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Abstract We give necessary and sufficient conditions for totally real sets in Stein
manifolds to admit Carleman approximation of class ck ok >1, by entire functions.
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1 Introduction

In 1927, Carleman [2] proved a remarkable extension of Weierstrass’ approximation
theorem: If f,e € C(R) are continuous functions on the real line in the complex
plane, € strictly positive, then there exists an entire function g € O(C) such that
lg(x) — f(x)] < €e(x) for all x € R. This theorem has been generalized to one-
dimensional sets in CV by Alexander [1], who proved in 1979 the same result for
smoothly embedded curves in CN, and more recently, in 2002, by Gauthier and Zeron
[5], who gave a proof in the case of locally rectifiable curves with trivial topology
in CVN.
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572 P. E. Manne et al.

We treat the case of higher dimensional totally real manifolds and, more generally,
totally real sets. A totally real set M in a Stein manifold X is said to admit Carleman
approximation if there for each f, € € C(M), € strictly positive, exists an entire func-
tion g € O(X) such that |g(x) — f(x)| < €(x) forall x € M. If M is a totally real
manifold of class C¥, it is also possible to consider C¥ Carleman approximation of
f e C5(M) by g € O(X);if X = CV then this is obtained by requiring all partial
derivatives of g — f along M of order < k to be smaller than €(x) at each x € M.
We show in Sect. 2.2 how to define C¥ Carleman approximation on totally real sets of
class C¥ in Stein manifolds, and the main object of the paper is to give necessary and
sufficient conditions for C* Carleman approximation on totally real sets of class C¥,
k > 1, to be possible.

Totally real affine linear subspaces of CV always allow Carleman approximation,
as was shown by Hoischen [7] and Scheinberg [14]. For more general sets, extra
conditions must be imposed. Firstly, we need the totally real set in question to be
polynomially convex, or holomorphically convex if the ambient space is a Stein mani-
fold. However, a recent construction by the second author [18] shows that polynomial
convexity alone is not sufficient: There exists a smoothly embedded polynomially
convex totally real surface in C? which does not allow Carleman approximation. We
will therefore in addition require that the set has what we call bounded exhaustion
hulls, or E-hulls, in the ambient space; see Definition 2.1. This condition is present in
proofs of Carleman approximation in, e.g., [2,16], and we are able to show that it is a
necessary condition for C¥ Carleman approximation, k > 1.

We give some examples to illustrate these notions. If M c C¥ is a locally rectifi-
able curve with trivial topology, then it will be polynomially convex and have bounded
E-hulls, as is shown in [1,5], building upon fundamental work by Stolzenberg [16].
Another example satisfying both conditions is given by any Lipschitz graph over RV
with Lipschitz constant « < 1; see Proposition 4.2. A third example is given in the
one-dimensional case M C G C C; the condition of bounded E-hulls is then equiva-
lent to requiring the complement of M in G to be locally connected at infinity. This is
also a necessary condition in Nersesjan’s approximation theorem [12] (see Remarks
2.2 and 2.8). The example in [18] mentioned above is polynomially convex, but does
not have bounded E-hulls. There are also simple examples of M C C which are poly-
nomially convex, but does not have bounded E-hulls; see [4]. These examples are not
totally real sets, however.

It is shown in [8] that for a totally real manifold M C CN of real dimension at most
N — 1, the condition of polynomial convexity and the condition of bounded E-hulls are
both generic, so that any sufficiently small C! perturbation of M will be polynomially
convex and have bounded E-hulls.

Our main result can then be stated as follows:

Theorem 1.1 Let X be a Stein manifold, and let M C X be a totally real set of class
Ckwithk > 1.

(@) M admits C* Carleman approximation ifand only if M is holomorphically convex
and has bounded E-hulls in X.

(b)  Ifany of the equivalent conditions in (a) are satisfied, then M admits C* Carleman
approximation with interpolation.
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Holomorphic convexity and Carleman approximation 573

The notion of C¥ Carleman approximation is made more precise by Definitions 2.3
and 2.6, which use the same setup as in [11]. One useful consequence of Theorem 1.1
(see Corollary 3.2) is that the set M has a Runge and Stein neighborhood basis.

In light of Theorem 1.1, it is natural to expect that polynomial convexity and
the property of having bounded E-hulls are both necessary conditions for admitting
Carleman approximation of continuous functions. The methods of this article do not
seem to provide a proof of that.

The fact that the conditions in (a) are sufficient to obtain C* Carleman approximation
was proved by the first author in the unpublished work [10].

2 Preliminaries

If X is a complex manifold, we let O(X) denote the holomorphic functions on X. If
K C X is acompact set, we let O(K) denote the continuous functions on K which are
restrictions of holomorphic functions on some open neighborhood of K. The neigh-
borhood may depend on the function. We will always assume that the manifold X is
equipped with some riemannian metric giving rise to a distance |x — x’| for x, x" € X.

2.1 Holomorphic convexity and exhaustion hulls

If M is a compact subset of a complex manifold X, we define, as usual, the holomor-
phically convex hull of M to be

Moy = {x € X; [f ()| < I flm, Vf € OX)).

If X = CN for some N, we drop the subscript O(X). The hull then coincides with the
polynomial hull of M.
If M is a closed, noncompact set, we define the hull of M by

o0
Moxy = U M*ox),
k=1

where {M*} is a normal exhaustion of M. Note that the definition of MO(X) is inde-
pendent of the exhaustion. We call M holomorphically convex if Mpix) = M. If
X = CV and MO((CN) = M, we call M polynomially convex; in other words, this
means that M can be exhausted by polynomially convex compact subsets.

For a closed set M C X, we let h(M) denote the set

h(M) = Mox) \ M.

Definition 2.1 Let E = {EX} be anormal exhaustion of X. We say that M has bounded
exhaustion hulls (or E-hulls) in X if the set h(EF U M) is compact in X for all choices
of k. Note that this property is independent of the exhaustion E.

Remark 2.2 If G C Cisadomain and M C G is a closed subset, then M is holomor-
phically convex iff G*\ M is connected, and M has bounded E-hulls iff G*\ M is locally
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connected at infinity iff G \ M has no bounded component, where G* = G U {oo} is
the one-point compactification of G (see [4]).

2.2 Pointwise seminorms

Let M C X besomesetandletk € Z. . Foreach pointx € M we introduce an equiva-
lence relation on germs of CX-smooth complex-valued functions at x, namely f, ~ g
if and only if f — g vanishes to order k at x. The set of equivalence classes, denoted by
JX" , forms in a natural way a finite dimensional complex vector space called the k-jet
space at the point x. The collection of all k-jet spaces for all points x € M forms in a
natural way a complex vector bundle 7 k(X, M) over M, where transition functions
can be expressed in terms of transition functions (and their derivatives) on X.

To any Ck-smooth function f on X, we associate a continuous section J k( f) of
Tk, M) by T*(F)(x) := [ f«]. Let | -| be a fiberwise norm on ¥ (X, M) that varies
continuously with x, i.e., for any local section s € C(T5(X, M) ynw), where U is
an open subset of X, the funtion x — |s(x)| is continuous. Finally, we define the
pointwise seminorms

| flkx = 1T )

whenever f € C¥(U) and x € M N U, where U is an open subset of X.

Definition 2.3 Let X be a complex manifold, let M C X be a closed set, and let
| - [k,x be a pointwise seminorm on M. Let F be a family of complex-valued functions
contained in C¥(X). We say that M admits C* Carleman approximation of functions
in F if there for every function f € F and every strictly positive function € € C(M)
exists an entire function g € O(X) with

18 = flex < €(x)

forall x € M.

Remark 2.4 If we make another choice of pointwise seminorm | - | ;( » we have

CO) ™ flex < 1flhy < COI Sk

for some positive continuous function C on M. In particular, the validity of C*
Carleman approximation is independent of the choice of the norm.

Definition 2.5 We recall that a manifold M contained in a complex manifold X is said
to be totally real if at all points p € M the tangent space T, M contains no complex
line. We say that a set M C X is a totally real set of class CX, k > 1, if M is closed
and locally contained in a totally real CK-manifold.

It is shown in [6] that M is a totally real set of class C* if and only if we can write
M = p~1(0) for some non-negative real C¥*!-function p which is strictly plurisub-
harmonic on some neighborhood of M.
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Holomorphic convexity and Carleman approximation 575

Definition 2.6 Let X be a complex manifold and let M be a totally real set of class
Ckin X. Let f € CX(X) for some k > 1. If [3(D% f)](x) = O for all x € M and

glal . .

all |a| < k — 1, where D* = a"ldw for some holomorphic coordinate system
Zl ZN

z=(z1,...,2zn) near x, then we say that f is d-flat to order k along M, and we write

f € Hx(X, M). We declare f € Ho(X, M) for any continuous f € C(X).

Note that Hy (X, M) is closed under multiplication, and hence becomes an alge-
bra. We will in this paper be interested in C* Carleman approximation of functions in
Hi (X, M).

When M is a totally real manifold of class CX, it is possible to consider
CK-approximation by entire functions of functions defined only on M. If M is a totally
real set, then it is possible to cover it by totally real manifolds M; and use CK-func-
tions f; on M; which fit together suitably to obtain C*-objects on M to approximate.
The following proposition can then be used to show that M will admit Carleman
approximation with this definition if and only if it does so as defined in Definition 2.3.

Proposition 2.7 Let X be a complex manifold, and let M C X be a totally real set of
class CK. Let f € CK(X) be any function. Then there exists a function g € C*(X) such
that g(x) = f(x) for all x € M and such that g is 0-flat to order k along M.

Proof There are a locally finite open cover {U;}7°, of M and totally real manifolds
M; C U; of maximal real dimension N such that M NU; C M, foreachi. Consider the
restriction f ;. Since M; is of maximal dimension, the Cauchy-Riemann equations
determine at each point x € M; aunique d-flat k-jet agreeing with j)’f (f) along M;. By
Whitney’s extension theorem [17], f|u; can be extended to a function f; € Ck(Ui)
which is 3-flat along M;. Let ¢; € C¥(X) be functions with Supp(¢;) C U; and
such that > ¢; = 1 for all x € M. Again, by Whitney’s extension theorem, there
are 43,- € Hi (Ui, M;) which extend ¢;|y;. It is possible to extend by the zero func-
tion wherever ¢;|y; is locally zero, and away from M; the extension can be arbi-
trary. We can thus obtain Supp(d;i) C U;, and defining ¢~5,~ = 0on X \ U; we get
& € Hy(X, M). Then g = Zq‘;,-fi € Hr(X, M) is well defined, and at each x € M
we have g(x) = > ¢ (x) fi(x) = 2 i (x) f(x) = f(x). o

Remark 2.8 Inthe one-dimensional case, Nersesjan’s theorem [12] (see also [4]) char-
acterizes sets which admit Carleman approximation of functions in A(M): If G C C
is a domain and M C G is a closed and proper subset, then M admits Carleman
approximation of functions in A(M) iff (i) G* \ M is connected, (ii) G* \ M is locally
connected at 0o, and (iii) for any compact K C G there is a neighborhood V of co in
G* such that no component of M° intersects both K and V. Here G* = G U {o0}, as
in Remark 2.2. Note that (iii) is vacuously satisfied whenever M has empty interior,
and (i) and (ii) will then characterize sets which admit Carleman approximation of
functions in C(M).

3 The sufficient condition

The goal of this section is to prove the sufficiency in Theorem 1.1. We prove the more
general result:
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Theorem 3.1 Let X be a Stein manifold and let M C X be a totally real set which
is holomorphically convex and has bounded E-hulls in X. Then the following holds:
For any compact set K C X with K U M holomorphically convex, A = {a;}72 | and
B = {b;};2, discrete sequences of points in X with A C M and B C X \ (K U M),
C = {ci}/, C K a finite set of points, {q;}{°, a collection of germs of holomorphic
functions at the points b;, {d;}°, CN, f € C(KUM)NO(K), and e € C(K UM)
a strictly positive function, there exists a g € O(X) such that

1) lgx)— f(x)| <ex)forallx e KUM,

(1) gx) = f(x)forallx € A,
(i) g(x) —qgi(x) = O(lx — b;j|% Yy as x — b; foralli € N, and
iv) gx) — f(x) =0(x —ci|®t Y asx — ci fori =1,...,m.

If. in addition, M is a totally real set of class CK and f € Hi(X, M), we may
additionally achieve that

1) g — flkx <€(x)forallx € M, and
() |g = flkx =0 forall x € A.

Before we attend to the proof of this theorem, we give a useful corollary.

Corollary 3.2 Let X and M be as in the previous theorem, and let K C X be a
compact set such that K U M is holomorphically convex. Then K U M has a Runge
and Stein neighborhood basis.

Proof Let U be an arbitrary neighborhood around K U M. As in the compact case,
we will define an analytic polyhedron & C U, but we will need infinitely many
defining functions. Let {X j}‘/’.il be a compact exhaustion of X such that X; U M is
holomorphically convex for each j € N, and where X| = K.

If 0U = ¢, we define Q2 = U. Otherwise, for each point g € dU, choose j max-
imal such that ¢ ¢ X ;. By Theorem 3.1 there exists a function f; € O(X) such that
fq(@) = 2 and such that | f,(x)| < 1 forall x € X; UM. Let {g;}°, C 0U be a
discrete sequence of points in X such that the set

3
x e X;|fy )| > 3 for some i € N}

covers 0U. Define
Q={xeU;|f,;(x)| <1foralli € N}.

The set €2 is open. To see this, let p € Q be any point, and let V. CC X be an open
set containing p. Then V C X; for some j, and since {g;} is discrete in X, we obtain
for all sufficiently large i that |f,,(x)| < 1 forall x € V. Hence 2 NV is a finite
intersection of open sets.

Let C C €2 be compact. We claim that C O(x) NS is compact in £2. Assume that this
is not the case. Since Coy(x) is compactin X, there is a sequence of points x; € Co(x)
converging to a point x € 9$2. Then either x € dU or x € U. If x € aU, there exists
an i € N such that x € {|f;] > %}, which is a contradiction since || fy; lc < 1. If
x € U, there exists an i € N such that | f;, (x)| > 1, which is a contradiction for the
same reason.
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We then have
6@(9) - 60()() N Cc L,

and this shows that €2 is Runge and Stein. O

We will prove Theorem 3.1 by an induction procedure, where we approximate on
larger and larger compact sets. First we need a version of the Oka-Weil approxima-
tion theorem, which we will call the Oka-Weil theorem with jet interpolation. Finite
jet interpolation is possible on manifolds more general than Stein manifolds, and we
include a brief discussion.

Definition 3.3 Let X be a complex manifold. Given a finite set of points A =
{ai,...,a;} and an integer d € N, we let Jj{ denote the vector space of d-jets
at the points a;.

Definition 3.4 We say that a complex manifold X admits finite jet interpolation with
bounds if the following holds: For any compact set K C X, any finite set of points
A ={ay,...,a,} C X withoutrepetition, any norm |-| on jd, and any integerd € N,
there exists a constant C such that for all j € jj\j there exists a function f € O(X)
Withjjl_(f) =jifori=1,...,mand | fllx <Cl|jl.

Definition 3.5 Let X be a complex manifold. Given a compact set K C X and a
function g € O(K), we say that g admits uniform approximation on K if there exists
a sequence { f j}?‘;l C O(X) such that f; — g uniformly on K. If, additionally, we
for any finite set of points A = {ay, ..., a,} C K° and any integer d € N may also
achieve that jji (fj—g) =0fori =1,...,mandforall j € N, we say that g admits
uniform approximation with jet interpolation on K.

Lemma 3.6 Let X be a complex manifold that admits finite jet interpolation with
bounds, let K C X be a compact set, and let g € O(K). If g admits uniform approx-
imation on K then g admits uniform approximation with jet interpolation on K.

Proof Let f; € O(X), j € N, be functions such that f; — g uniformly on K, and let
A={ay,...,an} C K° Leth; € O(X) be functions such that j¢ (h;) = jd (fj—g)
fori = 1,...,mand |hjllx < C|JUf; — g)| forall j € N, where J(f; — g) is
the element in Jj{ induced by f; — g. By the Cauchy inequalities, | J def i—8|—=0
as j — oo. It follows that f; — h; — g uniformly on K and interpolates the jets of
gonA. O

Proposition 3.7 Let X be a complex manifold. Then X admits finite jet interpolation
with bounds if and only if O(X) separates points and local coordinates are given by
entire functions.

Proof One of the implications is clear. The other implication will follow from:

Lemma 3.8 Let X be a complex manifold such that O(X) separates point and such
that local coordinates are given by globally defined functions. Let A = {ay, ..., ay,} C
X be distinct points and let d € N. Then there exists a function f € O(X) such that
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578 P. E. Manne et al.

i) f@)=0(x—al|™Yasx - ajfori=1,...,m —1, and
(i) f) =1+ 0(x —anll¥") asx — ay.
Before we prove this, we show how the proposition follows. Let f;,i = 1,...,m, be

functions as in the lemma, but with a; in place of a,,, so that f; is tangent to 1 to order
d at a; and vanishes to order d at the other points in A. Let a compact set K C X

be given, and choose the constant C; such that || fillx < C; fori = 1,...,m. Let
7t ={z], ..., zly} be local coordinates at g; given by entire functions with z (a;) = 0
fori = 1,...,m. Since all the z;s are bounded on K and any d-jet at a; can be

J.
expressed as a polynomial in the z’j s, it is clear that there exists a constant C such

that for any d-jet jl.d at g; there is an entire function g; with jadi (gi) = jl.d and || gillx <
Ca| jidl. The function g = >/, f; - g now interpolates the given jet to order d, and
lglx < mCiCalj?l.

We proceed to prove the lemma. Note first that it is enough to prove it in the case
that m = 2. Given that, one constructs functions f; such that f; is 1 to order d at a,,

and zero to order d at a; fori = 1,...,m — 1 and then defines f := l'[;”zlﬁ.

Let z1, .., zy be local coordinates near a; and let wy, ..., wy be local coordinates
near a, all given by entire functions and such that z(a;) = w(az) = 0. Since O(X)
separates points, we may assume that z;(az) # 0 for j = 1,..., N. By choosing
polynomials in the z;s, we can create entire functions that vanish to any given order
at a;. In particular, there exists an entire function g(x) = P(z1(x), ..., zn(x)) such

that g vanishes to order d at a; and such that g(a>) = 1. Expanding g at a, gives that
gx)y=1+ P;(w1(x), ..., wy(x)) + h.o.t.,

where Py is a homogenous polynomial of degree s. Consider the function g(x) - (1 —

Pg(wi(x), ..., wy(x))). This function will be tangent to 1 to some order greater than
s. Proceed like this until a function which is tangent to a sufficiently high degree is
obtained. O

Theorem 3.9 Let X be a Stein manifold and let K C X be a holomorphically con-
vex compact set. Then K admits uniform approximation with jet interpolation of any

Sfunction f € O(K).

Proof Tt is well known that K admits uniform approximation of any function f €
O(K), and so this follows from Lemma 3.6 and Proposition 3.7. O

We will build up to the proof of Theorem 3.1 through two simpler approximation
results; first we approximate functions supported on small subsets of M \ K, and then
we approximate functions whose support does not intersect K. Along the way we give
some useful corollaries.

Proposition 3.10 Ler X be a complex manifold, K C X a compact set, M C X a
totally real set of class C*, My C M compact, and assume that K U My is a Stein com-
pactum. Then for any point p € My \ K, any open neighborhood V of p, and any set
of points {a; !, C (KUMqg)\ 'V, there exist a neighborhood U' C V of p and a Stein
neighborhood 2 of K U My such that the following hold: For any f € Hy(X, M) with
Supp(f) C U’ and any d € N, there exists a sequence {g./}ﬁo | C O(Q) satisfying

@ Springer



Holomorphic convexity and Carleman approximation 579

(i) 1gj — flk,x = Ouniformly on K U My as j — oo,
(i) Igj — flip =0, and
(iii) gj(x)z0(|x—ai|d+1)asx—>aif0ri=l,...,m.

Proof Since M is locally contained in a totally real manifold of maximal (real) dimen-
sion N, there exists an open neighborhood V of p with V N K = ¥ and a closed,
totally real submanifold My of V of dimension N such that V. " M C My. We may
assume that f € Hy (U, My). By [9], p. 522, there are neighborhoods

UccU' ccUccV

of p and a neighborhood W C U of M N dU” such that if f € H; (U, My NU) has
compact support in U’, there is a sequence of holomorphic functions { ; }?‘;1 Cc OW)
suchthat | — f | » — Ouniformly on My NU as j — oo and suchthat||A;||lw — O
uniformly (see the remark after this proof). By the Oka-Weil theorem with jet inter-
polation, we may assume that |h; — f|i,, = 0 forall j.

Let {€;}72, be a Stein neighborhood basis of KU Mo, and define U} =Q;nU"
and U]z = (Q; \U") U (W NQj).If j is large enough, we have that U} is an open
set, and clearly Q2; = U} U U]Z and U} N sz C W.Fix a j large enough so that this
holds, and drop the subscript ;.

We solve a Cousin problem on  with respect to the cover U, U2, By the solution
of Cousin I with estimates (see, e.g., [13], p. 304), there are sequences of functions
g; € O(U') such that h; = g} — g? on U! N U? and such that gé. — 0 uniformly
on compact subsets of U’ as j — o0o. By Oka-Weil with jet interpolation, we may
assume that all g! vanish to order k at p, and that all g2 vanish to order d at the points
a;. Keeping in mind the Cauchy inequalities, we see that the sequence defined by
gi=hj— gjl. onU'and g = —gjz. on U? satisfies the conclusions of the proposition.

]

Remark 3.11 In [9] the approximation result is stated as follows. Given a C¥-smooth
function f on My with support in My N U’ there exist functions 4 ; holomorphic on
U such that the s approximate f in C*k-norm on My . Since in our case the Cau-
chy-Riemann equations for f along My are satisfied to order k, and since My is of
maximal dimension, it follows that |A; — f|x x — Oas j — oo.

The following corollary will be used in Sect. 4.

Corollary 3.12 Any point p € My \ K is a peak point for the uniform closure of
O«Q)|lkumy- If X = CN and K U My is polynomially convex, then any p € My \ K
is a peak point for P(K U Mj).

Proof This is obvious. O

Proposition 3.13 Let X be a Stein manifold, K C X a compact set, M C X a totally
real set, Mo C M compact, and assume that K U M is holomorphically convex. Then
forany f € C(X) with Supp(f) N K =0, {b;}]_; C X \ (K UM) and {¢;}]';, C K
finite sets of points, q; germs of holomorphic functions at the points b;, and d € N,

there exists a sequence {h }‘]’-‘;1 C O(X) such that
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580 P. E. Manne et al.

@ ;= fllkum, = Oas j — oo,
(i) hj(x) —qi(x) = O(x —bi|** Yy asx — b; fori =1,...,n, and
(iii) hj(x)zO(|x—c,~|d+l)asx—>c,~fori=1,...,m.

If, in addition, M is a totally real set of class C*, {ai}i_; C Mo\ K is a finite set of
points, and f € Hy (X, M), then we can also obtain

(iv) |hj — flk,x — O uniformly on My as j — oo, and
V) lhj— fle =0fori=1,...,s.

Proof Let U be a neighborhood of K which does not meet Supp( f) and which does
not contain any a;, and let My = Mo \ U. At each point p € M, let V), be an open
neighborhood such that V_p N K = ¢ and such that V), contains none of the a;, except
possibly if p = a; for some i. Choose neighborhoods U 1/7 C V) as in Proposition
3.10. Let {UI/JI 5:1 be a finite cover of M(/) such that p; = a; fori =1,...,s, and let
M; denote the open set M N Ul’,i fori =1,...,t.Let¢’ e CS(UI’,’_) be functions for
i =1,...,¢suchthat Zle g (x) =1forallx € Mj. As in the proof of Proposition
2.7, we may assume that each ¢' is d-flat to order k along M. Then

t
flag =D 0" f.
i=1

where each ¢i - f € Hi(X, M). For each i, choose a Stein neighborhood €2; of
K UMpysuchthatb; ¢ Q; for all Jj and such that there is a sequence {83}?0:1 C O(2)
approximating ¢’ - f in accordance with Proposition 3.10. Let Q = Ni_;; and let
gj = Zle g’j Then {g; }?":1 satisfies claims (i), (iii), (iv), and (v) of the present
proposition, but with €2 in place of X.

Fori = 1,...,n, let W; be a neighborhood of the point b; such that ¢; has a rep-
resentative which is holomorphic on W;, W; N Q2 = #, and such that W; N W; = ¢
whenever i # j. Define a sequence of functions {g; ?‘;1 C O(Q U (U_, W) by
gi=gonQandg; =qg;onW;fori =1,...,n Since K UMy U {by,...,b,}is
holomorphically convex, we can apply the Oka-Weil theorem with jet interpolation to
approximate the g; by entire functions. We thus obtain {/ }?’;1 C O(X) with all the
required properties of the present proposition. O

The following corollary will be used in Sect. 4.

Corollary 3.14 With X, My, and K as in the previous proposition, if f € C(K U M)
satisfies f|x =1, then f is in the uniform closure of O(X)|gum,-

Proof The function 1 — f can be uniformly approximated on K U M by continuous
functions which vanish on some (varying) neighborhood of K. Now apply Proposition
3.13. O

Proof of Theorem 3.1. Without loss of generality, e(x) < 1 forallx € K U M. Let
{K; }?‘;O be a normal exhaustion of X such that K; U M is holomorphically convex
for each j. We may assume that Ko = K and that f € O(K3). For j = 1,2, ..., let
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Xj € C5°(X) be a cutoff function such that x; = 1 near K; and such that Supp(x;) C
K ;’ 1+ As in the proof of Proposition 2.7, we may assume that y; is d-flat along M for
each j.For j =1,2,..,let C; € R be a constant such that |x; - Flgx < Cj - [Flix
forallx € M and all F e C* (X). Choose the constants such that 1 < C; < Cj4 for
all j.

We will construct a sequence of approximating functions by induction, and the
following is our inductive hypothesis /; for j > 1: We have constructed functions
gs € O(X)fors =0,..., jsuch that

@ 1gj — flex < Zle 25" le(x) forallx e KU(MN K1),

—i—1 —
®) lgj — flex < Zc’j e(x)forallx e MNK;j11\ K,

(C) ”gj_gj*IHKj,] <2_j’

(d) lgj— flxx =0forallx € AN K41, and

e gjx)—gi(x)=0(x— bi|%) as x — b; forall b; € BN K;.
M gjx)— fx)=0(x— c¢i|%) as x — ¢; forall ¢; € C.

By the assumption that f € O(K>), we get a function g; € O(X) satisfying con-
ditions (a) and (c)—(f) by applying the Oka-Weil theorem with jet interpolation. Let
g0 = g1, so that [ is satisfied.

Assume that /; holds for some j > 1. Let d’ = max{d;;b; € BN Kji1}. The
support of the function f; = (1 — x;) - (f — g;) does not intersect K ;, so we may
apply Proposition 3.13 to get a function ; € O(X) satisfying

—ji=2

@ 1hj = filex < ope@) forallx € Kj U (M N Kjaa),

) |hj— filkx = Ofor'flllx € ANKjyo,

(i) hj(x) = O(]x —b;|**yas x — b; forallb; € BN K,

() hj(x) —(gj —g)(x) = O(lx —b;|+ Y asx — b; forallb; € BN (Kj41\ K;),
and

(k) hj(x) = O(lx —c;]%*!) as x — ¢; forall ¢; € C.

It follows from (g) that ||hj|lg; <27/~ Let gj41 = gj + hj: then

lgj+1 — flex < Nhj — filkx +1x(85 — lkx

forall x € K UM, and it is straightforward to verify that g satisfies the conditions
in ]j+1'
Let {g j}?‘;l C O(X) be a sequence constructed by the inductive procedure. It is

straightforward to verify that g; converges to a limit g € O(X) satisfying all the
claims of the theorem. O

4 The necessary condition

Having verified the sufficiency in Theorem 1.1, it remains to show the following:

Theorem 4.1 Let X be a Stein manifold andlet M C X be a totally real set that admits
C' Carleman approximation of functions in Hi(X, M). Then M is holomorphically
convex and has bounded E-hulls in X.
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We first note that it is enough to prove this theorem in the case that X = CV for
some N € N. It is well known that if M admits uniform approximation of continu-
ous functions on compact sets, then M is holomorphically convex. By the embedding
theorem of Remmert, the pair (X, M) embeds holomorphically as closed submanifolds
of CV, and by Cartan’s Theorem B, the image M, of M admits Carleman approx-
imation. If My has bounded E-hulls in CV, then clearly M has bounded E-hulls in
X.

We start by establishing a sufficient condition on certain closed sets for being
polynomially convex and having bounded E-hulls in CV, recalling that polynomial
convexity of closed sets is defined in terms of normal exhaustions. Write CV as a
decomposition CV = (RF x RVN"%)@iRN, 1 < k < N. A graph Z overaset S C R*
is a set

={z=(0,y)+iweC’:y=¢x), w=yx),x S},
where ¢ : S — R¥ ¥ and ¢ : § — R¥ are continuous functions.

Proposition 4.2 Let Z C CN be a graph over a closed set S C R¥, as above, and
assume that there is some B < 1 such that  : S — R satisfies the Lipschitz condi-
tion | (x) — (x| < Bllx — x'|| forall x, x' € S. Then Z is polynomially convex
and has bounded E-hulls in CN .

Proof We first observe that there is no loss in generality in assuming k = N, as Z
also is a Lipschitz graph with the same 8 over the set {(x, ¢(x)); x € S} C RV,
We therefore assume that Z = {x + iy/(x); x € S} with § ¢ R". By Kirszbraun’s
theorem (see, e.g., [3]), ¥ extends to a Lipschitz function ¥ : RN — RV with the
same Lipschitz constant 8 as . Let

={x+iv(x);xeRV} > Z.

To see that Z is polynomially convex, let wyg € CV \ Z, and let z9 € Z be such
that Re(zg) = Re(wyp), where we do not exclude the possibility that zg = wg. Define
g(2) = > (zj—(z0),)% then Re(g(wo)) < OandRe(g(z)) > Oforallz € Z.If we
set f = exp(—g), then | f(wo)| > sup, | f(z)|. Approximating f by polynomials,
we get that Z can be exhausted by polynomially convex compact sets.

Next we consider E-hulls, and we may assume that the origin is contained in Z. Let
Kgr ={z=x+1iy € CV; x| < R, |yl < R}; it suffices to show that h(Kg U Z)
is bounded for each R > 0. Choose R’ > -5 and let Ppr = {x +iy € CV; ||x|| <
R, ||l <2R'}. Choose any wg = ug + ivg € CV \ (Pg' U Z).

If wo ¢ Z, then there is zo = xo + iyo € Z such that ||xo|| > R’ and |xo — uol| <
llyo — voll. Define g(z) = >N, (z; — (20),)% then Re(g(wo)) < 0, if z € Z then
Re(g(z)) > 0 by the Lipschitz condition, and if z € K then

Re(g(2) = llx — xoll* = Ily — yol* = (Ixoll — R)* — (Bllxoll + R)* > 0

by the choices made above.

If wy € VA , then let zop = wo and define g(z) as above. We get that g(wo) = 0 and
that Re(g(z)) > O forallz € Kr U Z.

In any case, it follows that wg ¢ h(Kg U Z), and hence that h(Kg U Z) C Pg/. O
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Proposition 4.3 Let K C CV be compact, let F : CN — CM be an entire function,
and let Y = F(K). For a point'y € Y, let Fy denote the fiber F~Y(y), and let K,
denote the restricted fiber Fy N\ K. If y € Y is a peak point for the algebra P(Y), then

KNF,=K,.

Proof Since Fy is an analytic set, we have that K C F,, so clearly KN Fy D K

For the other 1nclu310n letx € Fy,x ¢ K Choose a polyn0m1a1 P with P(x) =
1> ||P||Ky There is a neighborhood V ofy such that |P| < 1 on F~1(V) N K, and
there is a function Q € P(Y) such that Q(y) = 1 and |Q| < 1 on Y \ {y}. For a large
enough integer m € N, we define f = P - (Q o F)™ and getthat f(x) =1 > || f| k-
Since Q is approximable by polynomials, we get that x ¢ K. O

Proposition 4.4 Let M be a totally real set of class C* in CN, k > 1. If M admits C'
Carleman approximation, then there exists a holomorphic map F : CN — C2N such
that F|y is proper, and F(M) is a totally real set of class C* which is polynomially
convex and has bounded E-hulls in C*V

Proof Let R : CN — R2N denote the real coordinate map

z2=(21,...,2N) = (X1,...,X2N),

where z; = xj1 +ixpj for j = 1,..., N, and let M, denote the set My = R(M).
We regard M as a subset of RN @ {0} c R?N @ iRZN = C2N.

By Proposition 2.7, there is a function Re(C! (CN ) such that R(z) = R(z) for all
z € M and such that R is 9-flat along M. The map R can be approximated arbitrarily
well in C'-norm on M by a holomorphic map F = f +ig : CN — C?V, i.e., for any
strictly positive, continuous function § on M, we may find F such that

(1) |f—R|1,x < 8(x) and
() lgl,x <8(x)

for all x € M. If § is chosen small enough, then f|3s is an embedding. Defining
Yi=gof 18— R wegetthat Z = (f +ig)(M) is a graph {(x, ¥ (x))} over
S := f(M). Since |[R(x) — R(y)|| = |lx — y| forall x, y € M, where || - || denotes
the euclidean norm on R?¥, we may choose § small enough such that

(iii) |1 f(x) = fO)I = 3llx — y| forall x,y € M
and such that

(iv) g(x) — gl < 3llx — yl forall x, y € M.

For x',y" € S, we write x’ = f(x),y" = f(y). It follows from (iii) and (iv) that
19 (") = ¥ ()l = llg(x) — g < Fl1x" — y'|l. By Proposition 4.2, we get that Z
is polynomially convex and has bounded E-hulls in C>V. O

We may now tie the previous results together into a proof of Theorem 4.1.

Proof of Theorem 4.1. As already noted, it is enough to prove the theorem in the case
where X = CV. It is a well known fact that M has to be polynomially convex for
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approximation to hold (see, e.g., [15]). Let K € CV be a compact set; we have to
show that h(K U M) is bounded.

Let F : CY — C2V be in accordance with Proposition 4.4, and let My denote
the image My = F(M). Since My has bounded E-hulls in C2N | there exists R > 0
such that

h(F(K) U Mo) C RB,

where B is the open unit ball in C?V.

Let X C K U M be a compact set, and let Y = F(X). We first show that #(X) C
F~Y(RB). Let x € CN \ X be such that | F(x)|| > R.If F(x) ¢ Y, then there exist
a polynomial P such that |P(F(x))| > ||Plly = ||P(F)l|x, and hence x ¢ X.If
F(x) =y €Y, then y is a peak point for P(Y) by Proposition 3.12, and by Lemma
4.3 it follows that X N Fy = X y. Since Xy consists of only one point, it follows that
x ¢ X, and hence we must have h(X) c F-1(RB).

Since F|y is proper, we have that M N F~!(RB) is compact, and hence also
(K U M) N F~'(RB) is compact. To finish the proof, we show that 2(X) = h(X N

F~Y(RB)) C h((K U M) N F~'(RB)), where the last set is independent of X.

LetC = [XNF~ L(RB)], and let x € CN\ C with |[F(x)| < R.If FF(x) ¢ Y,
then clearly x ¢ X.IfF x) € Y use Corollary 3.14 to obtain an f € P(Y ) such that
f= 1onYﬁR]Band|f| < lonY\R]B = Y \ RB. Let P be a polynomial such
that P(x) = 1 > || P||c; then the function g := P - (f o F)™ will satisfy g(x) =1 >
llgllx if m is large enough. Since g can be approximated by polynomials, the result
follows. O

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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