r! are degenerate. This is the point
which there is a phase transition, as the system moves f
one minimum of the potential to the other.
10402
be
n-

ce
ic

t.

f

-

o

y
n

e
i-

-
e
.

2

m

At the critical point (A50, B50), the maximum and the
two minima merge into a single minimum of the potentia
Notice that the well formed by the potential is very flat the
and so the range of allowed fluctuations within it is larger
this point than at any other point in the plane, as they are
confined. We have seen this physics before as the diverg
of the fluctuations of the microscopic degrees of freedom
the critical point. The potentialV~r! is an effective potential
for the uncharged microscopic degrees of freedom of
theory in the neighborhood of the critical point.~See Fig. 16
for a summary of these critical points of the potential.!

Also, in this language, the meaning of the swallowt
shape for the thermodynamic potentialF@Q,T# is now clear:
It is simply the actualvalueof the potentialV(r;b̂,q̂) at its
maxima and minima: the critical line is the place where the
two values at the minima are equal, the place whereV has
degenerate minima.

This functionV~r! is the A3 Landau-Ginzburg potential
The effective Landau-Ginzburg theory which we can wr
here is an effective theory of the uncharged microscopic
grees of freedom underlying the thermodynamics. Kine
terms to complete the Landau-Ginzburg model would ha
their origins in the holographically dual field theory. One c
in principle derive additional potential terms governing t
charged degrees of freedom as well, in order to model
stability structure uncovered in Sec. VI, but we will not d
that here.

In the language of catastrophe theory@18#, the termr4 is
the basic ‘‘germ’’ of the cusp catastrophe, andA andB are
the ‘‘unfolding parameters’’ which deform the potential, giv
ing a line of first order phase transition points along the l
(B50, A,0) where its mimima are degenerate. T
(A-D-E) classification of such potentials is isomorphic
that of certain geometrical singularities@35#. We cannot help
but wonder if this story marks the beginning of a richer ta
involving a more profound underlying geometrical structu
into which this physics is all embedded. As all of the phys

FIG. 16. The behavior of the Landau-GinzburgA3 potential at
various points in the (A,B) plane. This plane maps to the (Q,T)
plane of the charged black hole system. The line (A,0, B50)
maps to the critical coexistence line found in that system.
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of this paper is intimately connected to the physics of bran
perhaps the possibility of such a connection should be p
sued.
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