
J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

Published for SISSA by Springer

Received: October 9, 2014

Accepted: December 10, 2014

Published: December 30, 2014

Holomorphic blocks in three dimensions

Christopher Beem,a Tudor Dimofteb,c and Sara Pasquettid

aSimons Center for Geometry and Physics, Stony Brook University,

Stony Brook, NY 11794-3636, U.S.A.
bInstitute for Advanced Study,

Einstein Dr., Princeton, NJ 08540, U.S.A.
cTrinity College,

Cambridge CB2 1TQ, U.K.
dDepartment of Mathematics, University of Surrey,

Guildford, Surrey, GU2 7XH, U.K.

E-mail: cbeem@scgp.stonybrook.edu, tdd@ias.edu,

s.pasquetti@surrey.ac.uk

Abstract: We decompose sphere partition functions and indices of three-dimensional

N = 2 gauge theories into a sum of products involving a universal set of “holomorphic

blocks”. The blocks count BPS states and are in one-to-one correspondence with the

theory’s massive vacua. We also propose a new, effective technique for calculating the

holomorphic blocks, inspired by a reduction to supersymmetric quantum mechanics. The

blocks turn out to possess a wealth of surprising properties, such as a Stokes phenomenon

that integrates nicely with actions of three-dimensional mirror symmetry. The blocks also

have interesting dual interpretations. For theories arising from the compactification of the

six-dimensional (2, 0) theory on a three-manifold M , the blocks belong to a basis of wave-

functions in analytically continued Chern-Simons theory on M . For theories engineered on

branes in Calabi-Yau geometries, the blocks offer a non-perturbative perspective on open

topological string partition functions.

Keywords: Supersymmetric gauge theory, Supersymmetry and Duality, Topological Field

Theories

ArXiv ePrint: 1211.1986

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2014)177

mailto:cbeem@scgp.stonybrook.edu
mailto:tdd@ias.edu
mailto:s.pasquetti@surrey.ac.uk
http://arxiv.org/abs/1211.1986
http://dx.doi.org/10.1007/JHEP12(2014)177


J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

Contents

1 Introduction 1

2 A first look at holomorphic blocks 11

2.1 Cigar compactification 12

2.2 Vortices, conformal blocks, and BPS counting 17

2.3 Topological/anti-topological fusion in three dimensions 19

2.3.1 S-fusion 21

2.3.2 Identity fusion 22

2.4 Difference equations 24

2.5 Factorization for the free chiral 26

2.6 Uniqueness of the factorization 30

3 Blocks from quantum mechanics 31

3.1 Kaluza-Klein reduction 32

3.2 Vacua and boundary conditions at infinity 35

3.3 Boundary condition at the origin 37

3.4 Localization of the bulk path integral 38

4 Block integrals 39

4.1 Assembling Lagrangians and line-operator identities 41

4.2 Chern-Simons terms and theta functions 44

4.3 The integrand 47

4.3.1 Fusion commutes with integration 50

4.4 Examples 51

4.4.1 The free vortex 51

4.4.2 SQED and XYZ 54

4.4.3 The SU(2) appetizer 57

4.5 Defining contours 58

5 Case study: the CP1 sigma-model 64

5.1 Parameter spaces 65

5.2 Blocks 68

5.2.1 The q-Bessel function 72

5.3 Stokes jumps 73

5.3.1 Topological and anti-topological regimes 75

5.4 Mirror symmetry 77

5.5 Fusion 78

5.6 Equivariant K-theory, surface operators, and topological strings 80

– i –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

6 Blocks in Chern-Simons theory 81

6.1 Chern-Simons theory and analytic continuation 84

6.2 To six dimensions and back 87

6.2.1 Remarks on gluing 92

6.3 Examples 94

6.3.1 Asymptotics 97

6.4 Stabilization and specialization 101

A Three-dimensional supersymmetry and BPS indices 106

B Combinatorics of triangulated knot complements 108

1 Introduction

Recent years have seen a resurgence of interest in supersymmetric gauge theories in three

dimensions. In large part, new developments have stemmed from the introduction of tech-

niques for formulating such theories on curved manifolds such as spheres or products thereof

(S3 and S2×S1) while preserving some fraction of the original supersymmetry [1–4]. Cou-

pling to more general geometries is also possible [5, 6]. Rather than applying the more

familiar technique of topological twisting in order to realize the original flat-space su-

peralgebra in the curved-space theory, the supersymmetry algebras of these theories are

deformed to accommodate background curvature. The resulting partition functions can

be computed via supersymmetric localization in terms of finite-dimensional matrix inte-

grals. These three-dimensional calculations were inspired by similar techniques developed

for computing four-dimensional partition functions on S4 [7].

In this work we study N = 2 superconformal field theories in three dimensions and

their massive deformations. For every U(1) subgroup in the flavor symmetry group of an

N = 2 SCFT it is possible to turn on a real mass deformation, and we look specifically at

those theories for which such deformations alone are sufficient to render all vacua gapped.

We also require that the theories preserve a U(1)R R-symmetry. Examples include (the

infrared limits of) N = 2 SQED, SQCD, and more general gauge theories with perturbative

or non-perturbative superpotentials preserving U(1)R. The vacua of the mass-deformed

theories on R2×S1 will play a central role for us; typically there are finitely many such

vacua, indexed by α.

We consider these theories coupled to two compact, curved backgrounds: the ellipsoid

S3
b and the twisted product S2×qS

1, where the two-sphere is fibered over S1 with holonomy

log q. It has been shown in [1, 2] and [3, 8, 9], respectively, how the corresponding partition

functions Zb and I can be calculated from UV Lagrangian descriptions of the theories.

The ellipsoid partition function depends on real masses µ which are complexified by the

choice of R-charge assignments for fields in the path integral (as well as the real geometric

deformation parameter b), while I, a supersymmetric index, depends on fugacities ζ for
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U(1) flavor symmetries and the quantized flux m on S2 of background gauge fields coupled

to flavor symmetries (as well as the angular momentum fugacity q).

It turns out that neither the ellipsoid partition function nor the index is completely

fundamental. It was observed in [10] that the ellipsoid partition functions of certain N = 2

theories in the class described above can be expressed as sums of products,

Zb(µ, b) =
∑

α

B
α
(x; q)B

α
(x̃, q̃) =:

∣∣∣∣Bα
(x; q)

∣∣∣∣2
S
, (1.1)

where, roughly speaking, each “holomorphic block” B
α
(x; q) is the partition function on a

twisted product R2×qS
1, labelled by a choice of vacuum α for the massive theory at the

asymptotic boundary of spatial R2. Schematically, the holomorphic block is a “BPS index”,

B
α
(x; q) ∼ TrH(R2;α)(−1)Re−βHq−J+R

2 xe , (1.2)

with fugacity q for the angular momentum on R2 and fugacities x for flavor symmetries.1

In (1.1), the complexified masses µ that enter Zb are related to these fugacities according

to x = exp(2πbµ), x̃ = exp(2πb−1µ); while q = exp(2πib2) and q̃ = exp(2πib−2). A similar

sum-of-products expansion was predicted for supersymmetric sphere indices in [11],

I(m, ζ; q) =
∑

α

B
α
(x; q)B

α
(x̃, q̃) =:

∣∣∣∣Bα
(x; q)

∣∣∣∣2
id
, (1.3)

where the relations to fugacities and fluxes on S2 are x = q
m
2 ζ, x̃ = q

m
2 ζ−1, and q̃ = q−1.

In simple examples, it can be observed that the fundamental objects B
α
(x; q) appearing

in both factorizations are identical. The only difference in the two products is in the

operation used to relate (x; q) and (x̃; q̃) when pairing up blocks. A principle aim of

the present paper is to substantiate and elucidate the correspondence (1.1)–(1.3). We

conjecture that these factorizations, with identical holomorphic blocks, hold for any N = 2

theory of the type described above, i.e. any theory with sufficient flavor symmetry to

render all its vacua massive. Our approach leads us to a new method for computing the

holomorphic blocks B
α
(x; q) for any theory admitting a UV Lagrangian description, which

makes this conjecture eminently testable. We take the first steps towards understanding a

variety of surprising and remarkable properties of the blocks — properties which are largely

obscured by the simplicity of (1.1)–(1.3).

Even superficial consideration of these relations suggests that they will yield physically

significant insights. The supersymmetric index encodes the (index of the) spectrum of

BPS operators in a SCFT, whereas the BPS index counts BPS states in a vacuum of the

massive theory obtained by deforming away from the superconformal fixed point by relevant

operators.2 This is reminiscent of a similar correspondence for two-dimensional SCFTs [14],

and we will see that the connection to this work runs deeper than this basic similarity.

1Here (−1)R means exp(iπR), where R is generator of U(1)R. It is more familiar for indices to be written

with (−1)F rather than (−1)R, but both define a protected index and the two conventions are formally

related by q
1

2 → −q
1

2 . We will see that the latter is more appropriate for our purposes.
2Along this line, some interesting extensions of the ideas presented in this paper were explored recently

in [12, 13].
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Figure 1. Stretching S2×qS
1 and S3

b into a union of semi-infinite D2×qS
1 geometries.

Likewise, the ellipsoid partition function is known to encode important information about

the R-charge assignments for the fields of the theory at the conformal point [15], which

apparently can also be recovered from an understanding of the BPS states in massive

vacua of the deformed theory. Indeed, the use of supersymmetric localization to perform

renormalization-group-invariant computations in a weakly coupled ultraviolet theory has

been a general theme in work on ellipsoid and sphere index partition functions. Here, we

are in some sense observing the reverse; computations in a “trivial” infrared theory allow

us to recover interesting information about an interacting UV fixed point.

As an interesting corollary, our study of blocks for the three-manifold theories TM
of [16] produces the first concrete examples of non-perturbative path integrals in analyti-

cally continued Chern-Simons theory along “exotic” integration cycles. Namely, it follows

from the work of [17–20] that the corresponding blocks should compute the analytically

continued SU(2) Chern-Simons path integral defined on integration cycles labeled by irre-

ducible flat SL(2,C) connections Aα on M .3 This is a non-perturbative completion of per-

turbative partition functions in the background of a flat connection Aα [21], which plays a

significant role in the physical interpretation of the Volume Conjecture [22, 23]. Our results

can then be compared to other non-perturbative objects such as colored Jones polynomials.

We now spotlight some of the more interesting features of the holomorphic blocks that

are studied in this paper.

A stretch. In light of the relations (1.1)–(1.3), it is suggestive that both of the spaces

S3
b and S2×qS

1 admit Heegaard decompositions as the union of solid tori. In the case of

S3
b , the boundaries of the solid tori are identified using the S element of the mapping class

group SL(2,Z), together with a reversal of orientation. In the case of S2×qS
1 it suffices to

use the identity element id together with the same orientation reversal. This accounts for

our choice of notation in the norms-squared. Indeed, we even see that the relation between

3The extension to higher rank is also possible, but in this paper we assume that TM comes from wrapping

two M5 branes on a hyperbolic knot complement M .
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Figure 2. A holomorphic block.

q and q̃ in the two cases corresponds to treating q = e2πiτ as the modular parameter of the

boundary of one solid torus, and sending

τ → τ̃ = −S · τ =
1

τ
or τ → τ̃ = −id · τ = −τ . (1.4)

This is a little naive, because supersymmetric partition functions on finite-size solid tori

do not obviously correspond to the blocks B
α
(x, q). Nor do solid tori cut from the S3

b and

S2×qS
1 geometries have the same metric, and these constructions are not topological; so

the solid-torus partition functions coming from the two splittings should not necessarily

agree. Nevertheless, the picture is promising.

There is a deformation of the Heegaard splitting that precisely reproduces the factor-

ized forms of (1.1)–(1.3), with the correct relations between parameters (x, q) and (x̃, q̃). It

is a three-dimensional analogue of the topological/anti-topological fusion setup of Cecotti

and Vafa [14], and is also related to recent constructions of Nekrasov and Witten [24] (see

also [11, 25]). To describe it, we represent both S3
b and S2×qS

1 as T 2 fibrations over an

interval with cycles of T 2 degenerating smoothly at the ends of the interval, and stretch the

interval to infinite length (figure 1). Topologically, each half takes the form D2×qS
1, where

D2 is a semi-infinite cigar. The halves are glued together using the appropriate element

of the modular group. On each half, we impose a metric that preserves U(1) rotations of

D2 as an isometry and fibers D2 over the remaining circle with a U(1) holonomy q. The

theory can then be topologically twisted on each half. The resulting geometry, sometimes

called a “Melvin cigar” (cf. [26]), will be denoted here by D2×qS
1.

We define holomorphic blocks to be the partition function(s) of a theory on D2×qS
1.

On one hand, the topological twist allows us to deform the geometry to R2×q S
1 with-

out changing the partition function, which recovers a BPS index (1.2) that depends on a

vacuum α. On the other hand, we can interpret the partition function on D2×qS
1 as a

wavefunction 〈0q| in the Hilbert space H(T 2) defined in the flat asymptotic region T 2 ×R.

The infinite Euclidean time evolution in this region projects the wavefunction to the space

of exact supersymmetric ground states |α〉 on T 2, which are in one-to-one correspondence

with the vacua α. It follows that the blocks

B
α
(x; q) := 〈0q|α〉 (1.5)

are elements of a discrete and typically finite-dimensional vector space.

– 4 –
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Upon fusing two such semi-infinite geometries with an element g = S or g = id (say)

of the modular group, the partition function takes the form

Z = 〈0q|0q̃〉 =
∑

α

〈0q|α〉〈α|0q̃〉 ∼
∑

α

B
α
(x; q)B

α
(x̃; q̃) . (1.6)

The precise identification of parameters on the two halves, as well as the relation between

topological twists, depends on g. We will find after a more careful analysis of background

field configurations that fusion with the identity precisely reproduces the index identifi-

cations (1.3), while S-fusion reproduces the S3
b identifications (1.1). We will argue that

wavefunctions 〈0q|α〉 and 〈α|0q̃〉 on the two sides can be written, in an appropriate sense,

in terms of the same holomorphic objects B
α
(x; q).4

We have arrived at a stronger, geometric version of the factorization conjecture. The

ability to deform S3
b or S2×qS

1 into a union of two copies of the D2×qS
1 geometry while

leaving the partition functions invariant would imply factorization. The stronger conjecture

is that such “Q-exact” deformations do indeed exist. It is plausible that Q-exactness could

be established using methods of supersymmetric localization. Several Q-exact deformations

of three-spheres have already been found [2, 29], and they come close to reproducing the

stretched D2×qS
1 geometries (but no cigar). In two dimensions, an analogous deformation

leading to a topological/anti-topological fusion geometry was recently studied in [30].

In two and four dimensions, it is a direct consequence of localization that S2 partition

functions of theories with N = (2, 2) supersymmetry [31, 32] and S4 partition functions of

theories with N = 2 supersymmetry [7] factorize as a sum (integral) of vortex (instanton)

partition functions, respectively:

Z[S2] ∼
∑

vacua

∣∣Zvortex[R
2]
∣∣2 , Z[S4] ∼

∫

vacua

∣∣Zinst[R
4]
∣∣2 . (1.7)

Factorization of the three-dimensional index into holomorphic blocks (1.3) leads directly to

the two-dimensional factorization (1.7) of a dimensionally reduced theory in an appropriate

limit. As for the analogue in four dimensions, it was observed in [33] that five-dimensional

indices on S4 × S1 factorize in a way that naturally extends the known S4 factorization.

Block integrals. Our main computational tool is a new integral formula for the blocks,

applicable whenever a theory has a UV Lagrangian description as an N = 2 gauge theory.

Just like ellipsoid partition functions or indices, blocks are insensitive to renormalization

group flow. The formula is motivated by the reduction of the geometry D2×qS
1 to super-

symmetric quantum mechanics on a half-line.

We begin with the observation that the theory T∆ of a free chiral multiplet possesses

a single block given by

B∆(z; q) =

∞∑

n=0

z−n

(1− q−1) · · · (1− q−n)
. (1.8)

4Fusion with a general element g ∈ SL(2,Z) is expected to produce the partition function of an el-

lipsoidally deformed lens space. The details are not studied in this paper, but appear in subsequent

works [27, 28].
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where z is the complexified and exponentiated real mass of the chiral. We determine general

block integrals to take the schematic form

B
α
(x; q) ∼

∫

Γα

ds

s

[
θ(z; q) . . .

]
B∆(z1; q) · · ·B∆(zN ; q) . (1.9)

The integral is over a middle-dimensional cycle Γα ⊂ (C∗)r, where r is the rank of the gauge

group. The variables s ∈ (C∗)r are complexified scalars in the gauge multiplets, and each

chiral multiplet contributes a factor B∆(zi; q) to the integrand, where the effective mass

zi = zi(s, x) may depend on scalars s and non-dynamical real masses x. The W-bosons

in nonabelian gauge multiplets also contribute factors B∆(s; q) to the denominator. The

extra theta-functions θ(z; q) encode contributions of Chern-Simons and Fayet-Iliopoulos

(FI) terms.

This integral mimics the matrix-integral formulas for partition functions Zb and I that

were derived using localization [1–3], yet there is a crucial difference. The universal inte-

grand of (1.9) gives rise not just to a single partition function, but to many blocks B
α
(x; q).

The various blocks arise for different choices of integration contour, Γα. Each contour is

associated to a critical point of the integrand, which in turn is related to a supersymmetric

ground state on T 2 — just as one would expect from quantum mechanics [18, 34, 35].

Some technical subtleties arising from the nontrivial singularity structure of the functions

B∆(z; q) must be dealt with to make this statement more precise and useful.

The integrand of (1.9) — henceforth denoted Υ(x, s; q) — turns out to be a factorized

form of the matrix integrands for ellipsoid partition functions and indices. In fact, this is

another way to characterize it. In particular, it will turn out that

Zb =

∫

Rr

d(log s)
∣∣∣∣Υ(x, s; q)

∣∣∣∣2
S
, I =

∫

(S1)r

ds

2πis

∣∣∣∣Υ(x, s; q)
∣∣∣∣2
id
. (1.10)

Combined with the factorization conjecture, this has the rather beautiful consequence that

∑

α

∣∣∣∣
∣∣∣∣
∫

Γα

ds

s
Υ(x, s; q)

∣∣∣∣
∣∣∣∣
2

g

=
∣∣∣∣B(x; q)

∣∣∣∣2
g
=

∫

X [g]

ds

s

∣∣∣∣Υ(x, s; q)
∣∣∣∣2
g
, (1.11)

for g = S or g = id, with X [id] = Rr and X [S] = (S1)r, and with appropriately normalized

integration measures. This appears to be a sort of Riemann bilinear relation for the ellipsoid

and index partition functions. Physically, this amounts to the statement that fusion of

blocks commutes with gauging of symmetries. Fusion also commutes rather trivially with

other operations one can perform on SCFTs, such as adding background Chern-Simons

levels or superpotentials, which can be combined with the gauging of global symmetries to

generate interesting symplectic actions [11, 16, 36].

Closely related to blocks and block integrals are a set of q-difference equations satisfied

by the blocks of a given theory,

f̂i(x̂, p̂; q) ·Bα
(x; q) = 0 , (p̂x̂ = qx̂p̂) . (1.12)

These equations are a consequence of identities in the algebra of line operators acting at

the tip of D2×qS
1, as discussed in [11, 16, 25]. The identities can be systematically derived

– 6 –
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for theories with UV Lagrangian descriptions. The space of blocks can then be described

as the vector space of solutions to (1.12) that satisfy certain analytic requirements — for

example that they be meromorphic functions of q
1
2 and x, with no branch cuts. The block

integral for a theory can be constructed to generate these solutions, much as formal integrals

are often used to generate solutions to differential equations (cf. [37]) and path integrals

manifestly generate solutions to QFT Ward identities. The convergent cycles Γα are chosen

so that the integral solves (1.12), and a basis of cycles produces a basis of solutions.

When combining conjugate blocks to form the ellipsoid and index partition functions,

the number of line-operator identities effectively doubles,

f̂i(x̂, p̂; q) · Z = f̂i(ˆ̃x, ˆ̃p; q̃) · Z = 0 . (1.13)

This is due to of the presence supersymmetric line operators acting at both ends of a

stretched geometry (cf. [24]). The requirement that the two sets of operators (x̂, p̂) and

(ˆ̃x, ˆ̃p) commute with each other puts an interesting constraint on the classical relation

between (x, q) and (x̃, q̃) in a glued geometry, which is indeed satisfied for S3
b and S2×qS

1.

Conversely, the observed fact that these partition functions satisfy (1.13) for commuting

sets of operators strongly suggests that they must factorize as in (1.1)–(1.3). This was the

primary motivation behind the prediction of factorization for the index in [11].

Connections to other topics. Holomorphic blocks and their fused counterparts have

many relations to other constructions in quantum field theory and string theory. We

highlight three of them here.

First, as was already pointed out, there is a striking similarity between the gluing of

blocks and topological/anti-topological (tt∗) fusion [14]. Indeed, the gluing of blocks might

be considered a three-dimensional lift of the tt∗ setup. The latter construction considers

massive N = (2, 2) theories in two dimensions on a topological two-sphere that has been

stretched out into a pair of cigars, S2 ≃ D2 ∪ D2, with (anti-)chiral operators inserted

at the north (south) poles. The resulting partition functions obey a set of differential

equations — which determine the partition functions almost completely — and exhibit

properties of special geometry [38]. The difference equations (1.12) may be thought of as

three-dimensional lifts of (part of) the tt∗ differential equations. The full three-dimensional

story is in some sense richer than in two dimensions, in part because the block geometry

can be glued in a variety of topologically distinct ways. We only scratch the surface of the

relation between our analysis and the tt∗ equations, and there are some notable differences,

e.g., the analogous blocks in two dimensions are not generally holomorphic. We expect

further investigation of these connections to be fruitful.

Another deep connection — one which we do not explore extensively in this work —

is to topological string theory. This was pointed out in the original work of [10]. Indeed,

for a choice of three-dimensional theory that can be engineered in M-theory by wrapping

M5 branes on a Lagrangian submanifold of a non-compact Calabi-Yau three-fold, the open

A-model partition function in that background is known to compute the BPS index of the

theory [39–42]. Consequently, for theories that arise in such a fashion, we expect

B
α
(x; q) ∼ Ztop

open(Y ;L) . (1.14)

– 7 –
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The choice of ground state, or vacuum, is usually called a choice of “phase” for the brane

in the topological string literature. In cases where Ztop
open can be computed, such as for

toric branes in local, toric Calabi-Yau threefolds, the relationship can be verified modulo

prefactors related to background Chern-Simons couplings (i.e. Chern-Simons couplings for

flavor symmetries), which are crucial in correctly computing Zb, I, and Bα
.5 Indeed, many

of the features of blocks that we encounter here have made an appearance previously in

the context of topological string partition functions. For instance, the contour integrals we

prescribe for computing holomorphic blocks can be interpreted as non-perturbative com-

pletions of the contour integrals that appeared as generalized Fourier transforms of brane

wave functions in [45] (see also [46, 47]). Furthermore, the line-operator identities that

annihilate holomorphic blocks generalize the “quantum Riemann surface” which appears

in the topological B-model on certain geometries [48]. Additionally, a kind of factorization

in terms of these open topological string amplitudes has appeared in the context of the

open OSV conjecture [49, 50].

In approaching the problem of blocks from the point of view of gauge theory, we are led

to a slightly different perspective on these objects than was natural in the topological string

setup. In particular, it is important for the blocks in this paper to be described as holomor-

phic functions of their parameters in order to make the connection with ellipsoid and index

partition functions. Furthermore, the requirement of invariance under large gauge trans-

formations leads to certain differences in the treatment of Chern-Simons terms, including

background couplings. It would be extremely interesting to more thoroughly investigate

whether these modifications can find a natural interpretation in topological string theory.

Finally, when the theory in question is a three-manifold theory TM [16, 20], the blocks

correspond to certain non-perturbative path integrals Zα
CS(M) in analytically continued

Chern-Simons theory on M . In particular, when the theory arises on a stack of K M5

branes, we expect analytically continued SU(K) Chern-Simons theory. The relation is

easiest to understand using the six-dimensional constructions of [19], which identify inde-

pendent integration cycles in analytically continued Chern-Simons theory, labelled by a flat

SL(K,C) connection Aα onM , with BPS indices of the form (1.2). The Chern-Simons cou-

pling k (complexified and renormalized) is encoded in the twist parameter q = exp
(
2πi
k

)
,

while boundary conditions for flat connections on the manifoldM become flavor fugacities.

For example, ifM is a knot complement, the eigenvalues of the monodromy of a connection

Aα at the excised knot are complexified masses.

We can test the correspondence B
α
TM

∼ Zα
CS(M) perturbatively by verifying that the

“classical” asymptotics

B
α
TM

(x; q)
q→1∼ exp

[
1

log q
V(M ;x;α) + . . .

]
, (1.15)

correctly reproduce the complex volume of a corresponding flat SL(K,C) connection Aα

on M . In fact, just as in [11, 16, 20, 25], we can argue that this must be the case up to a

normalization factor because the identities (1.12) for TM are equivalent to the “quantum A-

5For a recent analysis of background Chern-Simons couplings in curved superspace, see [43, 44].
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polynomial” equations in Chern-Simons theory [21, 51, 52]. Both sets of equations almost

completely fix the asymptotic expansion (1.15) [53].

Non-perturbatively, we should compare blocks of a knot-complement theory with col-

ored HOMFLY polynomials J of the knot itself, which are expected to take the form [17]

J ∼
∑

α

nαZα
CS , (1.16)

for appropriate coefficients nα. Unfortunately, we face an important caveat: the theories

defined in [16] for K=2 only probe irreducible SL(2,C) connections on M . This is a con-

sistent truncation in analytically continued Chern-Simons theory, but it means that the

blocks computed in gauge theory will never correspond to all terms in the sum (1.16), as

they miss reducible flat connections. To circumvent this problem, we take a special limit of

knot polynomials, first observed to exist in [54, 55] and later termed “stabilization” [56, 57],

which seems to project out reducible connections. After taking this limit we find a match

in all examples studied.

We should remark that the purpose of relating Chern-Simons path integrals to BPS

indices in [19] — and also in the earlier and very similar approach of [58] — was to provide

a physical categorification of knot and three-manifold invariants. Categorification amounts

(in part) to replacing an index such as (1.2) with a full Hilbert space of states H(R2;α)

upon which a conserved supercharge acts. In the context of holomorphic blocks, such

categorification is likely to lead to new knot homologies — associated not just to a knot,

but to a choice of flat connection in its complement. This is a very interesting subject for

future study, and we hope that it will eventually connect to recent work of [59–61].

A jump. The last major aspect of our work concerns the behavior of D2×qS
1 partition

functions globally in parameter space. Typically, we will fix q and vary the masses x,

whereupon we find that holomorphic blocks are subject to Stokes phenomena. That is, the

blocks B
α
(x; q) associated to vacua α in one chamber of parameter space may be related

to blocks in a different chamber by a linear transformation,

B
α −→

∑

β

Mα
βB

β , Mα
β ∈ GL(N,Z) . (1.17)

Such behavior is not too surprising. In the description of blocks (1.5) as coming from long

cigars, the map between vacua α and supersymmetric ground states |α〉 can change as

parameters are varied. While ground states generically do not mix in a theory with four

supercharges, on special loci in parameter space instanton configurations may connect two

ground states and lead to a jump such as (1.17). Alternatively, this can be described in

terms of brane nucleation [35]. A similar Stokes phenomenon plays a central role in ana-

lytically continued Chern-Simons theory [17]. When blocks arise from a finite-dimensional

block integral such as (1.9), jumps can be analyzed explicitly using Lefschetz theory for

cycles associated to critical points.

The fact that blocks transform as (1.17) when passing from one chamber to another

raises an interesting puzzle. The curved-space partition functions of a theory such as Zb
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and I should not depend on any choice of chamber; yet expressions (1.1)–(1.3) do not look

invariant under B
α → (MB)

α
. The resolution of the puzzle involves two observations.

First, we find that blocks B
α
(x; q) can be expressed as q-hypergeometric series that

converge both for |q| < 1 and |q| > 1, but to two different functions in the two regimes.

For example, the free chiral block (1.8) takes two different forms

B∆(z; q) =

{∏∞
n=1(1− qnz−1) |q| < 1

∏∞
n=0(1− q−nz−1)−1 |q| > 1 ,

(1.18)

with no analytic continuation across the unit circle. Physically, this arises from a sub-

tlety in our definition of blocks: we use a topologically twisted geometry for |q| > 1 and

an anti-topologically twisted geometry for |q| < 1. The effect is roughly that bosonic

modes contribute in one regime and fermionic modes in the other, switching products from

numerator to denominator in expressions such as (1.18).

In addition, due to the reflection used in any fusion of D2×qS
1 geometries, the twist

parameters for the two sides always live on opposite sides of the unit circle. That is,

|q̃| > 1 whenever |q| < 1, and vice versa. This is just as we want it for 3d topological/anti-

topological fusion. It turns out for the cases that we study that blocks on the two sides of

the unit circle have complementary transformations at Stokes walls, e.g.

B(x; q) → MB(x; q) , B(x̃; q̃) → M−1TB(x̃; q̃) , (1.19)

so that products
∣∣∣∣B(x; q)

∣∣∣∣2
g
remain invariant. Nevertheless, in every chamber, the blocks

at |q| < 1 and |q| > 1 agree, in the sense of sharing convergent q-hypergeometric series

expansions.

We conjecture that this is the case in general. While the presence of conjugate Stokes

matrices can be argued directly from the form of block integrals, the statement about

sharing series expansions in every chamber is highly nontrivial, and implies very special

mathematical properties for the blocks themselves. We will check such behavior in detail for

the simplest nontrivial example, the three-dimensional analogue of the CP1 sigma-model,

and discover identities for q-Bessel functions that govern the transformations of its blocks.

It is interesting to note that, unlike the index, the physical ellipsoid partition function

Zb should be defined for b2 on the positive real axis, implying that q = e2πib
2
and q̃ = e2πi/b

2

are on the unit circle itself. Ellipsoid partition functions appear to have the remarkable

property that they can be analytically continued to the cut plane b2 ∈ C\R≤0, and on

both the upper and lower half-planes agree with the same product of blocks
∣∣∣∣B(x; q)

∣∣∣∣2
S
.

Conversely, we find in examples that products B
α
(x; q)B

α
(x̃; q̃) for any fixed α, with (x, q)

and (x̃, q̃) identified by the S transformation, can be analytically continued in b2 across

the positive real axis, defining a single function on C\R≤0. This surprising property has

already been observed for the free-chiral block (1.18), in which case the S-fusion product

is a non-compact quantum dilogarithm [62, 63], cf. [53, section 3.3].

The organization of this paper is as follows. In section 2, we provide a more care-

ful definition of holomorphic blocks and revisit the geometry of fused D2×qS
1 partition

functions, aiming to understand the parameters in the products (1.1)–(1.3). In section 3,
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we compactify D2×qS
1 to a half-line, and describe aspects of the resulting supersymmet-

ric quantum mechanics. In section 4, we combine results from quantum mechanics with

an understanding of line-operator identities to define block integrals (1.9), and demon-

strate how to these integrals can be evaluated in simple examples. This is followed in

section 5 by an in-depth study of blocks, Stokes phenomena, and mirror symmetry in the

three-dimensional CP1 sigma model. In section 6, we review the connection to analytically

continued Chern-Simons gauge theory in the case of a three-manifold theory TM .

2 A first look at holomorphic blocks

The theories under consideration are three-dimensional superconformal field theories with

N = 2 supersymmetry and a conserved U(1)R R-symmetry. However, we will typically

work with ultraviolet N = 2 gauge theories that have Lagrangian descriptions and flow to

the desired SCFTs in the infrared. The observables we are interested in will be invariant

under the flow. Let us therefore review the ingredients that enter into the Lagrangian of

such a gauge theory. (For a more complete discussion, see [64].)

We consider theories whose Lagrangians are written in terms of a set of r gauge multi-

plets {Va}, and chiral matter multiplets {ΦI}, which are the dimensional reductions of the

usual N = 1 vector and chiral multiplets in four dimensions. We assume for the moment

that gauge symmetry is abelian. In three dimensions, the vector multiplet can be reor-

ganized into a linear multiplet Σa = ǫαβDαDβVa, in terms of which the canonical kinetic

Lagrangian takes the following simple form,

Lkinetic =

∫
d4θ

(
r∑

a=1

1

e2a
Σ2
a +

∑

I

Φ†
I exp

(∑

a

Qa
IVa

)
ΦI

)
. (2.1)

In addition, one may include as an F-term a holomorphic, gauge-invariant superpotential

LF-term =

∫
d2θ W (Φ) + h.c. (2.2)

We assume that the superpotential preserves an R-symmetry U(1)R.

The terms introduced so far will preserve some global symmetries. These include

symmetries that act manifestly upon the fields in the Lagrangian, as well as “topological”

U(1) symmetries that act as shifts of the dual photons for any abelian gauge multiplets.

Consider a maximal abelian subgroup
∏N

i=1U(1)i of the full flavor symmetry group. We

can then introduce N non-dynamical background fields A
(i)
µ that couple to the conserved

U(1)i currents, which can be further promoted to background vector superfields V̂i, with

corresponding linear multiplets Σ̂i. Setting the real scalar components of Σ̂i to non-zero

values m3d
i turns on real mass deformations of the theory. Such a deformation for an

ordinary flavor symmetry appears in the kinetic terms of the Lagrangian as

Lkinetic =

∫
d4θ

(
Φ†em

3dθθ̄Φ
)
, (2.3)
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which, in terms of component fields, leads to mass terms (m3d)2|Φ|2+im3dǫαβψ̄αψβ . When

real mass terms are turned on for topological U(1) symmetries, they appear as Fayet-

Iliopoulos (FI) terms for the corresponding dynamical gauge field. In this paper, we collec-

tively denote all real mass parameters asm3d
i , whether they correspond to masses for chirals

or to FI terms. In the infrared, they are all on the same footing. We can similarly introduce

a non-dynamical background gauge field AR for the R-symmetry, part of a different super-

multiplet; it plays a special role in supersymmetric compactifications on curved spaces.

In three-dimensions one can also include gauge-invariant Chern-Simons interactions.

The most general abelian interaction takes the form

LCS =

∫
d4θ

(
1

2
kabΣaVb + kiaΣ̂aVi +

1

2
kijΣ̂iV̂j

)
. (2.4)

The first term is a Chern-Simons interaction for the dynamical abelian gauge fields, while

the middle term encodes Fayet-Iliopoulos terms for the dynamical gauge fields, and the last

term describes purely background Chern-Simons terms (which are related to the choice of

contact terms for conserved current multiplets — see [43, 44]). Gauge invariance will

sometimes require the inclusion of fractional Chern-Simons terms, the so-called “parity

anomaly” of three-dimensional gauge theories. This is due to the fact that integrating out

charged fermions can shift the effective Chern-Simons matrix according to

(kij)eff = kij +
1

2

∑

fermions

(qf )i(qf )j sign(mf ) . (2.5)

The resulting Chern-Simons levels must be integers. It will be important to keep close

track of all types of Chern-Simons interactions in order to correctly compute holomorphic

blocks for a gauge theory.

Finally, we require theories to have enough flavor symmetry so that real mass defor-

mations completely lift all flat directions in the moduli space (e.g. all Higgs and Coulomb

branches), rendering the theories massive. More importantly, we demand that after reduc-

tion to two dimensions on a circle, the theories at generic values of mass parameters have

only discrete, massive vacua. This will be made explicit in section 3.2.

2.1 Cigar compactification

The observable of interest for these gauge theories is the partition function on D2×qS
1.

Topologically, this geometry is a (noncompact) solid torus with local coordinates (r, ϕ, θ),

where r ∈ [0,∞) and ϕ, θ are both periodic with period 2π. The metric is given by

ds2 = dr2 + f(r)2(dϕ+ εβdθ)2 + β2dθ2 , (2.6)

where f(r) ∼ r near r = 0 and f(r) → ρ as r → ∞ (for example, one may take

f(r) = ρ tanh(r/ρ)). The cigar parameterized by (r, ϕ) has asymptotic radius ρ and

is fibered over the θ-circle so that the cigar rotates by an angle 2πβε, or alternatively,

so that the holomorphic variable z = reiϕ is identified around the θ circle according to

(z, 0) ∼ (q−1z, 2π), where

q = e2πiεβ = e~ . (2.7)
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This metric admits no covariantly constant spinors, so in order to preserve supersym-

metry we twist the theory. For a generic curved three-manifold, one would need at least

N = 4 supersymmetry in three dimensions to define conserved, twisted supercharges. How-

ever because the curvature of (2.6) is valued in U(1)E (rotations of the tangent space to the

cigar fiber), a twisted superalgebra exists for a theory with only N = 2 supersymmetry in

three dimensions as long as the theory possesses a U(1) R-symmetry. There are two choices

for how to twist the theory, one “topological” and one “anti-topological”. These different

choices preserve twisted scalar supercharges (Q−, Q+) or (Q+, Q−), respectively, where ±
denotes the charge of the operator under U(1)E (see appendix A for our conventions).

From the perspective of the cigar, this is an A-type twist, cf. [14, 65].

In order to implement these partial twists, we introduce a non-trivial profile for some

of the non-dynamical background vector fields described above. In particular, for the

background field coupling to the R-symmetry of the theory we impose

AR
µ = AR

0µ ± 1

2
ωµ , (2.8)

where on the right hand side, ωµ represents the U(1)-valued spin connection for the met-

ric (2.6) (its nonvanishing components describe rotations in the tangent bundle to the

cigar D2), and AR
0 is a flat connection with holonomy exp(i

∮
AR) = eπi around the non-

contractible cycle S1
β . The plus sign in (2.8) corresponds to the topological twist, and the

minus sign to anti-topological. Note that theories constructed in the UV have no canonical

choice of R-symmetry in the presence of conserved abelian flavor symmetries. We will

usually take the R-symmetry to be such that all fields have integer charges.6

Along with the R-symmetry, we are free to couple any conserved flavor current to a

line bundle with connection of the form

Aflavor = A0 + κω , (2.9)

where A0 is flat (dA0 = 0) and κ is any real number. The flat connection A0 is characterized

by its holonomy around the non-contractible cycle S1
β , which we define to be e2πiϑ, while

its holonomy about the contractible cycle is always trivial:

1

2π

∮

S1
β

A0 =: ϑ ,

∮

S1
ρ

A0 = 0 . (2.10)

It will be useful to record some of the holonomies of the spin connection in this geom-

etry. Since D2×qS
1 is not flat, it matters where the holonomies are measured, the most

relevant points being at the tip (r = 0) and in the flat, asymptotic region (r → ∞). We find

1

2π

∮

S1
β |r=0

ω = −βε ,
∮

S1
β |r→∞

ω = 0 ,
1

2π

∮

S1
ρ

ω = 1 . (2.11)

where S1
ρ always refers to the cigar circle in the asymptotic region. Therefore, the

holonomies of any connection of the form (2.9), which mixes a flat connection A0 with

6This is natural, for example, when the theory in question is viewed as a boundary condition for a four-

dimensional N = 2 theory, in which case U(1)d=3
R is embedded into SU(2)d=4

R , cf. [11]. This perspective will

play a role in our understanding of line-operator identities for holomorphic blocks.
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Figure 3. Holonomies i
∮
A for any connection of the form A = A0 + κω around various cycles in

the D2×qS
1 geometry.

a multiple of ω, will take the values shown in figure 3. In particular, in the case of the

connection AR, figure 3 applies with ϑ = κ = ±1/2. As long as all fields in our theory

have integral flavor and R-charge assignments, all holonomies i
∮
Aflavor and i

∮
AR are

invariantly defined modulo 2πi.

Because the geometry is non-compact, the above choices of parameters must be sup-

plemented by a choice of asymptotic boundary conditions at r → ∞. We can describe this

choice of boundary conditions in two superficially different but equivalent ways. At fixed

ρ, the geometry is macroscopically one-dimensional; the whole construction appears as a

half-line. Consequently, an appropriate asymptotic boundary condition is to fix the fields

to sit in a vacuum of the effective one-dimensional quantum mechanics that results from

reduction on an appropriate two-torus. Alternatively, because of the partial twist, the cigar

partition function is invariant under changes of the asymptotic radius ρ. Thus, we can take

the limit ρ→ ∞, in which case the geometry becomes approximately R2×qS
1, and an appro-

priate boundary condition is given by a choice of vacuum of the resulting two-dimensional

theory. These two descriptions of the boundary conditions are in fact equivalent [24].

At large ρ, it is natural to describe the resulting partition function as a BPS index,

which counts states on the cigar (or, roughly, on R2, which is the large ρ limit of the cigar

geometry) that are annihilated by the two supercharges preserved in the compactification.

We see from holonomies of the various background fields at the origin of the cigar that the

partition function on D2×qS
1 can schematically be written as

TrH(D;α)(−1)Re−2πβHq−J∓R
2 exp

(
ie

∮

S1
β |r=0

Aflavor

)
, (2.12)

where J is the generator of U(1)E , R is the generator of the U(1) R-symmetry, and e =

(e1, . . . , eN ) are the generators (charges) of the abelian flavor symmetries with connections

Aflavor = (A1, . . . , AN ). We have indicated the dependence on the vacuum in which the

index is evaluated with the label α. The choice of sign in q∓R/2 matches that in (2.8), and

corresponds to topological versus anti-topological twisting.

A more familiar expression for this trace would involve (−1)F rather than (−1)R. Here,

the difference arises from implementing anti-periodic boundary conditions on fermions via

a Wilson line for the R-symmetry. For the purposes of computing a protected index, both

R and F are equally good “fermion numbers” (the action of all supercharges shifts them by
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±1). Indeed, we can change a (−1)R index to a (−1)F index simply by replacing q
1
2 ↔ −q 1

2 ,

so the two indices contain identical information.

A more substantial issue is that the Hamiltonian appearing in the above trace is

not Q-exact for any supercharge. This is easy to fix, and in the process we learn which

variables the index depends on holomorphically. We note that the supersymmetry algebra

with Q = Q∓ is {Q,Q†} = 2(H ∓ Z) =: 1
πH±, where Z is the real central charge (see

appendix A). In the present setting, the central charge of a state with flavor charge e is

given simply by Z = e ·m3d, with m3d = (m3d
1 , . . . ,m

3d
N ) being the real mass deformations

associated to the flavor symmetries. Therefore, we can write

e−2πβH exp

(
ie

∮

S1
β |r=0

Aflavor

)
= e−βH+x−e

+ = e−βH−xe− , (2.13)

where we have introduced the complexified fugacities

x± = exp(X±) = exp

(
2πβm3d ∓ i

∮

S1
β |r=0

Aflavor

)
= exp

(
2πβm3d ∓ (2πiϑ− κ~)

)
. (2.14)

The logarithmic variablesX± can be thought of as two-dimensional twisted masses, rescaled

to be dimensionless. They are naturally periodic. Using this substitution, we can interpret

the partition functions on D2×qS
1 as indices, with Q-exact Hamiltonians:

Zα
BPS(x+; q) = TrH(D;α)(−1)Re−βH+q−J−R

2 x −e
+ (topological) ,

Zα

BPS
(x−; q) = TrH(D;α)(−1)Re−βH−q−J+R

2 xe− (anti-topological) .
(2.15)

The topological index counts BPS multiplets (those for which H+ = 0), while the anti-

topological index counts anti-BPS multiplets (those for which H− = 0). Such indices have

been studied extensively in the context of of open topological string amplitudes [39–42]

(cf., section 2.2).

So far we have been intentionally ambiguous about the choice of topological versus anti-

topological twist on D2×qS
1. In defining the holomorphic blocks of a theory, we actually

use both. In order for the traces (2.15) to converge and define functions of x± and q, it

is necessary to analytically continue q = e2πiβε either slightly inside or slightly outside the

unit circle. We would certainly like the blocks to make sense as functions. We then define

B
α
(x; q) ≃

{
Zα

BPS
(x; q) |q| < 1

Zα
BPS(x; q) |q| > 1 .

(2.16)

In each regime, the dependence on x and q is meromorphic. This definition provides

a unification of the topological and anti-topological sectors. Physically, it is clear that

the indices (2.15) are closely related: in a CPT-invariant theory, every BPS multiplet

contributing to Zα
BPS has an anti-BPS partner contributing to Zα

BPS
. Mathematically, we

will see in examples (and postulate in general) that each block B
α
(x; q) can be written

as a single q-hypergeometric series that converges both for |q| < 1 and |q| > 1, but with

no analytic continuation across the unit circle. The inclusion of both sectors in blocks will

also be natural in three-dimensional topological/anti-topological fusion.
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ρ

β

βερ

Figure 4. The asymptotic torus of D2×qS
1.

Now let us say a few words about the finite-ρ description of the geometry. It turns

out to be the most relevant description for computing the holomorphic blocks of nontrivial

theories, as well as understanding their deeper properties. At finite ρ, the problem is

one of supersymmetric quantum mechanics on the half line R+ obtained by Kaluza-Klein

reduction on the asymptotic two-torus of the cigar geometry. The boundary condition at

the tip of the cigar defines a state 〈0q| that is annihilated by two supercharges (Q−, Q+)

or (Q+, Q−). The asymptotic boundary condition is not exactly given by a state in the

quantum mechanics, but there is a unique state associated to it, defined by propagating

inwards from infinity to a finite value of the radial coordinate [18]. Denoting this state as

|α〉, the block is simply an overlap in the space of supersymmetric ground states of the

effective quantum mechanics, B
α ∼ 〈0q|α〉. More precisely, in order to match (2.16), we set

B
α
(x; q) =

{
〈0q|α〉anti-top |q| < 1

〈α|0q〉top |q| > 1 ,
(2.17)

using the anti-topological 〈0q| when |q| < 1 and the conjugated topological state |0q〉 when
|q| > 1. Both partition functions have a (local) holomorphic dependence on complexified

masses x.

Note that the states |α〉 are supersymmetric ground states of the theory on T 2. The

presence of holonomies for background gauge fields modify the Hilbert space in which

these ground states live, so it is important to keep track of the background fields in the

asymptotic geometry. The asymptotic part of D2×qS
1 is a product space R × T 2, where

the torus T 2 has a flat metric with complex structure parameter τ = εβ + iβρ−1. The

holonomies of the gauge fields around the two cycles of this torus are given by

1

2π

∮

S1
β |r→∞

Aflavor = ϑ ,
1

2π

∮

S1
ρ

Aflavor = κ . (2.18)

The holomorphic blocks are independent of ρ and depend on the dimensionless quantities

q = exp(2πiβε) = exp(2πiRe τ) and x = expX = exp
(
2πβm3d+2πiϑ+κ~

)
defined above.

At first glance, the fact that q depends only on Re(τ) (though the blocks depend on q

holomorphically) may seem peculiar. When we analytically continue in q, we will only be

analytically continuing in the real part of τ . Notably, such a dependence is familiar in the

geometric-Langlands twist of N = 4 super-Yang-Mills theory in four dimensions [66]. In

that setting, there is a modular complex coupling τ of the N = 4 Lagrangian, and an affine

parameter t (which is actually CP1-valued) that parametrizes the combination of scalar
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supercharges that is promoted to a BRST operator. Topological field theory observables

depend only on the combination

ΨGL = Re(τ) + i Im(τ)
t− t−1

t+ t−1
, (2.19)

called the “canonical parameter”. When t = ±1, the resulting canonical parameter is just

equal to Re(τ). We will have more to say about the relation of the present situation to

Langlands-twisted SYM in section 6 — we mention it here only to point out that such a

dependence on Re(τ) may not be all that surprising.

2.2 Vortices, conformal blocks, and BPS counting

BPS indices of the form (2.15) have been encountered frequently in the context of topo-

logical string theory as well as in vortex counting. This provides several closely related

interpretations of the blocks, which are useful conceptually and sometimes computationally.

Let us first consider the relation to vortex counting. For a gauge theory, we separate the

mass parameters into those associated with topological U(1) symmetries (FI parameters)

and those associated with ordinary global symmetries that rotate matter fields. We can

then place the theory in a background R2×qS
1 — the large-ρ limit of D2×qS

1 — and send

β (the radius of S1) to zero in such a way that complexified masses (2.14) associated to

global symmetries are scaled as

x = exp(βm2d) (2.20)

with m2d fixed, while complexified FI parameters xFI are kept constant.7 Then the the-

ory reduces to a two-dimensional N = (2, 2) gauge theory on R2 with an Ω-deformation

(with parameter ε), and the holomorphic blocks reduce to equivariant vortex partition

functions [20, 67],

B
α
(x; q)

β→0−→ Zα
vortex(xFI; ε) . (2.21)

The field content of the 2d theory is the dimensional reduction of the three-dimensional

theory, with all Kaluza-Klein modes discarded. The FI parameters xFI couple to vortex

number. The choice of vacuum α descends to a choice of vacuum at the boundary of R2.

At finite β, the partition functions on R2×qS
1 can be interpreted as a K-theoretic lift

of vortex partition functions. This is analogous to the relation between five-dimensional

BPS counting and equivariant instanton counting in four-dimensional N = 2 theories [68].

This suggests that for ~ = 2πiβε small (but β fixed), holomorphic blocks should have a

perturbative expansion

B
α
(x; q) ∼ exp

(
1

~
W̃ (x, sα; ~)

)
, (2.22)

where W̃ is an effective twisted superpotential for the effectively two-dimensional theory

on R2×qS
1, including all Kaluza-Klein modes, in the presence of an Ω-deformation. Such

objects were considered in [25, 69, 70]. The twisted superpotential depends on the val-

ues sα of twisted chiral multiplets in a supersymmetric vacuum, a solution (roughly) to

7It may also be necessary to scale the FI parameters as xFI → βcxFI for some c in order to obtain a

nontrivial β → 0 limit, but this is a very different scaling from (2.20).
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exp
(
s ∂
∂sW̃ (x, s; ~)

)
= 1. We will return to this equation in section 3. In the strict ε → 0

limit, the superpotential W̃ (x, s; ~ = 0) becomes the undeformed twisted superpotential.

Rather amusingly, the connection to vortices provides a relation between holomor-

phic blocks and conformal blocks in two-dimensional non-supersymmetric CFT. In the

extension of the AGT correspondence [71] to include half-BPS surface operators, vortex

partition functions for the two-dimensional theory on the surface operator are degenerate

conformal blocks in Liouville or Toda CFT on an associated Riemann surface [20, 72, 73].

The degenerate conformal blocks are labelled by a discrete choice of operator in the

exchange channels denoted by α. Then if the same surface operator theory also arose

as the reduction of a three-dimensional gauge theory, (2.21) shows that the holomorphic

blocks reduce to conformal blocks.

In a related direction, it is well known that five-dimensional BPS indices and four-

dimensional instanton partition functions are closely connected to closed topological string

amplitudes [39, 40]. Similarly, as was mentioned in the Introduction, three-dimensional

BPS indices of the form (2.15) and two-dimensional vortex partition functions are related to

open topological string amplitudes [41]. In particular, for theories that can be engineered on

M5 branes wrapping a Lagrangian submanifold L in a non-compact Calabi-Yau Y , the BPS

index of the gauge theory counts the number of BPS M2 branes that can end on the M5-

branes. Furthermore, this index can be computed by evaluating the open topological string

partition function for that geometry Ztop
open. The string coupling is encoded in q = e−gs , and

both open- and closed-string moduli appear as flavor fugacities x. The choice of vacuum

is then related to a choice of brane placement.

The topological string partition function can be computed by summing up corrections

to the effective action of a two-dimensional N = (2, 2) theory on R2 in the presence of a

graviphoton background [41], leading to an expression of the form

B
α
(x; q) ∼ Ztop

open ∼ exp


∑

J,R,e

∞∑

m=1

(−1)2Jqm(−J−R
2
+ 1

2
)x−meN e

J,R

m
(
q

m
2 − q−

m
2

)


 (2.23)

=
∏

J,R,e

∞∏

n=0

(
1− q−J−R

2
−nx−e

)(−1)2J+1Ne
J,R . (2.24)

Here N e
J,R is the number of BPS M2 branes with given spin, R-charge, and flavor charge.

This result has a simple heuristic interpretation in the gauge theory. In three dimensions

the central charge of the N = 2 superalgebra is real, so any collection of BPS excitations

can potentially form a bound state at threshold. Then the topological string amplitude is

counting the single-particle BPS states at a point in moduli space where these bound states

can be organized into a Fock space generated by oscillators for the angular momentum

modes of quantum fields corresponding to elementary BPS particles [42, 74]. The integers

N e
J,R describe the number of such quantum fields with given charges, and the angular

momentum modes lead to the product over n.

There is an important distinction, at least philosophically, to be made between holo-

morphic blocks and topological string amplitudes. Namely, our definition of holomorphic

blocks as supersymmetric gauge theory partition functions on D2×qS
1 suggests that they
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are locally holomorphic functions of their parameters. Topological string amplitudes, on

the other hand, are subject to the holomorphic anomaly, and when they are expanded

around appropriate large volume points in moduli space they are not necessarily related

by analytic continuation. The BPS counting interpretation of holomorphic blocks should

then only hold in an appropriate region of parameter space, if ever. We will see an explicit

example of this in the context of the free chiral theory of section 2.5.

2.3 Topological/anti-topological fusion in three dimensions

Our motivation for studying D2×qS
1 partition functions is the conjecture that they form

the building blocks for the ellipsoid partition function and supersymmetric index. Let us

consider how this comes about.

Two copies of D2×qS
1 can be combined naturally to give a three-dimensional analogue

of the topological/anti-topological fusion geometry for two dimensional theories with N =

(2, 2) supersymmetry [14]. That is to say, they can be “fused” as long as the Hilbert

spaces defined on their asymptotic boundaries are identical (or more precisely, dual). As

in the two-dimensional case, the resulting fused construction does not appear to admit any

globally preserved supercharges that annihilate the partition function.8 Nonetheless, the

presence of an infinitely long flat region along which any state must propagate leads to a

projection onto the reduced Hilbert space H0(T
2) of supersymmetric ground states of the

theory, and consequently the resulting partition function will be quasi-topological, i.e., it

will be invariant under all but a finite number of deformations of the N = 2 theory.

The partition function on the fused geometry thus enjoys, by construction, a natural

factorization of the form

Zfused =
∑

α,β∈H0

nαβB
α(x; q)Bβ(x̃; q̃) . (2.25)

This is a simple consequence of the fact that only supersymmetric ground states |α〉 ∈ H0

propagate in the long cylinder connecting the two cigars. The fused partition function is

simply the overlap of states generated by the closed of ends of the cigars (after projecting

to ground states),

Zfused = 〈0q|0q̃〉 , (2.26)

and inserting a complete set of states spanning H0 leads to the factorized form above,

Zfused = 〈0q|


∑

α∈H0

|α〉〈α|


 |0q̃〉 =

∑

α∈H0

Bα(x; q)Bα(x̃; q̃) . (2.27)

In the “massive vacuum” basis for supersymmetric ground states, we expect the intersection

matrix nαβ to be the identity.

Before moving on, some general comments about the relation of this construction to

the two-dimensional story of [14] are in order. The first and most obvious new ingredient in

8There may nevertheless be non-standard supercharges preserved by this background. Recent work

of [30] has shed light on this issue in two dimensions.
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three-dimensional fusion is that there are an infinite number of inequivalent constructions

of this form, as opposed to the unique two-dimensional topology. For any element g ∈
SL(2,Z), one can consider copies of D2×qS

1 whose boundary tori are related by a g-action

(along with orientation-reversal), and all of the statements above should go through. The

effect of g is indicated in equations (2.26)–(2.27) by the “tilde” operation acting on q and

the mass parameters x. More suggestively, we could write the g-fused partition function as

Z [g]
fused =

∑

α∈H0

Bα(x; q)Bα(x̃; q̃) =
∣∣∣∣B(x; q)

∣∣∣∣2
g
. (2.28)

Additionally, the equivariant parameter q has no obvious counterpart in the Cecotti-Vafa

construction. This equivariance is responsible for the fact that while the asymptotic radius

of the cigar (which we call ρ) plays a crucial role in the two-dimensional story, it makes

no appearance in the definition of three-dimensional holomorphic blocks. Indeed, the

two-dimensional (β → 0) reduction of the holomorphic blocks leads to a two-dimensional

partition function for an Ω-deformed theory. The limit of turning off the Ω-deformation,

which in general on a non-compact space is a singular limit, should reproduce the traditional

tt∗ results in the fused setup. Exploring this relation further is left for future work (see

also the recent work of [30, 75]).

The result of three-dimensional fusion is a protected observable of a mass-deformed

N = 2 SCFT in three dimensions associated to any lens space topology (the construction

here manifestly realizes a genus-one Heegaard splitting of the resulting manifold, which

identifies it as a lens space). We conjecture that this observable is equivalent to the more

conventional lens space observables that have been defined and computed by supersym-

metric localization in recent years, cf. [76–78]. In addition to making the factorization of

the ellipsoid partition function observed in [10] manifest, this would imply that all other

lens space partition functions, such as the supersymmetric index, involve products of the

same holomorphic blocks.

The admissible pairings between left and right blocks are naturally fixed by the

requirement that the two semi-infinite cigars be glued along equivalent tori, and this

explains the relations between parameters in equations (1.1) and (1.3). We will be

interested in configurations for which an SL(2,Z) action on the torus (acting as usual on

τ) induces a modular action combined with a reflection on the parameter q. Specifically,

if τ 7→ τ̃ = −g · τ , we would like βε 7→ β̃ε̃ = −g · (βε) as well. This is precisely the case

in the degeneration limit of the torus,

β ≪ ρ , τ → εβ . (2.29)

For a single cigar, this limit has no effect since it amounts to sending ρ → ∞. However,

once we start to consider nontrivial fusion geometries, this will be an important constraint.

Notice that although the geometric twist parameters q = exp(2πiβε) and

q̃ = exp(2πiβ̃ε̃) are related by β̃ε̃ = −g · (βε), with g ∈ SL(2,Z) acting as a modu-

lar transformation, analytic continuation off of the unit circle will not respect this relation.

That is to say that in analytically continuing, the fact that one side is topologically twisted

and the other is anti-topologically twisted will lead to an additional complex conjugation
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Figure 5. Matching holonomies i
∮
A of a background gauge field during S-fusion.

in the relationship between τ and τ̄ . Consequently, after any analytic continuation of q

off of the unit circle,

|q| < 1 ⇔ |q̃| > 1 . (2.30)

Put differently, a modular transformation alone would preserve the upper half-plane, but

a modular transformation combined with a reflection about the origin switches upper

and lower half-planes. This dovetails nicely with the definition of blocks B
α
(x; q) from

section 2.1 as actual functions, using a topological twist outside the unit circle and an

anti-topological twist inside the unit circle. In any fused combination
∑

αB
α
(x; q)B

α
(x̃; q̃),

the blocks on the left automatically correspond to an anti-topological twist when the

blocks on the right correspond to a topological one, which is just what we need for

topological/anti-topological fusion.

2.3.1 S-fusion

We now take a closer look at the fusion geometries that are related to the ellipsoid partition

function (S-fusion) and the sphere index (identity-fusion), and relate parameters (x, q) and

(x̃, q̃) in the two cases.

If we fuse two blocks whose asymptotic boundaries are related by the element S ∈
SL(2,Z), as in figure 5, we end up with the topology of the three-sphere. The complex

structure τ̃ = β̃ε̃+ iβ̃ρ̃−1 of the torus on the right is related to that on the left as

τ̃ = − S · τ =
1

τ
=

ε+ iρ−1

β(ε2 + ρ−2)
−−−→
ρ→∞

1

εβ
. (2.31)

Thus, in the ρ → ∞ limit, β̃ε̃ = (βε)−1. Moreover, in this limit, the individual geometric

parameters obey

β̃ =
1

ε
, ε̃ =

1

β
. (2.32)

For the angular momentum fugacity in the holomorphic blocks, we then find

q = exp

(
i

∮

S1
β |r=0

ω

)
= e2πiβε = e~ ⇒ q̃ = exp

(
i

∮

S1
β̃
|r=0

ω̃

)
= e

2πi
βε = e−

4π2

~ . (2.33)

Now consider the holonomies for a background gauge field that has the form A =

A0 + κω on the left and A = Ã0 + κ̃ω̃ on the right, with 1
2π

∮
S1
β
A = ϑ and 1

2π

∮
S1
β̃

A = ϑ̃
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Figure 6. Matching holonomies i
∮
A of a background gauge field during id-fusion.

(as in figure 3). The gluing, combining an S transformation and a reflection, requires us

to identify

ϑ̃ = κ , κ̃ = ϑ . (2.34)

Consequently, if we twist anti-topologically on the left and topologically on the right, the

holomorphic variables appearing in the blocks should be

x = expX , x̃ = exp X̃ , (2.35)

with

X = 2πβm3d + (2πiϑ− κ~) , X̃ = 2πβ̃m3d − (2πiϑ̃− κ̃~̃) =
2πi

~
X . (2.36)

(Note that the relative ± signs that we must use for X and X̃ come directly from the

definitions of the variables X∓ in (2.14).)

In addition, the R-symmetry gauge field AR must have −κR = κ̃R = 1/2 due to the

anti-topological/topological twists. The gluing relations (2.34) then impose ϑR = −ϑ̃R =

1/2. In other words, S-fusion is only consistent if the R-symmetry gauge field has flat

component with holonomy e2πiϑ = eiπ = −1 around the β-circle on each side. Fortunately,

this is exactly how we defined the D2×qS
1 partition function in (2.8). Also recall that as

long as all fields have integer R-charges, ϑR and ϑ̃R are only defined modulo 1.

We pause here to note that away from the limit (2.29), the combined (S-fused) partition

function would indirectly pick up a dependence on ρ and ρ̃, the radii of the cigars. It would

be nice to explore the properties of the resulting partition functions and to understand if

they constitute a further interesting deformation of the three-sphere partition function.

The relation of holomorphic parameters (x, q) and (x̃, q̃) above matches that which

emerged in the factorized form of the ellipsoid partition function discovered by [10]. In

more standard notation, the ellipsoid partition function would depend on q = exp(2πib2),

q̃ = exp(2πib−2) and x = exp(2πbµ), x̃ = exp(2πb−1µ), where µ are complexified mass

parameters relevant to the ellipsoid geometry [2].

2.3.2 Identity fusion

The second fused construction we consider is that with the simplest possible gluing. We

choose the element id ∈ SL(2,Z), which leads to the topology S2×S1.
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In this case, the condition for matching the asymptotic tori is simply

τ̃ = −τ = −εβ + iβρ−1 ⇒ β̃ε̃ = −βε , (2.37)

or more precisely

β̃ = β , ε̃ = −ε , (2.38)

so that

q = e~ , q̃ = e−~ = q−1 . (2.39)

In this construction, the asymptotic radii ρ and ρ̃ of the cigars play no role, but we usually

still work in the limit (2.29).

The holonomies of a U(1) connection A0 + κω on the left and Ã0 + κ̃ω̃ on the right

must obey

ϑ = ϑ̃ , κ = −κ̃ mod Z , (2.40)

with the sign in the second equation coming from the reversed orientation in the gluing.

Again, we assume that all fields have integral charges. Then the fact that κ = −κ̃ need

only be true up to an integer becomes physically relevant: the sum defines a nontrivial

magnetic flux of F = dA through S2,

−m :=
1

2π

∫

S2

F = κ+ κ̃ . (2.41)

Let us then set κ = −m
2 + κ0, κ̃ = −m

2 − κ0. If we anti-topologically twist on the left and

topologically twist on the right, then the variables in the holomorphic blocks associated to

a U(1) flavor symmetry become

x = expX = q
m
2 ζ , x̃ = exp X̃ = q

m
2 ζ−1 , (2.42)

with ζ = exp
(
2πiϑ− κ0~

)
.

The connection for the R-symmetry in this geometry has −κR = κ̃R = 1/2, which is

right for there to be no net R-flux through S2. In addition, we set ϑR = ϑ̃R = 1/2. This

matches the holonomies of AR in the S-fusion geometry up to a subtle sign: in S-fusion, we

had to have ϑR = −ϑ̃R = 1/2. The two assignments are equivalent if we are freely allowed

to shift ϑR and ϑ̃R by integers, i.e. if all fields in a theory are given integral R-charge

assignments. Our ability to write both S-fusion and index-fusion partition functions in

terms of exactly the same set of holomorphic blocks B
α
(x; q) seems to rely on this property.

We conjecture that the fused partition function
∣∣∣∣B(x; q)

∣∣∣∣2
id

=
∑

αB
α
(x; q)B

α
(x̃; q̃) is

equivalent to the sphere index defined as

I(m, ζ; q) = TrH(S2;m)(−1)Rq
R
2
+J3ζe , (2.43)

with J3 and R denoting spin and R-charge in the super-Poincaré algebra on (round, un-

twisted) S2 × R, e denoting flavor charge as usual, and m denoting the units of magnetic

flavor flux through S2. This is the same index defined by [9], following [3, 8, 9, 79, 80],

up to the modification (−1)F → (−1)R. The expression (2.43) is exactly the same index
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studied by [11], as long as fields have integer R-charge assignment.9 The identification of

parameters (2.40)–(2.42) found for holomorphic blocks is identical to the relation predicted

in factorized forms of the index in [11].

Note that in writing (2.42) and obtaining a direct relation to sphere indices, we have

tacitly set to zero the real mass parameters m3d for the flavor symmetries. In the fused

geometry, m3d appears to be an additional free parameter, which could be turned on to

further modify (2.42). This deformation does not seem to have an analogue for the round

S2×qS
1 index geometry. Indeed, on S2×qS

1, the scalar fields in background gauge multiplets

are quantized in units of ~ = log q, fixed to equal the magnetic flux through S2. (This

is actually how the combinations q
m
2 ζ±1 arose for the sphere index in [11].) A Q-exact

deformation from round S2×q S
1 to two fused copies of D2×q S

1 should evidently send

quantized masses in the former to vanishing masses in the latter.

2.4 Difference equations

An extremely useful property of partition functions on D2×qS
1 is that they are solutions to

a system of difference equations, which we now take a moment to explain. The difference

equations are a consequence of identities in the algebra of line operators that wrap S1

and act at the tip of the cigar. These supersymmetric line operators are in some sense

a three-dimensional lift of the chiral operator insertions that led to tt∗ equations in two

dimensions. The identities also provide a new perspective on difference equations that

arose in the context of open topological string theory [45]. In this paper, they provide a

powerful computational tool for analyzing blocks.

The line operators we have in mind were studied extensively in [11, 16, 25]. They are

half-BPS Wilson and ’t Hooft lines for the background gauge fields corresponding to the

abelian flavor symmetries of a theory. For each U(1)i flavor symmetry (in a maximal torus

of the global symmetry group), there is a supersymmetric Wilson line x̂i that measures the

holonomy of the associated background gauge field, and so acts as multiplication by the

complexified mass parameter in (2.14),

x̂iB(x; q) = xiB(x; q) , (2.44)

and there is also an associated ’t Hooft line p̂i that shifts xi 7→ qxi,

p̂iB(x; q) = B(x1, . . . , xi−1, qxi, . . . ; q) . (2.45)

In terms of the logarithms Xi, we have p̂i = exp(~ ∂Xi). Thus the operators obey q-

commutation relations

p̂ix̂j = qδij x̂j p̂i ; p̂ip̂j = p̂j p̂i , x̂ix̂j = x̂j x̂i . (2.46)

One nice way to understand these commutation relations is to weakly gauge the flavor

symmetries by coupling a three-dimensional theory to an abelian four-dimensional N = 2

9In [11], the naive fermion number F = 2J3 was redefined to include additional angular momentum from

electric particles in a magnetic monopole background. This has the same effect as replacing (−1)F → (−1)R

when states have integer R-charge.
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theory, thinking of the 3d theory as living on the boundary of a 4d spacetime. In the case of

a 3d geometry R2×qS
1 (which for this purpose is equivalent to the curved cigar version) the

4d geometry is just R2×qS
1×R+. In the bulk, the operators x̂ and p̂ are dynamical Wilson

and ’t Hooft lines that wrap S1 and can live at any point on R+. They can move freely along

R+ and act on the boundary, but their ordering along R+ matters. It is the order in which

they can act on the boundary. It was argued in [81, 82] that the OPE of line operators

is graded by angular momentum in transverse directions — i.e. by the spinning of R2 —

ultimately implying that as two operators pass each other on R+ they will q-commute.

Alternatively, one may use the AGT correspondence to relate partition functions of

certain 3d N = 2 theories to degenerate conformal blocks in Liouville or Toda CFT, as in

section 2.2. In the CFT context, the line-operator identities of 3d N = 2 theory become

reinterpreted as standard Ward-Takahashi identities.

When line operators act on the D2×qS
1 partition functions of given three-dimensional

N = 2 theory, they will obey identities of the form

f̂a(x̂, p̂; q) ·B(x; q) = 0 , (2.47)

where the fa are polynomials in x̂i, p̂i, and q. There are typically as many operators

f̂a as there are flavor symmetries, so that the equations (2.47) completely determine the

dependence of B(x; q) on x. A more precise statement is that in the “classical” commuting

limit q → 1, the set of equations

LSUSY : {fa(x, p; 1) = 0} (2.48)

cuts out a Lagrangian submanifold LSUSY in the space (C∗)2N , where N is the number

of flavor symmetries, with respect to a canonical symplectic form Ω =
∑

a
dpi
pi

∧ dxi
xi

. We

will return to this submanifold in section 3. The points on LSUSY at a fixed value of the

xi — i.e. the solutions pαi (x) to fa(x, p; 1) = 0 — are in one-to-one correspondence with

the massive vacua α of the N = 2 theory. In the fully quantum setting, we expect that

the holomorphic blocks B
α
(x; q) provide a complete basis of solutions to the quantized

identities (2.47). This turns out to be a useful way to characterize the blocks: they are the

solutions to the line-operator identities that possess certain analytic properties. We will

discover more about the required properties in the following sections.

The identities (2.47) can be derived systematically for any N = 2 theory that has a

UV Lagrangian description. The procedure for doing so was described in [11, 16] in the

context of ellipsoid partition functions and S2×qS
1 indices, but it is entirely local: the line

operators and their algebra are localized at points in the geometries that look locally like

the tip of D2×qS
1. Thus, the systematic procedure applies directly to holomorphic blocks.

We will review aspects of the construction in section 4.

In the case of geometries S3
b and S2 ×q S

1, there are of course two places where

line operators can act supersymmetrically, corresponding to opposite tips of cigars in

topological/anti-topological fusion. Indeed, these compact partition functions obey two

sets of identities,

f̂a(x̂, p̂; q) · Z = f̂a(ˆ̃x, ˆ̃p; q̃) · Z = 0 , (2.49)
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in two mutually commuting sets of line operators (x̂, p̂) and (ˆ̃x, ˆ̃p). This was one motivation

behind predicting a factorization of the supersymmetric index into blocks in [11]. More

explicitly, using variables as described in section 2.3 it is known that the Wilson and ’t

Hooft loops act as

S3
b : x̂ = e2πbµ, p̂ = eib∂µ , q = e2πib

2
; ˆ̃x = e2πb

−1µ, ˆ̃p = eib
−1∂µ , q̃ = e2πib

−2
;

S2×qS
1 : x̂ = q

m
2 ζ, p̂ = exp

(
∂m +

~

2
∂log ζ

)
, q = e~ ; (2.50)

ˆ̃x = q
m
2 ζ−1, ˆ̃p = exp

(
∂m − ~

2
∂log ζ

)
, q̃ = e−~ ,

so that p̂x̂ = qx̂p̂ while ˆ̃pˆ̃x = q̃ˆ̃xˆ̃p. The multiplicative action of the Wilson loops agrees

beautifully with the identification of parameters (x, q) and (x̃, q̃) that we found on the two

halves of fused geometries in section 2.3, and provides strong verification for our results

there. In fact, we may observe that once we know the relation between q and q̃ in a fused

geometry, the requirement that q-shifts commute with multiplication by x̃ (and q̃-shifts

commute with multiplication by x) fixes the relation between x and x̃ almost entirely.

2.5 Factorization for the free chiral

With the general picture of holomorphic blocks in place, let us consider a simple and

fundamental example of factorization: the theory of a free chiral multiplet. This theory

illustrates many of the important properties of holomorphic blocks and fusion, so it is worth

introducing it in some detail.

In order to put the theory on curved backgrounds we must specify Chern-Simons terms

for the background vector multiplet coupled to the U(1) flavor symmetry. We must further

specify R-charge assignments and Chern-Simons contact terms for the R-symmetry vector

multiplet. We define the theory T∆ as follows,

T∆ :





chiral fields: {φ } charges:

φ

F 1

R 0

CS matrix:

F R

F −1
2

1
2

R 1
2 −1

2




, (2.51)

where F and R denote the flavor and R-symmetries, respectively. We have encoded the

background Chern-Simons couplings both for flavor and R-symmetry gauge fields in a single

matrix. For example, there is a Chern-Simons coupling for the flavor symmetry at level

k = −1/2. The notation T∆ is from [16], where this was the theory associated to a single

ideal tetrahedron ∆.

Note that the half-integer bare Chern-Simons levels in (2.51) cancel the anomaly com-

ing from the fermions in the chiral multiplet φ. For nonzero real mass m3d, they contribute

an extra shift by

∆kij = sgn(m3d)×
(

1/2 −1/2
−1/2 1/2

)
, (2.52)

to the effective matrix of Chern-Simons levels [64], changing all the half-integers into

integers.
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Usually it is only essential to cancel anomalies for a dynamical gauge symmetry. How-

ever, a cancellation of anomalies for flavor symmetries becomes important if the flavor

symmetries are ever to be weakly gauged — or if we are to consistently turn on background

vevs for flavor gauge fields. This is exactly what we want to do for our partition functions,

and indeed it happens that factorization into holomorphic blocks is only possible when all

flavor anomalies are cancelled. (This was observed in [10] for ellipsoid factorization.)

The ellipsoid partition function for this theory is commonly expressed in terms of

variables (µ, b), where µ is the mass parameter associated to the flavor symmetry and b is

the real deformation parameter for the ellipsoid geometry. They are related to our variables

as X = 2πbµ and ~ = 2πib2. In [2], it was shown that

Zb
∆(X; ~) = exp

[
iπ

2

(
µ− i

2
(b+ b−1)

)2]
sb

(
i

2
(b+ b−1)− µ

)
, (2.53)

where the function sb(x) is the non-compact quantum dilogarithm.10 Physically, b is real

and ~ is pure imaginary with positive imaginary part, but the partition function (2.53) can

be analytically continued to an entire cut plane ~ ∈ C\{iR<0}. After giving ~ a nonzero

real part, we find that

Zb
∆(X; ~) =

{
C2
∏∞

r=0
1−qr+1x−1

1−q̃−rx̃−1 |q| < 1

C2
∏∞

r=0
1−q̃r+1x̃−1

1−q−rx−1 |q| > 1 ,
(2.54)

where as usual q = exp ~ = exp 2πib2 , q̃ = exp−4π2

~
= exp 2πib−2, and

x = expX, x̃ = exp 2πi
~
X. The constant prefactor in the products is C = exp

[
−1
24 (~+ ~̃)

]
=

exp
[
−1
24

(
~− 4π2

~

)]
.

The sphere index is expressed in terms of variables (m, ζ, q), as discussed in sec-

tion 2.3.2. It was shown in [11] (following [9]) that the index, defined only for |q| < 1,

can be written in the form

I∆(m, ζ; q) =
∞∏

r=0

1− qr−1x−1

1− q̃−rx̃−1
, (2.55)

where q̃ = q−1, x = q
m
2 ζ, and x̃ = q

m
2 ζ−1.

As written above, the factorization of the two partition functions is almost obvious.

The only nontrivial aspect is that the variables (x, q) appear in the numerators of the

products and the dual variables (x̃, q̃) in the denominators, or vice versa. Nevertheless,

both numerator and denominator can be written in a uniform manner. Let us define the

“tetrahedron block” as follows:

B∆(x; q) = (qx−1; q)∞ , (2.56)

10After its introduction in [62] and rediscovery in [63] as a solution of the quantum pentagon identity,

the non-compact quantum dilogarithm has appeared with various notations in the literature. The notation

“sb” adopted here is the one used in [83] and [2]. The inverse of this function is called sb in [84]. Some of

its relevant analytic properties and asymptotics can be found in [53].
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where

(z; q)∞ :=
∞∑

n=0

(−1)nq
1
2
n(n−1)zn

(q)n
=

{∏∞
r=0(1− qrz) |q| < 1

∏∞
r=0(1− q−r−1z)−1 |q| > 1 ,

(2.57)

with

(q)n := (1− q)(1− q2) · · · (1− qn) . (2.58)

The q-hypergeometric series defining the function (z; q)∞ converges for all |z| < 1 both

inside the unit circle |q| < 1 and outside the unit circle |q| > 1 to the infinite products

indicated on the right side of (2.57). In each regime, the product representation provides

an analytic continuation in z to a meromorphic function of z ∈ C. However, there is

no analytic continuation in q between |q| < 1 and |q| > 1 — approaching the unit circle

|q| = 1 from either inside or outside, the function (z; q)∞ diverges at every rational point

(every root of unity).

It is the function (qx−1; q)∞ — defined piecewise inside and outside the unit circle, but

possessing a single q-hypergeometric series expansion that makes sense in both regimes —

that we call the tetrahedron block. Due to the reflection used in any fusion operation of

two cigars, the parameter q̃ is outside the unit circle whenever q is inside the unit circle,

and vice versa. Correspondingly, one half of a fusion geometry is topologically twisted and

the other half anti-topologically twisted. Then it is easy to see that the fused partition

functions take the simple form

Zb
∆(X; ~) = B∆(x; q)B∆(x̃; q̃) , I∆(m, ζ; q) = B∆(x; q)B∆(x̃; q̃) , (2.59)

with the appropriate definitions of (x, q, x̃, q̃) in each case. Quite amazingly, the S-fusion

product Zb
∆(X; ~) =

∣∣∣∣B∆(x; q)
∣∣∣∣2
S
, is a function that can be analytically continued from

Re ~ < 0 to Re ~ > 0 across the positive imaginary axis where ~ = 2πib2 is physical.

The factorization of the ellipsoid partition function in (2.54) only holds modulo the

prefactor C2 in (2.54). This prefactor looks similar to the contribution of a level 1
24 R-R

contact term. We will almost always work modulo such R-R contact terms in this paper,

in part because it is rather subtle to fix them precisely. One way to (partially) absorb the

prefactor in the blocks, if so desired, is to modify

B∆(x; q) → (q)∞B∆(x; q) , (2.60)

where we define

(q)∞ = (q−1)−1
∞ :=

{∏∞
r=1(1− qr) |q| < 1

∏∞
r=1(1− q−r)−1 |q| > 1 .

(2.61)

Then ||(q)∞||S = −2π
~
C2, while ||(q)∞||id = 1. Note that R-R contact terms are always

invisible in the index (identity fusion) and only appear for the ellipsoid partition function

(S-fusion).

This simple example allows us to investigate the relationship between blocks and BPS-

counting partition functions. The infinite-product forms (2.57) of the block B∆ take

roughly the form (2.24) that one expects for a BPS index. We need only identify the
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elementary BPS excitation that generates the Fock space counted by the BPS index. For

the free chiral theory (2.51) with m3d > 0 (|x| > 1), there is a single elementary BPS state

coming from the chiral field itself. There is also a single elementary anti-BPS state coming

from the anti-chiral which is CPT conjugate to φ. We can then see that the block B∆(x; q)

matches the expected BPS-counting partition function for |q| > 1 and anti-BPS counting

for |q| < 1, as described by (2.15).

For m3d < 0, the match is not exact at first sight. In this region, φ gives rise to an

anti-BPS excitation and it is the anti-chiral multiplet φ† (with flavor charge −1, opposite

statistics, and R-symmetry of the multiplet shifted by −1) that creates a BPS particle.

However, the blocks as defined do not see this distinction — they are analytically contin-

ued across Rem3d = 0 (i.e. across |x| = 1) without any trouble. The simplicity of this

analytic continuation hides an interesting subtlety of blocks. Indeed, for m3d < 0, there are

effective Chern-Simons terms for background fields remaining at low energy, as can be seen

from (2.52). For example, there is a level −1 Chern-Simons term for the flavor symmetry.

We are then led to attribute the difference between the analytic continuation and the true

BPS counting in this regime to these Chern-Simons terms, and we write

B∆(x; q) = (qx−1; q)∞ =
θ(−q− 1

2x; q)

(x; q)∞
, (2.62)

where

θ(z; q) := (−q1/2z; q)∞(−q1/2z−1; q)∞ (2.63)

is a Jacobi theta-function. The denominator on the right-hand side of (2.62) is the pre-

diction of BPS counting, and the theta function is the effect of the Chern-Simons contact

terms present in this region of parameter space. Remarkably, this is precisely the prescrip-

tion for including Chern-Simons contact terms that we will be led to by a more formal

analysis in section 4.2.

The successful interpretation of B∆(x; q) as a BPS index is the first confirmation of the

conjecture that the factorized pieces of the ellipsoid partition function and sphere index can

be interpreted as partition functions on D2×qS
1. We may also consider the limit q → 1,

or ~ → 0. The block B∆(x; q) has an asymptotic expansion given to all orders by

B∆(x; q) = (qx−1; q)∞
~→0∼ exp

1

~

[ ∞∑

n=0

Bn~
n

n!
Li2−n(x

−1)

]
, (2.64)

where Bn =
(
1, 12 ,

1
6 , 0,− 1

30 , . . .
)
is the nth Bernoulli number. It makes no difference

whether the limit ~ → 0 is taken from inside or outside the unit circle. This series captures

the perturbative contributions of a chiral its KK modes to the twisted superpotential (2.22)

of T∆ compactified to two dimensions on R2×qS
1 [25, 69]. We will say more about this in

section 3.

We conclude by mentioning the difference equations which arise from line-operator

identities for the theory T∆. These were described in [11, 16], and they correspond to

“quantized Lagrangians” for Chern-Simons theory on a tetrahedron [85]. The difference

equations take the form

(−1 + p̂+ x̂−1)B∆(x; q) = 0 , (2.65)
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in other words B∆(qx; q) = (1 − x−1)B∆(x; q), and it is easy to see from the infinite

products that this is satisfied in both regimes |q| < 1 and |q| > 1. In the context of

topological strings, this difference equation appeared much earlier in [45], where it was

interpreted as a quantization of the B-model curve which is mirror to C3. Indeed, the

theory one obtains on a single toric brane in C3, in the canonical framing, is a theory T ′
∆ of

a free vortex, which is related to T∆ by 3d mirror symmetry. We will compute the blocks

of T ′
∆ directly in section 4.4.1.

2.6 Uniqueness of the factorization

It is interesting to ask whether the factorization of T∆ partition functions found in sec-

tion 2.5 is unique. Suppose that we are looking for a function B(x; q) such that

1. B(x, q) is meromorphic in x ∈ C as well as in q ∈ C\{|q| = 1} ;

2. there is some natural correspondence between the definitions of B(x, q) in the regimes

|q| < 1 and |q| > 1 — e.g. they have the same convergent q-hypergeometric series;

3. B(x; q) is annihilated by the difference operator p̂+ x̂−1 − 1 in both regimes;

4. Zb
∆(X; ~) = B(x; q)B(x̃; q̃) and I∆(m, ζ; q) = B(x; q)B(x̃; q̃) .

From condition (3), it follows that B(x; q) = c(x; q)B∆(x; q) where the prefactor c(x; q)

satisfies

c(qx; q) = c(x; q) , (2.66)

so that it is just a constant from the perspective of the difference operator. Then from (1)

it follows that c(x; q) must be an elliptic function both inside and outside the unit circle.

It would be more standard to write c(x; q) in terms of the logarithmic variables X = log x

and ~ = log q; then ellipticity says that the function is invariant under X → X + 2πi and

X → X + ~, as well as (here) ~ → ~+ 2πi.

Finally, conditions (2) and (4) require c(x; q)c(x̃; q̃) = 1, given an appropriate relation

between regimes |q| < 1 and |q| > 1. The most natural way to satisfy this is to require

c(x; q) to be an elliptic ratio of theta functions, namely

c(x; q) =
∏

i

θ
(
(−q1/2)bixai ; q

)ni (2.67)

where the product is finite, θ is the theta-function from (2.63), and ai, bi and ni are integers

that satisfy
∑

i

nia
2
i = 0 ,

∑

i

niaibi = 0 , and sometimes
∑

i

nib
2
i = 0 . (2.68)

An example of a function that satisfies the first two constraints is θ(x2; q)/θ(x; q)4.

The first two constraints in (2.68) imply ellipticity. It is an interesting exercise to check

that the constraints also cause the product (2.67) to satisfy condition (4). For example,

the modularity of the theta-functions implies that for S-fusion (for the S3
b ‘tilde’ operation)

θ
(
(−q1/2)bxa; q

)
θ
(
(−q̃1/2)bx̃a; q̃

)
= C−2 exp

[
− 1

2~

(
aX + b(iπ + ~/2)

)2
]
, (2.69)
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with C as in (2.54). Then the constraints (2.68) ensure that ||c(x; q)||2S = 1 modulo a

power of C. We could partially absorb these powers of C by including factors of (q)∞ in

each theta-function. Usually we work modulo such corrections, which correspond to R-R

contact terms, in which case we will ignore the third constraint, as it will only modify the

product (2.69) by a sign and some power of C.

In the case of identity-fusion (for the sphere index), the product ||c(x; q)||2id is identically
equal to 1, and the third constraint is not needed. Again, this is ultimately due to the fact

that the index is insensitive to R-R contact terms.

Thus, from a purely mathematical perspective, we have found that the factoriza-

tion of the T∆ partition functions into the blocks B∆(x; q) is unique up to multiplication

B∆(x; q) → c(x; q)B∆(x; q) by modular elliptic functions of the form (2.67). Such an am-

biguity will persist throughout this paper for all non-perturbative constructions of blocks.

These ratios of theta functions may have a nice physical interpretation in term of “resolv-

ing” Chern-Simons contact terms in a cigar geometry, which we discuss in section 4.2.

Notice that if we take ~ to be small, then an elliptic ratio of theta functions c(x; q) has

a trivial perturbative expansion:

c(x; q)
~→0∼ i#C# , (2.70)

for some integer powers of i and C. This is accurate to all orders in ~, and independent of

whether ~ approaches zero from inside or outside the unit circle. The expansion follows by

combining the elliptic and modular properties of c(x; q); or more explicitly by observing

that each theta function has an asymptotic expansion θ(x; q)
~→0∼ C−1 exp

(
− 1

2~X
2
)
, similar

to the S-fusion product (2.69), so that in an elliptic ratio (2.67) all nontrivial asymptotics

cancel. Therefore, multiplication by c(x; q) introduces a purely non-perturbative ambiguity

into blocks, a non-perturbative ambiguity of a very special type.

The statements made here about uniqueness of B∆(x; q) will apply equally well to

blocks of any theory with a single vacuum (hence a single holomorphic block). If there

are multiple massive vacua in a theory, leading to multiple blocks B
α
(x; q), we have the

freedom to rescale each B
α
(x; q) by an elliptic ratio of theta-functions c(x; q), as well as to

perform a linear transformation

B
α
(x; q) →

{∑
βM

α
βB

β(x; q) |q| < 1
∑

β(M
−1T )

α
βB

β(x; q) |q| > 1
(2.71)

for a constant matrixM . Both of these transformations preserve fused products. The piece-

wise linear transformation (2.71) will appear naturally as a Stokes phenomenon for blocks.

3 Blocks from quantum mechanics

We now take a closer look at holomorphic blocks for gauge theories of the general type

discussed in section 2. Our aim is to formulate the blocks as certain partition functions in

supersymmetric quantum mechanics. This approach is closely aligned with our view that

factorization of ellipsoid and index partition functions arises from the three-dimensional
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analogue of topological/anti-topological fusion. The geometry D2×qS
1 is a torus fibration

over the half-line R+ = {t ∈ [0,∞]}, with the torus achieving fixed area and complex

structure as t→ ∞. Macroscopically, the geometry is then one-dimensional, and by Kaluza-

Klein reduction on the torus fiber, one may obtain a description of the problem in the

language of supersymmetric quantum mechanics. This will provide a natural and intuitive

framework for discussing the general form of holomorphic blocks and their properties, and

will lead to a very general picture of how holomorphic blocks should be computed.

We will see that the blocks of a given gauge theory are computable via a finite-

dimensional contour integral. We determine the integrand perturbatively to all orders

in ~. The different blocks then arise from different choices of contours, where the contours

are determined by gradient flow with respect to the superpotential of the quantum me-

chanics. This approach will provide valuable intuition for the behavior of blocks. However,

in this analysis we will not determine the exact non-perturbative integrand and integration

contours. Rather, we will combine the present results with the constraints imposed by

identities for line operators to generate a non-perturbative block integral in section 4. It

would be interesting to find a non-perturbative completion of the path integral derivation

here. Such a derivation would be especially desirable for applications of these ideas to

holomorphic blocks in more than three dimensions.

An essential property of the theories that we consider is the presence of massive vacua

at generic values of mass parameters. We will always assume that we have deformed a

theory to such a point in its parameter space. This gives us control over the dimensional

reduction, and ensures, e.g., that the quantum-mechanical path integrals that compute

the blocks are divergence-free.

3.1 Kaluza-Klein reduction

Our first goal is to describe the effective N = 4 quantum mechanics in the bulk of R+

coming from a reduction on D2×q S
1. For this purpose, it suffices to consider the flat,

asymptotic region of D2×qS
1, which has the form T 2 × R, and reduce on the torus T 2.

By continuing to work in the limit ρ ≫ β and at small ~ = 2πiβρ, the reduction can be

performed in two steps: first reducing on the circle S1
β (in fact, on an exactly periodic

cycle of T 2 that is slightly offset from S1
β) to obtain an effective two-dimensional theory

on S1
ρ ×R, and then reducing on S1

ρ to quantum mechanics. A non-perturbative version of

this derivation would require a one-step reduction on the torus fiber at generic values of τ .

The reduction on the first circle yields an effective N = (2, 2) supersymmetric theory.

Its dynamics are just controlled by twisted F-terms.11 The computation of these terms in

the action has been described previously in [69] (see also [25] for some relevant discussion).

We briefly review some of its relevant aspects.

11This is generally true even in the curved part of the cigar. The effective N = (2, 2) theory there is

A-twisted, so only twisted F-terms are relevant; though the computation of the twisted F-terms is no longer

so simple.
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In general, when reducing a three-dimensional gauge theory on a circle of radius R, one

can include Wilson lines for global symmetries that complexify the real mass parameters,

mi = m3d
i +

i

R

∮

S1

Ai , i = 1, . . . , N . (3.1)

As already discussed in section 2, complex mass parameters mi are twisted masses and

complexified FI terms in the effective two dimensional theory, and they can be treated as

scalars in background twisted chiral multiplets Mi = mi − i
√
2θ+λ+ − i

√
2θ

−
λ− + . . . .

The real scalars σ3da in gauge multiplets are similarly complexified by Wilson lines of the

gauge field and become complex scalars in twisted chiral multiplets Σa = σa− i
√
2θ+ψ+−

i
√
2θ

−
ψ− +

√
2θ+θ̄−(Da − i ⋆ Fa) + . . . , where

σa = σ3da +
i

R

∮

S1

Aa , a = 1, . . . , r . (3.2)

As long as the abelian symmetries of the theory are compact, invariance under large gauge

transformations of the three-dimensional theory will manifest as periodicity of the complex

scalars σa and mi,

σa ∼ σa +
2πi

R
, mi ∼ mi +

2πi

R
. (3.3)

This periodicity is not a general property of twisted chiral multiplets in N = (2, 2) theories.

The lone exception is the background twisted chiral whose scalar is an FI parameter, whose

imaginary part (a theta-angle) is always periodic. Otherwise, this is a special property of

two-dimensional effective theories that descend from three-dimensions.

A single chiral multiplet φ in three dimensions gives rise to an entire tower of Kaluza-

Klein modes in two dimensions. If φ is charged under an overall U(1) symmetry with

associated real mass m3d
φ (some linear combination of σ3da and m3d

i ), the KK mode φn with

momentum n on the circle will have a twisted mass given by

mφn = mφ +
2πin

R
, n ∈ Z . (3.4)

This spectrum of masses is invariant under shifts mφ → mφ+2πi/R, and the effects of the

entire tower of KK modes must be included in order to preserve the periodicity described

by (3.3).

The twisted superpotential can be a function of the dynamical and background twisted

chiral multiplets, W̃ (Σa,Mi), and receives one-loop quantum corrections from integrating

out massive charged chiral multiplets [65]. The contributions from an entire KK tower of

chirals can be summed to give

δW̃ (Mφ) =
∑

n∈Z

(
Mφ +

2πin

R

)[
log(RMφ + 2πin)− 1

]
≃ R

4
M2

φ +
1

R
Li2(−e−RMφ) . (3.5)

Any three-dimensional chiral multiplet makes a contribution of the form of (3.5) to the

twisted superpotential, with Mφ the superfield containing mφ (a linear combination of

Mi and Σa). The other contributions to the twisted superpotential are tree-level Chern-

Simons terms. A supersymmetric Chern-Simons interaction with level matrix kab con-

tributes R
2 kabΣaΣb. Generalizing to include mixed gauge-flavor interactions (a.k.a. FI
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Figure 7. The cycle used for the first reduction.

terms) kai and pure background flavor interactions kij , we obtain a total Chern-Simons

contribution
1

R
W̃CS(Σa,Mi) =

1

2
kabΣaΣb + kaiΣaMi +

1

2
kijMiMj . (3.6)

The superpotential described above (or more importantly, the action derived from it)

is not invariant under the large gauge transformations (3.3). This is because we have

neglected a crucial ingredient [24, 69]. By working with twisted chiral superfields, we have

made a change of integration variables in the path integral from the abelian gauge fields

Aa to their gauge-invariant field strengths Fa that appear as auxiliary fields in the twisted

chiral multiplets. This is acceptable only so long as we also impose quantization of the

field strengths,
∫
Fa/2π ∈ Z. In order to impose this constraint, we introduce an array of

delta functions into the path integral for each integral value of
∫
Fa/2π — the Dirac comb

— via its fourier series,
∑

na∈Z

exp

[
−2πina

∫
d2θΣa

]
. (3.7)

Without this term, the failure of the action to be single-valued is visible in the shifts of

the first derivative of the superpotential by integer multiples of 2πi. In particular, the

dilogarithm function appearing in (3.5) has multiple sheets labeled by pairs of integers

(b, c) on which the values of the dilogarithm function are related to its value on the

principle branch by

Li2(−e−x) → Li2(−e−x) + 2πib(x+ iπ) + 4π2c , (3.8)

while the quadratic terms which implement Chern-Simons interactions are manifestly

multi-valued. The addition of the overall factor in (3.7) then amounts to summing over

the sheets of the covering space M̃ of the scalar manifold M on which the action is

single-valued (note the sheets of the dilogarithm on which the superpotential differs

by constant factors are already identified, because the constant shifts are killed by the

superspace integration). The entire integrand of the path integral is thus single valued on

the original target space M, i.e., the space of periodic scalar field values.

Now let us return to the setup on D2×qS
1, with the asymptotic profile T 2 × S1. We

will reduce on the cycle γ of T 2 shown in figure 7. The fibration in the geometry makes

this cycle a slight deformation of the non-contractible circle S1
β at the tip of the cigar.

In the limit of fixed, small ~ and ρ → ∞, the radius of the cycle γ in the asymptotic

region is given by R = β
√
1 + ε2ρ2 → 1

2πi~ρ, whereas for ~ = 0 exactly, the radius
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would just be β. Once the reduction to two dimensions has been achieved, going down

to one dimension is straightforward. This is because in reducing from two dimensions to

one dimension, Kaluza-Klein modes on the circle do not correct the twisted F-terms, and

so the dimensional reduction can be performed directly (by demanding that all fields be

independent of the periodic direction). The only result is to render the effective twisted

superpotential dimensionless via an overall multiplication by the size 2πρ of the circle,

leading to the quantum-mechanical superpotential

WQM(Σa,Mi) = 2πρ W̃ (Σa,Mi)

=
i

~

[∑

φi

(
1

4
M2

φ + Li2(−e−Mφ)

)
+

1

2
kabΣaΣb + kaiΣaMi +

1

2
kijMiMj

]
. (3.9)

We have absorbed factors of R into all the superfields, rendering them dimensionless. From

here on out we will work in terms of these renormalized fields, which are cylinder-valued

with period 2πi.12

We are left with a one-dimensional N = 4 supersymmetric Landau-Ginzburg model

with target space M = (C∗)r and (up to O(~) corrections) superpotential given by (3.9).

The path integral of this theory is somewhat unconventional due to single-valuedness of

the action on M being achieved through the term (3.7), which is not easily interpreted as a

single contribution to the twisted superpotential. Rather, it is more natural to think of the

resulting partition function as one which is formulated on the covering space M̃, and then

the sum in (3.7) is a sum over deck transformations of the cover. After this summation, the

resulting contribution to the path integral will be single-valued on M.13 This perspective

will prove useful for when considering localization for this theory.

3.2 Vacua and boundary conditions at infinity

To define the path integral of this one-dimensional theory on R+, we must specify the

boundary conditions at t→ ∞ and t = 0. We first consider the asymptotic boundary condi-

tion at t→ ∞. This amounts to a choice of massive, supersymmetric vacuum for the theory,

and we demand that the fields in the path integral asymptotically approach their expecta-

tion values in that vacuum. It is crucial that the vacuum have a mass gap— otherwise mass-

less fluctuations could lead to infrared divergences of the partition function. This is one of

many reasons behind our requirement that the original three-dimensional theory be massive

at generic points in parameter space. A more precise condition will appear momentarily.

The equations that govern the vacua are given by [24]

∂W̃

∂σa
= 2πina , na ∈ Z . (3.10)

12We have also implicitly assumed that all chirals φ have U(1)R charge equal to one, so that the fermions

in these multiplets have R-charge zero. This is relevant for reduction on D2×qS
1 where the U(1)R gauge

field has a holonomy exp(iπ) = −1 around the S1
β circle in the asymptotic region, as we have defined it

for holomorphic blocks. For a chiral with general R-charge Rφ, the twisted mass appearing in (3.9) gets

modified to mφ → mφ + (Rφ − 1)πi.
13Note that M̃ is not simply the space of fields σi, but is determined by the detailed form of the twisted

superpotential and its branching structure.
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This is written more invariantly after passing to single-valued C∗-variables

sa = eσa xi = emi , (3.11)

by imposing

exp

(
sa
∂W̃

∂sa

)
= 1 . (3.12)

The left-hand side is a rational function in (sa, xi). There are a finite number of distinct so-

lutions to (3.12) if and only if the vacua are all massive. We must disallow situations where

two roots of (3.12) coincide, and, more seriously, situations in which the equations (3.12)

are independent of some sa, leaving them undetermined. This latter possibility indicates

that our initial theory did not have enough flavor symmetries to lift its moduli space.

Assuming distinct, discrete solutions, we label them s
(α)
a , with α indexing the vacua.

If the sigma model is formulated on M̃, where the individual terms in the action

are single-valued, then for each term in (3.7) with some fixed integers ~n, the boundary

condition for vacuum α will impose that the fields approach the image of the vacuum α

on the appropriate sheet where (3.10) is solved for that value of na. This is the choice of

boundary condition that is naturally invariant under large gauge transformations.

Note that equations (3.12) are the same as the equations that govern the supersym-

metric vacua of our theory on untwisted R2×S1 [69]. In part, this is just another way

of looking at the same construction in the ρ → ∞ limit. The reason that we are finding

vacuum equations on R2×S1 and not twisted (or Omega-deformed) R2×qS
1 is due to our

reduction on the cycle γ above, which let us ignore the twist. We have in effect demon-

strated that vacua on R2×S1 and R2×qS
1 are equivalent (given an appropriate redefinition

of fields), and this is not too surprising: we would not expect vacua to be charged under

the rotations of R2, i.e. to have non-trivial spin.

We also recall the construction in [16, 25] of an auxiliary algebraic variety LSUSY, the

“supersymmetric parameter space” of the theory, obtained by adjoining the equations

exp

(
xi
∂W̃

∂xi

)
= pi , i = 1, . . . , N (3.13)

to (3.12). These define the effective background FI parameters pi for the flavor symmetries

that would allow supersymmetry to be preserved, were the flavor symmetries to be weakly

gauged. Equations (3.13), just like (3.12), are rational in sa and xi. After eliminating the sa
from the combined system (3.12)–(3.13), one is left with N polynomial equations that cut

out a middle-dimensional algebraic variety in the space (C∗)2N parameterized by (xi, pi)

LSUSY : fi(x, p) = 0 . (3.14)

By construction, this is a holomorphic Lagrangian variety with respect to the holomorphic

symplectic form

Ω =

N∑

i=1

dxi
xi

∧ dpi
pi

. (3.15)
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As long as the superpotential is nondegenerate, every solution to (3.12) uniquely deter-

mines background FI parameters at fixed xi. Therefore, the massive vacua of the effective

two-dimensional theory may equally well be characterized as solutions to (3.14) at fixed

xi. This is often a more invariant characterization. For example, LSUSY is invariant under

the action of three-dimensional mirror symmetry (and other infrared dualities) as long

as one stays away from massless loci in parameter space. As noted in section 2.4, the

identities for line operators acting on blocks are a quantization of the equations for LSUSY.

3.3 Boundary condition at the origin

The boundary condition at t = 0 is defined by the tip of the cigar inD2×qS
1. It is a half-BPS

boundary condition supported on all of M, which was described in [18]. The boundary con-

dition assigns to every fixed value of the macroscopic fields sa a certain weight — i.e., it can

be described as a choice of wavefunction inserted at t = 0. Wavefunctions in supersymmet-

ric sigma models can be interpreted as differential forms on M, and the choice of bosonic

weight for the wave function needs to supplemented with insertions of fermionic operators

to preserve supersymmetry. In this case, the appropriate insertion that preserves supersym-

metry corresponds to multiplying the wave function by the holomorphic top form on M,

Ω =
ds1
s1

∧ ds2
s2

∧ · · · ∧ dsr
sr

= dσ1 ∧ · · · ∧ dσr . (3.16)

The bosonic part of the wavefunction can be determined from its three-dimensional

microscopic description. It should just be the holomorphic block for the chiral multiplets

of the theory with the gauge fields fixed to background values corresponding to the ar-

gument of the wave-function! Perturbatively, we can find the wavefunction by summing

up contributions to a two-dimensional twisted superpotential in the spinning background

R2×qS
1 — i.e. the tip of the cigar — in a theory of free chiral fields. The result is

Ψ0(sa,mi; ~) = Ω exp

(
1

~
W̃~(sa,mi; ~)

)
, (3.17)

with the “quantum-corrected superpotential” W̃~ given (as discussed in sections 2.2

and 2.5) by

W̃~(sa,mi; ~) =
1

2
kabσaσb+kaiσami+

1

2
kijmimj +

∑

φ

[
1

4
m2

φ+Li2(−e−mφ−
~

2 ; ~)

]
. (3.18)

Here each chiral contributes the perturbative series14

Li2(x; ~) :=

∞∑

n=0

Bn ~
n

n!
Li2−n(x) , (3.19)

14Again we are assuming that the chirals have U(1)R charge one. For general R-charge Rφ, we must shift

mφ → mφ +(Rφ − 1)(iπ+~/2). More generally, we can include an effective complex mass mR coming from

the background R-charge gauge field AR as one of the mi, feeding into the masses mφ for chirals or into

background Chern-Simons interactions. Its value is fixed to be mR = iπ+ ~/2, due to the holonomy of AR

around S1
β at the tip of D2×qS

1.
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with Bn the Bernoulli numbers (1, 12 ,
1
6 , 0,− 1

30 , . . .). We must also include the effect of

Chern-Simons interactions for all gauge fields, which are simply quadratic terms in (3.18)

to all orders in ~. This superpotential shifts by non-perturbative terms under large

gauge transformations of the background fields — a feature which will be resolved by the

non-perturbative completion of section 4.

3.4 Localization of the bulk path integral

We finally turn to the evaluation of the path integral on R+. Modulo the subtleties associ-

ated to single-valuedness of the superpotential, this is a problem that has been considered

many times before — for a recent discussion, see [18]. Here we just remind the reader

of the relevant facts. The bosonic part of the action for the branch labeled by integers ~n

in (3.7) is given by

I~n =

∫
dt d4θ gab̄Σ

aΣb +

∫
dt dθ dθ̄WQM

~n (Σa,Mi) + c.c. , (3.20)

where the D-term that contains kinetic terms for the fields is aQ-commutator, so the precise

form of the Kähler metric gab̄ is irrelevant. The path integral of this theory can be evaluated

by localizing to field configurations that are invariant under the action of those supercharges

preserved at t = 0. The result is that the field configurations that contribute to the path

integral are precisely those that satisfy gradient flow equations with respect to the potential

ImWQM on M̃, as a function of the time coordinate t. For a choice of asymptotic boundary

condition given by a critical point α, the path integral localizes onto field configurations

that asymptote to s
(α)
a = expσ

(α)
a at t→ ∞, and that evolve according to

dσa
dt

= gab̄
d Im(WQM)

dσb̄
. (3.21)

This leads to a simple characterization of the state that impinges upon the boundary at

t = 0 — it is simply the Poincaré dual to the downward gradient-flow cycle associated to

critical point α,

Ψα(sa,mi) ≃ PD[Γ
α
] . (3.22)

The partition function is then given by the overlap of this state with the boundary state

at t = 0, leading to the following expression for the holomorphic block:

Bα(x; q) = ZQM ≃ 〈0q|αq〉 =
∫

M
Ψ0 ∧ ⋆Ψα . (3.23)

Given our identification of the wavefunction Ψα with the Poincaré dual of the cycle Γ
α
,

this simplifies to a contour integral on the gradient-flow cycle itself,

Bα(x;w) = ZQM ≃
∫

Γ
α
Ω exp

(
1

~
W̃~(sa,mi, ~)

)
. (3.24)

For such an expression to make sense, the cycles Γ
α

must be well matched with the

integrand exp 1
~
W̃~; in other words, the integrals should converge. This seems quite
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plausible for small ~, since the magnitude of the integrand precisely matches the potential

for gradient flow in the ~ → 0 limit: ImWQM(σa,mi) = Re
(
1
~
W̃~(sa,mi; ~ = 0)

)
.

The schematic form of ZQM derived here should be correct even when computing

holomorphic blocks non-perturbatively (which will be our next goal). This is because the

structure of (3.24) followed just from general considerations of the behavior of supersym-

metric quantum mechanics in this type of setup. However, the definitions of Γ
α
and W̃~ will

certainly be corrected relative to what we found in this section. The operator insertion W̃~

requires non-perturbative completion. Moreover, the cycles Γ
α
should be true gradient flow

cycles of an exact effective superpotential, which agrees with (3.9) only at leading order.

(Although (3.9) was correct to all orders in ~ given our choice of reduction on the torus

in the asymptotic region, there may be a field redefinition between the asymptotic region

and the origin that can introduce perturbative ~ corrections. In addition, the presence

of multiple sheets of M̃ must be dealt with, via some manifestly non-perturbative effect.)

Nonetheless, the considerations that led to (3.24) have allowed us to understand enough

of the structure of these contour integrals that we will be able to fix them up in the next

section with additional help from line-operator identities.

4 Block integrals

We have just seen that holomorphic blocks can be expressed as partition functions in

an effective supersymmetric quantum mechanics where, given a three-dimensional gauge

theory, the dynamical fields in the quantum mechanics are the complexified, exponentiated

scalars σa from the vector multiplets. In this section, we would like to promote those

quantum-mechanically motivated contour integrals to a non-perturbative prescription for

computing holomorphic blocks.

Given an N = 2 gauge theory with matter, our construction takes the form of a formal

contour integral

B(x; q) =

∫

∗

ds

2πis
[CS contributions]× [matter contributions] , (4.1)

which generates solutions to line-operator identities for the theory. The contributions from

chiral matter (as well as W-bosons for nonabelian gauge fields) are products of the basic

“tetrahedron block” B∆ given by (2.56). These are meromorphic functions of the complex-

ified, exponentiated flavor parameters xi and the sa. The contributions of Chern-Simons

terms (dynamical and background) will also be genuine meromorphic functions of the expo-

nentiated xi and si, in contrast to the quadratic exponentials that appeared perturbatively.

The integration is over an unspecified middle-dimensional cycle in (C∗)r, where r is

the rank of the gauge group. Indeed, the contour integral over any cycle Γ will solve

the relevant line-operator identities so long as the integral converges, the boundary ∂Γ is

either empty or at asymptotic infinity, and Γ stays sufficiently far away from poles of the

integrand. We then propose that all blocks B
α
(x; q) for a given theory can be obtained by

performing the integration over appropriate cycles Γ
α
.

The prescription given by (4.1) is a non-perturbative completion of the quantum me-

chanical integrals described above, so we already know the physical principle by which the
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correct basis of cycles should be specified. Perturbatively in ~, the critical points α of the

integrand are in one-to-one correspondence with the vacua given by solutions of (3.12).

The correspondence can be continued to finite ~. Then from each critical point α we can

define the cycle Γ
α
using downward gradient flow in a neighborhood of the critical point.

Far away from the critical points, we will need to adjust the contours to avoid singularities.

This is simply a consequence of the fact that we do not have the exact superpotential for

the non-perturbative quantum mechanical description. As the parameters x are varied, we

expect to see explicit Stokes phenomena whereby the basis cycles are reorganized.

We would like the integral (4.1) to define blocks B
α
(x; q) with the same basic properties

as the fundamental chiral block B∆(x; q). Namely:

1. {Bα
(x; q)} are a set of meromorphic functions of x ∈ C and q ∈ C\{|q| = 1} with no

analytic continuation from |q| < 1 to |q| > 1.

2. The perturbative expansions of B
α
(x; q) in ~ match on the inside and outside of the

unit circle |q| = 1 for fixed α and x.

3. For each α, B
α
(x; q) can be written as a single q-hypergeometric series that converges

for q both inside and outside the unit circle.

4. {Bα
(x; q)} form a basis of solutions to the line-operator identities fi(x̂, p̂; q)B

α
(x; q) =

0 for the gauge theory.

5. The products Zb(X; ~) =
∣∣∣∣Bα

(x; q)
∣∣∣∣2
S
and I(m, ζ; q) =

∣∣∣∣Bα
(x; q)

∣∣∣∣2
id

reproduce the

S3
b and S2×qS

1 partition functions. Moreover, the S3
b partition function can be ana-

lytically continued from ~ < 0 to ~ > 0 across the physical half-line ~ = 2πib2 ∈ iR+.

Some of these properties — such as (1), (2), and (4) — follow in a straightforward

manner from the construction of the integral. For example, the integrand itself is a

meromorphic function of x and s, with no analytic continuation from |q| < 1 to |q| > 1

but with the same perturbative expansion and q-hypergeometric series in the two regimes.

Then demonstrating (1) and (2) is a matter of extending these properties from the

integrand to the integrals. Property (3) is still conjectural, though it can be probed in

examples where the integrand is evaluated analytically by summing residues. Of course,

property (5) is the main conjecture of this paper.

While the blocks defined by the block integral inherit most of the interesting properties

of the fundamental tetrahedron block B∆(x; q), they also inherit its main ambiguity: they

can be multiplied by elliptic prefactors c(x; q) of the form described in (2.67).15 This

seems to be the price to pay for a non-perturbative completion of this sort. The ambiguity

will be most evident in our treatment of Chern-Simons terms in section 4.2, and might

conceivably be resolved with additional physical input. Recall from section 2.6, however,

15We have anticipated that blocks B
α
(x; q) are naturally associated to a Stokes chamber in parameter

space, and transform linearly from one chamber to another. Although a priori we could introduce an

ambiguous cα(x; q) independently for each block B
α
(x; q), compatibility with the Stokes jumps forces the

prefactors to all be equal (at least among any subset of blocks that interact at Stokes walls).
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that the special elliptic functions c(x; q) are invisible to the line-operator identities and

drop out of the S3
b and S2×qS

1 partition functions, rendering the ambiguity fairly innocent

for many purposes.

4.1 Assembling Lagrangians and line-operator identities

Since the principle underlying the block integral (4.1) is that it generates solutions to

the line-operator identities, introduced in section 2.4, we will now describe the systematic

construction of these identities. Suppose that the SCFT in question has a UV gauge

theory description. We can build up the full gauge-theory Lagrangian by starting with

a number of free chirals multiplets and then applying a sequence of elementary moves —

such as adding Chern-Simons levels, gauging flavor symmetries, and adding superpotential

terms. The identities for free chirals are simple, and the idea is to define the elementary

moves so that each of them also transforms the identities in a tractable manner.16 The

precise form of transformations for each move can easily be deduced by looking at S3
b

partition functions or indices. We know exactly from [2, 9] how acting on the Lagrangian

of a given theory modifies these partition functions, and also that two copies of the cigar

identities must be satisfied by these partition functions (cf., section 2.4). Alternatively,

the transformations can be derived by direct physical arguments, much along the lines of

what was done in [11, 16] for theories of class R. We will generalize the constructions of

line-operator identities in [11, 16] by allowing for nonabelian gauge groups. However, we

will start by reviewing all the steps that are relevant for abelian theories.

To build the Lagrangian for an abelian theory, we first introduce N free chirals

φi. It is convenient to make sure that our theory has no gauge or flavor anomalies at

every stage in the construction — in particular, we only expect the blocks to be well

defined in the absence of anomalies — so let us start with N copies of the anomaly-free

theory T∆. The theory T× := T∆1 ⊗ · · · ⊗ T∆N
has maximal abelian flavor symmetry

U(1)N = U(1)1 × · · · ×U(1)N . The i’th flavor symmetry rotates the phase of the chiral φi,

has a level −1/2 Chern-Simons term as dictated by (2.51), and has (say) an associated real

mass parameter xi. The operators annihilating the partition function of T× on D2×qS
1

are simply N copies of the operator for T∆,

f̂
(×)
i = p̂i + x̂−1

i − 1 ≃ 0 , i = 1, . . . , N , (4.2)

where the Wilson loops x̂i act as multiplication and the dual ’t Hooft loops p̂i act as

q-shifts, so p̂ix̂j = qδij x̂j p̂i.

The theory can then be modified arbitrarily by applying the following elementary

moves. First, we allow a redefinition of the flavor symmetry by a linear transformation U ∈
GL(N,Q), i.e., a redefinition of the basis of U(1)’s. Correspondingly, the operators (4.2)

16Such manipulations are closely related to arguments of [85] in the context of wavefunctions and difference

operators. More generally, they fall under the mathematical theory of holonomic functions, cf. [37, 86], which

we are basically extending to the level of physical gauge theories (following [11, 16]).
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are transformed according to17

x̂i 7→
∏

j

(x̂j)
U−1
ij , p̂i 7→

∏

j

(p̂j)
Uji . (4.3)

Similarly, we may redefine the R-symmetry current by adding to it a multiple of the

U(1)i flavor currents. This can equivalently be described as shift of the U(1)i flavor gauge

fields Ai, sending Ai 7→ Ai + σiAR, for some constants σi. It is easy to see from the

U(1)R holonomies in the D2×qS
1 geometry that this will modify the Wilson line operators

according to

x̂i 7→ (−q 1
2 )σi x̂i. (4.4)

(We will always choose σi to be integers; otherwise one should interpret (−q 1
2 )σi as

e(iπ+
~

2
)σi .) A dual transformation is to introduce a mixed flavor/R-symmetry contact

term, i.e., a background Chern-Simons interaction ∼ ∑i σ
(P )
i

∫
AidAR. This must act on

the line operators as

p̂i 7→ (−q 1
2 )σ

(P )
i p̂i . (4.5)

More interestingly, we can add Chern-Simons terms for flavor symmetries. The addi-

tion of a term
∑

ij
1
2kij

∫
AidAj with integer level matrix kij , properly supersymmetrized,

acts as

x̂i 7→ x̂i , p̂i 7→ q−
1
2
kii

[∏

j

(x̂j)
−kij

]
p̂i . (4.6)

This action can equivalently be described as conjugating all the line operators with the

operator exp
∑

ij
kij
2~ X̂iX̂j , where X̂i are formal logarithms of x̂i.

Now consider the operation of gauging a flavor symmetry U(1)i. After gauging, shifts

in the corresponding parameter xi will act trivially, since xi has become dynamical. In

the line-operator identities, we must eliminate x̂i, and then set p̂i → 1. The elimination

is done by multiplying the polynomial difference operators on the left, and adding and

subtracting them — formally, this is elimination in a left ideal. Since we are gauging

an abelian symmetry, the three-dimensional theory gains a “topological” flavor symmetry

U(1)J , coupled to the gauged U(1)i by an FI term. The total effect of abelian gauging

can then be reproduced in two steps. Before gauging, we first introduce a new symmetry

U(1)J coupled to the flavor U(1)i by a mixed Chern-Simons term, but not to the rest of

the theory. This adds new line operators x̂J , p̂J obeying the identity

p̂J − x̂i ≃ 0 (fixed i) , (4.7)

and shifts p̂i 7→ x̂−1
J p̂i. Then we gauge U(1)i as above, which tells us to eliminate x̂i from

the line-operator identities and to set p̂i → 1. The combined effect on the original operators

is the transformation

x̂i 7→ p̂J , p̂i 7→ x̂−1
J , (4.8)

17If U or U−1 have non-integer entries, it means that the electric-magnetic charge lattice of the theory is

being redefined by a stretch or a squeeze. Correspondingly, the transformation may introduce roots of the

electric and magnetic line operators x̂i and p̂i into the line-operator identities. Depending on the intended

physical definition of the theory, it may be desirable (and it is always possible) to eliminate these roots by

multiplying the identities on the left by appropriate polynomials in roots of x̂i and p̂i.
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interchanging Wilson and ’t Hooft lines. Indeed, this abelian gauging is equivalent to S-

duality in a 4d abelian gauge theory for which the three-dimensional theory under discussion

plays the role of a boundary condition. This is the setup discussed in section 2.4, as well

as [11, 16, 36].

The final operation is the addition of a gauge-invariant operator Oi to the superpo-

tential to break a certain U(1)i flavor symmetry. The precise form of the operator is

unimportant; it may well be a non-perturbative monopole operator, as used in class R.

However, it must have R-charge equal to two so that the U(1)R R-symmetry of the theory

is preserved. Since the cigar partition function is invariant under superpotential deforma-

tions, the only effect of adding Oi is to fix the value of a corresponding mass parameter

xi → 1. Consequently, the action on line-operator identities is to first eliminate the shift

p̂i and then to set x̂i = 1. Again, elimination takes place in the left ideal.

By iterating the moves we have just defined, we can construct the Lagrangian for

any abelian N = 2 gauge theory, and simultaneously build its line-operator identities. It

is interesting to note that all of the nontrivial complexity in the line-operator identities

arises from algebraic “elimination” steps, such as the elimination of p̂i induced by adding

a superpotential.

To generalize this program so as to allow for nonabelian gauge groups, we need only

modify the gauging rule. Suppose we have a theory with U(1)r flavor symmetry that is

enhanced to a simple nonabelian group G. (For this to be the case, the matter content of

the theory must fill out complete multiplets ofG, and the superpotential must be invariant.)

We take T = U(1)r to be a maximal torus of G. Let ~x = (x1, . . . , xr) denote the mass

parameters associated to this maximal torus (all other parameters are unaffected), and

let ∆+ denote the positive roots of G, in a basis corresponding to T. Then to perform

a nonabelian gauging, we first conjugate all the line-operator identities by
∏

η∈∆+

(
~x

1
2
η −

~x−
1
2
η
)
. This is the effect of including W-bosons in the theory. Afterwards we apply the

rule above for gauging all the U(1)’s in T, i.e. we eliminate all x̂i (i = 1, . . . , r) from the

identities and set the conjugate p̂i → 1. The validity of this prescription can be verified by

looking at S3
b or S2×qS

1 partition functions.

For example, to gauge an SU(2) flavor symmetry, we identify a single, fixed U(1)i
corresponding to the maximal torus. In a standard normalization of the root η ∈ ∆+,

x
1
2
η = x. Thus we send

p̂i 7→ (x̂i − x̂−1
i )p̂i

1

x̂i − x̂−1
i

= q−1 1− x̂2i
1− q2x̂2i

p̂i (4.9)

in every identity. Denominators of the form (1 − qx̂i) can subsequently be removed by

multiplying on the left. Then x̂i is eliminated completely and p̂i is set to 1. Unlike an

abelian gauging (4.8), which preserves the rank of the flavor group, the nonabelian gauging

reduces the number of flavor symmetries.

The introduction of dynamical Chern-Simons terms k
∫
Tr (AdA + 2

3A
3) for a non-

abelian gauge group simply involves ignoring the cubic A3 part and treating Tr (AdA) as

a sum of abelian Chern-Simons terms for a maximal torus of G. This is exactly how non-

abelian Chern-Simons terms contribute to S3
b and S2×qS

1 partition functions — and more
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relevantly to the potential of an effective supersymmetric quantum mechanics as in sec-

tion 3 — so it must be the case that the action on line-operator identities can be analyzed

this way. The abelian Chern-Simons terms can be built up by moves of the form (4.6) on

abelian flavor symmetries before doing a nonabelian gauging.

4.2 Chern-Simons terms and theta functions

We now have two ways of thinking about the block integral (4.1). By considering the

reduction on D2×qS
1 to supersymmetric quantum mechanics, we expect each matter or

gauge multiplet in the Lagrangian to contribute directly to the integrand, after which we

integrate over twisted chirals as indicated. Alternatively, we can think of building up both

the Lagrangian and the block integral for the theory by a sequence of elementary moves

and transformations, as in section 4.1. By starting with a product of blocks B∆ for a theory

of free chirals, we can transform the mass parameters, multiply by appropriate functions

for additional Chern-Simons levels, perform integrations corresponding to gauging, and fix

parameters xi → 1 when symmetries are broken. This allows us to construct the entire

block integral by deriving the right transformation rules so that line-operator identities are

satisfied at every step. It will prove useful to keep both perspectives in mind. In either

approach, we must find non-perturbative versions of various ingredients and transforma-

tions that lead to the desired analytic properties of blocks — such as being meromorphic

functions in the gauge and flavor mass parameters both for |q| < 1 and |q| > 1.

For the contribution of a chiral multiplet with background Chern-Simons level k =

−1/2, the answer was already given in section 2.5. Any T∆ constituent of a larger theory

will consequently contribute to the block integral a term given by

B∆(x; q) := (qx−1; q)∞ =

∞∑

n=0

xn

(q−1)n
=

{∏∞
r=0(1− qr+1x−1) |q| < 1 ,

∏∞
r=0(1− q−rx−1)−1 |q| > 1 .

(4.10)

On the one hand, this has the right perturbative expansion (cf. (2.64)) to match the

quantum-mechanics prediction (3.18); on the other, it satisfies the correct line-operator

identity p̂+ x̂−1 − 1 ≃ 0.

Now let us consider the addition of a Chern-Simons term at level +1 to the theory, for

some flavor symmetry with parameter x. (This could be a combination of gauge and flavor

U(1)’s.) In the quantum-mechanics approach, we argued that this simply added a factor

exp
1

2~
X2 = exp

1

2~
(log x)2 , (4.11)

to the integrand. While the factor (4.11) does transform line-operator identities the right

way, by conjugating

p̂ 7→
(
exp

1

2~
X2

)
p̂

(
exp

−1

2~
X2

)
= q−

1
2x−1p̂ (4.12)

(compare this with (4.6)), it is not meromorphic in either x or q. A simple mathematical

solution is to replace the quadratic exponential (4.11) with a Jacobi theta function,

exp
1

2~
X2  

1

θ(x; q)
, (4.13)
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where, as in (2.63), we define

θ(x; q) := (−q 1
2x; q)∞(−q 1

2x−1; q)∞ =





(q)−1
∞

∑
n∈Z q

n2

2 xn |q| < 1

(q−1)∞

(∑
n∈Z q

−n2

2 xn
)−1

|q| > 1 .
(4.14)

It is easy to see that the theta function in (4.13) acts in the expected way on line operators,

θ(x; q) p̂ θ(x; q)−1 = q−
1
2x−1p̂, but now also has the right analytic properties. In addition,

the asymptotic behavior of the theta function,

θ(x; q)−1 ~→0∼ C exp

(
1

2~
X2

)
, (4.15)

which terminates at O(~) due to modularity, is correct to reproduce the perturbative Chern-

Simons contribution to quantum-mechanics integral, up to a small correction by the factor

C = exp −1
24

(
~− 4π2

~

)
. The correction term is the same as the one discussed in sections 2.5–

2.6.18 One way to motivate the replacement (4.13) is to sum all images of the quadratic

exponential (4.11) under the transformation X → X + 2πi, thus enforcing periodicity.

Then
∑

n∈Z exp
1
2~(X + 2πin)2 ∼ θ(x; q)−1 follows from a modular transformation.

We encountered the theta-function above in section 2.5. There we saw that in order

to properly identify the free-chiral block B∆(x; q) with a BPS index, it was important to

compute the BPS index in the infrared, and to include a contribution from effective Chern-

Simons terms induced by massive fermions. This contribution had to take the form of a

theta function in order for the index of the chiral to be a continuous function in the mass

parameter x.

We can offer yet another (related) physical derivation of the replacement (4.13) as a

consistency condition for holomorphic blocks. Consider a copy of T∆ whose free chiral

multiplet transforms with charge +1 under a U(1) flavor symmetry with parameter x, and

shift the R-symmetry so that the chiral has R-charge 1. The block of the resulting theory

T 1
∆ is B1

∆(x; q) = (−q 1
2x−1; q)∞. Then let us form a theory TCS made of two copies of T 1

∆,

together with a superpotential coupling

W = µφ1φ2 (4.16)

between the two chirals φ1 and φ2. The superpotential coupling preserves U(1)R because

the product φ1φ2 has R=2. Moreover, the coupling breaks one of the flavor symmetries,

with φ1 and φ2 having opposite charges (+1,−1) under a single unbroken U(1). Therefore,

the block for the combined theory TCS is just

BCS(x; q) = B1
∆(x; q)B

1
∆(x

−1; q) =
(
− q

1
2x−1; q

)
∞

(
− q

1
2x; q

)
∞

= θ(x; q) . (4.17)

By scaling the coefficient of the superpotential (4.16), we can give both φ1 and φ2
an arbitrarily large mass, and integrate them out. The block is insensitive to F-terms.

18If desired, the correction can be partially absorbed by rescaling θ(x; q) → (q)∞θ(x; q), with (q)∞ as

in (2.61), noting that (q)∞
~→0
∼ ( 2πi

~
)1/2eiπ/4C when |q| < 1 and (q)∞

~→0
∼ ( ~

2πi
)1/2eiπ/4C when |q| > 1.
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Integrating out the fermions in the chiral multiplets leads to shifts of the Chern-Simons

level for the unbroken U(1), but the shifts are in opposite directions for φ1 and φ2, and

cancel out. Nevertheless, an overall Chern-Simons level k = −1 is left over from the initial

definitions of the theories T 1
∆. We are ultimately led to associate the block (4.17) to the

theory of a pure background Chern-Simons term at level −1. (An analogous argument at

level +1 would have led to an inverse theta function as in (4.13).)

This derivation of the contribution of background Chern-Simons terms serves to illus-

trate an important ambiguity in our prescription. In order to generate a background Chern-

Simons term at level k = 4, we could consider the theory of two chirals described by T 1
∆ with

charges (+2,−2); or four pairs of chirals described by T 1
∆ with charges (+1,−1). These

two situations lead to two different replacement rules for the associated gaussian term,

exp
−4

2~
X2  θ(x2; q) or θ(x; q)4 . (4.18)

Either one of these is a reasonable non-perturbative completion of the quadratic exponen-

tial. The line-operator identities satisfied by the two theta functions are identical, and the

asymptotics only differ by a power of C, i.e. an R-R contact term.

Extrapolating from these simple examples, we can describe a general prescription for

Chern-Simons levels. Suppose we have an N ×N Chern-Simons level matrix kij , coupling

either gauge or flavor symmetries, as well as a vector σi of levels for mixed Chern-Simons

terms between gauge or flavor symmetries and the R-symmetry. We would like to represent

this as a finite product

exp

[
1

2~

∑

i,j

kijXiXj +
1

~

∑

i

σiXi

(
iπ +

~

2

)]
 
∏

t

θ
(
(−q 1

2 )btxat ; q
)nt , (4.19)

where bt and nt are integers and at are (column) vectors of N integers, such that
∑

t

nt at(at)
T = −k ,

∑

t

ntbtat = −σ . (4.20)

The conditions (4.20) are a consequence of requiring that the two sides of (4.19) satisfy

the same line-operator identities. The same conditions ensure that they have the correct

asymptotic expansion as ~ → 0. The product (4.19) also encodes an R-R Chern Simons

coupling at level kRR =
∑

t ntb
2
t , as well as corrections corresponding to the factor C

in (4.15). As usual, we work modulo such “constant” terms.

There are infinitely many ways to choose a finite product (4.19) satisfying (4.20).

They correspond to different ways of “resolving” Chern-Simons terms via pairs of massive

chirals. The physical significance of this for partition functions on D2×qS
1 remains un-

clear, and could benefit from further investigation. In this paper we will treat the choice

of non-perturbative resolution as an ambiguity in the block integral. Note that two dif-

ferent choices of theta functions on the r.h.s. of (4.19) are related by a factor c(x; q) =∏
t θ
(
(−q 1

2 )b
′

txa
′

t ; q
)n′

t where
∑

t n
′
t a

′
t(a

′
t)
T = 0 and

∑
t n

′
tb

′
ta

′
t = 0 . This is exactly the kind

of elliptic function ambiguity discussed in section 2.6. Recall that such a factor c(x; q)

is not only invisible to the line-operator identities (since p̂ c(x; q) = c(x; q)), but becomes

trivial upon fusion, satisfying
∣∣∣∣c(x, q)

∣∣∣∣2
S
= 1 (modulo powers of C) and

∣∣∣∣c(x, q)
∣∣∣∣2
id
= 1 .
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4.3 The integrand

We have now compiled all the ingredients necessary to construct the integrand for the

block integral (4.1). Combining the observations of the previous two sections leads to the

following rules.

Let us consider any N = 2 gauge theory with U(1)R R-symmetry. Choose a maximal

torus U(1)N for the flavor symmetry group, with associated mass parameters xi ∈ C∗,

i = 1, . . . , N . Also choose a maximal torus U(1)r for the gauge group, and denote its

“mass parameters” (i.e. complexified gauge scalars) si ∈ C∗, i = N + 1, . . . , N + r. As

a preliminary step, let T
Rφ

∆ denote the free-chiral theory T∆ from section 2.5, where the

R-charge of the (scalar in the) chiral multiplet has been shifted to be Rφ. Explicitly,

T
Rφ

∆ :





free chiral φ

charges:

φ

F +1

R Rφ

CS matrix:

F R

F −1
2

1
2(1−Rφ)

R 1
2(1−Rφ) −1

2(1−Rφ)
2 .

(4.21)

The contribution of this free chiral constituent of the theory is the block

B
(Rφ)
∆ (y; q) =

(
(−q 1

2 )2−Rφy−1; q
)
∞
, (4.22)

where y is the mass parameter of the flavor symmetry. Then we apply the following rules

for translating the content of the gauge theory into a block integrand.

Chiral matter. Group every chiral multiplet φ into a copy of the theory T
Rφ

∆ , where Rφ

is its R-charge. In other words, attach a set of Chern-Simons couplings as in (4.21) to this

chiral, and compensate for these couplings (if needed) elsewhere in the Lagrangian. For

every such copy of T
Rφ

∆ , add a factor

B
(Rφ)
∆ (yφ; q) =

(
(−q 1

2 )2−Rφy−1
φ ; q

)
∞
, (4.23)

to the integrand, where yφ is the complexified mass of the chiral, a product of x’s and

s’s corresponding to the U(1)’s under which it transforms. The grouping of chirals into

theories T
Rφ

∆ ensures that we never encounter anomalous gauge or flavor symmetries.

Chern-Simons terms. After removing the copies of T∆, we are left with an (N + r)×
(N + r) integer matrix kij of levels for (additional) abelianized Chern-Simons couplings.

Both gauge and flavor symmetries are included on the same footing in this matrix. We also

have an (N + r)-dimensional vector σ of mixed Chern-Simons couplings between gauge or

flavor symmetries and the R-symmetry. Choose a product of theta functions to represent

these Chern-Simons terms, as in (4.19). Namely, introduce a finite product

CS[k, σ;x, s, q] =
∏

t

θ
(
(−q 1

2 )btxat ; q
)nt , (4.24)

where bt and nt are integers and at are column vectors of N + r integers such that

∑

t

nt at(at)
T = −k ,

∑

t

ntbtat = −σ . (4.25)
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R-R contact terms could also be matched, as discussed above. For example, a Chern-

Simons coupling for parameter x at level +1 becomes θ(x; q)−1. An FI term that mixes a

gauge symmetry with parameter s and a topological flavor symmetry with parameter x is

represented as

FI:
θ(x; q)θ(s; q)

θ(xs; q)
. (4.26)

Such FI terms should be present for all abelian gauge groups (unless the topological flavor

symmetries are broken by superpotentials).

Nonabelian gauge symmetries. For every simple nonabelian factor G (of rank r′) in

the gauge group, identify the subgroup T ≃ U(1)r
′ ⊂ U(1)r corresponding to its maximal

torus. Suppose that sG = (s1, . . . , sr′) are the parameters corresponding to T, and let ∆+

be the set of positive roots corresponding to this maximal torus. Then add a factor

gauge[G; s, q] =
∏

η∈∆+

θ(sηG; q)

(qsηG; q)∞(qs−η
G ; q)∞

(4.27)

to the block integrand. For example, when G = SU(2), this looks like

gauge[SU(2); s, q] =
θ(s2)

(qs2; q)∞(qs−2; q)∞
. (4.28)

Since parameters sG that are related by a W (G) Weyl group action are equivalent, the

domain of integration for the block integral (i.e. the domain in which we will define con-

vergent cycles) must also be quotiented by W (G). When eventually choosing integration

cycles Γ
α
, the integral along a cycle that crosses f Weyl-group images of a certain critical

point should come with an extra symmetry factor 1/f .

The perturbative contribution we must reproduce is
∏

η∈∆+

(
s

1
2
η

G −s−
1
2
η

G

)
, coming from

W-bosons. We know this has roughly the right form by looking at S3
b or S2×qS

1 partition

functions, or the action on line operators, cf. (4.9) — or even more directly, by considering

the perturbative contribution to an effective quantum mechanics, as in [69]. However, this

expected contribution is not generally meromorphic in sG. To fix it, we write

s
1
2
η

G − s
− 1

2
η

G = s
1
2
η

G

(
1− s−η

G

)
= s

1
2
η

G

θ(−q 1
2 sηG; q)

(qsηG; q)∞(qs−η
G ; q)∞

, (4.29)

and use the theta-function trick from section 4.2 to replace s
1
2
η

G with the meromorphic

function θ(sηG; q)/θ(−q
1
2 sηG; q), which has the same perturbative expansion and difference

equation. Then (4.27) results.

Synthesis. Putting together the three contributions above we obtain the integrand

of (4.1). The final step is to integrate over the r parameters si ∈ C∗. We then obtain

B(x; q) =

∫

∗

ds

2πis

∏

G

gauge[G; s, q]× CS[k, σ;x, s, q]×
∏

φ

B
(Rφ)
∆

(
yφ(x, s); q

)
. (4.30)
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Superpotential couplings play almost no role — they break the flavor symmetry of a theory

and simply restrict (implicitly) the parameters appearing in the integrand. Notice that the

integrand, just like the expected blocks, is defined both for |q| < 1 and |q| > 1, with no

analytic continuation between the regimes. We predict that after performing the integration

on a suitable basis of convergent contours Γ
α ⊂ (C∗)r this integral will generate blocks that

satisfy the five properties outlined in the introduction to this section.

For example, it is almost true by construction that integrals along convergent contours

Γ
α
must satisfy the line-operator identities. Although we have given an all-at-once prescrip-

tion for building (4.30), we could also have assembled it using iterated elementary moves as

in section 4.1: forming a product of B∆ blocks, redefining flavor symmetries and shifting R-

symmetries, adding Chern-Simons levels, adding nonabelian gauge contributions, gauging

by doing integrals, etc. At each step, the expected line-operator identities are obeyed.

Going through this carefully amounts to a proof that the integral (4.30) is annihilated

by the correct difference operators for the theory, modulo one important subtlety. We

need integration
∫

dsi
si

over some gauge variable si to have the effect of eliminating a

corresponding operator ŝi from the difference equations and trivializing the conjugate shift

p̂i → 1. This is only true so long as the integration contours Γ
α
used to evaluate (4.30)

are invariant under q-shifts. That is, if we move an entire contour Γ
α
(multiplicatively) by

an amount q, we must be able to deform it smoothly back to its original position. This

implies that contours must either be closed or end asymptotically at 0 or ∞ in each copy

of C∗ in M. Moreover, contours must stay at least a distance q away from all poles of the

integrand. These conditions will play a prominent role when choosing the proper Γ
α
.

Let us also comment on the uniqueness of (4.30). The integrand of the block in-

tegral (4.30) has the same ambiguity discussed in section 2.6 and at the end of sec-

tion 4.2: it can be multiplied by an elliptic ratio of theta functions, of the form (4.19),

with
∑

t ntat(at)
T =

∑
t ntbtat = 0 (the ellipticity condition). This ambiguity is inherited

from both the choice of Chern-Simons contribution (4.24) and the choice of nonabelian

gauge contribution (4.27). It might be fixed with further physical input, as indicated in

section 4.2. We will just treat it as a mathematical ambiguity. Since the arguments of

the theta functions involve both x and s variables, it is not completely clear that upon

evaluating (4.30) on a mid-dimensional contour Γ ⊂ (C∗)r, the ambiguity in the answer

will only be an elliptic ratio of theta functions. Nevertheless, it does turn out to be so in

examples, and we expect that this will be the case in general.

In one case, it is possible to prove that the ambiguity of the integrand can be promoted

directly to the evaluated integral: when the integral along Γ
α
is evaluated by summing

residues. Since the entire integrand is formed from (z; q)∞ functions, its poles typically

come in infinite families with spacing q, for example at (s0, qs0, q
2s0, q

3s0, . . .). As long as

this is the case, a factor c(s, x; q) in the integrand consisting of an elliptic ratio of theta

functions just contributes the same constant to each residue, since (e.g.)

c(s0, x; q) = c(qs0, x; q) = c(q2s0, x; q) = c(q3s0, x; q) = . . . . (4.31)

This factor then passes outside the integral as (e.g.) c(s0, x; q), which is still an elliptic

ratio of theta-functions.
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In practice, it is convenient after building the block integrand (4.30) to multiply by

an elliptic ratio of the theta functions to reduce the number (and complexity) of theta

functions making an appearance. For example, we can substitute θ(z; q)4  θ(z2; q),

θ(y; q)2θ(z; q)2  θ(yz; q)θ(y/z; q), θ(z; q)θ((−q 1
2 )az; q)/θ((−q 1

2 )bz; q)  θ((−q 1
2 )a−bz; q),

etc. We will make use of such simplifications in the examples below.

4.3.1 Fusion commutes with integration

When computed by supersymmetric localization, both the ellipsoid partition function and

the sphere index reduce to integrals that are superficially analogous to the block inte-

gral (4.30). In fact, if we denote the integrand of (4.30) as Υ(s, x; q), then we see that

Zb(X; ~) =

∫

Rr

dS
∣∣∣∣Υ(s, x; q)

∣∣∣∣2
S
=

∫

Rr

dSΥ(s, x; q)Υ(s̃, x̃; q̃) , (4.32)

where s = expS, s̃ = exp 2πi
~
S, etc., and the integration is done on a fixed, canonical cycle:

the real slice Rn ⊂ Cn. Similarly, the index can be written as

I(m, ζ; q) =
∑

n∈Zr

∮

(S1)r

dσ

2πiσ

∣∣∣∣Υ(s, x; q)
∣∣∣∣2
id
=
∑

n∈Zr

∮

(S1)r

dσ

2πiσ
Υ(s, x; q)Υ(s̃, x̃; q̃) , (4.33)

with the “identity fusion” conjugation on the parameters, and s = q
n
2 σ, s = q

n
2 σ−1. Now

the integration is done on r copies of the unit circle in (C∗)r, another fixed, canonical cycle.

In both expression for
∣∣∣∣Υ(s, x; q)

∣∣∣∣2, the ambiguity related to the choice of theta func-

tions completely disappears, modulo the factors of C = exp
[
−1
24 (~ + ~̃)

]
for S-fusion. In

particular, note that

∣∣∣∣θ
(
(−q 1

2 )bxa; q
)∣∣∣∣2

S
= i#C# exp

[
− 1

2~

(
(a ·X)2 +

(
iπ +

~

2

)
b(a ·X)

)]
, (4.34)

while ∣∣∣∣θ
(
(−q 1

2 )bxa; q
)∣∣∣∣2

id
= (−q 1

2 )−(a·m)bζ−(a·m)a , (4.35)

so the r.h.s. only depends on the the quantities aaT and ba, and is independent of the

precise choice of theta functions on the l.h.s.. These are the correct contributions of (e.g.)

Chern-Simons terms to the ellipsoid partition function and index, respectively. (Here ‘x’

could denote both gauge and flavor parameters.)

Our main conjecture amounts to the statement that if we evaluate the block integral

on appropriate integration cycles Γ
α
to find holomorphic blocks,

B
α
(x; q) =

∫

Γ
α

ds

2πis
Υ(x, s; q) , (4.36)

then the ellipsoid partition function and index are sums of products of blocks,

Zb(X; ~) =
∣∣∣∣B(x; q)

∣∣∣∣2
S
:=
∑

α

∣∣∣∣Bα
(x; q)

∣∣∣∣2
S
, I(m, ζ; q) =

∣∣∣∣B(x; q)
∣∣∣∣2
id
:=
∑

α

∣∣∣∣Bα
(x; q)

∣∣∣∣2
id
.

Putting this together with (4.32) and (4.33) yields a rather beautiful result:

∫

Rr

dS
∣∣∣∣Υ(s, x; q)

∣∣∣∣2
S
=
∑

α

∣∣∣∣
∣∣∣∣
∫

Γ
α

ds

2πis
Υ(x, s; q)

∣∣∣∣
∣∣∣∣
2

S

, (4.37)
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∑

n∈Zr

∮

(S1)r

dσ

2πiσ

∣∣∣∣Υ(s, x; q)
∣∣∣∣2
id
=
∑

α

∣∣∣∣
∣∣∣∣
∫

Γ
α

ds

2πis
Υ(x, s; q)

∣∣∣∣
∣∣∣∣
2

id

. (4.38)

In other words, fusion commutes with integration!

Mathematically, identities of a similar flavor to the Riemann bilinear relations which

describe period integrals on Kähler manifolds. Indeed, factorization via Riemann bilinear

relations played an important role recently in describing the analytic continuation of com-

plex Chern-Simons theory [17], as well as in the two-dimensional version of topological/anti-

topological fusion [14]. In (4.37)–(4.38), there is a notable deviation from the usual picture

in that the left hand side is an integral over a contour of the same dimension as the indi-

vidual blocks on the right hand side. Nonetheless, the similarity is suggestive.

4.4 Examples

In this section we consider several simple, illustrative examples of block integrals. We

look at three gauge theories with gauge groups of rank one, so that the corresponding

block integral is one-dimensional. These theories all possess a unique vacuum on R2×S1,

and have only one holomorphic block. The convergent integration cycles for the single

block are essentially unique and are easy to identify. In addition, each theory is dual by

three-dimensional mirror symmetry to a second theory that consists only of free chirals or

free chirals with a superpotential. This allows us to check explicitly that the block integral

gives a sensible answer. Since factorization for theories of chirals without gauge interactions

is essentially automatic, successfully matching the blocks of the mirror for these theories

amounts to a verification of our main conjecture.

These examples will demonstrate one of the most important and surprising properties

of the block integrals. Since the integrand of the block integral (4.30) is built entirely from

functions (z; q)∞ (defined in (2.57)), it represents two different analytic functions, one for

|q| < 1 and one for |q| > 1. In each regime we choose an appropriate convergent contour

Γ< and Γ>, allowing us to calculate blocks both at |q| < 1 and |q| > 1. We then find

that the expressions for the integrated blocks in the two regimes are related by sharing

a q-hypergeometric series expansion, verifying property (3) from the introduction to this

section.

4.4.1 The free vortex

The first theory is mirror to the tetrahedron theory T∆ (2.51). It is summarized as follows:

T ′
∆ :





U(1) gauge theory (gauge scalar s), coupled to a chiral φ;

has topological U(1)J flavor symmetry with parameter (FI term) x.

charges:

φ v

G 1 0

F 0 1

R 0 0

CS levels:

G F R

G 1
2 1 −1

2

F 1 0 0

R −1
2 0 −1

2

.

(4.39)

Here G denotes the gauge symmetry, F the topological U(1)J symmetry, and R the

R-symmetry. This is the supersymmetric generalization of the abelian Higgs model.
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At low energies, it is simply the theory of free supersymmetric vortices, created by the

monopole operator v — the “magnetic” dual of the chiral in T∆. In [16], the theory

T ′
∆ was denoted σST ◦ T∆, corresponding geometrically to a tetrahedron that has been

rotated through an angle of 2π/3.

The rules of the previous section dictate that the block integral for this theory is

given by

B′
∆(x; q) =

∫

∗

ds

2πis

θ(−q− 1
2x; q)

θ(−q− 1
2 sx; q)

B∆(s; q) , (4.40)

with B∆(s; q) = (qs−1; q)∞, and the theta functions encode the Chern-Simons couplings,

including the FI term that couples the topological and gauge symmetries.

Let us denote by the integrand of (4.40) by Υ′
∆(s, x; q). For small ~, it has the leading

perturbative expansion

Υ′
∆(s, x; q)

~→0∼ exp
1

~

[
− 1

2
(log(−x))2+ 1

2
(log(−sx))2+Li2(s

−1)

]
= exp

1

~
W̃ (x, s) , (4.41)

where W̃ (x, s) is the superpotential for the associated SQM in section 3.19 This superpoten-

tial has a unique critical point at s(1)(x) = 1− x−1 which represents the unique vacuum of

the theory T ′
∆. After substituting this solution into Equation (3.13), we find the supersym-

metric parameter space, written in terms of p = exp(x ∂W̃/∂x), to be given by p = 1−x−1.

The line-operator identity for the theory is the quantization of this constraint equation,

p̂+ x̂−1 − 1 ≃ 0 . (4.42)

This is the same as the identity for the mirror theory T∆. One can then check that the

operator (4.42) formally annihilates the integral (4.40) so long as the contour of integration

is invariant under shifts by ~.

Let us now consider the structure of the integral (4.40). We first take ~ real and nega-

tive (so q is real and inside the unit circle). The potential Re
(
1
~
W̃ (x, s)

)
is depicted on the

left of figure 8. On the right, we show the fully quantum-corrected integrand log |Υ(x, s; q)|.
These plots appear as functions of the periodic variable S = log s at fixed X = log x.

The integrand has a full line of poles at s = qnx−1 (S = −X + n~), n ∈ Z, coming from

the function θ(−q− 1
2 sx; q) (the FI term). There is also a half-line of zeroes at s = qn

(S = n~), n > 0, associated with the chiral matter contribution B∆(s;x) = (qs−1; q)∞.

These families of zeroes and poles coalesce into branch cuts of W̃ in the ~ → 0 limit.

An integration cycle Γ< is also shown in the figure. It is determined uniquely by the

requirements that 1) it is nontrivial; 2) the integral along Γ< converges; and 3) the cycle

is invariant under q-shifts. The cycle Γ< can be seen to match the downward gradient flow

cycle for W̃ (s, x) in the neighborhood of the saddle point, but away from the saddle point

it is extended towards S = ±∞. Invariance under q-shifts implies that it cannot end at

19In section 3 we were careful in distinguishing various superpotentials and their scalings in 1d and 2d.

Here we are less careful. The potential denoted W̃/~ here equals −iWQM from Equation (3.9), and also

equals W̃~(s,m, ~ = 0)/~ from (3.18). The variables X and S are the scaled versions of m and σ there,

with period 2πi.
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Figure 8. The potential Re(W̃ (x, s)/~) (left) and log |Υ′

∆| (right) at fixed x = e−1+ 3

4
πi and

~ = −π/5. The ImS direction is periodic. We have indicated the classical critical point and the

cycle Γ<.

any finite zeroes of the integrand — even if a naive downward flow would terminate there

— and cannot cross the line of poles. Thus, it can only tend asymptotically to infinity.

Numerical integration along Γ< produces

B′
∆(x; q) =

2πi

~

∫

Γ<

ds

2πis

θ(−q− 1
2x; q)

θ(−q− 1
2 sx; q)

B∆(s; q) = (q)∞B∆(x; q) , (|q| < 1) . (4.43)

Thus we recover the block of T∆ up to a normalization factor ~
2πi(q)∞, which is of the type

discussed around (2.61) as being related to R-R contact terms.

Alternatively, we can consider ~ real and positive (|q| > 1), and the analysis must

be repeated. The theta function θ
(
− q−

1
2 sx; q

)−1
now contributes a line of zeroes to the

integrand, whereas the chiral block B∆(s; q) contributes a half-line of poles. Moreover,

there are now two regimes to consider for the parameter x, |x| < 1 and |x| > 1. The

integrand is plotted in figure 9.

When |x| < 1, the downward-flow cycle in a neighborhood of the critical point is

naturally extended to a closed cycle Γ> that is invariant under q-shifts. There is no problem

crossing the line of zeroes. When |x| > 1, it is more natural to extend Γ> in the negative

S direction, so that it encloses the half-line of poles. These two possibilities are completely

equivalent, and topologically the choice of convergent shift-invariant cycle is again unique.

The integral can then be evaluated exactly, either by taking the zeroth Fourier coefficient

in z (for |x| < 1) or by summing residues of the enclosed poles at s = q−n, n ∈ Z (for

|x| > 1). The results agree, giving

B′
∆(x; q) =

∫

Γ>

ds

s

θ(−q− 1
2x; q)

θ(−q− 1
2 sx; q)

B∆(s; q) = (q−1)−1
∞ B∆(x; q) , (|q| > 1) . (4.44)

Again, we reproduce the block B∆(x; q) = (qx−1; q)∞ of T∆, but now in the opposite

regime.
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ImS

ReS

|x| > 1

Γ
�

>

ReS

ImS

|x| < 1

Γ>

Figure 9. Plots of the quantum-corrected potential log |Υ′

∆| at ~ = π/5, for x = e−1+ 3

4
πi and

x = e2+
3

4
πi.

The method of summing residues at |q| > 1 has an interesting physical interpretation:

each pole in s at s = q−n, n ≥ 0 corresponds to vortex particles of charge n. Taking their

residues builds up the block B′
∆(x; q), thought of as a BPS index. The authors of [87]

recently utilized such an interpretation of residues to understand 4d indices in the presence

of surface operators, which are the 4d lift of vortices.

4.4.2 SQED and XYZ

Our second simple example involves another mirror pair of theories, Nf = 1 SQED and

the XYZ model. Mirror symmetry between these theories, discovered in [64], was related

to “2–3 moves” for glued tetrahedra in [16].

The XYZ model is a theory of three N = 2 chiral multiplets coupled by a cubic

superpotential. The superpotential preserves a U(1)R R-symmetry and a U(1)2 flavor

symmetry. The theory is summarized as follows:

TXYZ :





Chirals φ1, φ2, φ3, superpotential W = φ1φ2φ3;

U(1)2 flavor symmetry with parameters x, y;

charges :

φ1 φ2 φ3

X 1 0 −1

Y 0 1 −1

R 0 0 2

CS levels:

X Y R

X 0 1
2 0

Y 1
2 0 0

R 0 0 −1
2

,

(4.45)

where X and Y denote the two flavor symmetries preserved by the superpotential. Note

that the R-charges of the chirals are chosen so that the superpotential has R(W ) = 2.

For generic mass parameters x, y, there is a unique vacuum in which the chirals are

set to zero. The block is very easy to write down:

BXYZ(x, y; q) =
B∆(x; q)B∆(y; q)B∆(qx

−1y−1; q)

θ(−q− 1
2xy; q)

=
(qx−1; q)∞(qy−1; q)∞(xy; q)∞

θ(−q− 1
2xy; q)

.

(4.46)
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ImS

ReS

ImSImS

ReS ReS

Γ>

Γ>

Γ>

Figure 10. The potential log |ΥSQED| at ~ = +1, x = exp(2 + 2πi
3
), and three different values

(left to right) y = exp(−2 + 4πi
5
), y = exp(− 1

2
+ 4πi

5
), and y = exp(2 + 4πi

5
). Critical points and

integration cycles are shown.

This factorizes the ellipsoid and index partition functions of the XYZ model in an obvious

fashion. We would like to see that it is reproduced by the block integral of the mirror

gauge theory.

The mirror, Nf = 1 SQED, can be defined as

TSQED :





U(1) gauge theory, two chirals ϕ1, ϕ2;

U(1) flavor symmetry (parameter x);

U(1)J topological flavor symmetry (parameter y);

charges :

ϕ1 ϕ2 v+ v−

G 1 −1 0 0

X 0 1 0 −1

Y 0 0 1 −1

R 0 0 0 2

CS levels:

G X Y R

G 0 1
2 1 −1

X 1
2 −1

2 0 1
2

Y 1 0 0 0

R −1 1
2 0 −1

,

(4.47)

The axial symmetry is denoted X and the topological symmetry Y . This theory has a

gauge-invariant meson operator ϕ1ϕ2 as well as two monopole operators v+, v−, whose

charges we have indicated; they respectively match the three chiral operators φ1, φ2, φ3 of

the XYZ model. The block integral for SQED, derived via the prescription of section 4.3, is

BSQED(x, y; q) =

∫

∗

ds

2πis

θ(−q− 1
2 y; q)

θ(−q− 1
2 sy)

B∆(s; q)B∆(xs
−1; q) . (4.48)

Let us call the integrand ΥSQED(x, y, s; q). Its asymptotic growth at small ~ is given by

ΥSQED(x, y, s; q) ∼ exp
1

~

[
−1

2
(log(−y)2 + 1

2
(log(−sy))2 + Li2(s

−1) + Li2(x
−1s)

]
. (4.49)

The unique critical point of the effective superpotential is at s(1) = (y − x−1)/(y − 1),

corresponding to the unique vacuum of SQED.

When ~ is real and positive, the quantum-corrected potential log |Υ| at finite q is

shown in figure 10. Again, we use the periodic, logarithmic variable S = log s in the

figures. The two chiral multiplets of opposite gauge charge produce two half-lines of poles
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Γ<

ImS

ReS

ImS

ReS

ImS

ReS

Γ<

Γ<

Figure 11. The potential log |ΥSQED| at ~ = −1, x = exp(2+ 2πi
3
), and three different values (left

to right) y = exp(−5 + 4πi
5
), y = exp(−1 + 4πi

5
), and y = exp(1 + 4πi

5
). Critical points and natural

integration cycles are shown.

in the integrand, extended in opposite directions. The theta function that encodes the FI

term produces a full line of zeroes. There is a unique integration cycle Γ> that is both

convergent and invariant under q-shifts. Just as in the previous example of the free vortex

theory T ′
∆, it is natural to draw the contour in different ways depending on the relative

values of x and y; but in each case the resulting integration yields the same answer. By

summing residues (of either half-line of poles!) or by taking Fourier coefficients, we find

∫

Γ>

ds

2πis
ΥSQED(x, y, s; q) = (q−1)−1

∞ BXYZ(x, y; q) (|q| > 1) . (4.50)

If instead ~ is real and negative, then poles and zeroes are reversed, and the unique inte-

gration cycle Γ< is displayed in figure 11. Integration along Γ< is demonstrably convergent

when 1 . |y|−1 . |x|, as in the center of figure 11. Otherwise, the cycle must be extended

along the half-lines of zeroes, which would need to be regularized to produce a convergent

answer. In the regime where convergence is apparent, we have verified numerically that

2πi

~

∫

Γ<

ds

2πis
ΥSQED(x, y, s; q) = (q)∞BXYZ(x, y; q) (|q| < 1) . (4.51)

Therefore, BSQED = BXYZ in both regimes, with exactly the same kind of normalization

factors that appeared in the previous example.

This example is not entirely independent of the previous one. Indeed, if we send the

axial mass x to infinity, SQED reduces to the theory T ′
∆ of a free vortex, while the XYZ

model reduces to the theory T∆ of a free chiral. This scaling can be performed directly at

the level blocks by noting (for example) that B(x; q) = (qx−1; q)∞ → 1 as |x| → ∞.
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4.4.3 The SU(2) appetizer

Our final rank-one example is a nonabelian gauge theory that appeared in [88] in the

context of F-maximization. Let us define the “appetizer theory” as

Tapp :





SU(2) gauge theory at CS level 1, with adjoint chiral φ ;

U(1) flavor symmetry (parameter x);

charges :

φ+ φ0 φ−

G 2 0 −2

X 1 1 1

R 0 0 0

CS levels:

G X R

G 2 0 0

X 0 −3
2

3
2

R 0 3
2 −1

2

.

(4.52)

Here we have identified a maximal torus U(1) ⊂ SU(2), and written charges and effective

Chern-Simons levels in terms of this abelianized gauge symmetry, denoted by G. We have

split the adjoint chiral into its three components. It was conjectured in [88] that Tapp flows

to the theory of a free chiral in the infrared. We have chosen the flavor symmetry and

background Chern-Simons terms here so that it flows precisely to a copy of T∆ normalized

so that the chiral has charge +2 under the U(1) flavor symmetry.

The block integral of Tapp can be constructed following the rules of section 4.3:

Bapp(x; q) =

∫

∗

ds

2πis

B∆(x; q)B∆(s
2x; q)B∆(s

−2x; q)

θ(s; q)2(qs2; q)∞(qs−2; q)∞
, (4.53)

We denote the integrand Υapp(x, s; q). The integrand is symmetric under the Weyl-group

action s → s−1. In terms of the logarithmic variable S = log s, a fundamental domain for

the Weyl group is given by the strip 0 ≤ ImS ≤ π, with an identification

S ∼ −S (S ∈ R) , (4.54)

S ∼ 2πi− S (S ∈ R+ iπ) , (4.55)

at the strip’s two boundaries. The classical potential in the ~ → 0 limit is

Υapp(x, s; q) ∼ exp
1

2~

[
2 log(s)2 + log(−s2)2 + 2Li2(x

−1) + 2Li2(x
−1s−2) + 2Li2(x

−1s2)
]
,

up to a constant, and has a unique critical point in the fundamental domain, corresponding

to a solution of s+ s−1 = 1 + x−1.

The integrand for |q| > 1 (with ~ real) is shown in figure 12. The chirals φ± that are

charged under the U(1) in the gauge group contribute half-lines of poles, while the gauge

and Chern-Simons factors contribute a half-line of zeroes (of which some are doubled).

Note that the spacing of poles and zeroes is now by multiples of ~/2 rather than ~. At

any value of x there is one convergent cycle Γ>, which forms a closed loop that winds

twice around the fundamental domain. Integration along it just picks out the s0 Fourier

coefficient of the integrand, and with some work we find that

1

2

(q−1)2∞
(q−2)∞(−q−1; q−2)2∞

∫

Γ>

ds

2πis
Υapp(x, s; q) = B∆(x

2; q) , (|q| > 1) . (4.56)
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ReS
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ImS

ReS

Γ>

ImS

Figure 12. Plots of log |Υapp(x, s; q)| in a fundamental domain, at ~ = 2 and two typical values of

the flavor parameter x = ie2 (left) and x = ie−2 (right). That the two segments of Γ> crossing the

fundamental domain do not cancel, but rather add constructively, due to the Z2 orbifolding at the

boundaries of the strip. The cycles are deformed slightly to illustrate the doubling.

ImS

ReS

Γ<

Figure 13. Plot of log |Υapp(x, s; q)| in a fundamental domain, at ~ = −2 and x = ie2.

The numerical prefactor 1/2 appears come from the number of times the cycle Γ> meets

images of the critical point.

For |q| < 1 and ~ real, the integrand is shown in figure 13. Again there is a unique

convergent cycle Γ< in the fundamental domain, at all values of x. Numerical integration

along Γ< indicates that

(const)
2πi

~

∫

Γ<

ds

2πis
Υapp(x, s; q) = B∆(x

2; q) , (|q| < 1) (4.57)

for a certain q-dependent constant — presumably a |q| < 1 version of the prefactor in (4.56).

4.5 Defining contours

Having understood block integrals for a number of simple examples, we now address the

more involved problem of identifying integration cycles Γ
α
for a theory with multiple vacua
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α. We will first make some observations about the problem in general, and then demon-

strate these ideas in the context of the CP1 model in the next section.

For motivation and review, let us recall the simpler case of an integral of the form
∫

Γ⊂M
dSΥ(X,S; ~) , (4.58)

where M ≃ Cr and Υ(X,S; ~) is a nonvanishing holomorphic function of S ∈ Cr that

depends on additional complex parameters X and ~. For example, one case that makes

frequent appearances in physics is Υ(X,S; ~) = exp 1
~
f(X,S), with f(X,S) a holomorphic

function on Cr. This problem can be considered within the framework of Lefschetz

theory,20 which tells us (in part) that there exists a basis {Γα} of middle-dimensional

integration cycles such that the integral (4.58) for any cycle Γ on which it converges can

be written as an integer linear combination of integrals over the basis contours Γ
α
. Since

the only non-trivial integrals will be over non-compact contours, the cycles Γ
α

form a

basis for the relative homology group

Hr(M,MΛ;Z) , (4.59)

where MΛ =
{
S ∈ M

∣∣ log |Υ(X,S; ~)| ≤ Λ}, for Λ sufficiently large and negative. The

subset MΛ here essentially captures the directions in M to which convergent integration

may asymptote.

The set MΛ depends on the parameters (X, ~), although the rank of the homology

group (4.59) should not. For any fixed X and ~ such that Υ(X,S; ~) has isolated and

nondegenerate critical points S(α), a distinguished basis of cycles Γ
α
can be associated to

those critical points. This is done by defining Γ
α
to be the set of all points that can be

reached by downward gradient flow from S(α), with respect to the potential log |Υ(X,S; ~)|
(and the standard Kähler metric on Cr). The argument of Υ is constant along such flows, so

the flow starting at one critical point S(α1) can hit another critical point S(α2) if and only if

argΥ(X,S(α1); ~) = argΥ(X,S(α2); ~) , (4.60)

and log |Υ(X,S(α1); ~)| > log |Υ(X,S(α2); ~)|. The condition (4.60) defines real-

codimension-one Stokes walls in parameter space. For generic parameters (X, ~), one is

far away from these walls, so flows continue indefinitely and all critical-point cycles Γ
α

are well defined. On the other hand, if parameters (X, ~) are varied continuously across

a Stokes wall, then the natural critical-point basis is shifted,21

(
Γα1

Γα2

)
7→
(
Γα1 ′

Γα2 ′

)
=

(
Γα1 ± Γα2

Γα2

)
=

(
1 ±1

0 1

)(
Γα1

Γα2

)
, (4.61)

20See, for example, [17, 18, 35, 89, 90] for applications and discussions of Lefschetz theory in physical

contexts.
21More generally, the jump is by a multiple of the intersection number between the upward flow from

S(α2) and the downward flow from S(α1). This played an important role in [35]. However, an intersection

number greater than one does not occur in the simple case of cycles on Cr, and will not occur in any of the

examples studied in this paper.
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where the sign depends on the relative orientation of the cycles. Two different Stokes walls

can intersect on a real-codimension-two locus in (X, ~) space. This is a locus where critical

points become degenerate. In general, the Stokes walls (4.60) emanate out from such

degenerate loci. Motion in a closed loop around a degenerate locus induces a monodromy

that may permute the integration cycles Γ
α
.

Unfortunately, the block integrals are not of the form (4.58). This is a consequence

of the general construction of block integrals, and is particularly clear in the examples of

section 4.4. One mild difference is that the domain of integration for the block integrals

is M = (C/2πiZ)r, or a Weyl-group quotient thereof, rather than Cr. (In exponentiated

variables, we would say M ≃ (C∗)r.) This simply introduces the possibility of closed

homology cycles that encircle the non-trivial one-cycles in M. More importantly, the

integrand Υ(x, s; q), has infinite lines of poles and zeroes, and we have argued that a good

integration cycle should never cross the lines of poles. The presence of such a meromorphic

integrand makes things more complicated. We will approach this problem in two ways. The

first is more intuitive and proves sufficient to compute blocks in all examples encountered

here, while the second is somewhat more rigorous (but perhaps slightly less intuitive).

Approximate cycles from quantum mechanics. A lesson we drew from the con-

struction of blocks in supersymmetric quantum mechanics is that there should exist an

exact potential Wexact(x, s; q) whose only critical points correspond to true vacua of the

theory, which generates gradient flows that serve as exact block cycles Γ
α
. While we have

not determined this exact potential, we know that perturbatively, at leading order in ~, it

should match W̃ (X,S)/~ as defined in (3.9). (Here, as elsewhere outside of section 3, we

denote −iWQM as W̃ (X,S)/~). Consequently, our first approach is to approximate the

integration cycles by gradient flow contours of W̃ (X,S)/~ while keeping track of the exact,

nonperturbative integrand Υ(s, x; q). The asymptotic behavior of the integrand is given at

leading order by

Υ(x, s; q)
~→0∼ exp

[
1

~
W̃ (X,S)

]
, (4.62)

which agrees with the perturbative potential, particularly around critical points of

W̃ (X,S).

Away from the critical points, we will have to deform the contours by hand in order

to make them consistent for block integrals. Notice that as we take ~ → 0 along a ray of

constant phase, the half-lines of zeroes and poles of Υ coalesce into distinguished branch

cuts for W̃ (X,S). As we saw in the examples of section 4.4, these distinguished branch cuts

are all parallel and have slope arg ~.22 While the true gradient-flow cycles of 1
~
W̃ (X,S)

may hit branch cuts (and indeed, as we discussed in section 3, the quantum mechanical

path integral may allow the flow line to cross the branch cuts), crossing a line of poles is

disallowed from the perspective of solving line-operator identities, so we will have to deform

the contours away from the branch cuts that correspond to poles.

22In the general multi-dimensional setting, the poles and zeroes occur in codimension two, and the

distinguished branch cuts are flat walls of codimension one. The “slope” of cuts is measured in the space

transverse to the zeroes and poles that lie on them. Branch cuts lying in different dimensions may intersect.
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Figure 14. Plots of the potential Re
(
1
~
W̃ (x, s)

)
for the block integral (4.40) of T ′

∆, showing a cycle

that effectively starts to flow upward along a line of zeroes as x is varied. Here ~ < 0 and |x| < 1 on

the left while |x| > 1 on the right. The dashed line is the effective upward flow. The bottom-right

view shows the valley corresponding to the line of zeros.

Alternatively, contours should be allowed to cross or lie on branch cuts corresponding

to zeros. For example, we saw in the example of the free vortex theory that a good

integration cycle can cross a line of zeros (see figure 9). For SQED, we found that a good

integration cycle should be continued to infinity along lines of zeroes (figure 11). In some

cases, it may even be necessary to allow cycles that continue to infinity along a line of zeros

even though it looks like they are flowing upward with respect to Re
(
1
~
W̃ (X,S)

)
. This was

the case in SQED on the left or right of figure 11 (see also figure 18, page 70). In fact, this

bizarre situation can occur in the free-vortex theory as well. In figure 14 we have blown

up the region of the S-cylinder where the potential of T ′
∆ has a half-line of zeroes at ~ < 0

— it is a close-up of figure 8. When |x| < 1 there is a convergent integration cycle that

continues to infinity along the line of zeroes, flowing downward. However, when |x| > 1

the shape of the potential changes and the only candidate integration cycle Γ′ looks to be

flowing upward instead. We expect that blocks should survive the transition from |x| < 1

to |x| > 1. It is conceivable that the integral along Γ′ might be regularized to converge,

since the integrand oscillates very rapidly along the half-line of zeroes.

We can use the approximate cycles Γ
α
defined by the potential 1

~
W̃ (X,S) to study the

Stokes phenomenon for blocks. We expect the analysis to hold so long as critical points of
1
~
W̃ (X,S) are sufficiently far away from its branch cuts, so that gradient connecting one

critical point to another (at Stokes walls) don’t cross any cuts. The approximate location

of Stokes walls for a pair of critical-point cycles (Γα1 ,Γα2) that flow from critical points

(S(α1), S(α2)) is then determined by

Im

(
1

~
W̃ (X;S(α1))

)
= Im

(
1

~
W̃ (X;S(α2))

)
. (4.63)

– 61 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

The cycle with the greater value of Re
(
1
~
W̃ (X;S(α))

)
will pick up a copy of the other as

parameters are varied across the wall. Equation (4.63) should be understood on the sheet

of W̃ (X,S) (with distinguished branch cuts) that is defined by sending ~ → 0 in Υ(x, s; q)

along a ray with constant phase.

This simple analysis can also be used to understand the existence of conjugate Stokes

jumps for holomorphic blocks at |q| < 1 and |q| > 1. Suppose that we fix two values ~0, ~̃0
of the parameter ~ such that the product ~0~̃0 is real and negative (for example, ~0 > 0

and ~̃0 < 0), and only vary the mass parameters x = expX. It is easy to see that the same

sheet of W̃ , with the same branch cuts, is relevant for analyzing gradient flows at both

values of ~. Thus the approximate Stokes walls defined by (4.63) occur at the same place

in X-space. However, because Re
(
W̃ (X,S)/~0) and Re

(
W̃ (X,S)/~̃0

)
have opposite sign,

the critical-point cycles that jump across a wall will be different:
(
Γα1

Γα2

)
7→
(
1 ±1

0 1

)(
Γα1

Γα2

)
at ~ = ~0 ⇒

(
Γα1

Γα2

)
7→
(

1 0

∓1 1

)(
Γα1

Γα2

)
at ~ = ~̃0 .

(4.64)

More generally, any Stokes matrices M, M̃ that govern a Stokes phenomenon in X-space

at “conjugate” values of parameters ~0, ~̃0 will satisfy MMT = 1.

Shift-invariant quantum cycles. The above description of integration cycles works

quite well when ~ is small, or q is close to 1. However, it may be useful to define cycles at

large ~ as well. For example, an exact analysis of the blocks B
α
(x; q), B

α
(x̃, q̃) involved in

an S-fusion operation requires simultaneous consideration of cycles at ~ and ~̃ = −4π2

~
. We

therefore provide a second, “quantum” prescription for defining integration cycles. We take

the non-perturbative integrand Υ(x, s; q) of the block integral (or rather logΥ) to be the po-

tential for gradient flow. We know that Υ cannot be the exact potential for supersymmetric

quantum mechanics, because it has too many critical points. Correspondingly, we will see

that not all of its convergent critical-point cycles lead to solutions of line-operator identities.

These two mismatches ultimately cancel each other out, and can be resolved simultaneously.

Consider the integrand Υ(x, s; q) of the block integral at finite q. It is a meromorphic

function of s. In addition to the critical points s = s(α) that survive in the limit q → 1

and correspond to vacua on R2×S1, there are an infinite set of “quantum” critical points

s = ŝ(β). They occur in between every two consecutive zeroes or poles on the lines and

half-lines that would coalesce into cuts as q → 1. They do not correspond to true vacua of

the theory on R2×qS
1 (or to SUSY ground states on T 2×R) because we know that physical

vacua are uncharged under the rotation whose Wilson line implements the q deformation,

and so the vacua cannot appear spontaneously when q 6= 1.

Now consider downward gradient flows from all the s(α) and ŝ(β), with respect to the

potential log |Υ(x, s; q)|. The flows define cycles Γα
q and Γ̂β

q , respectively, on which the

block integral converges. However, these cycles typically terminate at zeroes of Υ rather

than at asymptotic infinity. They are not yet good candidates for cycles on which to

compute holomorphic blocks, because they are not invariant under q-shifts (as discussed

in section 4.3), and so do not produce solutions to line-operator identities. Shift-invariant

cycles must either be closed or end at asymptotic infinity.

– 62 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

Γ
1

q

Γ̂
1̇

q
Γ̂
2̇

qΓ̂
3̇

qΓ̂
4̇

q

Γ̂
1

q
Γ̂
2

qΓ̂
3

q
Γ̂
0

q

Γ̂
−1

q
Γ̂
−2

q
Γ̂
−3

q
Γ̂
−7

q
Γ̂
−5

q
Γ̂
−6

q
Γ̂
−4

q

α=1

Figure 15. A schematic example of gradient-flow cycles for the “quantum” potential Υ, drawn on

a cylinder parameterized by S ∈ C/(2πiZ). We have indicated poles by black dots, zeroes by white

dots, and critical points by ‘×’. The convergent, shift-invariant integration cycle is Γ1 = Γ̂1
q + Γ̂0

q.

This picture actually corresponds to the free-vortex theory at ~ > 0, cf. figure 9.

We can solve this problem by taking linear combinations of the cycles Γ
α
q and Γ̂β

q that

are shift invariant. The cycles Γ
α
q and Γ̂β

q form a countable basis for an abelian group Γq,

which is a certain limit of homology groups

Hr(Mq,MqΛ;Z) , (4.65)

as Λ → −∞, where

Mq = (C/2πiZ)r\{poles of Υ} , MqΛ = {S ∈ (C/2πiZ)r |Υ(x, s; q)| < eΛ} . (4.66)

We say that a (possibly infinite) linear combination of these cycles Γ =
∑

α nαΓ
α
q +
∑

β n̂βΓ̂
β
q

is convergent if
∫
Γ dSΥ :=

∑
α nα

∫
Γα
q
dSΥ+

∑
β nβ

∫
Γ̂β
q
dSΥ is finite. We say that such a

linear combination is shift-invariant roughly if a shift by ±~ in any integration variable Si
does not change the integral

∫
Γ dSΥ. More precisely, Γ is shift-invariant if for every shift

by ±~ in a direction Si there exist two smooth, convergent cycles Γ′ and Γ′′, with Γ′′ the

image of Γ′ under the shift, such that
∫
Γ dSΥ =

∫
Γ′ dSΥ =

∫
Γ′′ dSΥ . Then we can define

the group Γ to be the subgroup of Γq consisting of convergent, shift-invariant elements.

The subgroup Γ is the finite-rank group containing the cycles that lead to holomorphic

blocks. If we are lucky, every element of Γ will contain at least one copy of a cycle Γα
q

corresponding to downward flow from one of the semi-classical critical points sα. (In other

words, there will be no convergent shift-invariant cycles formed entirely from quantum

cycles Γ̂β
q .) This appears to be the case in examples. Then we can identify a distinguished

basis of cycles Γ
α ∈ Γ, by defining Γ

α
to be the unique element that contains the minimal

positive number of copies of Γα
q (typically one), and zero copies of all other Γα′

q . An example

is shown in figure 15. The basis {Γα} will naturally be associated to the vacua of our theory.

Note that this definition of convergent, shift-invariant cycles Γ
α
can naturally include

cycles that seemingly flow “upward” along a half-line of zeroes, as in figure 14. We argued

– 63 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

previously that these cycles are sometimes necessary if block integrals are to make sense at

all values of parameters x. They will be included if the infinite sum
∑

β n̂βΓ̂
β
q of quantum

cycles along a half-line of zeroes can be made to converge.

As we change parameters x and q, the integration cycles in Γq will undergo Stokes

phenomena at infinitely many walls, defined by one of the conditions

argΥ(x, s(α1); q) = argΥ(x, s(α2); q) (mod 2πi) , (4.67a)

argΥ(x, ŝ(β1); q) = argΥ(x, ŝ(β2); q) (mod 2πi) , (4.67b)

argΥ(x, s(α); q) = argΥ(x, ŝ(β); q) (mod 2πi) . (4.67c)

Most of these jumps will just modify the elements of the shift-invariant subgroup Γ by a

finite number of quantum cycles Γ̂β
q , so that the basis for Γ associated to vacua of the theory

is unchanged. However, at a few, distinguished walls the true basis {Γα} of Γ jumps. These

special jumps are related to the physical Stokes phenomenon. If the classical critical points

s(α) are well separated from poles and zeroes, then the physical jumps will occur precisely

when a flow from one classical critical point hits another critical point, as in (4.67a). Then

the location of the wall will approximate that predicted semi-classically by (4.63).

In a situation such as S-fusion of blocks, where it is important to keep track

simultaneously of parameters (x = expX, q = exp ~) and (x̃ = exp 2πi
~
X, q̃ = exp −4π2

~
), it

generally does not seem that Stokes jumps for blocks B
α
(x; q) and B

α
(x̃; q̃) can both be

analyzed in the semi-classical approximation. The full quantum Stokes analysis outlined

here may then be useful.

5 Case study: the CP1 sigma-model

We now consider in detail an example that illustrates the constructions of the previous

sections. This will be our main example, and in studying it we will encounter most of

the interesting features associated to holomorphic blocks. In particular, we will see how

the five proposed properties of holomorphic blocks from section 4 can be satisfied in a

theory with multiple vacua, and multiple Stokes chambers. Moreover, in the discussion

of connections to Chern-Simons theory in section 6, this example will form the basis for

calculations involving the figure-eight knot.

The theory in question (denoted in this section as TI) can be described in the UV

as a gauged linear sigma model, which flows in the IR (in rather subtle ways) to a non-

linear sigma model with target CP1. The UV Lagrangian has two chiral multiplets φ1, φ2,

transforming with charges (+1,+1) under a dynamical, abelian U(1) gauge symmetry. We

denote the scalar in the dynamical vector multiplet as σ3d, and its complexification as S

or s = expS. The theory also has flavor symmetry U(1)V × U(1)J , as well as a U(1)R
R-symmetry. The vector symmetry U(1)V rotates the chirals with charges (+1,−1), and

has an associated real mass m3d, complexified to x = expX. The topological symmetry

U(1)J shifts the dual photon, and has an FI parameter t3d, complexified to y = expY . For

compactification on curved backgrounds, we choose the R-charges of the chirals to be zero.
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Figure 16. Parameter space for 3d CP
1 model.

The charges and Chern-Simons levels of the theory are summarized as follows,

TI :





Dynamical U(1) gauge theory with two chirals φ1, φ2,

U(1)V ×U(1)J symmetry with parameters x, y;

charges :

φ1 φ2

G 1 1

X 1 −1

Y 0 0

R 0 0

CS levels:

G X Y R

G 0 0 1 0

X 0 0 0 0

Y 1 0 0 0

R 0 0 0 ∗

.

(5.1)

This theory is known to arise in various contexts. It can be engineered on a toric brane

in the local Calabi-Yau geometry O(−2) ⊕ O(0) → P1. It also appears on the simplest

half-BPS surface operator in 4d SU(2) super Yang-Mills. We will mention some of these

interpretations in section 5.6. For now, though, let us start with three-dimensional gauge

theory and work our way down to blocks.

5.1 Parameter spaces

The three-dimensional parameter space of TI is shown in figure 16. It was analyzed carefully

in (e.g.) [91], following [64]. We review some of the relevant details here. For m3d = 0 and

positive t3d > 0 (i.e. on the ray labelled I), the theory has a CP1 Higgs branch of vacua,

and is well described at low energy as a nonlinear sigma-model with target space a CP1 of

size ∼ t3d. For large t3d, the sigma-model is semi-classical. On either side of the ray I, the

theory becomes massive, and has two Higgs-branch vacua localized at the poles of CP1.

So far, this is similar to the two-dimensional CP1 model. The main qualitative difference

comes at negative t3d: then there are two CP1 Coulomb branches of vacua (rays II and

III) at m3d = ±t3d. Quantum effects are important in identifying their topology as that of

CP1. In between rays II and III, TI has two massive Coulomb-branch vacua.
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There is a Z3 symmetry in figure 16, and this is not a coincidence. The parameter

space can be rotated by a third by transforming the mass parameters according to

(
m3d, t3d

) ω7−→
(
t3d −m3d

2
, −3m3d + t3d

2

)
. (5.2)

Upon promoting (5.2) to a transformation of the background vector multiplets in the TI
(equivalently, a linear redefinition of the flavor symmetries), one obtains a new theory TII
that is mirror symmetric23 to TI. This is also a CP1 sigma-model, but with modified mass

and FI parameters. Consequently, TII has a classical CP1 Higgs branch along ray II. Apply

transformation (5.2) again sends

(
m3d, t3d

) ω2

7−→
(
− m3d + t3d

2
,
3m3d − t3d

2

)
, (5.3)

and results in a theory TIII with a CP1 Higgs branch along ray III. Notice that the trans-

formation has order three, ω3 = id.

Now consider the compactification of TI on a circle of radius β. The mass parameters

are complexified by Wilson lines on S1 and we define the conventional dimensionless, single-

valued C∗ variables as follows,

x = eX , X := 2πβ m3d + i
∮
S1 AV ,

y = eY , Y := 2πβ t3d + i
∮
S1 AJ ,

(5.4)

where ImY is a theta-angle in two dimensions. For the scalar in the two-dimensional vector

multiplet we define

s = eS , S := 2πβ σ3d + i

∮

S1

A . (5.5)

Additionally introducing a Wilson line i
∮
A = iπ for the R-symmetry, the effective twisted

superpotential in two dimensions is given by

W̃I(S;X,Y ) =
1

2
(S2 +X2) + S(Y − iπ) + Li2(e

−S−X) + Li2(e
−S+X) . (5.6)

The term SY is an FI coupling; and we recall that the free chirals with zero R-charge

contribute 1
4(S ±X − iπ)2 + Li2(e

−S∓X).

The expression in (5.6) has several interpretations. It the effective twisted superpo-

tential of an N = (2, 2) theory that governs supersymmetric vacua on R2. It is also the

superpotential for an effective N = 4 quantum mechanics on R+, coming from the reduc-

tion of TI on D
2×qS

1 (in terms of Equation (3.9), we have −iWQM = 1
~
W̃I). Moreover,

when accompanied with a distinguished choice of branch cuts, 1
~
W̃I describes the leading

~ → 0 asymptotics of the operator (3.17) inserted at the origin in quantum mechanics on

R+, or equivalently the leading asymptotics of the integrand of a block integral.

23One way to derive the mirror theory TII from TI is to apply the fundamental T∆ ≃ T ′

∆ symmetry of

section 4.4.1 once to the chiral φ1 and twice to φ2, and to then integrate out decoupled gauge multiplets.

Similarly, to obtain TIII one may apply the T∆ ≃ T ′

∆ symmetry twice to φ1 and once to φ2.
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The mirror symmetry transformation (5.2) should descend to an equivalence of the var-

ious compactified versions of TI, at least in the regions of parameter space where the theory

is massive. The extended mirror symmetry transformation should act holomorphically on

complex parameters, generalizing (5.2) to

(X,Y )
ω7−→
(
Y −X

2
, −3X + Y

2

)
. (5.7)

For a precise duality we must supplement (5.7) with the addition of Chern-Simons contact

terms between between the R-symmetry and vector symmetry, taking the form ±iπX in

twisted superpotentials. Then we find

TII : W̃II(S;X,Y ) =
1

2
S2 − (2X + iπ)S +X2 −X(Y + iπ) + Li2(e

−S) + Li2(e
−S+X−Y )

≃ W̃I

(
S;
Y −X

2
,−3X + Y

2

)
+
iπ

2
(Y +X) , (5.8)

TIII : W̃III(S;X,Y ) =
1

2
S2 + (2X − iπ)S +X2 +X(Y − iπ) + Li2(e

−S) + Li2(e
−S−X−Y )

≃ W̃I

(
S;−X + Y

2
,
3X − Y

2

)
+
iπ

2
(Y −X) , (5.9)

where in the relations to W̃I, indicated by “≃,” we allow shifts of the dynamical field

S by multiples of the complex masses X and Y . From the twisted superpotential, we

can determine the supersymmetric parameter space LSUSY (3.14). In all three theories

TI, TII, TIII, it is given by

LSUSY :
{
py+(y−1−x−x−1)+p−1

y = 0 , pxpy−(px+py)x+1 = 0
}

⊂ (C∗)4 . (5.10)

The precise match of LSUSY among the three theories is a consequence of mirror symmetry,

and serves as a verification of the contact terms added to (5.8)–(5.9).

Finally, in analyzing Stokes jumps it will be helpful to understand the discriminant

locus D for these theories. This is the locus in parameter space where the theories become

massless, and is the source of Stokes walls. It is important to avoid this locus when defining

blocks.24 For TI, the vacuum equation is

exp
∂W̃
∂S

= 1 ⇒ 1

y
= (x−1 − s)(1− xs−1) , (5.11)

with solutions

s1,2(x, y) = −1

2

[
y − x− x−1 ±

√
(y−1 − x− x−1)2 − 4

]
, (5.12)

which has discriminant locus given by

D : {y−1 = x+ x−1 ± 2} ⊂ C∗ × C∗ . (5.13)

For TII and TIII the vacuum equations look different, but the discriminant locus is the same.

Indeed, D is invariant under the Z3 mirror-symmetry action (x, y)
ω7−→
(
x−

1
2 y

1
2 , x−

3
2 y−

1
2

)
.

24Recall that a mass gap is essential for the effective quantum mechanics on R+ to be free of infrared di-

vergences. More generally, we only have control over RG flow for compactified theories if we have made them

massive; and only in this case can we hope for these calculations to accurately reflect 3d mirror symmetry.
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Figure 17. Discriminant locus of the CP1 model on R2×S1: slice at ImY = 0 (left) and projection

to (ReX,ReY ) (right). The ImX direction is periodic, with period 2π.

We present two visualizations of D, which has complex codimension one, in figure 17.

First we take a three-dimensional slice at ImY = 0, which shows some of the branching

structure of D. Then we project all of D to the plane parametrized by the real masses

ReX = 2πβm3d and ReY = 2πβt3d. The latter projection shows the values of m3d and

t3d for which the compactified theory on R2×S1 could become massless (for some choice of

Wilson lines). In the decompactification limit β → ∞, the projection reduces to the three

rays of figure 16.

5.2 Blocks

Since the CP1 sigma-model generically has two massive vacua α = 1, 2, there should be

two independent holomorphic blocks B1(x, y; q), B2(x, y; q). We will now compute the

two blocks for TI using the methods of section 4: we define a formal integral that solves

line-operator identities, and associate a convergent integration cycle Γα to each vacuum α.

To build TI using the iterated construction of section 4.1, we take the following steps.

1. Tensor together two theories T∆1 ⊗ T∆2 to obtain a theory of two chirals φ1, φ2 with

U(1)1 × U(1)2 flavor symmetry and −1/2 CS levels for each. The R-charges are

Rφ1 = Rφ2 = 0.

2. Redefine the flavor symmetries as a vector U(1)V and axial U(1)A, using U =
1
2

(
1 −1
1 1

)
∈ GL(2).

3. There is now minus one unit of Chern-Simons coupling for U(1)V and for U(1)A. Add

one unit of coupling for each to give net zero Chern-Simons levels.

4. Gauge the axial U(1)A, with the addition of an FI term. This produces a new

topological flavor symmetry U(1)J .

5. Shift the R-symmetry current by a unit of the topological U(1)J current, to can-

cel a Chern-Simons coupling between the U(1)R connection AR and the dynamical

gauge connection. (The unwanted coupling comes from the full definition of the T∆
theories.)
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This construction of the theory dictates how to assemble the line-operator identities for

the blocks of TI. We start with canonical identities p̂1+x̂
−1
1 −1 ≃ 0, p̂2+x̂

−1
2 −1 ≃ 0 for the

product T∆1 ⊗T∆2 , and apply the appropriate transformations to obtain the two operators

1√
p̂yx̂

√
p̂x
−ŷ +

1

p̂yx̂
− 1 ≃ 0 ,

√
x̂

p̂y

1√−ŷp̂x
+

x̂

p̂y
− 1 ≃ 0 , (5.14)

where “≃ 0” means “annihilates blocks.” Here x̂, ŷ act as multiplication by the complex

mass parameters x = eX , y = eY (5.4), while p̂x, p̂y are the corresponding shift operators,

satisfying p̂xx̂ = qx̂p̂x, p̂yŷ = qŷp̂y. By working in the left ideal generated by the two

operators in (5.14), the square roots (which arise from the non-integral transformation of

the charge lattice in step (2)) can be eliminated and the operators can be written in the

equivalent form

p̂y +

(
1

ŷ
− x̂− 1

x̂

)
+

1

p̂y
≃ 0 , q−

1
2 p̂xp̂y − x̂(q

1
2 p̂x + p̂y) + 1 ≃ 0 , (5.15)

which makes clear that the line-operator identities are a quantization of the Lagrangian

submanifold LSUSY (5.10).

In a similar way, we can follow these steps and build a block integral that formally

solves (5.15). It takes the form

BI(x, y; q) =
1

(q)∞

∫

∗

ds

2πis

θ(−q− 1
2 y)

θ(x)θ(−q− 1
2 sy)

(qs−1x−1; q)∞(qs−1x; q)∞ (5.16)

=

∫

∗

ds

2πis
ΥI(x, y, s; q) ,

recalling for convenience the definitions

(z; q)∞ :=

{∏∞
n=0(1− qnx) |q| < 1

∏∞
n=1(1− q−nx)−1 |q| > 1

, θ(z) = θ(z; q) := (−q 1
2 z; q)∞(−q 1

2 z−1; q)∞ ,

where θ(z; q) has been abbreviated to θ(z). The two products B∆(sx
±1; q) = (qs−1x∓1; q)∞

in the integrand are the contributions of the chirals φ1, φ2, packaged as theories T∆1 and

T∆2 , and the remaining theta functions reproduce additional Chern-Simons levels and the

FI term. As usual, the choice of theta functions is unique up to multiplication by an elliptic

function (section 4.2). We also include a normalization by 1/(q)∞, defined in (2.61).

To evaluate the blocks (5.16), we need the convergent integration cycles associated to

each vacuum. To this end, it helps to analyze the integrand as a function of the cylindrical

variable S = log s. We take ~ to be real and nonzero, so that q is real and positive, with

|q| < 1 or |q| > 1. For |q| < 1 (respectively, |q| > 1), the integrand has a line of poles

(resp., zeroes) along ImS = ImY , coming from the theta-function θ(−q− 1
2 sy) that is

associated to an FI term. The poles have spacing |~|. There are also two parallel half-lines

of zeroes (resp., poles) coming from the contributions of the chirals; the half-lines start

at S = ±X and stretch to S = −∞, with spacing |~|. At large |ReS| (close to the ends
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Figure 18. Cycles for TI blocks at |q| > 1 (left) and |q| < 1 (right). We choose Y = 2, X = −2πi/3,

and ~ = ±π/4. These are plots of the quantum potential log |ΥI|.

of the S-cylinder), the integrand behaves approximately as exp( 1
2~sign(ReS)S

2), which

indicates that naively the convergent integration cycles can and either at ReS → ∞ when

|q| < 1 or at ReS → −∞ when |q| > 1.

If we send ~ → 0 along the real axis, from either the positive or negative side, the

integrand has leading asymptotics

ΥI(x, y, s; q)
~→0∼ exp

[
1

~

(
1

2
(log x)2−1

2
(log(−y))2+1

2
(log(−sy))2+Li2(x

−1s−1)+Li2(xs
−1)

)]
,

(5.17)

which is equivalent to 1
~
W̃I(S;X;Y ) with a distinguished choice of branch cuts. The cuts

come from the lines of poles and zeroes of ΥI at finite ~, and have slope zero on the S-

cylinder; they are the standard cuts for log and Li2 as written in (5.17). The two critical

points sα(x, y) of (5.17) are located at the solutions to the vacuum equation (5.12).

Now suppose that |q| > 1. We focus on the classical sigma-model phase of TI, that

is ReY ≫ 0 and ReX . ReY . We will also choose ImY ≈ 0 and ImX ≈ 4
3π (mod 2π).

These imaginary parts (Wilson lines) ensure that we are far away from the discriminant

locus in parameter space (figure 17), so that the theory on R2×S1 is massive. Figure 18

shows a plot of the “quantum” potential log |ΥI| at these values of parameters. The

critical points are very close to the beginning of the two half-lines of poles, at S = ±X
(mod 2πi). The downward-flow contours in the vicinity of the critical points have an

obvious continuation to asymptotic, convergent contours Γ1
> and Γ2

>, as indicated. (These

could be obtained using either method of section 4.5.) Moreover, it becomes clear that

at this point in parameter space we are not only far from the discriminant locus, but far

from any Stokes walls: there is no way that the downward-flow cycle from one critical

point could come close to the other critical point.

As in section 4.4, we largely ignore the line of zeroes coming from θ(−q− 1
2 ys) — and the

fact that the integrand at finite ~ has an infinite set of “quantum” critical points between
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every pair of zeroes. We demand that the cycles must be well defined in the ~ → 0 limit (so

don’t know about “quantum” critical points), are asymptotically convergent (so cannot stop

on a zero), and resemble downward-flow cycles in a neighborhood of the classical critical

points; and this leads to Γ1
> and Γ2

>. If we modified the integrand by an elliptic function,

more horizontal lines of poles or zeroes could appear in figure 18 (or cuts as ~ → 0), but

this would not affect the qualitative features of the cycles.

We can evaluate the integral along Γ1
> and Γ2

> by summing residues, and readily find

B1
I (x, y; q) :=

∫
Γ1
>

ds
2πisΥI =

θ(−q−
1
2 y)

θ(x)θ(−q−
1
2 x−1y)

J (xy−1, x2; q) ,

B2
I (x, y; q) :=

∫
Γ2
>

ds
2πisΥI =

θ(−q−
1
2 y)

θ(x)θ(−q−
1
2 xy)

J (x−1y−1, x−2; q) ,
|q| > 1 . (5.18)

Here the function J is related to the so-called Hahn-Exton q-Bessel function [92, 93], and

can be defined by a q-hypergeometric series

J (x, y; q) := (qy; q)∞

∞∑

n=0

xn

(q−1)n(qy; q)n
, |q| < 1 or |q| > 1 , (5.19)

which converges both for |q| < 1 and |q| > 1 and defines a meromorphic function of

x, y ∈ C∗. It is fairly straightforward to check that the functions B
α
I (x, y; q) are solutions

to the line-operator identities (5.15). We will take (5.18), with the extra normalization

factor (q−1)∞/2πi, as a definition of the functions B
α
I (x, y; q), fixing the elliptic-function

ambiguity. The subscript “I” indicates a particular Stokes chamber — the one where TI is

a semi-classical sigma-model.

As a physical check, we can take the true classical limit |y| → ∞ of the blocks. This

corresponds to a sigma-model with a huge CP1 target space, with single, light chiral exci-

tations localized at the north and south poles. In this limit, we find

B1,2
I (x, y; q) ∼ (qx±2; q)∞ (5.20)

up to a theta-function (corresponding to a background Chern-Simons term). We immedi-

ately recognize the remaining light chirals, with masses ∼ |2X|.
What about contours Γ1

< and Γ2
< for |q| < 1? In the neighborhoods of the critical

points, the downward-flow cycles now extend in the horizontal real-S direction, as shown

on the right side of figure 18. We are in one of the situations discussed in section 4.5 and

shown in figure 14. Extending toward positive S, the choice of cycles is obvious. Extending

toward negative S, where the potential log |ΥI| ∼ 1
~
W̃I typically increases like 1

|~|(ReS)
2,

the most intuitive choice is to extend two independent cycles along half-lines of zeroes. We

expect that it is possible to integrate over them with an appropriate regularization.

We do independently expect B
α
I (x, y; q) at |q| < 1 to be naturally related to B

α
I (x, y; q)

at |q| > 1, e.g. in the sense of sharing the same q-hypergeometric series expansions. We

did calculate the |q| > 1 blocks using a series that converged both for |q| < 1 and |q| > 1.

Thus, rather than evaluating the integrals along Γ1,2
< directly, we will simply define

B1
I (x, y; q) := θ(−q−

1
2 y)

θ(x)θ(−q−
1
2 x−1y)

J (xy−1, x2; q) ,

B2
I (x, y; q) := θ(−q−

1
2 y)

θ(x)θ(−q−
1
2 xy)

J (x−1y−1, x−2; q) ,
|q| < 1 (5.21)
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as well. We will see that this definition passes a battery of nontrivial tests, and so we predict

that if the Γ1,2
< integrals were to be regularized and evaluated, they would agree with (5.21).

There is much hidden in the similarity of the definitions (5.18) and (5.21). As was

the case in the examples and section 2.5, the blocks cannot be continued from |q| < 1 to

|q| > 1, and the distinction between the regimes (one topological and one anti-topological)

is crucial. We will see now and in section 5.3 that the J -functions behave very differently

at |q| < 1 and |q| > 1, and that blocks (5.18)–(5.21) satisfy some extremely restrictive

conditions necessary for consistent Stokes phenomena.

5.2.1 The q-Bessel function

We pause to point out a few surprising properties of the q-Bessel function J (x, y; q), some

proven and some conjectured. We do not assume that q is real, but we do assume that it

is never on the unit circle.

First, for both |q| < 1 and |q| > 1, a quick manipulation of the series (5.19) shows that

J (x, y; q) = θ(−q 1
2 y)J (xy−1, y−1; q−1) , |q| 6= 1. (5.22)

When |q| < 1, we can also re-write (qy; q)∞/(qy; q)n = (qn+1y; q)∞ =
∑∞

r=0
1

(q−1)r
(qny)r,

leading to

J (x, y; q) =
∞∑

n,r=0

(−1)n+rq
1
2
(n+r)(n+r+1)xnyr

(q)n(q)r
, |q| < 1 , (5.23)

which shows that the function is symmetric,

J (x, y; q) = J (y, x; q) , |q| < 1 . (5.24)

Combining the symmetry with the “inversion” (5.22) leads to identities such as

θ(−q 1
2x−1y)J (x, y; q) = θ(−q 1

2 y)J (x−1, x−1y; q) , |q| > 1 . (5.25)

In contrast, when |q| > 1 the sum (5.23) never converges and the symmetry (5.24) does

not hold! We find, conjecturally, that it is replaced by the relation

J (x, y; q)− J (y, x; q) =
θ(−q 1

2x−1)θ(−q 1
2 y)

θ(−q 1
2x−1y)

J (x, y; q−1) , |q| > 1 , (5.26)

which we have verified numerically to high precision. This relation ultimately ensures

consistent Stokes jumps for the TI blocks.

Finally, we experimentally find25 an infinite-product expansion

J (x, y; q) = (qx; q)∞(qy; q)∞(q2xy; q)∞(q3x2y; q)∞(q3xy2; q)∞ (5.27)

× (q4x3y; q)∞(q4x2y2; q)∞(q5x2y2; q)∞(q4xy3; q)∞(q5x4y; q)∞ · · · ,

obtained by treating (5.23) as a formal series in q. The corresponding infinite-product form

of the blocksB
α
I of TI in the semi-classical sigma-model chamber contains information about

Ooguri-Vafa invariants (degeneracies of BPS states), as discussed in section 2.2.

25We especially thank Don Zagier for pointing this out, and more generally for offering generous and

extremely useful guidance in numerical analysis of q-series.
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Figure 19. Some Stokes walls for the CP
1 sigma-model at ImY = 0, emanating from the discrim-

inant locus D. The plane P at ImX = −2π/3, highlighted in green on the left, is reproduced on

the right.

5.3 Stokes jumps

One of the most interesting aspects of holomorphic blocks is their global behavior in pa-

rameter space — namely their Stokes phenomena. In the wavefunction interpretation

of the blocks, Stokes walls are locations where there can be tunneling between SUSY

ground states |α〉 in the Hilbert space on T 2. We can analyze the structure of Stokes

walls quantitatively using the block integral and the methods outlined in section 4.5.

We focus on a region of parameter space where the gradient flows of either the semi-

classical potential Re
(
1
~
W̃I(x, y, s; q)

)
(with cuts specified by (5.17)) or the “quantum” po-

tential log |ΥI(x, y, s; q)| can connect one critical point to another without passing through

branch cuts or lines of poles or zeroes. Then the Stokes walls occur semi-classically

when Im
(
1
~
W̃I(x, y, s

(1); q)
)
= Im

(
1
~
W̃I(x, y, s

(2); q)
)
at the two critical points s(1)(x, y) and

s(2)(x, y). Alternatively, using critical points of the full integrand ΥI(x, y, s; q) the walls will

be slightly deformed, and are given by argΥI(x, y, s
(1); q) = argΥI(x, y, s

(2); q) (mod 2π).

We plot the Stokes walls in the region of parameter space with ImY = 0 and ReY > 0

in figure 19, using the semi-classical approximation. We have fixed ~ to be real and small,

but it does not matter whether it is positive or negative. The walls emanate from the

discriminant locus D. Generically, there are three codimension-one walls meeting every

branch of D, in correspondence with the fact that there are two critical points. Indeed,

the behavior of any such system with two critical points that are very close to each other

(as is the case in a neighborhood of the discriminant locus) is universal. It can be modeled

on the Airy integral
∫
dS exp

[
1
~
(S3 + aS)

]
, where a is a generic parameter in the plane

transverse to the discriminant locus. The Airy integral is famously known to have three

Stokes walls in the a-plane, so this is what we expect to see.
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Figure 20. The critical-point cycles at |q| > 1, in various chambers on P. The plots of log |ΥI|
here are drawn for ~ = π/4, at points on the circle |ReX|2 + |ReY |2 = 4.

We restrict our analysis to a neighborhood of the real plane P parameterized by ReX

and ReY at ImX = 4π/3 ≡ −2π/3 (mod 2π) and ImY = 0. This plane has the advantage

of being invariant under mirror symmetry transformations (5.7), which will be discussed in

section 5.4. The discriminant locus D intersects the plane P at the origin, and three Stokes

walls that emanate from it separate the plane into three chambers. Somewhat surprisingly,

the walls turn out to be anti-parallel to the initial massless rays in the three-dimensional

moduli space of TI (figure 16). Thus, it makes sense to label the chambers by the Higgs

and Coulomb rays I, II, and III.

We first take ~ > 0 and |q| > 1. In chamber I, where TI is approximately a sigma-model

onto the CP1 Higgs branch, we have already found the two blocksB1,2
I (x, y; q) corresponding

to the two massive vacua at the poles of the CP1 (5.21). As we vary parameters in the

plane to other chambers, the critical points sα(x, y) start to rotate around each other.

Similarly, the two half-lines of poles in the |q| > 1 integrand (or half-line branch cuts of hI)

slide relative to one another in the ReS direction (their separation in the ImS direction,

given by ImX, is fixed). The critical points and natural downward-flow cycles associated

to them at various values of (ReX, ReY ) are sketched in figure 20.

Moving from chamber I counterclockwise to chamber II, we find that the cycle Γ1
I>

(we suppress the ‘>’ subscript in figure 20) hits the critical point α = 2, and picks up a

copy of Γ2
I>. Thus

(
Γ1
II>

Γ2
II>

)
=M I→II

>

(
Γ1
I>

Γ2
I>

)
, M I→II

> =

(
1 1

0 1

)
. (5.28)
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Correspondingly, the natural |q| > 1 blocks associated to critical-point cycles (i.e. vacua)

in chamber II are not B1
I and B2

I , but rather (B1
II, B

2
II) = (B1

I + B2
I , B

2
I ). Continuing on

through chamber II, the cycle Γ1
II> at some point appears to become closed (wrapping

the cylinder) rather than ending asymptotically at ReS = −∞, but these two choices are

homotopic and there is no modification to the blocks. The next Stokes wall is crossed

moving into chamber III, where Γ2
II picks up a copy of −Γ1

II:

(
Γ1
III>

Γ2
III>

)
=M II→III

>

(
Γ1
II>

Γ2
II>

)
, M II→III

> =

(
1 0

−1 1

)
. (5.29)

And, finally, we cross the third wall to return back to chamber I, finding
(
Γ1
I>

′

Γ2
I>

′

)
=M III→I

>

(
Γ1
III>

Γ2
III>

)
, M III→I

> =

(
1 1

0 1

)
. (5.30)

Note that the product of matrices

M III→I
> M II→III

> M I→II
> =

(
0 1

−1 0

)
(5.31)

is not the identity: there is a monodromy induced by circling around the discriminant

locus, so that the cycles in chamber I have been switched. This is easy to see directly

by following the classical critical points sα(x, y) in (5.12). As we circle around the

discriminant locus, the square root changes sign, taking s1(x, y) ↔ s2(x, y). Physically,

we expect the SUSY ground states |1〉 and |2〉 in the Hilbert space of T 2 to undergo the

monodromy (5.31) if one adiabatically varies parameters to circle the discriminant locus.

5.3.1 Topological and anti-topological regimes

Now let us consider what happens to the blocks at |q| < 1. We can do this using the

formal integration cycles drawn on the right figure 18 for chamber I, by tracing them

through the (ReX, ReY ) plane, just as we did for |q| > 1. We can read off Stokes matrices

even if we don’t know how to compute the integrals directly. However, we already know

what the result must be. As discussed in section 4.5, and as needed for consistency of

topological/anti-topological fusion, the (semi-classical) Stokes walls at |q| < 1 are identical

to the ones at |q| > 1, but the matrices are related by

M< = (M>)
−1T . (5.32)

Indeed, considering the formal integration cycles leads to precisely these jumps. Given the

blocks (5.21) in chamber I, in chambers II and III we should then have

(
B1

II

B2
II

)
= (M I→II

> )−1T

(
B1

I

B2
I

)
=

(
B1

I

B2
I −B1

I

)
, |q| < 1 , (5.33a)

(
B1

III

B2
III

)
= (M II→III

> M I→II
> )−1T

(
B1

I

B2
I

)
=

(
B2

I

B2
I −B1

I

)
, |q| < 1 . (5.33b)
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This brings us to a puzzle, previewed already in the Introduction. When |q| > 1,

the blocks associated to vacua and integration cycles of figure 20 (in contrast to expres-

sions (5.33)), are

(
B1

II

B2
II

)
=

(
B1

I +B2
I

B2
I

)
,

(
B1

III

B2
III

)
=

(
B1

I +B2
I

−B1
I

)
, |q| > 1 . (5.34)

In the “classical” chamber I, we postulated that the |q| < 1 blocks and the |q| > 1 blocks

should have the same convergent q-hypergeometric series expansions, enabling us to de-

rive (5.21) from (5.18). There is nothing special about chamber I, and this property of being

related naturally by a convergent series should hold in all chambers. However, the linear

combinations of |q| < 1 and |q| > 1 blocks in chambers II and III above look very different!

The resolution comes once we remember that — despite having identical series

expansions — the |q| < 1 and |q| > 1 blocks are different analytic functions which

obey different identities. For example, let’s focus on the blocks B1
II in chamber II. For

|q| < 1, we have B1
II(x, y; q) = B1

I (x, y; q), with the block given by (5.21), but we use the

symmetry (5.24) to re-write B1
II as

B1
II(x, y; q) =

θ(−q− 1
2 y)

θ(x)θ(−q− 1
2x−1y)

J (x2, xy−1; q) , |q| < 1 . (5.35)

On the other hand, for |q| > 1, Stokes jumping predicts that the block is given by

B1
II(x, y; q) = B1

I (x, y; q) + B2
I (x, y; q), with the r.h.s. given by (5.18). We can transform

the resulting function as follows:

B1
II(x, y; q)=

θ(−q− 1
2 y)

θ(x)θ(−q− 1
2x−1y)

J (xy−1, x2; q)+
θ(−q− 1

2 y)

θ(x)θ(−q− 1
2xy)

J (x−1y−1, x−2; q) |q|>1

(5.25)
=

θ(−q− 1
2 y)θ(−q 1

2x2)

θ(x)θ(−q− 1
2x−1y)θ(−q 1

2xy)
J (x−1y, xy; q)+

θ(−q− 1
2 y)θ(−q− 1

2x2)

θ(x)θ(−q− 1
2xy)θ(−q 1

2x−1y)
J (xy, x−1y; q)

=
θ(−q− 1

2 y)θ(−q 1
2x2)

θ(x)θ(−q− 1
2x−1y)θ(−q 1

2xy)

[
J (x−1y, xy; q)− J (xy, x−1y; q)

]
(5.36)

(5.26)
=

θ(−q− 1
2 y)

θ(x)
J (x−1y, xy; q−1)

(5.24)
=

θ(−q− 1
2 y)

θ(x)
J (xy, x−1y; q−1)

(5.22)
=

θ(−q− 1
2 y)

θ(x)θ(−q− 1
2x−1y)

J (x2, xy−1; q) ,

where in the middle step (5.36) we used θ(z) = θ(z−1) and θ(−q− 1
2 z) = −z θ(−q 1

2 z) to

match the theta-prefactors in the second term to those in the first term, up to a sign.

Thus, we have arrived at an expression for the |q| > 1 block in chamber II that looks

identical to the |q| < 1 block; by the definition of the J -function (5.19), they have the

same convergent series expansions.
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Such manipulations — taking completely different paths for |q| < 1 and |q| > 1 —

work to bring all blocks in all chambers to the same form at |q| < 1 and |q| > 1. The result

can be summarized as:

B1
II(x, y; q) = θ(−q−

1
2 y)

θ(x)θ(−q−
1
2 x−1y)

J (x2, xy−1; q) ,

B2
II(x, y; q) = − θ(−q−

1
2 y)θ(−q

1
2 x2)

θ(x)θ(−q−
1
2 x−1y)θ(−q

1
2 xy)

J (xy, x−1y; q) ;
|q| < 1 or |q| > 1 (5.37)

B1
III(x, y; q) = θ(−q−

1
2 y)

θ(x)θ(−q−
1
2 xy)

J (x−2, x−1y−1; q) ,

B2
III(x, y; q) = θ(−q−

1
2 y)θ(−q−

1
2 x2)

θ(x)θ(−q−
1
2 xy)θ(−q−

1
2 xy−1)

J (x−1y, xy; q) .
|q| < 1 or |q| > 1 (5.38)

5.4 Mirror symmetry

Another constraint on the form of holomorphic blocks for TI comes from mirror symmetry.

The blocks associated to massive vacua in a given chamber of a theory should not depend

on the choice of mirror description used to calculate them. In the present case, we have

three mirror descriptions TI ≃ TII ≃ TIII of the same theory, with the property that each

is a semi-classical sigma-model to a CP1 Higgs branch in a different chamber. Thus, we

might expect that theories TII and TIII give us simple descriptions of the blocks B
α
II and B

α
III

(respectively), just as TI gave an especially simple description of the blocks B
α
I in chamber I.

To be more precise, let’s consider again the complexified mirror-symmetry action

(X,Y )
ω7−→
(
Y −X

2
, −3X + Y

2

)
, or (x, y)

ω7−→
(√

y

x
,

1√
x3y

)
. (5.39)

The theory TII is given by applying (5.39) to the flavor symmetries and and parameters

of TI, and shifting some background theta-angles and R-charges. In (X,Y ) parameter

space, the transformation (5.39) preserves a neighborhood of the plane P at ImX = 4π/3

and ImY = 0, and permutes the chambers of figure 19 counterclockwise, I → II → III →
I. Therefore, by applying (5.39) to the blocks B

α
I associated to vacua in chamber I (as

calculated by TI, say), we expect to get blocks associated to vacua in chamber II:

(
B1

I

B2
I

)
∼
(

J (xy−1, x2; q)

J (x−1y−1, x−2; q)

)
ω7−→

(
B1

II

B2
II

)
∼
(
J (xy, x−1y; q)

J (x2, xy−1; q)

)
. (5.40)

Similarly, by applying the mirror-symmetry transformation twice, we should get the blocks

associated to vacua in chamber III,

(
B1

I

B2
I

)
∼
(

J (xy−1, x2; q)

J (x−1y−1, x−2; q)

)
ω2

7−→
(
B1

III

B2
III

)
∼
(
J (x−2, x−1y−1; q)

J (x−1y, xy; q)

)
. (5.41)

This is in beautiful agreement with our calculations in (5.37)–(5.38) above, which used

a Stokes analysis and special properties of the q-Bessel function J . The agreement, of

course, is up to a possible relabeling of vacua 1 ↔ 2, and up to a ratio of theta-functions

that encode the extra Chern-Simons contact terms discussed in section 5.1.

– 77 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

There are block integrals for theories TII and TIII that produce expressions (5.37)–(5.38)

directly. In deriving them, it is important to be careful about Chern-Simons contact terms.

These can be fixed either by matching line-operator identities in candidate mirror theories,

or by remembering that the mirror symmetry TI ≃ TII ≃ TIII is generated by repeated

applications of the simple T∆ ≃ T ′
∆ mirror symmetry (cf. footnote 23), which was analyzed

in section 4.4. The result for the block integrals is

BII(x, y; q) =

∫

∗

ds

s

θ(−q− 1
2 y)θ(−q 1

2x2)

θ(x)θ(−q− 1
2x−1y)θ(−q− 1

2 sx−2)
(qs−1; q)∞(qs−1xy−1; q)∞ , (5.42a)

BIII(x, y; q) =

∫

∗

ds

s

θ(−q− 1
2 y)θ(−q− 1

2x2)

θ(x)θ(−q− 1
2xy)θ(−q− 1

2 sx2)
(qs−1; q)∞(q(sxy)−1; q)∞ . (5.42b)

In chambers II and III, where the theories TII and TIII become semi-classical, the respective

blocks integrals at |q| > 1 have two well-separated half-lines of poles with critical-point

cycles analogous to those in figure 18. Summing up each half-line of residues yields (re-

spectively) the blocks B
α
II in (5.37) and B

α
III in (5.38).

5.5 Fusion

Now that we have defined holomorphic blocks for the CP1 sigma-model, let us use them

to check our main conjecture: that the ellipsoid partition function and sphere index both

decompose into a sum of products of blocks. Exhibiting these decompositions in different

mirror frames, in terms of blocks in different Stokes chambers, provides a new way to prove

identities among the integral expressions that give ellipsoid partition functions and indices.

The ellipsoid partition function of TI is normally expressed in terms of b2 = ~/(2πi)

and complex masses µx = X/(2πb), µy = Y/(2πb). We also set σ = S/(2πb). Using the

rules described in [2], we find

ZI
b(µx, µy; b) =

∫

R

dσ e−2πiµyσsb

(
i

2
(b+ b−1)− µx − σ

)
sb

(
i

2
(b+ b−1) + µx − σ

)
(5.43)

= −2πi

~
C−2

∫

R

dS

2πb

∣∣∣∣ΥI(x, s; q)
∣∣∣∣2
S
,

with C = exp
[
− 1

24(~ + ~̃)
]
and sb and defined in section 2.5, and with ΥI the block

integrand from (5.16). The integrand is now a (non-periodic) meromorphic function of

S = 2πbσ ∈ C, with poles at S = ±X − ~m − 2πin, or σ = ±µx − ibm − ib−1n, for

n,m ∈ Z≥0. The integral can be evaluated by closing the contour in the lower half-plane

and summing up the residues [10]. The result is

ZI
b(µx, µy; b) =

= i
3
2C−1e

X2

~

(
e−

1
~
X(Y−iπ− ~

2
)
∣∣∣∣J (xy−1, x2; q)

∣∣∣∣2
S
+ e

1
~
X(Y−iπ− ~

2
)
∣∣∣∣J (x−1y−1, x−2; q)

∣∣∣∣2
S

)

= i
3
2C−3

(∣∣∣∣B1
I (x, y; q)

∣∣∣∣2
S
+
∣∣∣∣B2

I (x, y; q)
∣∣∣∣2
S

)
. (5.44)

Of course, we could also have computed the ellipsoid partition function in a different

mirror frame, and we expect to find the same answer. For theories TII and TIII, a summation
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of residues analogous to the one described above produces

ZII
b (µx, µy; b) =

∫

R

dσ E(µx, µy, σ; b) sb

(
i

2
(b+ b−1)− σ

)
sb

(
i

2
(b+ b−1) + µx − µy − σ

)

= i
3
2C−3

(∣∣∣∣B1
II(x, y; q)

∣∣∣∣2
S
+
∣∣∣∣B2

II(x, y; q)
∣∣∣∣2
S

)
, (5.45)

ZIII
b (µx, µy; b) =

∫

R

dσ E(−µx, µy, σ; b) sb
(
i

2
(b+ b−1)− σ

)
sb

(
i

2
(b+ b−1)− µx − µy − σ

)

= i
3
2C−3

(∣∣∣∣B1
III(x, y; q)

∣∣∣∣2
S
+
∣∣∣∣B2

III(x, y; q)
∣∣∣∣2
S

)
, (5.46)

with

E(µx, µy, σ; b) = exp

[
iπ

(
− 3

2
µ2x+µxµy+

1

2
µ2y+3µx+µy−

i

2
(b+b−1)(µx+µy)

)]
. (5.47)

The blocks appearing here are manifestly the expressions given by (5.37)–(5.38). The equiv-

alence of the right-hand sides of (5.44), (5.45), and (5.46) then follows immediately from

the nontrivial linear identities derived in section 5.3.1, which show that blocks in different

chambers are related by pairs of conjugate Stokes matrices. For example, when |q| < 1,
∣∣∣∣B1

II(x, y; q)
∣∣∣∣2
S
+
∣∣∣∣B2

II(x, y; q)
∣∣∣∣2
S

(5.48)

= B1
I (x, y; q)

(
B1

I (x̃, ỹ; q̃) +B2
I (x̃, ỹ; q̃)

)
+
(
B2

I (x, y; q)−B1
I (x, y; q)

)
B2

I (x̃, ỹ; q̃)

=
∣∣∣∣B1

I (x, y; q)
∣∣∣∣2
S
+
∣∣∣∣B2

I (x, y; q)
∣∣∣∣2
S
.

On the other hand, the equivalence of the left-hand sides was studied in [94] (cf. appendix

C therein) using identities for elliptic hypergeometric functions. It appears that Stokes

phenomena for holomorphic blocks provides another way to understand such identities.

As for the sphere index of TI, we follow the formalism of [3, 9, 11] to write

I(mx, ζx,my,ζy; q) =
∑

n∈Z

∮
dσ

2πiσ
(−q− 1

2 )nζmx
x ζny σ

my+nI∆(mx + n, ζxσ; q)I∆(−mx + n, ζ−1
x σ; q)

=
∑

n∈Z

∮
dσ

2πiσ

∣∣∣∣ΥI(x, y, s; q)
∣∣∣∣2
id
, (5.49)

where we now identify x = q
mx
2 ζx, y = q

my
2 ζy, s = q

n
2 σ, and x̃ = q

mx
2 ζ−1

x , ỹ = q
my
2 ζ−1

y , s̃ =

q
n
2 σ−1, and we have expressed the integrand in terms of the free-chiral index I∆(m, ζ; q) =∏∞
r=0(1− q1−

m
2
+rζ−1)/(1− q−

m
2
+rζ) =

∣∣∣∣B∆(x; q)
∣∣∣∣2
id
. The integration in σ is over the unit

circle, and it is assumed that |q| < 1. For each fixed monopole number n, the integrand

of (5.49) has two families of poles lying on or outside the unit circle. The contour can be

deformed to infinity, picking up contributions from all of these poles. It is straightforward

to sum up the residues in each family and see that

I(mx, ζx,my, ζy; q) =
∣∣∣∣B1

I (x, y; q)
∣∣∣∣2
id
+
∣∣∣∣B2

I (x, y; q)
∣∣∣∣2
id
. (5.50)

Just as for the ellipsoid partition function, we can express the index in different mirror

frames in order to obtain identities among integrals of the form (5.49). Such identities

were explored in [9, 95], and again we observe that blocks provide an interesting window

into such relations.
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5.6 Equivariant K-theory, surface operators, and topological strings

To conclude, we would like to touch upon several other interpretations of the holomorphic

blocks for TI. These include the connections to vortices and topological strings described

in section 2.2. All of the following interpretations were discussed in [20] (see also [73]).

Let us first consider the dimensional reduction of TI to two dimensions. We obtain a

classic example of an N = (2, 2) gauged linear sigma model [65], which in the infrared is

described by a nonlinear sigma model with target space CP1. The FI parameter Y , which

in two dimensions is complexified by a theta angle, still parameterizes the size of the CP1

(it is the complexified Kähler class). The complex twisted mass X makes the sigma-model

classically massive, with two vacua where the bosonic fields are fixed at the north or south

poles of CP1, respectively. For non-zero twisted mass, a map from the worldsheet R2 to

CP1 will have finite energy only if the asymptotic boundary of R2 is mapped either to the

north or south pole. This effectively compactifies the worldsheet of the IR sigma model:

we find a theory of maps from a CP1 worldsheet to a CP1 target, with a fixed basepoint.

Upon implementing an A-type twist, the theory localizes to holomorphic maps of this kind.

The holomorphic blocks of TI compute what is known as the equivariant J-function of

the moduli space of holomorphic maps from CP1 to CP1 [96]. Let us recall for convenience

that the two blocks associated to vacua in the semi-classical chamber (I) take the form

B1,2
I (x, y; q) ∼ J (x±1y−1, x±2; q) ∼

∞∑

n=0

xn

(q−1)n(qx±2; q)n
y−n , (5.51)

up to simple theta-function or (∗; q)∞ prefactors. The n-th term in the sum is an equivariant

K-theoretic character of the moduli space of maps of degree n, where x is an equivariant

weight for U(1) rotations of the target CP1 (which is how the vector U(1)V symmetry acts

in the physical theory), and q is an equivariant weight for U(1) rotations of the base. The

two choices of vacua correspond to the choice of basepoint for the maps — whether we

map the point at ∞ on the base to the north or south poles on the target.

We can also connect the blocks in chamber I to equivariant vortex counting for the 2d

N = (2, 2) gauged linear sigma model. We take the special limit described in section 2.2,

scaling

q = eβǫ , x = eβm , y = − 1

β2yFI
; β → 0 , (5.52)

with yFI being the more standard exponentiated FI or vortex-counting parameter in 2d.

We have also absorbed factors of 2π in β and i in ǫ (relative to the rest of this paper). In

this limit, the blocks become

B1,2
I (x, y; q)  

∞∑

n=0

1

n!ǫn
∏n

j=1(±m+ jǫ)
ynFI , (5.53)

which was the 2d vortex partition function found in [20] (see also [67]).

The reduced 2d theory is also the effective field theory on the simplest possible half-

BPS surface operator in 4d pure SU(2) N = 2 super-Yang-Mills theory [20, 72, 81]. The

surface operator can be defined either in the UV (as a gauged linear sigma model) or in the
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Figure 21. Toric geometry for TI.

IR (as a CP1 sigma model). For an appropriate choice of Chern-Simons levels, the U(1)V
symmetry that rotates the CP1 is enhanced to SU(2)V and gauged in coupling to the bulk.

The vortex partition function (5.53) can be obtained by placing the coupled 2d-4d system in

an Omega background, computing the partition function, and sending the four-dimensional

gauge coupling (or rather, the QCD scale) to zero to decouple the bulk physics.

Finally, TI can be engineered on an M5 brane that wraps a (toric) Lagrangian cycle

in the noncompact Calabi-Yau geometry O(−2) ⊕ O(0) → P1. One way to see this con-

nection is to start from a D2-D4-NS5 brane construction of the surface operator described

above [97], and to perform a chain of string/M-theory dualities. The toric diagram for this

setup is shown in figure 21. There are two possible placements for the toric brane, corre-

sponding to the vacua of TI. The (exponentiated) closed-string modulus which controls the

size of the P1 base corresponds to the mass x; while the (exponentiated) open-string mod-

ulus corresponds to the FI parameter y. The open-string partition functions can readily be

computed using the topological vertex [98], and the answers agree with the blocks (5.51),

again up to theta-functions that encode background Chern-Simons levels. This perspective

on holomorphic blocks of TI was explored in [10].

6 Blocks in Chern-Simons theory

In this final section, we relate holomorphic blocks to path integrals in analytically contin-

ued Chern-Simons theory. For the three-manifold theories to which this relation applies,

the dictionary between the two descriptions will shed light on some of the more subtle

aspects of holomorphic blocks that we encountered in the previous sections. Moreover, the

computability of holomorphic blocks allows us to compute non-perturbative Chern-Simons

path integrals that are otherwise out of reach.

The basic connection between the two comes from M-theory. Namely, consider K M5

branes wrapping a cycle

M ×D2 ×q S
1 ⊂ T ∗M × TN ×q S

1 , (6.1)

whereD2 is a cigar sitting in Taub-NUT space which is locally of the form TN ≃ T ∗D2. We

let the geometry be a fibration, with D2 ⊂ TN rotating by an amount q when translated

around S1. Then the reduction of the M5-brane theory alongM produces an effective three-

dimensional N = 2 theory T
(K)
M on D2×qS

1, as in [16]; while the reduction along D2×qS
1

produces an analytically continued SU(K) Chern-Simons theory on M [19, 20]. (More
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precisely, reduction on the compact torus fiber of D2×qS
1 leads to twisted N = 4 Yang-

Mills theory on M ×R+, which provides an analytic continuation of Chern-Simons theory.

We will come back to this important detail later.) The renormalized and complexified

Chern-Simons level k is related to the twisting of the cigar by

q = exp(2πiβǫ) =: exp
2πi

k
. (6.2)

The partition function of T
(K)
M on D2×qS

1 should be equal to a partition function of

Chern-Simons theory on M . Both cases require additional input. For T
(K)
M , we know that

we must specify a vacuum α at the infinite end of the cigar, leading to the block B
α

T
(K)
M

. In

Chern-Simons theory we have to choose a convergent integration cycle for the analytically

continued path integral — a middle-dimensional cycle in the space of SL(K,C) connections

onM . A basis of cycles {Γα
CS} is labelled by flat SL(K,C) connections Aα onM , or critical

points of the Chern-Simons functional [17, 21]. We then expect that

B
α

T
(K)
M

= Zα
CS[M ] , (6.3)

where Zα
CS is the Chern-Simons path integral on Γ

α
CS.

There is an important subtlety in identifying the blocks defined in this paper with a

Chern-Simons path integral on a cycle defined by the Lefschetz thimbles of [17]. Namely,

the basis of such Lefschetz thimbles in Chern-Simons theory is infinite due to the non-

invariance of the analytically continued Chern-Simons functional under large gauge trans-

formations. In general, it was argued in [17] that in identifying an integration cycle with a

flat connection, one must further specify a lift of the flat connection to the universal cover

of the space of connections modulo topologically trivial gauge transformations.

This situation is not dissimilar to what we have encountered in section 3, where the

naive action of the supersymmetric quantum mechanics was multivalued, and required a

formulation on an infinite-sheeted cover of the scalar manifold. However, we have seen that

three-dimensional gauge theory dictates that we interpret all lifts of a vacuum as images of

that vacuum under large gauge transformations which are good symmetries of the theory;

hence we are able to compute blocks in terms of exponentiated (single-valued) variables.

It is evident that as defined in this paper, holomorphic blocks are related to the four-

or six-dimensional realizations of Chern-Simons path integrals with a boundary condition

that includes contributions from all images of a single flat connection.

A second indication of this complication is that the individual integration cycles of [17]

associated to a single image of a flat connection are defined in such a way as to be analytic

across |q| = 1. In fact, they may be adjusted so as to reproduce an SU(N) Chern-Simons

partition function for q a root of unity. Holomorphic blocks, on the other hand, are always

ill-defined at |q| = 1, and cannot be analytically continued across the unit circle. This is not

so surprising when holomorphic blocks are understood as a (perhaps weighted) sum over

images of a single flat connection. In fact, in this sense, holomorphic blocks may be more

similar to the q-deformation of two-dimensional Yang-Mills theory than to Chern-Simons

theory with a compact gauge group, which has the same trouble at |q| = 1.

– 82 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

In spite of these complications, the general considerations of the first part of this section

will apply independent of this detail, and the experimental tests at the end of the section

will prove robust enough to evade any of these subtleties.

The relationship between blocks and Chern-Simons path integrals should be very gen-

eral, applying to any kind of three-manifold M , and also to gauge groups besides SU(K).

However, it can be studied most concretely if we take M to have non-empty boundary and

to admit a (topological) ideal triangulation, cf. [16, Sec 2]. For example, we can take M to

be a knot complement. From a 6d perspective, the knot is realized as a codimension-two

defect; but on M the defect can be regularized to the ideal boundary of a knot comple-

ment. Then at low energies the theory T
(K)
M (or a certain subsector thereof) is effectively

described as one of the “class-R” theories constructed in [16].26 Strikingly, this means that

Zα
CS[M ] = B

α

T
(K)
M

can be expressed as a finite-dimensional block integral.

In terms of Chern-Simons theory, the reduction of an infinite-dimensional path integral

to a finite-dimensional block integral arises by virtue of the triangulation of M . Each

B∆(z; q) factor in the block integral (4.30) should be interpreted as the Chern-Simons

wavefunction on a tetrahedron ∆, obtained by doing an infinite-dimensional path integral

with fixed boundary conditions on ∂∆ parametrized by z. Then only finitely many degrees

of freedom remain to be integrated out to glue the tetrahedra together. This type of “state

sum” or “state integral” model has been used fruitfully in the past to construct other kinds

of Chern-Simons wavefunctions, e.g. [99, 100].

The relation between holomorphic blocks and Chern-Simons path integrals gives an

explicit realization of the Stokes phenomena in Chern-Simons theory described by [17].

In particular, integration cycles for Chern-Simons path integrals and contours for block

integrals are expected to have the same Stokes jumps, so that the latter can be used to

understand the former. Another major (potential) advantage of (6.3) is that it relates cat-

egorification in Chern-Simons theory, as discussed in [19, section 6], to BPS counting in a

comparatively simple three-dimensional gauge theory. One would hope in the future to find

“refined” versions of blocks B
α
TM

∼ TrH(R2;α)(−y)2Jq
R
2
−Jxe that calculate Poincaré poly-

nomials for a set of knot homologies labelled by flat connections α on a knot complement.

It is natural to ask if gluing blocks to form ellipsoid partition functions Zb[T ] or S2×qS
1

indices I[T ] for T
(K)
M has an analogue in Chern-Simons theory. To some extent, the answer

is already known from [11, 16]: I[T ] is a physical, non-analytically-continued SL(K,C)

Chern-Simons partition function (with holomorphic and anti-holomorphic contributions);

while Zb[T ] matches the “state integral” for Chern-Simons theory defined in [53, 101,

102] and reformulated in [85]. The latter is an analytically continued SL(K,R) Chern-

Simons partition function on M with special, Teichmüller-like boundary conditions at ∂M

(cf. [103]). Both of these correspondences arise indirectly through comparison of defining

properties of the relevant partition functions.

Below, we review some aspects of analytic continuation in Chern-Simons theory

and the expected relations to three-dimensional theories arising from six-dimensional

26In [16], only the case K = 2 was treated, but it will be shown in upcoming work that general T
(K)
M is

also in class R.
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constructions. The main goal is to obtain a complete dictionary of parameters on the two

sides. Otherwise, there are already long and beautiful expositions of these subjects in the

literature [17–19, 21, 53].

We then consider some explicit examples that test (6.3) in the case of K = 2. The

experimentally minded reader may wish to skip directly to these examples. We compute

the blocks for trefoil (31), figure-eight (41), and 52 knot complement theories, and check

the expected correspondence between blocks and flat connections by comparing the leading

asymptotics of blocks to volumes of flat connections. Finally, we test a new, conjectural,

non-perturbative relation between blocks of a knot-complement theory and the so-called

“stabilization limit” of the colored Jones polynomial for the knot.

6.1 Chern-Simons theory and analytic continuation

We begin our review of analytic continuation in Chern-Simons theory and its realization

via N = 4 super-Yang-Mills theory on a four-dimensional half-space. We collect results

of [17–19, 21, 53] (see also [104]), where this subject is discussed in much greater detail.

For concreteness, we consider Chern-Simons theory with real, compact gauge group

SU(2), which has complexification SL(2,C). We also focus on simple three-manifolds with

the topology of S3 and an embedded knot K ⊂ S3. The knot is given an orientation and a

framing, which is a choice of section for the unit-normal bundle of K in S3, or equivalently

a prescription for how to deform the knot to a parallel copy of itself. We will always choose

the canonical framing in which a knot and its parallel in S3 have zero linking number.

There are two equivalent ways to associate compact SU(2) partition functions to the

pair (K, S3). First, one can perform the Chern-Simons path integral over SU(2) connections

A on S3, with the insertion of a Wilson-loop operator WK,N (A) in the N -dimensional

irreducible representation of SU(2):

ZCS(S
3,K; k,N) =

∫
DAei k̄

4π
ICS(S

3;A)WK,N (A) , (6.4)

where ICS(M ;A) is the Chern-Simons functional. The answer depends on integers k,N ,

where k = k̄+2 sgn(k̄) is the renormalized level of the theory. Alternatively, one can excise

the knot, forming the knot complement M = S3\K, and perform the path integral with a

specified singularity at the knot,

A ∼ iπN

k

(
1 0

0 −1

)
dθ+ regular (modulo conjugation) , (6.5)

where θ is an angular coordinate in the plane perpendicular to K at a given point. This

means that connections have a monodromy with eigenvalues x±1/2 or −x±1/2,

x := e
2πiN

k , (6.6)

around an infinitesimally small loop linking the knot. Then

ZCS(M = S3\K; k, x) =

∫

fixed x
DAei k̄

4π
ICS(M ;A) . (6.7)
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The equivalence of (6.4) and (6.7) is discussed in [105–107]. Using either definition, the

path integral is a polynomial in q
1
2 = exp iπ

k for every fixed N ,

ZCS(S
3,K; k,N) = ZCS(M = S3\K; k, x) ≃ JN (K; q) =: J(x; q) , (6.8)

up to an overall normalization by the empty S3 partition function ZCS(S
3; k). Sometimes

it makes sense to think of these partition functions as functions of two variables x = qN

and q, as indicated by the notation J(x; q). The set of polynomials JN (K; q) coincides27

with the “colored Jones polynomials” of K [108–110].

The basic idea of analytic continuation is to consider k and N , or x and q, to be

complex numbers, and to promote J(x; q) to a locally analytic function. While there is

no unique way to do this, a natural prescription is suggested by physical path integrals.

The two realizations (6.4) (Wilson lines) and (6.7) (monodromy defects) of J(x; q) lead to

slightly different continuations, and it is the latter that interests us, because it is ultimately

related to the knot-complement theories TM of [16].

In terms of the path integral (6.7), analytic continuation arises from formulating the

integral over real SU(2) connections A as an integral over a real, middle-dimensional cycle

ΓR in the space of complexified SL(2,C) connections A. Just as in finite-dimensional

complex analysis, the integral over ΓR may be dominated by contributions from several

complex critical points of the (now holomorphic) functional ICS(A). These critical points

are flat SL(2,C) connections Aα
on the knot complement M = S3\K, with fixed holonomy

eigenvalues ±x± 1
2 around a small loop linking the knot.28 Non-perturbatively, one can

actually decompose ΓR into a basis of convergent integration cycles ΓR =
∑

α nαΓ
α
CS, with

each Γ
α
CS defined by downward gradient flow from a critical point Aα

with respect to the

real part of ik̄
4π ICS(A). One can then try to expand the original partition function as

J(x; q) =
∑

α

nαZα
CS(x; q) , (6.9)

where each Zα
CS(x; q) is the complexified path integral over a fixed integration cycle Γ

α
CS.

In this context, it makes sense to promote x and q to generic complex variables, and to

define the Zα
CS(x; q) as locally analytic functions. As x and q are varied in the complex

plane, the Zα
CS(x; q) may interact with each other via Stokes phenomena.

The number of flat connections with fixed boundary conditions on a knot comple-

ment M = S3\K is usually finite. Moreover, the flat connections can be characterized as

27In the mathematics literature, the polynomials JN (K; k) are usually normalized by dividing by the

polynomial JN (U, k) = (q
N

2 − q−
N

2 )/(q
1

2 − q−
1

2 ) = (x
1

2 − x−
1

2 )/(q
1

2 − q−
1

2 ) of the unknot U ⊂ S3. This

normalization is a little unnatural physically, and we will not use it.
28As was stated in the introduction to this section, the actual critical points argued by [17] to be relevant

when k,N /∈ Z are not just flat connections α in the conventional sense (counted modulo full SL(2,C) gauge

transformations), but flat connections modulo gauge transformations continuously connected to the identity.

For a knot complement in S3, every standard flat connection gives rise to a family of Z×Z critical points. The

contributions of different critical points in the same family to a sum such as (6.9) simply differ by exp(2πiak+

2πibN), for integers a, b ∈ Z. Then, practically speaking, one still expects a formula of the form (6.9) to

hold with α labeling standard flat connections, so long as the coefficients nα are allowed to contain sums of

factors exp(2πiak+2πibN) when x and q are not roots of unity. As was also discussed in the introduction,

the label α for holomorphic blocks is a standard flat connection, so that is what we focus on here.
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solutions29 at fixed x of a two-variable polynomial

AM (x, p) = 0 , x, p ∈ C∗ , (6.10)

called the A-polynomial of the knot [111]. This equation relates the square of the holonomy

eigenvalue x of a flat connection around a small loop linkingK with the holonomy eigenvalue

−p around a parallel copy of the knot in M (where the parallel copy is chosen according

to the knot’s framing). The notation here is chosen to match that of three-dimensional

gauge theories TM ; in the knot theory literature, the holonomy variables are usually called

m and ℓ (for “meridian” and “longitude”), with

x ↔ m2 , p ↔ −ℓ . (6.11)

The A-polynomial always takes the form AM (x, p) = (p + 1)Airr
M (x, p), with a canonical

component (p+1) corresponding to “abelian” flat connections that take values in a maximal

torus of SL(2,C) (i.e. that are reducible).

Quantum mechanically, the partition functions Zα
CS(x; q) should be solutions to an

equation

ÂM (x̂, p̂; q)Zα
CS(x; q) = 0 , (6.12)

where ÂM (x̂, p̂; q) is a polynomial in operators x̂, p̂ and q (with p̂x̂ = q x̂p̂), that reduces

to AM (x, p) in the classical limit q → 1. This is the quantum version of the classical

constraint (6.10). In fact, more than this has been conjectured to be true. Namely, it is

expected that there exists a quantization Âirr
M (x̂, p̂; q) of just the irreducible A-polynomial

Airr
M (x, p) that annihilates Zα

CS(x; q) for all flat connections A
α
except the abelian one,

Âirr
M (x̂, p̂; q)Zα

CS(x; q) = 0 , α 6= abelian , (6.13)

cf. [51, 85]. The irreducible A-polynomial has been systematically quantized in [85]. This

suggests that there exists a consistent truncation of analytically continued Chern-Simons

theory to a sector containing just irreducible flat connections. This conjecture is strength-

ened by the analysis of [17], which demonstrates that the abelian integral can never

contribute to other Zα
CS(x; q) via a Stokes phenomenon.

In the classical limit k = 2πi
~

→ ∞, any term Zα
CS(x; q) is dominated by the critical

point that defines it, so

Zα
CS

q→1∼ exp
1

~
V(Aα

) , (6.14)

where the “volume” V(Aα
) of a flat connection is defined by evaluating the classical,

holomorphic Chern-Simons functional −1
2ICS(Aα). For a flat connection corresponding

to a hyperbolic metric on the knot complement M (with a deformation of the cusp

29More precisely, the A-polynomial parameterizes flat connections on the torus boundary of a knot

complement that can be extended to flat connections in the bulk. Thus every flat connection on M maps

to a solution to (6.10), and typically the correspondence is one-to-one, though precisely when this is true

is not known.
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at K parametrized by x), the hyperbolic volume Vol(M ;x) and Chern-Simons invariant

CS(M ;x) are related to the holomorphic volume by

V(Aα
;x) = i(Vol(M ;x) + iCS(M ;x)) + i log |pα| arg x+ iπ log x , (6.15)

where pα(x) is the associated solution to the classical A-polynomial A(pα, x) = 0. Note

that only V(Aα
;x) is (locally) a holomorphic function of x. On the other hand, the quantity

Vol(M ;x)+ iCS(M ;x) is non-holomorphic but globally well defined up to integer multiples

of 4π2. The l.h.s. has more severe global ambiguities due to branch cuts, ultimately related

to the extra factors discussed in footnote 28.

6.2 To six dimensions and back

We now describe the chain of relations that connect Chern-Simons theory in three dimen-

sions to the (2, 0) theory in six dimensions, following [19]. We alternate between the purely

field theoretic perspective and brane constructions. Our goal is simply to understand the

map of parameters between blocks (and their fused products) and analytically continued

Chern-Simons theory, though this requires some technology.

Chern-Simons from four dimensions. The first step is a lift to four dimensions, ex-

tending Chern-Simons theory on M to N = 4 SYM with the same (compact) gauge group,

on a half-space V =M×R+. The lift provides a natural and physically meaningful analytic

continuation of Chern-Simons theory. The four-dimensional theory must be topologically

twisted in order to preserve some supersymmetry on V . The correct choice for this appli-

cation is the geometric Langlands (GL) twist of [66], which breaks the R-symmetry group

SO(6)R → SO(3)R × SO(3)R and replaces the Lorentz group SO(3)E of M with the diag-

onal embedding in SO(3)E × SO(3)R. This twist complexifies the gauge connection Aµ on

M with three scalars φµ that now transform as a one-form,

Aµ → Aµ = Aµ + wφµ , (6.16)

for some w with Imw 6= 0. The twisted theory in the bulk of V = M × R+ then localizes

to field configurations that obey a flow equation in the “time” coordinate on R+. Namely,

all fields except Aµ can be taken to vanish, and this complex connection along M obeys

gradient flow with respect to the holomorphic Chern-Simons functional

d

ds
Aµ = − ∗M

δ

δAµ

[
iΨ∨

4π
ICS(M ;A)

]
, (6.17)

where s ∈ [0,∞) is the coordinate on R+. This is the same gradient flow in the space of

complex connections on M that defined Chern-Simons integration cycles, provided that

the parameter Ψ∨ appearing here equals −k.
One must further specify boundary conditions for the four-dimensional path integral.

At the infinite end, asking for finite energy requires Aµ to be at a stationary point of the

flow (6.17). Therefore, fields must approach a fixed complex flat connection Aα
µ on M .

The set of possible values for Aµ at s = 0 then becomes the set of solutions to gradient

flow starting from Aα
µ at s = ∞; this is the cycle Γ

α
CS itself.
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At the origin, the appropriate boundary condition is a modified Neumann boundary

condition that allows free oscillations of A. It is well known that a theta-term θ∨
∫
V Tr F 2 in

Yang-Mills theory induces a Chern-Simons coupling θ∨ICS(M ;A) = θ∨
∫
M Tr (AdA+ 2

3A
3)

at a boundaryM = ∂V , and this relationship gets complexified in the twistedN = 4 theory.

To be more precise, we recall that GL-twisted N = 4 SYM has two free parameters:30 the

complex gauge coupling τ∨ = θ∨

2π + 4πi
g∨2 and the complex twisting parameter t∨ ∈ CP1.

(The GL twist preserves two scalar supercharges and their conjugates, and t∨ parametrizes

the projective linear combination of the two charges being used as a BRST operator.)

However, all physical correlation functions in the theory depend on only one complex

“canonical parameter”

Ψ∨ =
θ∨

2π
+

4πi

g∨2

t∨ − t∨−1

t∨ + t∨−1
. (6.18)

The Neumann boundary condition at the origin breaks half of the supersymmetry, relating

t∨2 = τ∨/τ∨, which fixes the canonical parameter,

Neumann: Ψ∨ =
|τ∨|2
Re τ∨

=
θ∨

π
, (6.19)

to be real. Moreover, the complexification parameter w in (6.16) becomes pure imagi-

nary, w = −i Im τ∨/|τ∨|. The correct supersymmetric coupling at s = 0 then becomes

−Ψ∨

4π ICS(M ;A), and the path integral on M × R+ simply reduces to an integral over con-

nections on M at s = 0,

Zα
SYM(M × R+; Ψ

∨) =

∫

Γ
α

CS

DA exp

(
− Ψ∨

4π
ICS(M ;A)

)
= Zα

CS(M ; q) , (6.20)

with q = e−2πi/Ψ∨

.

In this formula, it is clear that −Ψ∨ plays the role31 of the Chern-Simons level k, but

there is no requirement that Ψ∨ be an integer. Since M is identified as the boundary of a

specific four-manifold V , it is not necessary to quantize the level. Indeed, even though Ψ∨

is real in (6.19), one can easily analytically continue (6.17) and (6.20) to any Ψ∨ ∈ C∗. We

emphasize that this is not analytic continuation in the coupling τ∨ of SYM, but rather in

Ψ∨ = θ∨/π, since the latter is what the twisted theory depends on holomorphically.

So far the discussion has applied to a closed three-manifold M . In order to study

Chern-Simons theory on a knot complement M = S3\K, one must introduce a surface

operator along S = K × R+ in the half-space geometry V = S3 × R+.
32 The surface

operator preserves the same supersymmetry as the boundary condition at s = 0. Let us

for simplicity fix the gauge group to be G∨ = SU(2). Then the simplest surface operator is

30We decorate all the parameters here with a “∨” in anticipation of an S-duality that appears below.
31In the above formula, we have Ψ∨ = −k, where k is a renormalized Chern-Simons level; whereas in

the standard Chern-Simons path integrals (6.4)–(6.7), the coupling constant is the unrenormalized k̄. This

discrepancy is addressed in [19], and is related to a change in the path-integral measure.
32This preserves the codimension of the monodromy defect at K in Chern-Simons theory, which is ap-

propriate for connecting with knot-complement theories TM . An inequivalent way to analytically continue

Chern-Simons theory with 4d SYM is to put a Wilson loop operator along K at s = 0 in S3×R+, preserving

the dimension of the defect. This case was studied in [19, 112].

– 88 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

characterized by four real parameters (α∨,β∨,γ∨,η∨) ∈ R/(2πZ)×R×R×R/(2πZ) [113].

The first three parametrize a singularity of the complexified gauge connection,

A ∼ i

2
(α∨ − wγ∨)

(
1 0

0 −1

)
dθ +

iwβ∨

2

(
1 0

0 −1

)
dr

r
+ (less singular) (6.21)

in the plane perpendicular to the surface operator; whereas η∨ is a 2d theta-angle, coupling

to two-dimensional instanton number
∫
S F in the path integral. (At the surface operator

itself, the gauge group is broken from SU(2) to U(1), so
∫
S F makes sense.) We see that

the holonomy of A around a small loop linking the surface operator (and hence the knot

K) has squared eigenvalues

x±1 = e±2πi(α∨−wγ
∨) . (6.22)

Moreover, in the case of Neumann boundary conditions at s = 0, η∨ must vanish. The SYM

path integral on S3 × R+ in the presence of the surface operator should now evaluate to

Zα
SYM(S3 × R+; Ψ

∨;α∨,γ∨) = Zα
CS(S

3\K;x; q) , (6.23)

agreeing with the analytic continuation of Chern-Simons theory on a knot comple-

ment (6.7). The partition function involves a choice of flat connection Aα
on S3\K,

depends holomorphically on x and q, and is independent of β∨.

There is a convenient brane construction of this system in type IIB string theory. One

considers two semi-infinite D3 branes wrapping V in the geometry T ∗M ×R×R3 that end

on an NS5 brane that wraps M and sits at the origin of R+ ⊂ R. Codimension-two defects

along K × R+ can then be engineered by including further intersecting branes.

Four dimensional S-duality. N = 4 SYM on V has a useful S-dual description that

replaces the Neumann boundary condition at s = 0 with a Dirichlet-like boundary condi-

tion. In terms of type IIB string theory, S-duality maps the NS5-D3 brane system to a

D5-D3 brane system, i.e., a stack of semi-infinite D3 branes wrapping V = M × R+ and

ending on a D5 brane. In the field theory, the D5-D3 boundary condition — sometimes

called a Nahm pole boundary condition — effectively freezes out the degrees of freedom in

the complex connection A at s = 0, and rather than appearing directly as a Chern-Simons

path integral the 4d partition function takes the form of an instanton-counting expansion,

Zα
SYM(M × R+;x; q) =

∑

a,b

nαa,bq
axb . (6.24)

Here na,b is the (signed) number of solutions to certain instanton equations with 4d

instanton number a ∼
∫
V Tr F 2 and two-dimensional instanton number b ∼

∫
S F . The

numbers a and b may be fractional, as discussed in [19]; in the present case it turns out

that a ∈ Z/2 and b ∈ Z.

As before, the S-dual description must be supplemented with a choice of flat complex

connection at infinity on R+. There is a one-to-one correspondence between flat connections

in the S-dual description and the original description, so we will continue using ‘α’ to denote

flat connections in this dual description. Technically, the S-dual gauge group is G = SO(3)
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(with complexification PSL(2,C) rather than G∨ = SU(2), but the distinction is subtle

and is not important in this paper. In particular, on a knot complement M = S3\K, flat

PSL(2,C connections can always be lifted to SL(2,C) connections.

The parameters (Ψ, τ, t) of the S-dual theory are related to those of the original as

Ψ = − 1

Ψ∨
, τ = − 1

τ∨
, t =

τ∨

|τ∨| t
∨ . (6.25)

Moreover, in the presence of the Dirichlet boundary condition, we find

t = 1 , Ψ = Re τ = θ/2π . (6.26)

Similarly, the S-dual surface-operator parameters are

(α,β,γ,η) = (η∨ = 0, |τ∨|β∨, |τ∨|γ∨,−α∨) . (6.27)

Therefore, the parameters q and x of the original SYM theory become

q = e2πiΨ , x = e2πi(η+w|τ |γ) , (6.28)

with w = −i Im τ∨/|τ∨| = −i Im τ/|τ |. These are the correct 4d/2d instanton-counting

parameters of the S-dual twisted SYM theory, which enter the path integral (6.24).

Lift to six dimensions. This can now be lifted to six dimensions. The type IIB brane

construction can be T-dualized to a D6-D4 system in type IIA string theory, consisting of

two semi-infinite D4 branes wrapping M ×R+ × S1
β in T ∗M ×R3 × S1

β , and ending on the

D6 brane. In turn, this can be lifted to a single configuration of two M5 branes in M-theory

embedded in the geometry described in (6.1):

M5’s : M ×D2×q S
1 ⊂ T ∗M × TN ×q S

1 . (6.29)

A codimension-two defect along a knot K ⊂ M can be engineered with additional inter-

secting M5 branes. To preserve supersymmetry, the additional branes wrap the conormal

bundle of K in T ∗M as well as D2×qS
1.

From a field-theory perspective, the low-energy theory of the two principal M5 branes

is the six-dimensional (2, 0) SCFT for Lie algebra A1. It is topologically twisted so that the

Lorentz group SO(3)E × SO(2)E on M ×D2 is redefined to be the diagonal in the product

of itself and the SO(3)R × SO(2)R subgroup of SO(5) R-symmetry. The twist preserves a

scalar supercharge Q (and its conjugate) that has charge +1 under the unbroken SO(2)R
R-symmetry. In addition, a codimension-two defect along K×D2×qS

1 comes with a global

SU(2)K flavor symmetry. We denote the integer charge of states under a maximal torus

U(1)K ⊂ SU(2)K as e.

To recover the 4d construction from the 6d theory, one compactifies on the asymptotic

torus of D2×q S
1. The tip of the cigar generates the Nahm pole boundary condition

discussed above, and the scalar supercharge Q coincides with that of GL-twisted SYM

in the presence of the boundary. The modular parameter of the compactification torus,

τ = βε+ iβρ−1 (cf. figure 4), becomes the 4d SYM coupling. We already know, however,
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that neither the 4d nor the 6d partition functions depend on τ alone. (For example, in six

dimensions, nothing can depend on the radius ρ of the topologically-twisted cigar.) On the

other hand, the partition functions should depend analytically on the canonical parameter

Ψ = Re τ = βε, (6.30)

which is just the geometric holonomy in D2×qS
1.

The M5-brane partition function in this geometry takes the form of a BPS index with

respect to Q [19, section 6],

Zα
(M ×D2×S1;x; q) = TrH(M×D;α)(−1)2Je−βHq−J+R

2 xe , (6.31)

where R is the generator of SO(2)R and J ∈ 1
2Z generates the SO(2)E rotations of D2.

This index should reproduce the 4d instanton partition function (6.24). Indeed, upon com-

pactification, the angular momentum J becomes 4d instanton number a and we see that

it consistently couples to the fugacity q = e2πiΨ. Similarly, one can argue that the flavor

charge e for a codimension-two defect descends to 2d instanton number b on a surface op-

erator, and that the corresponding fugacity x is given by (6.28). Finally, the BPS partition

function (6.31) depends on a choice of vacuum α to set the boundary condition at the infi-

nite end of the cigar, fixing the Hilbert space H(M ×D;α). This is equivalent to a choice

of vacuum in the four-dimensional setup, i.e. a choice of flat complex connection Aα
on M .

Back to three dimensions. The 6d index (6.31) is intentionally written in the same

form as the BPS partition functions of the three-dimensional N = 2 theories that we have

studied throughout this paper. By taking the 6d theory and reducing on M , we obtain a

three-dimensional theory TM on D2×qS
1, whose holomorphic blocks are given by (6.31).

The parameters/charges q, J , and R of the 6d theory are equivalent to those that appear in

the three-dimensional construction. The chain of dualities reviewed here, however, allows us

to identify q with the coupling of analytically continued Chern-Simons theory on M itself,

q = e2πiβǫ = e2πiΨ = e
2πi
k . (6.32)

Beautifully, this reaffirms the analytic dependence on Re τ = βε that we found for

holomorphic blocks back in section 2.1.

Similarly, the three-manifold theory for a knot complement M = S3\K is expected

to have an SU(2)K flavor symmetry. The complexified twisted mass parameter x for its

maximal torus U(1)K ⊂ SU(2)K has now been identified with the eigenvalue-squared (m2)

of the holonomy of a connection A at the meridian of the excised knot K in M :

x = exp

(
2πβm3d

K + i

∮

S1
β

AK

)
= e2πi(η+w|τ |γ) = m2 . (6.33)

where AK is the background gauge connection for U(1)K. Finally, we see that the choice

of vacuum α at the infinite end of the cigar in three dimensions is precisely a choice of flat

complex connection on M , defining a Chern-Simons integration cycle.
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In [16], ideal triangulations of manifolds M were used to define simple candidate UV

Lagrangians33 for the low-energy limit of the associated three-manifold theory. It is im-

portant to keep two things in mind about the theories TM of [16]. First, they are gauge

theories built using rules such as in section 4.1, and when M is a knot complement, they

always have a U(1)K flavor symmetry associated to the knot. It was conjectured that this

U(1)K can always be enhanced to SU(2)K at a point in the parameter space of TM . For

example, all compact partition functions (and, as we shall see, holomorphic blocks) of TM
are invariant under the inversion of the mass parameter x→ x−1, as would be the case for

an SU(2) symmetry. However, further analysis along the lines of [115, 116] is necessary to

verify a true enhancement.

Second, the theories TM of [16] do not know about all possible flat connections on a

knot complement M : they only appear to have vacua α corresponding to the irreducible

flat connections. Mathematically, this arises from the fact that reducible connections on

a knot complement are not naturally obtained by gluing together connections on ideal

tetrahedra. Physically, however, the interpretation of this statement has not been fully

clarified. (One possible scenario, proposed in [16], is that in the low-energy limit of the

(2, 0) theory on M × R2 ×q S
1, superselection sectors develop that decouple reducible

connections.) Fortunately, as was discussed in section 6.1, there does appear to be a

consistent truncation of analytically continued Chern-Simons theory that also only sees

cycles corresponding to irreducible flat connections. It is this truncated Chern-Simons

theory that should be compared to class-R constructions of TM .

6.2.1 Remarks on gluing

It is of interest to find a six-dimensional description of the ellipsoid partition function and

sphere index of a knot complement theory. For this purpose, it would be most natural

to study the (2, 0) theory on M × S3
b or M × S2×q S

1, respectively. Unfortunately, we

encounter the same problem as in three dimensions: the theories on S3
b and S2×qS

1 do not

use a topological twist to preserve supersymmetry, and it is not clear how to implement

the necessary SUSY-preserving modifications directly in six dimensions. Note, for example,

that it is not even possible to topologically twist the (2, 0) theory in a geometry M × S3;

the R-symmetry group SO(5)R is too small.

Nevertheless, we can consider the six-dimensional analogue of the stretched construc-

tion studied in this paper, and find yet another way to identify parameters (x, q) and (x̃, q̃)

on the two sides. Taking a stretched geometry (times M) as our starting point, we can

reduce to four dimensions and study the boundary conditions and/or brane configurations

that reproduce factorized partition functions of the form

〈0q|g|0q〉 =
∣∣∣∣Bα

M (q;x)
∣∣∣∣2
g
=
∑

α

B
α
M (q;x)B

α
M (q̃; x̃), (6.34)

where now g ∈ SL(2,Z) acts as an S-duality transformation for GL-twisted super-Yang-

Mills theory, with both the coupling τ and the canonical parameter Ψ transforming in the

usual way under SL(2,Z).

33A direct M-theory derivation of the UV Lagrangians of [16] has been proposed in [114].
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For the index, the relevant configuration is a stack of two D3 branes wrapping M and

filling an interval I, with a D5 brane on one side and a D5 anti-brane on the other. (This

is the analogue of the S-dual framework discussed around (6.25).) Supersymmetry is only

preserved in this system in the limit of infinite interval length. In field theory, the bulk

parameters q and q̃ at the two ends are related due to the reversed orientation as q̃ = q−1,

just as desired. More interestingly, the parameter w that complexifies connections has the

opposite sign near the two boundaries. Consequently, the effective 2d instanton-counting

parameters at the two ends of are x = eη+w|τ |γ and x̃ = x = eη−w|τ |γ .

We can learn something about integration cycles for the index by dualizing to a system

of D3 branes stretched between an NS5 brane and an NS5 anti-brane, similar to the original

construction of Chern-Simons theory via N = 4 SYM. In the field theory, a Chern-Simons

coupling ΨICS(A) is induced at the NS5 end, while a coupling −ΨICS(A) is induced at the

NS5 end, with A = A− wφ. In the bulk of the (still infinite) interval, the theory localizes

to gradient flows for A — or, equivalently, gradient flows for A. In order to have finite

energy, the flows must spend an infinite amount of time near a flat connection34 Aα
in the

middle of the interval. Flowing away from Aα
toward either end of the interval produces

conjugate integration cycles for A and A. The partition function then takes the form

ZSYM(M × I;x; q) =
∑

α

(∫

Γ
α

CS

DA e−i Ψ
4π

ICS(A)

)(∫

Γ
α

CS

DA ei
Ψ
4π

ICS(A)

)
. (6.35)

This is precisely the analytic continuation of the full (non-holomorphic) SL(2,C) Chern-

Simons theory on a knot complement M , with partition function

ZSL(2,C)
CS (M ;x; q) =

∫
DADA ei

k
4π

ICS(A)−i k
4π

ICS(A) . (6.36)

(Note that A and A are independent complex fields in (6.35), whereas they are complex

conjugates of each other in (6.36).) The connection between the three-dimensional index

of TM and SL(2,C) Chern-Simons theory on M was also discussed in [11].

Of course, for a finite interval the NS5-D3-NS5 system does not preserve supersymme-

try — at least not at weak string coupling. It is unclear whether this is a serious problem

in the low-energy effective gauge theory on the branes. For finite string coupling, it is con-

ceivable that the branes can be arranged in a supersymmetry-preserving bound state. This

could provide the geometry corresponding to an index on the untwisted S2×qS
1, but for

the moment it is just speculation. Further study in this direction should prove interesting.

The story for the ellipsoid S3
b (or for more general Lens spaces) is similar. To repro-

duce the partition function of TM on S3
b , we should look at 4d SYM on an interval with

a Neumann boundary condition at one end and a Dirichlet (or Nahm pole) boundary at

the other. In terms of branes, this comes from a system of D3 branes on M × I, stretched

between a D5 brane and an NS5 anti-brane, or vice versa: the boundary branes are re-

lated by the element g = S of SL(2,Z). For finite interval length, the system appears to

34Recall that generically there are no flows between different critical points, so a given flow can only

choose a single A
α
to approach to in the middle of I.
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break supersymmetry by the S-rule of [117]. For infinite interval length, supersymmetry is

effectively restored, and the parameters (q, q̃) at the two ends are related by

q̃ = e−2πiS(Ψ) = e−2πiΨ∨

= e
2πi
Ψ . (6.37)

Meanwhile, to understand the surface-operator parameters x, x̃, observe that the presence

of both Dirichlet and Neumann boundaries forces α = η = 0, and sets τ = Ψ = θ/2π, with

zero imaginary part. Then x = e|τ |wγ = e|Ψ|wγ at one end is transformed to

x̃ = e|Ψ
∨|wγ

∨

= ewγ = x1/Ψ (6.38)

at the other, for (say) real and positive Ψ. These are precisely the expected relations for

the ellipsoid partition function.

6.3 Examples

As examples of the correspondence between holomorphic blocks and Chern-Simons path

integrals, we consider three theories TM , for M the complement of the trefoil (31), figure-

eight (41), and 52 knots in S3.

From the point of view of Chern-Simons theory, the meridian holonomy of a complex

connection at the excised knot will have fixed squared-eigenvalues x±1, as discussed in

section 6.1. Then the three knot complements S3\K forK = 31, 41, 52 admit (respectively)

one, two, and three irreducible flat SL(2,C) connections Aα
. This counting is confirmed

by looking at the (irreducible) A-polynomials of the knot complements:

A31
(x, p) = p− x3 , (6.39a)

A41
(x, p) = p+ (x2 − x− 2− x−1 − x−2) + p−1 , (6.39b)

A52
(x, p) = x7p3−x2(1−x+2x3+2x4−x5)p2−(1−2x−2x2+x4−x5)p−1 (6.39c)

Solving AK(x, p) = 0 at fixed x yields as many solutions p
α
(x) as there are irreducible flat

connections.

The theories TM , as constructed using the rules of [16], will then have one, two, and

three holomorphic blocks B
α
(x; q), respectively. By construction, the blocks will satisfy

line-operator identities ÂK(x̂, p̂; q) ·Bα
(x; q) = 0, where the operator ÂK is a quantization

of the A-polynomial A(x, p). The quantum A-polynomials are given by [85, 118]

Â31
(x̂, p̂; q) = p̂− q

3
2 x̂3 , (6.40a)

Â41
(x̂, p̂; q) = (q−

1
2 x̂− q

1
2 x̂−1)p̂+ (x̂− x̂−1)(x̂2 − x̂− q − q−1 − x̂−1 + x̂−2)

+ (q
1
2 x̂− q−

1
2 x̂−1)p̂−1 , (6.40b)

Â52
(x̂, p̂; q) = q14(1− qx̂2)(1− q2x̂2)x̂7p̂3

− q
5
2 (1−qx̂2)(1−q4x̂2)x̂2(1−q2x̂−q2(1−q)(1−q2)x̂2+q4(1+q3)x̂3+2q7x̂4 − q9x̂5)p̂2

− (1− q2x̂2)(1− q5x̂2)(1− 2qx̂− q(1 + q3)x̂2 + q2(1− q)(1− q2)x̂3 + q5x̂4 − q6x̂5)p̂

− q
1
2 (1− q4x̂2)(1− q5x̂2) . (6.40c)
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The blocks B
α
(x; q) provide a basis of solutions to these line-operator identities with the

analytic properties discussed in section 4.

Before describing the blocks of these theories, we should make a practical remark

about the knot-complement theories TM constructed in [16]. In general, defining the com-

plete theory TM requires a substantial refinement of the “standard” or “minimal” ideal

triangulation for a knot complement. The reason for this is discussed in [16, section 4.6].

Essentially, the minimal triangulation leads to UV theory that does not contain all the chi-

ral operators OI needed to break flavor symmetries and enforce the gluing of tetrahedra.

These operators must be added to the superpotential in order for the theory to truly flow to

the correct fixed point TM . Nevertheless, for computing quantities like holomorphic blocks

that are independent of superpotential deformations, we can use the “simplified” version

of TM coming from a minimal triangulation, and just set the parameters for the unwanted

flavor symmetry to zero by hand. This is how we will proceed below. The simplified TM
leads to the exact same blocks as the more complicated true theory.

Trefoil 31. We start with the trefoil knot complement M = S3\31. The minimal trian-

gulation of M contains two tetrahedra, and is discussed in appendix B. The “simplified”

theory T31
derived from this triangulation is rather degenerate. At low energies, it is

just a dynamical U(1) Chern-Simons theory at level −1. There is a topological U(1)J
flavor symmetry whose background multiplet is coupled to the dynamical vector multiplet

via an FI term, and a level +2 background CS coupling is turned on for U(1)J . The

exponentiated, complexified mass of U(1)J , denoted by x, corresponds to the squared

meridian eigenvalue for the knot complement.

A block integral can be found using the rules of section 4, leading to

B31
(x; q) =

∫

∗

ds

2πis

θ(sx−1)

θ(x)3
s→sx
=

1

θ(x)3

∫

∗

ds

2πis
θ(s) , (6.41)

where θ(x) := θ(x; q) denotes the theta function first defined in section 2.5. There is a

single block, and since the integration is x-independent, it is easy to see that the block is

annihilated by the quantum A-polynomial for any choice of integration cycle:

θ(qx) =
1

q
1
2x
θ(x) ⇒ (p̂− q

3
2 x̂3)

1

θ(x)3
=

1

θ(qx)3
− q

3
2x3

θ(x)3
= 0 . (6.42)

Also note that the block is invariant under x→ x−1, which reflects the Weyl symmetry for

the meridian holonomy, and the fact that in the full theory T31
there may be enhancement

U(1)J → SU(2)K.

The integral can be performed to normalize the block. For |q| < 1, the natural conver-

gent contour Γ< is around the girth of the s-cylinder, at |s| = 1 or ReS = 0. The integral

merely picks out the zeroth Fourier coefficient:

B31
(x; q) = (q)∞

∫

Γ<

ds

2πis

θ(s)

θ(x)3
=

(q)∞
θ(x; q)3

[θ(s; q)]s0 =
1

θ(x; q)3
(|q| < 1) . (6.43a)

For |q| > 1, the natural convergent contour is parallel to the ReS direction, from one end

of the cylinder to the other. The integrand has a full line of poles at S = iπ + ~(Z + 1
2),
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which the contour can never cross. Numerical integration gives

B31
(x; q) =

1

(q−1)∞

∫

Γ>

ds

~s

θ(s)

θ(x)3
=

1

θ(x; q)3
(|q| > 1) . (6.43b)

Figure-eight 41. As is discussed in appendix B, one realization of the simplified figure-

eight knot theory T41
is identical to the CP1 sigma-model of section 5, with the topological

flavor symmetry U(1)J “broken” by hand — so that the complexified mass (a.k.a. FI pa-

rameter) y is set to one. This is an oversimplified description of T41
because there exists no

operator charged under U(1)J that can be added to a superpotential to break the symmetry

naturally. Nevertheless, we can use the description to write down the block integral:

B41
(x; q) =

1

θ(x)

∫

∗

ds

2πis

1

θ(−q− 1
2 s)

(qs−1x−1; q)∞(qs−1x; q)∞ . (6.44)

Note that we have chosen theta-functions judiciously, to allow the y → 1 limit to exist.

There are two vacua, and two critical points, corresponding to the two irreducible flat

connections on the figure-eight knot complement. We already know how to find convergent

contours in various Stokes chambers. In the semiclassical chamber ‘I’ described35 in

section 5, the two blocks are (cf. (5.18))

B1
41
(x; q) = 1

θ(x)θ(−q
1
2 x)

J (x, x2; q) ,

B2
41
(x; q) = 1

θ(x)θ(−q−
1
2 x)

J (x−1, x−2; q) ,
|q| < 1 or |q| > 1 , (6.45)

modulo factors of (q±1)∞. Note that, using θ(x) = θ(x−1), the Weyl symmetry x→ x−1 is

explicitly realized in this basis of blocks. In fact, the vector U(1)V flavor symmetry of the

simplified theory, with mass x, can obviously be enhanced to SU(2)V . The blocks (6.45)

are solutions to the difference equation (6.40b).

It is straightforward to check that the S-fusion sum of blocks

Zb[41](X, ~) =
∑

α

B
α
41
(x; q)B

α
41
(x̃; q̃) , (6.46)

with x = exp(X), q = exp(~), x̃ = exp(2πi
~
X), q̃ = exp(−4π2

~
), reproduces the output of

the “state integral” for analytically continued Chern-Simons theory on the figure-eight knot

complement, studied in [53, 85, 101]. In fact, different representations of the state integral

were given in [53, 101] and [85], which were proven to be equal by [94]. The different

representations are explicitly obtained by substituting Y = µy = 0 in (5.44) and (5.45)

of section (5.5). Thus, they are simply associated to different Stokes chambers of T41
.

Similarly, the figure-eight index of [11] is just I[41](ζ,m; q) =
∑

αB
α
41
(x; q)B

α
41
(x̃; q̃) with

the usual identification x = q
m
2 ζ, x̃ = q

m
2 ζ−1, q̃ = q−1.

35This chamber was loosely described as having large positive FI parameter, |y| ≫ 1. Here, even though

we have set y → 1, part of the chamber still survives. This can be seen qualitatively by taking a slice of

the plot in figure 19 at ReY = 0.
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Knot 52. The last example, the 52 knot complement. The simplified theory T52
,

obtained in appendix B, is a variant of the three-dimensional CP2 sigma-model. Namely,

it is a dynamical U(1) gauge theory coupled to three chiral multiplets of charge +1, but

with a level −1
2 Chern-Simons coupling for the gauge field.36 A priori, there is a U(1)J

topological symmetry and a U(1)2 flavor symmetry rotating the chirals. However, the

complex FI term on D2×qS
1 (the mass for U(1)J) is set to zero by hand, and the only

mass we turn on for the chirals corresponds to a U(1)V ⊂ U(1)2 that rotates them with

charges (+1,−1, 0). Its exponentiated, complexified mass is x. We also turn on −2 units

of background Chern-Simons coupling for U(1)V .

Altogether, the block integral becomes

B52
(x; q) =

∫

∗

ds

2πis

θ(x)

θ(−q− 1
2 s)

(qs−1; q)∞(qs−1x−1; q)∞(qs−1x; q)∞

= θ(x)

∫

∗

ds

2πis

(qs−1x−1; q)∞(qs−1x; q)∞
(s; q)∞

. (6.47)

There are three vacua, and three relevant critical points. In a Stokes chamber where the

theory would look like a massive semi-classical CP2 sigma model on the Higgs branch, the

three corresponding blocks are found to be

B1
52
(x; q) = θ(x)G(x, x−1, 1; q) ,

B2
52
(x; q) = θ(x)

θ(−q
1
2 x)

G(x, x2, x; q) ,
B3

52
(x; q) = θ(x)

θ(−q
1
2 x−1)

G(x−1, x−2, x−1; q) ,

(6.48)

modulo factors of (q±1)∞ and ~, where

G(x, y, z; q) := (qx; q)∞(qy; q)∞

∞∑

n=0

zn

(q−1)n(qx; q)n(qy; q)n
. (6.49)

Note that the series converges and the blocks make sense both for |q| < 1 and |q| > 1, as

usual. Also note the obvious Weyl symmetry x → x−1 in this basis of blocks. The blocks

are annihilated by the quantum A-polynomial (6.40).

6.3.1 Asymptotics

Let us denote the asymptotic behavior of a knot-complement theory as

B
α
K(x; q)

~→0∼ exp

(
1

~
Vα

(x) + . . .

)
(6.50)

for fixed x in a given Stokes chamber. For ~ real (say), it does not matter whether we

approach ~ → 0 from positive or negative values, using the |q| < 1 or |q| > 1 blocks. Since

each B
α
K(x; q) should equal the analytically continued Chern-Simons partition function

Zα
CS(S

3\K;x; q) (where vacua α are matched with flat connections Aα
), then given (6.14)

we should have

Vα
(x) = V(Aα

(x)) , (6.51)

36The half-integer Chern-Simons level is necessary as usual to avoid an anomaly.
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so that the leading asymptotics of the blocks match the holomorphic volume of the corre-

sponding flat connection.

Each Vα
(x) in (6.50) can be evaluated by a saddle-point expansion of the block inte-

gral, evaluating the integrand of the block integral at a critical point s
α
(x) in the ~ → 0

limit. These critical points are in one-to-one correspondence with solutions p
α
(x) of the

A-polynomial AK(x, p) = 0, and thus with flat SL(2,C) connections Aα
. By construction,

as x varies locally, the ~ → 0 limit of the line-operator identity forces Vα
(x) to satisfy the

differential equation

x
dVα

(x)

dx
= log p

α
(x) , or Vα

(x) =

∫ x

log p
α
(x′)

dx′

x′
(6.52)

for an appropriate p
α
(x). This is precisely the variation of the holomorphic volume of a

connection Aα
(cf. [119, 120]). All that remains is to match the absolute asymptotics of

Vα
(x) (rather than the variation) at fixed x.

Although we have been unable to fix the absolute normalization of holomorphic blocks,

the ambiguity only involves elliptic ratios of theta functions θ(±q#x; q) and constant terms

(q±)∞. The leading asymptotic of an elliptic ratio of theta functions vanishes modulo
π2

6 , and (q±)∞ ∼ exp(±π2/6). Consequently, the normalization of our blocks is fixed

up to elements of π2

6 Z. We can thus establish that our blocks correctly reproduce the

volumes of flat connections modulo such shifts. (This ambiguity can be compared to an

identical one found in computing volumes of SL(2,C) connections using oriented ideal

triangulations [121].) Note that in different regions of parameter space, the asymptotics

of a single block can be controlled by different critical points due to Stokes phenomena.

Consequently we must always be sure to use a single basis of blocks which is naturally

associated to the critical points in a given Stokes chamber. These will correspond to unique

choices of flat connections. Below we report on the numerical evaluation of asymptotics of

the blocks given above at fixed values of mass parameters.

Of course, this is hardly the first situation in which the asymptotics of a finite-

dimensional integral have been compared to volumes of flat connections. The same was

done for “state integrals” in Chern-Simons theory — which should equal the ellipsoid

partition functions Zb[TM ] of knot-complement theories [16] — in, e.g., [53, 101, 122].37

Namely, it was seen that the saddle-point expansion of a Zb[TM ] integral around particular

critical points α (in the ~ → 0 limit) agrees with the holomorphic volumes of connections

Aα
. From the point of view of blocks, this is no surprise. The integrands of block inte-

grals and localized Zb[TM ] integrals are identical perturbatively in ~. Likewise, the ~ → 0

asymptotics of a product B
α
(x; q)B

α
(x̃; q̃), which appears in Zb[TM ], are completely deter-

mined by the asymptotics of B
α
(x; q), because B

α
(x̃; q̃) is non-perturbative: it depends on

x̃ = x1/~ and q̃ = e−4π2/~. Thus, modulo (important) technicalities of Stokes phenomena,

the saddle-point expansions of Zb[TM ] integrals ought to match the asymptotics of blocks.

In principle, we could also compare subleading asymptotics of blocks to perturbative quan-

tum invariants associated to complex flat connections. However, the procedure for doing so

37Not to mention the construction of many ad-hoc integrals in the mathematics literature that involve in-

tegrands symmetric in ~ ↔ − 4π2

~
and produce asymptotics of colored Jones polynomials, starting with [22].
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is straightforward, and basically identical to that described for state integrals in [53, 122].

Since we gain no new insight from the comparison, there is no reason to include it here.

Trefoil asymptotics. Given the asymptotic expansion

θ(x; q)
~→0∼ e−

1
2~

(log x)2−π2

6~
+ ~

24 (|q| < 1 or |q| > 1) , (6.53)

with ~ approaching zero along the real axis from either the positive or negative directions,

we find for both |q| < 1 and |q| > 1 that B31
(x; q) ∼ exp

[
1
~
V31

(x) +O(1)
]
, where

V31
(x) =

3

2
(log x)2

(
mod

π2

6

)
. (6.54)

This matches the known volume of the unique irreducible flat SL(2,C) connection on

the trefoil knot complement, as well as asymptotics of Jones polynomials for the trefoil,

cf. [123, 124]. In particular, when the eigenvalue x is set to one, the volume Vol(31) =

ImV31
(x = 1) vanishes, in agreement with the fact that the trefoil is not a hyperbolic knot

(so its “hyperbolic volume” is zero).

Figure-eight asymptotics. From the perspective of Chern-Simons theory, it is desirable

to compute asymptotics at x = 1, since this should correspond to complete hyperbolic

structures. However, the theory becomes massless in this limit and the blocks become

singular exactly at x = 1; we look in a neighborhood of x = 1 instead.

A saddle-point analysis of the blocks integrals (6.44) predicts

B
α
41
(x; q)

~→0∼ 1
4
√
(1− x− x−1)2 − 4

exp

[
1

~
V41

(x; sα(x)) +O(~0)

]
(6.55)

up to an overall multiple of i and exp π2

6~ , where

V41
(x; s) =

π2

6
+

1

2
(log x)2 +

1

2
(log(−s))2 + Li2(s

−1x−1) + Li2(s
−1x) ,

and sα(x) are the two solutions to

exp

(
s
∂V41

(x; s)

∂s

)
= 1 ⇒ sα(x) = −1

2
(1− x− x−1)± 1

2

√
x2 − 2x− 1− 2x−1 + x−2 .

Note that the natural branch cuts of log and Li2 in V41
are those expected from sending

~ → 0 along the real axis. Around the point x = exp 1+i
20 , it can be checked numerically38

that (6.55) are indeed the correct asymptotics of the blocks (6.45) — both for |q| < 1 and

|q| > 1, as long as ~ is approximately real. Note that the subleading one-loop determinant

1/ 4
√
. . . in (6.55) is necessary for a reasonable comparison, because anywhere close to

x = 1, for ~ real, the leading asymptotic term eV/~ is highly oscillatory rather than

exponentially growing or decaying.

38We thank D. Zagier for some extremely helpful lessons in numerical testing of asymptotics.
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Working at the point x = exp 1+i
20 , it can be determined numerically that

V41
(x; sα(x)) ≈

{
−0.0043301 + 2.0298796 i α = 1

0.0043301− 2.0298796 i α = 2

(
mod

π2

6

)
, (6.56)

precisely matching the expected holomorphic volumes of the “geometric” and “conjugate”

flat SL(2,C) connections on the figure-eight knot complement, deformed by the nontrivial

boundary condition x (cf. [125]). The oscillatory behavior mentioned above is due to the

fact that the real volume |ImV41
| is much larger than the Chern-Simons invariant |ReV41

|.
Of course, we can even send x → 1 in (6.55) to get the exact hyperbolic volume and

Chern-Simons invariant for the figure-eight knot at the complete hyperbolic structure,

i(Vol(41)+iCS(41))=V41
(1, s1(1))=

π2

18
−2Li2(e

− iπ
3 )≈2.0298832 i

(
mod

π2

6

)
. (6.57)

The Chern-Simons invariant vanishes, as expected. We emphasize, however, that the blocks

themselves become singular and no longer have an asymptotic expansion governed by (6.57)

exactly at x = 1.

Knot 52 asymptotics. A saddle point evaluation of the block integrals yields

B
α
52
(x; q)

~→0∼ 1√
H(x, sα(x))

exp

[
1

~
V52(x; s

α(x)) +O(~0)

]
, (6.58)

up to an overall multiple of i and exp π2

6~ , where

V52(x, s) = −1

2
(log x)2 + Li2(s

−1x−1) + Li2(s
−1x)− Li2(s) , (6.59)

H(x, s) = s−1(x+ x−1 + 1− s2 − 2s−1) , (6.60)

and sα(x) are the three solutions to

exp

(
s
∂V52

∂s

)
= 1 ⇒ (1− s)(1− sx)(1− sx−1) = s2 . (6.61)

We find experimentally that these asymptotics hold for the blocks in the semi-classical

Stokes chamber (6.48) as long as | log |x|| & 1.5. Otherwise, different bases of blocks

(different Stokes chambers) must be considered.

Again, the variation of the functions Vα
(x, sα(x)) match the expected variation of

the holomorphic volume of flat SL(2,C) connections Aα
by construction, so in the limit

x → 1, we should recover the well known complex volumes of irreducible flat connections

with parabolic meridian holonomy (unit eigenvalues), fixing the normalization of the

asymptotics:

lim
x→1

V52
(x, sα(x)) ≈





1.11345 + 0 i α = 1

0.26574 + 2.82812 i α = 2

0.26574− 2.82812 i α = 3

(
mod

π2

6

)
(6.62)

In particular, for the geometric flat connection (α = 2), we find the complete hyperbolic

volume Vol(52) = 2.82812 . . ., and the Chern-Simons invariant CS(52) = 0.26574 . . ..
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6.4 Stabilization and specialization

We would now like to investigate the specialization of holomorphic blocks to quantized val-

ues of mass parameters: x = qN for integers N . The dictionary established in sections 6.1–

6.2 between blocks and Chern-Simons theory suggests that for knot-complement theories

TM , M = S3\K, this limit should have something to with the colored Jones polynomials of

the knot K. We will propose one way to make this connection concrete, by relating blocks to

the so-called stabilization limit(s) of colored Jones polynomials. It requires treating blocks

as formal series in q and qN . Subsequently, we will make a brief, intriguing observation

about the specialization x → qN when blocks are treated as actual functions of q and N ;

namely, in this case, the dependence of blocks both on vacua α and on Stokes chambers

appears to vanish. Altogether, this section is experimental in its approach. We hope that

our observations will find a deeper theoretical and physical underpinning in future work.

We first define the stabilization limit. Given the sequence of SU(2) colored Jones

polynomials
{
JN (K; q)

}
N∈N

for a knot K ⊂ S3, the stabilized limit J(K;x; q) is constructed

as follows [54–57]. Define the lower degree d(N) ∈ 1
2Z to be the smallest power of q present

in JN (K; q). Since the Jones polynomials satisfy a q-difference relation, it follows by a

general theorem (cf. [56]) that |d(N)| grows quadratically in N . In fact, it is often an

honest quadratic polynomial in N , and this is the only case we will consider here. Then

one can consider the limit of q−d(N)JN (K; q) as N → ∞, and generally this converges

(“stabilizes”) to a well-defined formal power series in q
1
2 :

lim
N→∞

q−d(N)JN (K; q) = j0(q) = 1 + . . . ∈ Z[[q
1
2 ]] . (6.63)

The convergence to the series j0(q) is linear in N ; that is, q−d(N)JN (K; q) = j0(q) modulo a

series whose minimal power of q is roughly N . Therefore, one may expect that the sequence

q−N
(
q−d(N)JN (K; q) − j0(q)

)
again converges to a well-defined q-series limit j1(q). The

process can (potentially) be repeated to define a formal series

J(K;x; q) =

∞∑

r=0

jr(q)x
r , (6.64)

where the jn(q) are formal Laurent series in q
1
2 , such that for every positive integer A

lim
N→∞

q−AN

[
q−d(N)JN (K; q)−

A∑

r=0

jr(q)q
rN

]
= 0 (6.65)

in the ring of formal q-series. If such J(K;x, q) exists, it is called the (lower) stabilization,

or stable limit, of the colored Jones polynomials.

The stable limit (6.64) has been proven to exist for all alternating knots (including the

31,41,52 examples here), and conjectured to exist for all knots [57]. In addition to the

lower stabilization just described, one can also consider an upper stabilization with similar

properties. That is, one defines d+(N) to be the maximal power of N present in JN (K; q),

and tries to find J+(K;x−1; q−1) =
∑∞

r=0 j
(+)
r (q−1)x−r, with the j

(+)
r (q−1) Laurent series
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in q−
1
2 , such that limN→∞ qAN

[
q−d+(N)JN (K; q)−∑A

r=0 j
(+)
r (q−1)q−rN

]
= 0 for all positive

integers A, in the sense of (q−1)-series. Since the Jones polynomials of a knot K and its

mirror image K are related by JN (K; q) = JN (K; q−1), the lower stabilization for K is

equivalent to the upper stabilization for K, and vice versa.

Now, recall the relation (6.9) between Jones polynomials and partition functions in

analytically continued Chern-Simons theory,

JN (K; q) ∼
∑

α

nαZα
CS(x; q) , (6.66)

with x = qN . As discussed in section 6.1, this is a sum over all flat SL(2,C) connections on

a knot complement M = S3\K. On the other hand, we expect that the gauge theory TM
defined by [16] only has vacua α and blocks B

α
M (x; q) corresponding to irreducible (and

in particular nonabelian) flat connections. The main reason we are presently interested in

the stable limit of Jones polynomials is that it can effectively project out the abelian flat

connection (and perhaps others) from the sum (6.66). Then if indeed Zα
CS(x; q) = B

α
M (x; q)

for α irreducible, we should be able to write stabilizations J(K;x; q), multiplied by qd(N),

as sums of blocks.

We expect that a lower (resp. upper) stable limit projects abelian flat connections

out of colored Jones polynomials precisely when the lower (resp. upper) degrees d(N) of

the polynomials grow quadratically — that is, d(N) ∼ aN2 + bN + c with a nonzero and

negative (resp. positive). One motivation for this is as follows. The AJ Conjecture [51]

predicts that colored Jones polynomials satisfy an inhomogeneous recursion of the form

Âirr
M (x̂, p̂; q)JN (K; q) = R(x; q) , (6.67)

where Âirr
M is a quantization of the nonabelian A-polynomial, x̂ acts as multiplication by

x = qN , p̂ multiplies by (−1) and sends N → N + 1, and the r.h.s. R(x; q) is a fixed

polynomial in x = qN and q. The recursion (6.67) implies a homogeneous recursion of the

form ÂM (x̂, p̂; q)JN (K; q) = 0, where ÂM is a quantization of the complete A-polynomial,

including the abelian connection. If J(K;x; q) is a lower (say) stabilization of JN (K; q),

and if d(N) is quadratic, then it is easy to see that (6.67) also implies

Âirr
M (x̂, p̂; q) ·

[
qd(N)J(K;x; q)

]
= 0 ; (6.68)

the inhomogeneous term R(qN ; q) disappears because its degree only grows linearly in N .

But Equation (6.68) is precisely the recursion that should be obeyed by the nonabelian

functions Zα 6=abel.
CS (x; q), suggesting that the stabilization has projected out the abelian flat

connection. Similar remarks apply in the case of upper stabilization.

Recall that the holomorphic blocks B
α
M (x; q) of the gauge theory TM also satisfy (6.68),

with Âirr
M interpreted as an element in the algebra of line operators. In fact, the blocks

provide a basis of solutions to the line-operator identity, with certain analytic properties.

Then it is natural to expect that a stable series qd(N)J(K;x; q) can be directly written in

terms of blocks. We wish to test this idea with our three knot examples from section 6.3.
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Trefoil stabilization. We start with the (left-handed) trefoil knot. The Jones polyno-

mials are given by the formula [126]39

JN (31; q) =
q

3
2
N2−1

q
1
2 − q−

1
2

(N−1)/2∑

k=−(N−1)/2

q−6k2−k
(
q6k−1 − 1

)
. (6.69)

The lower degree d(N) = 1
2N − 1 is linear, but the upper degree d+(N) = 3

2N
2 − 1 is

quadratic, and it is not too hard to see that the polynomials have a trivial stabilization,

stabilize to the upper limit

JN (31; q) ∼
−(q−1)∞

q
1
2 − q−

1
2

(−1)Nq
3
2
N2−1J+(31; q

−N ; q−1) , J+(31;x
−1; q−1) = 1 . (6.70)

In other words, aside from a constant prefactor −(q−1)∞/(q
1
2 − q−

1
2 ) and the quadratic

term qd+(N) = q
3
2
N2−1, the stabilization is trivial!

On the gauge theory side, we found that T31
has a single block

B31
(x; q) =

1

θ(x; q)3
. (6.71)

Upon setting x = qN , the theta function simplifies to θ(qN ; q) = q−
N2

2 (−q 1
2 ; q)2∞, and thus

we find that the block equals the stabilization up to simple q-dependent prefactors and a

sign (−1)N . The sign is expected: it comes because we have used a different polarization in

defining gauge theories TM than is standard in Chern-Simons theory. (Put differently, our

’t Hooft operator p̂ is related to the standard shift operator ℓ̂ of quantum A-polynomials

by a sign, p̂ = −ℓ̂.) The simple q-dependent prefactors are also to be expected. Indeed, our

construction of blocks only defines them modulo elliptic functions c(x; q). When specializing

to x = qN , an elliptic function just becomes a function of q, since c(qN ; q) = c(1; q).

Specifically, elliptic ratios of theta-functions just become factors like (±q#; q)∞.

Figure-eight stabilization. The Jones polynomials of the figure-eight knot are given

by [127, 128]

JN (41; q) =
q

N
2 − q−

N
2

q
1
2 − q−

1
2

N−1∑

k=0

q−Nk(qN+1; q)k(q
N−1; q−1)k . (6.72)

Since the figure-eight knot is isotopic to its mirror image, the polynomials are invariant

under q → q−1, and upper and lower stabilizations agree. Taking the lower, we find40 that

JN (41; q) ∼
−(q)∞

q
1
2 − q−

1
2

qd(N) J(41; q
N ; q) , (6.73)

39We normalize the Jones polynomials so that the unknot U has JN (U) = (qN/2− q−N/2)/(q1/2− q−1/2).
40At this point, we must thank S. Garoufalidis and D. Zagier for discussing and sharing data on stabiliza-

tions with us, including the formula for the figure-eight knot here. This formula led to the initial realization

that stabilizations should be connected to blocks.
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with d(N) = −N2 + 1
2N and

J(41;x; q) =
∞∑

k,s=0

q−ksxk+2s

(q)k(q)s
. (6.74)

The series (6.74) is very similar to a q-Bessel function, aside from the fact that it does not

converge as an actual function of q and x for any x ∈ C∗ and |q| < 1, due to the large

quadratic powers q−ks in the numerator. It only make sense as a formal power series in x,

whose coefficients are formal Laurent series in q. We can reproduce the series by similarly

doing formal manipulations on blocks.

For example, consider the second figure-eight block in (6.45). We re-write

B2
41
(x; q) =

1

θ(x)θ(−q− 1
2x)

J (x−1, x−2; q)

=
θ(−q 1

2x−2)

θ(x)θ(−q− 1
2x)

J (x, x2; q−1) =
θ(−q 1

2x−2)

θ(x)θ(−q− 1
2x)

∞∑

k=0

(q−k−1x2; q)∞x
k

(q)k

“=”
θ(−q 1

2x−2)

θ(x)θ(−q− 1
2x)

∞∑

k,s=0

q−ksxk+2s

(q)k(q)s
, (6.75)

where the final equality is not true in the sense of functions, but makes sense for for-

mal series. We also substitute quadratic powers of q for the theta-functions: θ(x) →
q−

N2

2 , θ(−q− 1
2x) → (−1)Nq

N(N−1)
2 and in general

θ
(
(−1)aqbxc; q

)
→ (−1)acNq−

c2

2
N2−bcN . (6.76)

This corresponds to the specialization to x = qN , modulo (potentially divergent) factors

which are independent of N . As noted above, this specialization is independent of elliptic

ambiguities. Altogether, we find

B2
41
(x; q) → (−1)Nq−N2+N

2

∞∑

k,s=0

q−ksxk+2s

(q)k(q)s
, (6.77)

in agreement with the stabilization up to the same sign correction (−1)N and q-prefactors.

Curiously, we could also have obtained (6.77) by applying formal power-series identities

to the first figure-eight block in (6.45). It could also have been obtained by using any of the

blocks in the other two Stokes chambers of the theory! When allowing formal identities

and forgetting about the functional meaning of the blocks, the dependence on different

vacua α and on Stokes chambers disappears. It is not yet clear what this means, or how

general a phenomenon it is.

Knot 52 stabilization. Finally, the colored Jones polynomials of the 52 knot also

have a lower stable limit with quadratic growth. By using formulas of [128], we find

experimentally that

JN (52; q) ∼
(q)∞

q
1
2 − q−

1
2

(−1)Nq−
5
2
N2+N+1 J(52; q

N ; q) , (6.78)

– 104 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
7

with

J(52;x; q) =

∞∑

r,s,k=0

q−k(k+1)−(r+s)kxr+2(s+k)

(q−1)k(q)r(q)s
. (6.79)

Just like for the figure-eight knot, this formal series does not converge to an actual

function. To reproduce it, we can take (say) the third block of (6.48), and manipulate it as

B3
52
(x; q) =

θ(x)

θ(−q 1
2x−1)

(qx−1; q)∞(qx−2; q)∞

∞∑

k=0

x−k

(q−1)k(qx−1; q)∞(qx−2; q)∞

= θ(x)θ(−q 1
2x−2)

∞∑

k=0

q−k(k+1)(q−k−1x; q−1)∞(q−k−1x2; q−1)∞ x2k

(q−1)k

“=” θ(x)θ(−q 1
2x−2) J(52;x; q)

→ q−
5
2
N2+NJ(52;x; q) , (6.80)

where in the penultimate line we formally expanded a series in x, and in the last line we

specialized theta-functions as in (6.76).

Specialization. We have observed experimentally that by using formal manipulations of

(q, x)-series, the blocks of a knot complement theory TM reproduce stable limits of Jones

polynomials. We also observed, at least in the limited examples here, that the stable limit

could be reproduced from a single block rather than a sum as in (6.66); and sometimes it

does not matter which block B
α
M (x; q) is used in this process.

We have spent much of this paper considering questions for which blocks B
α
(x; q)

should define honest functions of x and q. The above examples suggest that it might be

interesting to consider directly the specialization x → qN , for N ∈ Z, in these honest

functions — without doing any formal manipulations or rearrangements of power series.

We have investigated this limit for the 41 and 52 knots and found yet another curious result.

Let us take the three blocks (6.48) of the 52 knot, specialize theta-functions using (6.76)

(recall that this specialization is canonical, independent of any extra elliptic-function pref-

actors in the blocks), and set x = qN . We obtain three q-series that are all convergent as

functions and equal:

q−
N2

2 G(qN , q−N , 1; q)=(−1)Nq
N
2 G(qN , q2N , qN ; q)=(−1)Nq−

N
2 G(q−N , q−2N , q−N ; q) ,

(6.81)

for |q| < 1 and all N ∈ Z. We tested these identities numerically. When |q| > 1, all three

sums (6.81) diverge at N ∈ Z, but if we take N to be a continuous variable then the ratio

of any two sums converges to one as N approaches integers.

We can consider a similar specialization to x = qN for the figure-eight knot as well,

and obtain the same type of result. It is even more interesting to look at the blocks of the

original CP1 sigma-model. Recall that this theory has two mass parameters x, y, and that

setting y = 1 recovers the figure-eight blocks. We can then set x = qN and y = qK , for

integers N and K, and rewrite any theta-function prefactors again using essentially (6.76).

We find that all blocks, in all chambers investigated in section 5, become equal. For
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example, at |q| < 1 the six blocks written in section 5 specialize to three distinct sums,

(−1)NqN
2−KN−N

2 J (qN−K , q2N ; q) = (−1)NqN
2+KN+N

2 J (q−N−K , q−2N ; q) (6.82)

= (−1)Kq
K2

2
−N2

2
+K

2 J (qK+N , qK−N ; q) ,

which are equal for all N,K ∈ Z. This equality of specialized blocks in different chambers is

not inconsistent with linear (Stokes) transformations of the exact blocks found in section 5,

because we have rewritten theta-function prefactors using (6.76) rather than substituting

(x, y) = (qN , qK) in their arguments directly.

Based on these observations, one might hypothesize that when specializing the holo-

morphic blocks of a knot complement theory TM to quantized x = qN — or more generally

when specializing the blocks of any N = 2 SCFT to quantized masses xi = qNi — the

dependence on flat connection (or vacuum) and Stokes chamber vanishes. One would then

be left with a unique specialized block BN (q) as a well-defined function of N and q inside

or outside the unit circle. The physical basis for this unification of blocks is still under

investigation. It is reminiscent of topological string constructions which are obtained by

large N duality, the Kähler parameters (which become mass parameters in an effective

QFT description) are frequently quantized in units of the string coupling.
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A Three-dimensional supersymmetry and BPS indices

In this appendix, we briefly review some details of the BPS index for a theory with N = 2

supersymmetry in three-dimensions. The N = 2 supersymmetry algebra in three dimen-

sions follows from dimensional reduction of the N = 1 algebra in four dimensions. We

adopt the conventions of [129], and take the signature to be (−,+,+,+). In four dimen-

sions, the four supercharges are grouped into a pair of two-component Weyl spinors Qα, Qα̇

of opposite chirality obeying Q†
α = Qα̇ and

{Qα, Qα̇} = 2σm
αβ̇
Pm , (A.1a)
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{Qα, Qβ} = {Qα̇, Qβ̇} = 0 , (A.1b)

where m = 0, 1, 2, 3. Here σ0 = I and σm are the Pauli matrices for m = 1, 2, 3.

The little group for massive states in four dimensions is SO(3)E ≃ SU(2)E , under

which the supercharges both transform in spin-12 representations. Specifically, letting J3
be the generator of rotations in the 1−2 plane, we have

[J3, Q1] =
1

2
Q1 [J3, Q2] = −1

2
Q2 , [J3, Q1̇] = −1

2
Q1̇ [J3, Q2̇] =

1

2
Q2̇ . (A.2)

In addition, there is an R-symmetry U(1)R with respect to which the supercharges have

charge ±1,

[R,Qα] = Qα , [R,Qα̇] = −Qα̇ . (A.3)

It’s most convenient to reduce to three dimensions along the m = 3 direction. The

m = 3 component of the momentum becomes a real central charge, P3 = Z. Massive states

in three dimensions transform under the little group SO(2)E , whose generator is J3. We

can label the spinor indices α = (+,−) and α̇ = (−,+) to indicate helicity:

[J3, Q±] = ±1

2
Q± , [J3, Q±] = ±1

2
Q± . (A.4)

Also, the R-symmetry descends in a trivial manner to a three-dimensional R-symmetry.

We see from the above commutation relations that the combination J3+
1
2R commutes

with a pair of supercharges (Q−, Q+), while J3 − 1
2R commutes with (Q+, Q−). Each of

these pairs are Hermitian conjugates, and we obtain

{Q−, Q+} = 2(P 0 − Z) =: H+ , {Q+, Q−} = 2(P 0 + Z) =: H− , (A.5)

while

Q2
± = Q

2
± = 0 . (A.6)

The positive-definiteness of H± leads to the BPS bound P 0 ≥ |Z|.
We can construct two different BPS indices from this algebra,

I+(β; q) = Tr e−βH+(−1)2J3q−J3−
R
2 , I−(β; q) = Tr e−βH−(−1)2J3q−J3+

R
2 . (A.7)

Let us assume that we have regularized the theory so that the spectrum of the operator in

the trace is discrete. Then in the case of I+(β; q), the only states that contribute are those

annihilated by both Q− and Q+. Otherwise, the contributions from a state |ψ〉 and (say)

Q+|ψ〉 will cancel each other out, because Q+ commutes with −J3 − R
2 and anti-commutes

with (−1)2J3 . Therefore, the index I+(β; q) only receives contributions from BPS multi-

plets. Indeed, the HamiltonianH+ also annihilates all states that contribute, meaning P 0 =

Z, which is the BPS condition. Similarly, the index I−(β; q) only receives contributions

from anti -BPS multiplets, i.e. those annihilated by Q+ and Q−, and satisfying P 0 = −Z.
Both indices are independent of β. Furthermore, it is useful to observe that neither

D-term nor F-term (superpotential) deformations of a theory can affect the indices. For

example, a superpotential deformation amounts to an insertion of some operators
∫
d2θO
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and
∫
d2θO in the indices. These can be written as {Q−, [Q+, A]} and {Q+, [Q−, A]},

respectively, for an appropriate A, and thus vanish inside both indices. An analogous

argument shows invariance under D-terms.

Note that instead of (−1)2J3 we could use (−1)R in I±(β; q) to produce indices with

the same essential properties. In fact, the simple replacement q → −q implements this

modification. This is the relevant situation for holomorphic blocks. When R is not integer-

valued, (−1)R means eiπR.

B Combinatorics of triangulated knot complements

In this appendix, we provide combinatorial details for the knot complement examples of

section 6. In particular, we derive the simplified theories TM for the trefoil (31), figure-eight

(41) and 52 knot complements. It was discussed in section 6 that these simplified theories

— corresponding to minimal triangulations of the knot complements — are somewhat

degenerate, and are missing operators necessary to break some flavor symmetries. The real

masses for these flavor symmetries are set to zero by hand.

Our notation follows [16] and [11]. The logarithm of the squared meridian eigenvalue

(m) is called X = logm2 = U . The logarithm of the longitude eigenvalue (ℓ) is called

P = log(−ℓ) = v.

Trefoil 31. The minimal triangulation of the trefoil knot complement has two tetrahedra.

Call the logarithmic shape parameters (complexified dihedral angles) of the tetrahedra

Z,Z ′, Z ′′ andW,W ′,W ′′. The coordinates defining the gluing, obtained from SnapPy [130],

can be written as

X = −Z ′′ +W ′′

C1 = Z +W

C2 = Z + 2Z ′ + 2Z ′′ +W + 2W ′ + 2W ′′

P = 1
2(3Z + Z ′ − 3Z ′′ −W −W ′ + 3W ′′)− iπ − ~

2 ,

(B.1)

where C1 and C2 are the sums of angles around the two internal edges. The semiclassical

gluing constraint is C1 = C2 = 2πi+ ~. We ignore the redundant constraint C2 = 2πi+ ~;

use the relations Z+Z ′+Z ′′ =W+W ′+W ′′ = iπ+~/2 to eliminate Z ′ andW ′; and define

a momentum coordinate Γ =W ′′ conjugate to C1. Then the equations are re-written as



C1 − 2πi− ~

X

Γ

P


 =




1 1 0 0

0 0 −1 1

0 0 0 1

1 0 −2 2







Z

W

Z ′′

W ′′


+

(
iπ +

~

2

)




−2

0

0

−1


 . (B.2)

This defines an affine symplectic transformation in the space of shape parameters. The

Sp(4,Z) matrix appearing here, which we can call g31
, decomposes into generators as

g31
=




1 1 0 0

0 0 −1 1

0 0 0 1

1 0 −2 2


 =




1 0 0 0

0 1 0 0

0 0 1 0

0 2 0 1







1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0







1 1 0 0

1 0 0 0

0 0 0 1

0 0 1 −1


 . (B.3)
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The combinatorial data in (B.1)–(B.3) translates directly into a class-R construction

of the simplified trefoil theory T31
. In general, for a triangulation of a knot complement

M into N tetrahedra, the prescription of [11, 16] dictates that one should (cf. section 4.1)

1. Tensor together N chiral theories T∆, obtaining T∆1 ⊗ · · · ⊗ T∆N
, with U(1)N flavor

symmetry and a level −1
2 CS coupling for each U(1).

2. Apply the Sp(2N,Z) symplectic matrix g as in (B.3) to the product theory. In

particular,

2a. Generators with block type
(
U 0
0 U−1T

)
, with U ∈ GL(N), act by linear redefini-

tions of the U(1)N flavor group.

2b. Generators with block type
(

I 0
B I

)
, with B symmetric, add background CS cou-

plings with a level matrix kij = Bij .

2c. S-type generators containing pieces that look like
(
0 −1
1 0

)
gauge a U(1) with an

FI coupling to the background vector multiplet of a new topological U(1)J .

3. Affine shifts, as on the r.h.s. of (B.2), are relevant for theories on compactified spaces.

OnD2×qS
1, shifts in “position” coordinates (the top half of the shift vector) add units

of flavor current to the R-current (shifting the Wilson lines of flavor symmetries by

−iπ− ~
2). Shifts in “momentum” coordinates (the bottom half of the shift vector) act

by adding mixed Chern-Simons contact terms between the background R-symmetry

and flavor symmetry fields.

4. Finally, operators OCi must be added to a superpotential to break the flavor sym-

metry associated to each internal-edge coordinate Ci. If these operators exist, they

automatically have R-charge RO = 2 by virtue of the affine shifts in Step 3.

After applying this prescription to the trefoil triangulation and letting the dust settle,

we find a dynamical U(1) gauge theory with two chiral multiplets φz, φw. The chirals

have charges (+1,−1) under the U(1)s gauge symmetry, and R-charges (+1,+1). An axial

flavor symmetry U(1)c1 is broken by a superpotential coupling OC1 = φzφw. (There is no

operator OC2 corresponding to the edge C2, which is why this theory is not complete.)

There remains a topological U(1)x flavor symmetry. There are +2 units of CS coupling for

U(1)x, −1 unit for U(1)s, and an FI term coupling U(1)x and U(1)s; in total this can be

encoded in the CS coupling matrix

1

2

(
Vs Vx

)(−1 1

1 2

)(
Σs

Σx

)
= −1

2
VsΣs + VsΣx + VxΣx . (B.4)

Due to the superpotential interaction, we expect to be able to integrate out the chirals at

low energies. No (net) anomalous Chern-Simons couplings are generated.
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Figure-eight 41. The minimal triangulation of the figure-eight knot also has two tetra-

hedra. Give them shape parameters Z and W . The gluing coordinates from SnapPy are

C1 =W + 2W ′′ + Z + 2Z ′′

C2 =W + 2W ′ + Z + 2Z ′

X = −W ′ + Z ′′

P = 1
2(−W − 3W ′ +W ′′ + Z + Z ′ + Z ′′) .

(B.5)

We forget the redundant edge C2, eliminate Z ′ andW ′ using Z+Z ′+Z ′′ =W+W ′+W ′′ =

iπ+ ~
2 , and (arbitrarily) choose a “momentum” coordinate Γ1 canonically conjugate to C1,

to arrive at the affine symplectic transformation




C1 − 2πi− ~

X

Γ1

P


 = g41

·




Z

W

Z ′′

W ′′


+

(
iπ +

~

2

)
σ41

, (B.6)

with

g41
=




1 0 0 0

0 1 0 0

0 0 1 0

0 2 0 1







1 2 0 0

0 1 0 0

0 0 1 0

0 0 −2 1







1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0







1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1







1 −1 0 0

0 −1 0 0

0 0 1 0

0 0 −1 −1


 , σ41

=




−2

−1

−1

0


 .

(B.7)

The combinatorial data in (B.7) leads to a simplified theory T41
that is a specialization

of the CP1 sigma-model. Namely, it is a dynamical U(1) gauge theory with no Chern-

Simons terms, coupled to two chiral multiplets both of charge +1. The R-charge of each

chiral is zero. The vector U(1)V flavor symmetry has an associated complexified mass x =

expX, while the U(1)J should be broken by operators OC1 and OC2 in the superpotential.

These operators do not exist in the simplified theory, so instead we set the FI term (the

mass of U(1)J) to zero by hand. In fact due to an affine shift, the data (B.7) dictates that

we set the FI term not to zero but to −iπ − ~
2 (i.e. giving a nonzero theta angle), where

iπ + ~/2 is the Wilson line of the R-symmetry at the tip of D2×qS
1.

Knot 52. The minimal triangulation for the 52 knot has three tetrahedra. Give them

shape parameters Z,W, Y . From SnapPy we find gluing coordinates

C1 =W +W ′′ + Y ′ + 2Y ′′ + Z + Z ′′

C2 =W ′ +W ′′ + 2Y + Z ′ + Z ′′

C3 =W +W ′ + Y ′ + Z + Z ′

X = −W ′ + Y ′′ + Z ′′

P =W ′ + 2W ′′ + Y + Z + Z ′ − 2πi− ~ .

(B.8)

Then, after removing the redundant edge C3, solving for Z ′,W ′, Y ′ using Z + Z ′ + Z ′′ =

iπ + ~
2 (etc.), and choosing (arbitrarily) conjugate momenta Γ1 and Γ2 for C1 and C2, we
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obtain the affine symplectic transformation




C1 − 2πi− ~

C2 − 2πi− ~

X

Γ1

Γ2

P




=




1 1 −1 1 1 1

−1 −1 2 0 0 0

0 1 0 1 1 1

0 1 0 3 1 2

0 1 0 2 1 2

0 −1 1 −1 1 0







Z

W

Y

Z ′′

W ′′

Y ′′




+

(
iπ +

~

2

)




−1

0

−1

0

0

0




. (B.9)

This can be written more nicely as

~X = g∗
[
g52

· ~Z +

(
iπ +

~

2

)
~σ52

]
, (B.10)

where ~X = (C1 − 2πi− ~, C2 − 2πi− ~, X, . . .)T , ~Z = (Z,W, Y, Z ′′,W ′′, Y ′′)T , and

g52
=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 1







1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0







1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 1







1 0 −1 0 0 0

1 1 −2 0 0 0

0 0 1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 0

0 0 0 1 1 1



, σ52

=




0

0

1

0

∗
∗




;

(B.11)

whereas g∗ ∈ Sp(6,Z) simply mixes around and adds Chern-Simons levels for flavor sym-

metries U(1)C1 and U(1)C2 that will be broken at the end of the day — so it is irrelevant

for the calculation.

The gauge theory obtained from the data (B.11) is a dynamical U(1) gauge theory

coupled to three chiral multiplets all of charge +1. The R-charge of each chiral is zero.

There is a level −1
2 CS coupling for the gauge field, and a level −2 CS coupling for a U(1)

flavor symmetry (associated with the complex mass x = eX) under which the chirals have

charges (+1,−1, 0). The internal edges C1 and C2 correspond a U(1) flavor symmetry

that rotates the chirals with charges (0,+1, 0), and the topological U(1)J . The expected

operators OC1 and OC2 (and OC3) needed to break them do not exist, so instead we set

the corresponding masses to zero by hand. Due to a previous affine shift, this results in a

fixed theta angle iπ + ~
2 (as opposed to zero) for the dynamical gauge field.
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