HOLOMORPHIC CURVES AND METRICS OF
NEGATIVE CURVATURE

By
MICHAEL COWEN AND PHILLIP GRIFFITHS

0. Introduction

In this paper we shall prove some of the basic results in the theory of
holomorphic curves using the method of negative curvature which has
recently been fruitful in the study of equidimensional holomorphic map-
pings. The eventual goal of the theory is to understand the position of
holomorphic curves in general algebraic varieties; and it seemed to us that
substantial progress on this problem necessitated finding new proofs of the
classical results. To explain this a little better, it may be useful to give a
historical sketch of the subject.

The classical theory deals with a non-degenerate holomorphic mapping
f:C—P", which we shall call a holomorphic curve, and in brief outline

developed as follows:

(i) E. Borel (1896, [4]), showed that the image curve f(C) can miss at
most n + | hyperplanes in general position, thus extending Picard’s theorem
(n=1).

(ii) A. Bloch (1926, [3]) proved Borel's theorem in finite form, among
other things computing the Kobayashi metric [18) of P*— {4 lines in general
position}.

(iii) H. Cartan (1928, [8]) clarified and extended the work of Bloch, along
the way essentially proving that P" —{2n +1 hyperplanes in general
position} is complete hyperbolic (cf. [11], [15], [12], and [17] for further
developments).

(iv) H. and J. Weyl (1938,[21]) undertook the task of extending the
quantitative form of Picard’s theorem, the beautiful defect relation of R.
Nevanlinna [19], to holomorphic curves in P" (cf. [21]). Although unable to
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accomplish this, they did develop the important theory of associated curves
and non-compact Plicker formulae.

(v) Finally, L. Ahlfors (1941, [2]) was able to prove the defect relations,
not only for the holomorphic curve but for the associated curves as well. (An
earlier paper by H. Cartan [9] contains a defect relation for the holomorphic
curve alone.) Ahlfors’ work stands as the culmination of a 60 year develop-
ment in the branch of function theory dealing with Picard’s theorem and the
study of the value distribution of entire functions (cf. the introduction to
[21]). and was followed by a lull in the subject, until being recently revived
by Chern [10], Kobayashi [18], Wu [22], and others.

As one reason for this lull, we think that the great beauty of the subject
was perhaps offset by the technical difficulty in the proofs of the main
theorems, the theorems of Bloch and Ahlfors. (A glance at the introductions
of [21], [22], and [10] reveals an awe of the difficulty of Ahlfors’ proofs.)

As a consequence, the proofs of these results may have loomed larger
than the basic principles of the subject—the Second Main Theorem and
related question of contact—thus hindering further progress on the general
theory. (The Ahlfors theorem strikes us as one of the few instances where
higher co-dimension has been dealt with globally in complex-analytic
geometry.) In this paper we give what is hopefully a conceptually simple and
technically straightforward proof of the Ahlfors defect relation, a proof
based on the use of negatively curved metrics.

The general philosophy is that a metric of negative curvature forces very
strong global behaviour on a holomorphic mapping. Instead of attempting to
formalize this philosophy, which would probably be a mistake anyway, we
have tried to iHustrate how it is used operationally by showing in Section 2
how such a negatively curved metric leads to Schottky-Landau theorems
and defect relations. The method here is to use a potential-theoretic integral
formula (Section 1), which is related to Jensen's theorem and the Gauss-
Bonnet theorem [22]. Having a metric h({)|d{|* of negative curvature
means that h is subharmonic, and thus the signs in potential-theoretic
integral formulae all go the right way.

If the reader is thus at least somewhat convinced that having a metric of
negative curvature gives a defect relation, then the proof of the Ahlfors
theorem follows by simply writing down such a metric (6.3) and computing
its curvature. (The reader who is familiar with the standard foundational
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material on holomorphic curves ([21], [22}) and the formalism of Frenet
frames [10] may find a proof of the Ahlfors theorem in Sections 1(a) and
6(a).) Actually, instead of just one metric we use a collection of n metrics
constructed from f and its associated curves, none of which individually has
negative curvature, but where the collection as a whole has negative
curvature. The general philosophy of negatively curved metrics applies to
such collections as well (Section 2(c)). The form of the metrics (6.3) was
suggested by the Poincaré metric (2.3) on the punctured disc. (The heuristic
reasoning which led to the metrics (6.3) is given in Section 6(d).) The
calculation of the curvature is most effectively carried out using the Frenet
equations for the holomorphic curve, which are reviewed in Section 5(a).

As further applications of the use of negatively curved metrics, we have
given:

(i) in Section 5(b) a proof of the Ahlfors inequalities [2], which are
traditionally derived by integral geometry and which furnish the main tool
for the previous proofs of the defect relations;

(i) a proof of the big Picard theorem for maps of the punctured disc into
P" —{n + 2 hyperplanes in general position} (Section 6(c)); and

(iiiy a proof of the defect relations for the associated curves to a
holomorphic curve (Section 7). In his paper [2], Ahlfors deduced the defect
relations for the holomorphic curve from the general result on associated
curves, but we feel that it is conceptually clearer to treat the special case
separately, since the main ideas appear here and might become lost in the
combinatorial arguments necessary in the general situation.

A final comment concerning our viewpoint on defect relations: the First
Main Theorem (Section 3(a)) for a holomorphic curve f:C—P" gives an
inequality (cf. (3.4))

0.1 NA. N <Tr)+C
bounding the counting function N(A, r) for the points of intersection of f(C)

with a hyperplane A by its average (cf. (3.5)) Tor)= fN(A,r) du(A),
A

called the order function of f. By a defect relation we shall philosophically

mean a lower bound

(0.2) 2 N(A.r) = CTor)+C’,
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where the sum is over a set of hyperplanes in general position, and where the
notation | means that the stated inequality holds outside exceptional
intervals. Playing off the upper bound (0.1) against the lower bound (0.2)
gives the usual form of defect relations, but it seems conceptually clearer to
us to think of them as the combination of an upper and lower bound.

1. Integral formulae

(a) Basic integral formula. LetA, ={{ € C:|{]|< s} be the disc of
radius s in C. Suppose given on this disc a function k{{) such that:
(i) near a point {,EA,, h({) has the form

(1.1 h(§) =& = Lo™ (log|{ = Lo) ho({)

where ho({) is positive and C~, and

(i) h({) is positive and C™ near { = 0 (this condition is not essential, but
allows more uniform formulas). We call u = u({o) the multiplicity of {, in
(1.1), and define the divisors

R = Zo }L(go)‘go

D= go—u(go) - Lo

Here, for reasons to be explained below, R stands for “ramification’” and D

for “‘singular divisor”.
Counting functions n(D,r) and N(D,r) are defined as usual by

n(D,r)=degree of (D NA,) =D — u(lo), LEA,

<0

(1.2)

r

N(D,r)=Jn(D,p)gp£,

and similarly for n(R,r) and N(R,r). In addition to the exterior derivative
(¢ =re”),
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- _ 00
d—8+8—ardr+80d0.

we define the real operator

. V=1 - 19 19
d —T;(ﬂ—ﬁ)—ar-é—;deﬁm%dh
and observe that
VT s i
dd :——]‘i‘—_dg/\d{
27 8{aL

is essentially the Laplacian.

Proposition. (Basic integral formula.) Forr <s,

i J log h - d6 + N(D,r)
4qr

lg)=r
(1.3)

- N(R,r)+f( f dd 1ogh)@+§log h(0).
0 A, p
Proof. An easy argument shows that both sides of (1.3) are continuous

functions of r, and so we may assume that log h is C” on the circle [ | = r. In

A,.., we may thus write
h(§)y=m(0) - ho{)
where the product

w(§)=1]|§—<:m e

is over all points in (R + DY N A,.., and where locally around any £, € A,..,

ho(¢) = (log|Z — L) h ()
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with h,({) being positive and C~. It will obviously suffice to prove (1.3) for
w({) and ho({) separately.

For 7 ({). (1.3) results from Jensen’s theorem {19] whose fundamental role
in value distribution theory may be explained as follows:

Given an entire holomorphic function f({), the number of solutions n(r,a)

of the equation

flH)=ua

in the disc |z | < r is given by the Cauchy integral formula

:% f alog(f({)—al.

1¢1=r 1¢)=r

The difficulty in using this equation to estimate n(r, ) is that the integrand is
complex while n(r,a) is real. This suggests that we add to it the conjugate

formula obtaining

1 | I
n(r.a)=4—m. J 8log[f—a]—4-; f dloglf —al

lgl=r Ig]=r

=i f dloglf —al—dloglf —al’ (dloglf-al=0)

l¢i=r

I

dlog|f—al’

i=r

r%(# f log|f—a l2d0)

Igl=r

Il

by the formula for d¢ given above. Integrating the equation

n(p-a)=p§5(# f logif—alzdf))

I¢]=p
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. d .
with respect to ;p from 0 to r gives

0810~ a|+ N(r.a) =1 [1og]f ~ aPde.

lgl=r

which is Jensen’s theorem, and which implies (1.3) for 7 (¢).
As for ho({), in case there are no local (log|{ — £4| ) factors, loghg is C™

and

r r

: dp . dp
dd* 1o m,)—:f f d*lo hn)—
j(j S ( &

0 0 [L]=p

Lo | )
47Tf pap IOgh()dO D

[{)=p

Il

L f log hod6 — Hlog ho(0),
447

Ig)=r

where we have used Stokes’ theorem and the formula for d° in polar
coordinates given above.

In general, singularities of the type log(log|{ — £o|)* are sufficiently mild
that the same calculation still goes through (cf. [6, Lem. 1.4]). Q.E.D.

(b) A variant for the punctured disc. Let A*={0<|{|<1} be
the punctured disc. We shall be interested in possible singularities at the
puncture ¢ =0, and shall thus always assume that the functions under
consideration are defined on the larger punctured disc {0 <|[{| <1+ €} for
some € > 0. Given h({) on A* which has the local form (1.1) and which has

r

n(D,r)=degree of (DN A,)

N(D:r) =fn(D,p)%P.
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The same proof as for (1.3), only applied now to the annuli A,, gives:

Proposition 1.4. With the above assumptions and notation,

4# f logh do +f fdd logh) f de ]0gh)|ogr+N(R r

I¢1=1

- N(D.r)+# j log h d.

Iei= s
Corollary. If R is empty and h =1, then

r

(1.5) N(D.r)éf(fdd" logh)i—p+Clogr+C’.

2. Metrics of negative curvature

(a) A Schottky-Landau theorem for one pseudo-metric.

pseudo-metric @ on A, is given by a differential form of type (1.1),

w =" h()dg ndL.

with h({) being a C~ function such that locally

.1 h(§)=[¢ = o™ ho(0)

A

where h, is positive, w is non-negative, and h(0)#0. (The adjective
“pseudo’” means that the coefficient function h(¢) is C”~ but may have

isolated zeroes. In case h({) only satisfies (1.1), we shall refer to « as a

singular metric.) The Ricci form Ric w is the C™ (1,1) form given by

V-1 azlogh _
27 (?{ag

Ric w = dd‘logh =
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(Ricci forms are discussed in a general setting in [14, Sect. 0(b)]. The main
property we shall use is the relation

Ric(e” - w)=dd p + Ric w
: 1 8’logh
for a function p.) If K(h)= _Ea_gagg_ is the Gaussian curvature of the

Hermitian metric A({)|d¢ [2, then
Ricw = - K(h) - w
so that the conditions
Ric v Z w
{ Khy=—1

2

logh
agar

are equivalent. Since is C~, the points where h =0 should be

considered as having curvature — oo,

The Poincaré metric @, given on A, by

G = V-1 s’d{dl
oow (T
satisfies
2.2) Ric @, = @,.

Using the covering transformation
W'—){ — e21riw

from the upper half plane Imw > 0 to the punctured disc A*={0<|{|< 1},
the Poincaré metric induces on A* the metric
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2.3) . V-1 diadl 2
4 Iliz(log,;—lz)

Was =

which still satisfies (2.2).

Proposition 2.4. (Schottky-Landau for negatively curved pseudo-
metrics.) Givenon A, a pseudo-metric o which satisfies Ric w, = w,, then

s = Sh(0)) <.
First proof. By the Ahlfors lemma [1], [18],

2s?

M=y

the R.H.S. being the coefficient of the Poincaré metric discussed above.
Taking { =0 gives

sé\/%.

Second proof. This argument, which is based on the integral formula
(1.3), is more complicated but has the advantage of applying to metrics
where the coefficient function h may have singularities. In fact, it is this
proof together with the construction of suitable negatively curved metrics
which will give the defect relations (cf. Section 2(b)).

Define the order function for w by

@.5) Tw(r)=f(fw) (::—p‘

N

Then

r 2

r%’= fw =j(—:r—!h(pe‘°)d0)pdp,

a, 0
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so that differentiating once more gives

1 d’T, -~
2.6) 7 [

*|(dlogr)’

_b
=— fh(g)de.

I¢l=r

Referring to the basic integral formula (1.3), where we assume for simplicity
that h(0) =1, and using

N(D,r)=0
NR,r)z0
2m 27

flogfd() <log( ffd())

0

(concavity of the logarithm —concavity of the logarithm is ubiquitous in

Nevanlinna theory), we obtain
T, (r)=slog ZL f th

which by (2.6) gives

2 d'T, ]

.7) T.(r)= %log [?mr_)i .

Now the order function T, (r) is a convex function of log r, and because of
the log on the R.H.S. it seems reasonable that an inequality such as (2.7)
cannot hold for arbitrarily large r. To make this precise, we assume for a
moment that s = + and seek a contradiction. The following calculus

lemma is taken from [19]:

Lemma. Suppose that f(r), g(r), a(r) are positive increasing functions
of r where g'(r) is continuous and f'(r) is piecewise continuous. Then



104 MICHAEL COWEN AND PHILLIP GRIFFITHS
(2.8) fl(r)=g'(nNa(f(r))

outside a union E of exceptional intervals where

- dr
fdg: a(r)’

E ro

Proof.

0

< [frydr _ [ _dr E.D.
Ef"gZEa(f(r»: a(r)’ Q

ro

We shall use the notation

A(r)=< B(r) I

to mean that the stated inequality holds outside an exceptional set E where
[dre i
,
E

Taking f(r)=T.(r), g(r}=log r, and a(r)=1r""" in (2.8), we obtain

daT,, . 1+e
(2.9) dlofg’r ) - rder(” =T.(r)". I
Now taking f(r) = ‘fi;’l':)gr) and g,a as before,

2.10) d’T.(r) _ (dTa,(r))”‘. I

dlogr’ = \dlogr
Combining (2.9) and (2.10) and using a slightly larger € gives

d’T.(r) _ 1+e
@11 Wiogr)y =L T=(N1"™. I
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On the other hand, h({) is a subharmonic function and thus by the mean

value principle

h(O)éil; f h(Z)do.

I<l=p

Integrating this twice gives respectively

h(0)p” = f ,

2.12)
ShQr’=T,(r).

It is now clear that (2.7), (2.11), and (2.12) cannot all hold, and so we have a
contradiction to the assumption s = + .

By being more careful in our use of the calculus lemma, it is possible using
(2.12) to prove that s = S(h(0)) (cf. [5, pp. 289-290]). Q.E.D.

(b) Defect relation for one singular metric. A singular metric

o on C is given by

VvV —1

2

h({)d¢ ndl

w =

where the coefficient function & satisfies (1.1) above. The Ricci form is again
defined by Ric w = dd* log h.
Lemma 2.13. (i) wisintegrable @ u=—-1land v< —3if u=—1;
(i) if Ric w = w, then w is integrable; and
(iii) Ric w is always integrable.

Proof. Using polar coordinates { — o= re” in (1.1), we see that

ho

e
r (log;)
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and so (i) follows because

€

rdr
J’ r_2“(10 1)—2,, < oo
0 gr

only under the stated conditions.
To prove (ii), we look in the punctured disc A* = {0 <|{ — | <€} around
{o where (1.1) holds. For simplicity, change coordinates to make € = 1. Then

by the Ahlfors lemma

W = Wa«

in A*, where the Poincaré metric @,- is given by (2.4), which is the case
g =—1,v=—35in (1.1). Now apply (@i).
Finally, (iii) follows from the computation

2

aLal

1;_ 2 .
¢F lﬂﬁ%&ﬁz

log (log

which is the statement that the Gaussian curvature of @,. is constant
negative. Q.E.D.

Let w,¢ be singular metrics on C and assume that

(2.14) Rico = ¢ +o.

(The use of negative curvature in the guise of an excess relation by the
singular metric ¢ will be the most convenient.) According to the Schottky-
Landau Theorem 2.4, @ must have singularities, and we can even estimate
where the first one occurs. Our next result will give a lower bound on the
size of the singular divisor D of w; it is essentially a defect relation. Before
stating it, we remark that, by (2.13), w and ¢ are both integrable and so their
order functions T,{(r) and T,(r) are defined.

Proposition 2.15. (Defect relation for a single negatively curved met-
ric.) If w, ¢ are singular metrics on C which satisfy (2.14), then given € > 0 we

have an estimate
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(2.16) N(D.P) Z To(r)+ (1 — ) Tu(r). I

Proof. Using (2.14) and the basic integral formula (1.3), we obtain for

r=1,

Td,(r>+Tw(r)§N(D,r>+é j log h - db + C

1g1=r

d*T.(r) ]+ C

= N(D,r)+%log[(dTgr)2

the last step being (2.6). Applying (2.11) we have

' d’T.(r)
eT.(r zlog[(dlogr)z] C=0, I
which when added to the previous inequality gives (2.16). Q.E.D.

(c) The case of several metrics. The geometric situation of a
holomorphic curve in P" will give us, instead of a single metric, a collection
.17 vV -1

;i 2—2;—h,~d{/\d{ (i

wn)

of singular metrics, none of which individually is negatively curved, but
where we have an inequality of essentially the following sort

2.18) S Ricw = 3 o

Definition. We shall say that the collection {w;} of metrics is negatively
curved if (2.18) is satisfied.

Given a negatively curved collection of metrics (2.17), we may construct a

single negatively curved metric w = 2—;1 hd¢ nd{ by setting

(2.19) h=hh)".
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Then, using the inequality of arithmetric and geometric means,

Ricw =dd‘ logh

(ZRlcw,>

:'-—‘

v

10

ks e rho]ag nag

!

v

L (h - )AL AL = .
2w

Applying (2.4) to w we obtain:

Proposition 2.20. (Schottky-Landau for a negatively curved collection
of pseudo metrics.) Let {w:} be a negatively curved collection of pseudomet -
rics on A,. Then

5§ =S(h(0), -, h.(0)) <oo.

Before giving the defect relation, we observe from (iii) in (2.13) and (2.18)
that w; is integrable, and thus the order function

T.(r) = T (r) = f(f ) %

is defined. The singular divisor of w; is denoted by D.

Propositiom 2.21. (Defect relations for a negatively curved collection
of metrics.) Let {w;}, ¢ be singular metrics on C and assume that

Y Ricw, = D o+ ¢

Then, given € >0 we have

(2.22) ZN(Di,r)i(l—e){ZT;(r)}+ To(r). I
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Proof. Define k =h, --- h,, so that
{dd(logk§2w,+¢
D=D+ --- +D,

where D is the singular divisor of k. From (1.3) we have, assuming for
simplicity that k(0)=1,

2.23) (-0 (ST0)+ T+e( STn)

= ZN(D,-,r)+# f log kd#.

Igi=r

On the other hand, by (2.6),

1 -1
yym f logkd0—4772i f log h:dé

1g]=r I¢l=r

. 2 d?log Ti(r)
= 2. dlog [? dlogr? ]

i

which using (2.11) gives, for r = 1,

2.24) f logkdd =3, tlog| T:(r)|'**. I

[¢l=r

1
4

Combining (2.24) and (2.23) gives (2.22) as in the case of a single metric.
Q.E.D.

3. Holomorphic curves in algebraic varieties

(a) The order function and First Main Theorem (F.M.T.).
Let M be a compact, complex manifold. A holomorphic mapping f:C—M
will be called a holomorphic curve. A natural problem is to study the position
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of f(C) in M. In particular, for obvious dimension reasons, we wish to see
how the image f(C) meets the divisors on M.

For this the terminology of line bundles and Chern classes gives a
convenient formalism (cf. [14, Sect. 0] for a general discussion). Suppose
that L —M is a positive line bundle with metric |o[* (o € O(L)) and
corresponding positive Chern class

3.1 w=dd log‘—;—lz.

We denote by |L | the complete linear system of all effective divisors
D=(o) (¢€EOM.LY=H"M.0(L))). By the compactness of M,
dim O(M.L) < and (o) = (¢’) if, and only if, o = Ag’ for some A € C*.
Thus [L | is a finite-dimensional projective space.

To measure the “‘growth’ of a holomorphic curve f: C— M relative to the

given line bundle, we set w; = f*w and define the order function

r

(-2) T(L,r)=f(Jm,)%).

0 o

If f is non-constant, then clearly T(L,r)— > as r —x. Moreover, changing
the metric in L — M changes the order function by an O(1) term ([ 14, Sect.
SD. Thus T(L.r) is essentially intrinsic.

The holomorphic curve f:C— M is said to be non-degenerate relative to
L — M if the image f(C) does not lie in any D € | L |. Assuming this to be the
case, we set D, = f (D) and define the counting function

N(D,r)= N(D,r),
the R.H.S. being given by (1.2). Choose o € 0(M, L ) with D = (o) and set
m(D. r)=L j lo, ;d() ( imity form)
. ypm glf*tr B proximity .
Iel=r

A different choice of o changes m (D, r) by an additive constant, and it will
be convenient to always assume that |o| =1 so that m(D,r) = 0.
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Proposition 3.3. (F.M.T)

ND,ry+m(D,r)=T(L,r)+0(1,D).

Proof. In case 0&Z D, we may take h({)=1/|a(f({))| in the basic
integral formula (1.3), and use (3.1) and (3.2) to obtain the FM.T. If 0€ D;,
then near ¢ =0,|a(f({))[* =L [*ho where ho(0) > 0. We may then apply (1.3)

E to obtain the F.M.T., where the counting function must

g™
a(f({)
now be defined by

to h({):|

N(D.,r) =J’[n(D,p)—n(0,p)]%+ n(0,r)logr

since (1.2) no longer has meaning. Q.E.D.
Corollary. (Nevanlinna inequality.)
3.4 N(D,r)=T(L,r)y+O(1,D).

The beautiful inequality, which generalizes the estimate on the number of
zeroes of an analytic function by its maximum modulus, underlies all of
Nevanlinna theory. The reader is invited to read the discussion in [19] of the
F.M.T. and subsequent inequality (3.4) for a very pretty explanation of the

global symmetry in an entire meromorphic function.

(b) Crofron’s formula and the Liouville theorem. Suppose
now that M = P" and L —P" is the hyperplane line bundle. The metric and
Chern class in L will be given explicitly in Section 4 below. For the moment
all we need to know is that the unitary group operating on C**' induces an
action on L —P" leaving the metric and Chern class  invariant. The
complete linear system | L | is the dual projective space P*” of hyperplanes in
P", and there is a unique measure du (D) on P*” which is invariant under the

unitary group and which satisfies f du(D)=1.
|
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Propositiomr 3.5. (Crofton’s formula.)

ND,r)du (D)=T(L,r).

pepP"”

Proof. Let G be the unitary group and du(g)(g € G) the invariant
measure with suitable normalization. For an integrable function n(D)
defined on P"" and fixed hyperplane D,

(36 f n(D)du(D) = f n(gDo)du.(g).

pep'” gE€EG

Fixing o, € O(P", L) which defines D,,

| tos g )= | o8 gy )

gEG

is a constant C independent of x EP" since G acts transitively on P".
Changing o, to Ao, adds log | | to C, and so we may assume that C =0.

Thus by (3.6) and the definition

f.m(D,r)d;L(D)= f (#mf:’logmd())dp,(D)

pepP" pep*”

=4i [ f IOglg (f(g))'zdp,(g))dﬂ=0.

Similarly, f O(1,D)du (D) =0 since O(1,D) = for 0Z D;.

pep*’

1
log 1 GFONT

Integrating the F.M.T. (3.3) over P*" gives (3.5). Q.E.D.
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Remark. Differentiating (3.5) gives

37 j n(D,r)du (D) = jwf,

pep"”

which is the usual form of Crofton’s formula ([20, pp. 12-13]). Chern has
remarked that the Nevanlinna inequality

ND,r)=T(L,r)+ O(1)

should be viewed as a non-compact version of the Wirtinger theorem, which
states the degree (<> N(D,r)) of an algebraic curve in P" is equal to its area
(< T(L,r)). (This ties in nicely with Hermann Weyl’s interpretation of the
Second Main Theorem as non-compact Pliicker relations.) It is the combina-
tion of the Nevanlinna inequality (3.4) and Crofton formula (3.5) which seem
to force such delicate and refined results as the Picard theorem and defect
relations. As a first indication of this, we shall prove the following:

Corollary 3.8. (Liouville theorem.) A non-degenerate holomorphic
curve in P" meets almost all hyperplanes' D € P"".

Proof. Let E CP" be the set of hyperplanes which f(C) misses. By (3.5)
and (3.4),

T(L,ry= f N(D,r)du (D)

pep"”

il

N(D,r)du (D)

DeP""-E

=u®P —-E)T(L,r)+0Q),

from which it follows that E cannot contain an open set E CP"". Q.E.D.
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Remark. Abhlfors’ proof of the defect relation was a great refinement of
this argument, where the averaging was with respect to a singular density in
P

4. Holomorphic Curves in P"; the Second Main Theorem

(a) Projective spaces and Grassmannians. We shall represent
points in P* by homogeneous coordinates

Z ={z0," ", 2a].

The hyperplane line bundie £ — P* has global sections O(P", L) given by the
linear forms A = (ao,--*,a,) on C**' where

A(Z)=(Z,A)= 2 Zii.

The divisor associated to A is given by (Z,A)=0, and we denote this
hyperplane also by A. The complete linear system |L|=P"" is the dual
projective space of hyperplanes in P”. The metric in L —»P" is given
explicitly by

_UZ A [ZAP
|ZF| AT |ZP|A®

4.1) |[A(Z)]?

where the first equality is a definition and the second is notation. The Chern

class
— c ;: c 2
4.2) O =dd loglA(Z)|2 dd°log|Z|

is the Kéhler form associated to the usual Fubini-Study metric on P".
The Grassmann manifold of linear k-spaces in P" is denoted by G(k,n).
Using the identification

G (k,n) = {(k + 1)-planes through the origin in C**'},
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a point A € G(k,n) is given by choosing k + | vectors Z,, - -, Z, which span
A. If we denote the standard basis for C**' by ey, -, e,, then

4.3) Zon - AZi= D Ao oneah i Ae,

where the A,,...; are the homogeneous Pliicker coordinates of G(k,n) in
PE7! According to (4.2), the metric on G(k,n) induced by the Pliicker
embedding is

(4.4) Qu = dd* log|A]> = dd* log| Zon -+ A Z¢ |.

A holomorphic mapping f: A, —P" will be called a holomorphic curve. We
may represent f({) by a holomorphic vector Z({) = [zo({), -, z.()]. Tt is
useful to allow that Z({o) =(0,---,0) for isolated points ¢,. If this happens,
then near {, we write

4.5) ZW) =W —L)'Z(), Z(L) #(0,---,0),

and f is given by Z({). To compute the ramification of f at {, where
Z(Ls) # 0, one proceeds as follows:
By a suitable linear transformation, bring Z({) to the form

(4.6) ZO =+ (=L e (= L) ]

where 0= u = - =, and “---" denotes higher order terms in (¢ — £o).
Then the ramification index of f at ¢, is w,.

(b) The associated curves. Let f:A, —P" be a holomorphic curve
given by Z({)€C""". It is permissible to multiply Z(¢) by a holomorphic
function p({), to change coordinates in C"*' by a non-singular matrix if we
are interested in the linear structure, and by a unitary matrix if we are using
the metric structure. The holomorphic curve is non-degenerate if the image
does not lie in a proper linear subspace of P". This is equivalent to the
condition

4.7) ZOAZEG A A Z7 () = det(21V(2)) #0,
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where det(z{*'({)) is the Wronskian of the coordinate functions
zold). - . 2.(£). Such an analytic condition for non-degeneracy is not yet
available for holomorphic curves in general algebraic varieties.

Given a holomorphic curve f, there are naturally associated holomorphic

mappings
fi:A,—> Gk, n) k=0,---,n—1

given by the homogeneous coordinate vectors

n+1

A =Z(Q) A+ A ZR(Q) € CE

Thus fo = £, f, is the tangent line to the curve, f; is the osculating 2-plane, etc.

Z{3) A 2'(3)
ZBIAZ'G) A Z"(})

2(3)

/

These associated curves are of fundamental importance in the theory.
Geometrically they provide a means for interpolating between the 1-
dimensional curve and n-dimensional projective space.

It is standard that a non-constant meromorphic function f({) has around

£ = 0 the local form

Q=g+

in a suitable linear coordinate system on P'. In homogeneous coordinates

this is the same as

(4.8) fO=0.¢"+--1,
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and we want to generalize this normal form to a non-degenerate holomor-

phic curve. Introduce integers a-,,do, - -,a.-, such that

(4.9) Z(a_l)(o)’Z(l+a7|+a“)(0)’ .. ',Z(" +u_|+~~«+an_|)(0)

are the lowest order linearly independent derivatives at £ = 0. The point is a
regular point in case ao,= -+ = a,-, = 0; otherwise we have a stationary

point. Choosing the vectors (4.9) as a linear coordinate system for C"*' and
multiplying Z({) by a suitable factor, we may give f({) by

I+a, 1 +a,+a l n+a,+-+a
(4.]0) Z(g):[]’{ o+...’§§2 o |+...’...7_’;_!£ o n—1+...]'

This is the analogue of (4.8). From (4.10),
4.1 Ac(Z) = Lot ® D0 4oy g n o p g s

={y"e()/\"'/\e( +4+ e,

Lemma 4.12. The associated curve f, : A, — G(k,n) has a ramification

point of order a. at { =0.
Proof. We shall do the case n =3, k = 1. Then
ZO) ={1,070 + o 0F 0 4 e
A&)=C"ene+ " egne,+ -
=7 eone+{ " "eones+ -}

Using the prescription at the end of Section 4(a), A,({) has a ramification of
order b at { =0. Q.E.D.

Remark. Referring to (4.11),

“4.13) = vt vy — 20
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is the second difference of the v,’s. If a. > 0, we say that { = 0 is a stationary
point of index k and order a.. The divisor

Ri=2ac({)- ¢
measures the ramification of the k th associated curve, and we set (cf. (1.2))
4.14) N.(r)= N(R,r).

(¢) The Second Main Theorem (S.M.T.). Given a non-degenerate
holomorphic curve f:C—P", we denote by

4.15) V=1

Qk deL ]og|Ak({)12=Thkd{/\d§_

the pseudo-metric on C induced by the standard metric (cf. (4.4)) on G(k,n),
and let

r

([

0 A,

be the order function for the kth associated curve. Then Ty(r) is the order
function for f. The S.M.T. regulates the balance between the growth of the
various Ti’s, and represents an intrinsic form and generalization of the
relation between the growth of an analytic function and of its derivative.
According to a beautiful remark of H. Weyl [21], the S.M.T. should be
thought of as non-compact Pliicker formulae.

We wish to compute the Ricci form
Ric€, =dd‘ logh,
for ), given by (4.15), and the following is the main step:

Lemma 4.16.

hk — Ak—l : Ak+l 2.

| AT
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Proof. It will suffice to check (4.16) at a regular point {,; this is because

2 2
h, is obviously C~, and LA“—“"‘X%&L is C™ since v+ vy — 20 =0 (cf.
k

(4.11) and (4.13)). Representing f({) by a vector Z({), we wish to first find
[2 TN s 7] SLlCh that, if

7 = —_— DTS ak+' - k+1
2@ =1+ als =@+ g - 0 za),
then the inner products
(4.17) (Z%(L6), Z9(L)) =0 (G=0,---,k).

Now Z9(L0) = Z9(L) + <{>a.Z""”({,,) +.-+ (j) a;Z (L), so that (4.17) is

equivalent to the system

(Z“"(Lo), ZV(L)) = 0 (G=0,--k)

of k + 1 linear equations in the k + 1 unknowns a,, - - -, a,+ with non-singular
coefficient matrix (Z({0), Z?({)) (0=i,j =k). Solving these equations
gives (4.17).

Changing notation, we assume (4.17) for Z({). Then at { = Z,

(1) (Z/\"'/\Z(k), Z/\"'/\Z(k_”/\Z(k+”)=0
(4.18)

(i) (ZA-- ANZEVAZED Zpn AZED A ZEHDy

_ APl A]?

[Ac]?
Computing derivatives at { = (o, we find

_3%log(Z A AZY Z A AZY)

he(Lo) = 9ot (by (4.15))
d((ZAAZE Z A AZETIAZEY —
e s ) (927=0
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(ZA-ANZYONZY N Z A A Z%TVAZETY)

- Z A AZP.Zn A Z™) (by (4.18i))

— Ak*l 2 Ak+l ? 13
J——LI—I—IAk B (by (4.18i1)).
Q.E.D.

(Our proof of (4.16) is a little different from the usual argument in that we
have chosen a special representative Z(Z) for f({) to make the ‘“‘cross-
terms’’ drop out, thus circumventing much of the linear algebra. This device
will be used consistently; roughly speaking, the general philosophy is that
terms which have no intrinsic meaning may, by suitable choice of coordi-
nates, be made equal to zero at a given point.)

From (4.15) and (4.16) we find

(419) RiCQk =dd“l0ghk =Qk+|+ﬂk-|_20k.
Applying the basic integral formula (1.3) to (4.19) gives:

Second Main Theorem

(4.20) T i(r)y+ Tias(r) + Ne(r) = 2T (r) +# J' logh.dd + C'.

I¢l=r

Corollary 4.21. Tci(r)+ T (r)=2T.(r)+ ClogT.(r)+ C". I

Proof. This follows from (4.20) and

I 1
= f log hy d6 é%log(z—; f hkda)

[¢l=r I¢]=r

1
-2

2 d*T(r)
log [F (dTgr)z} (by (2.6))

= Clog Ti(r) (by 2.11)). I
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Remark. The S.M.T. 4.20 may be written as

{ Ti-i(r) = 2T (r) + Ti(r) = €(Ti(r))

e(Tk(r))§Clong(r)+C', ”

an estimate on the second differences of the T.(r) which should be
compared with (4.13).
From (4.21) we obtain the inequalities (see [22])

(k + DT(r) = + DT(r) + (T(r)) k<D
4.22)

n+1-DHT.(N=(n+1-kKT,(r)+e(T(r)) k<

where T(r) = max, T« (r). It is in this sense that the original curve and its
associated curves have the same order of growth. Thus, e.g., f is rational <
Tor)=0O(logr) & T.(r)=O0(ogr) for some k; f has finite order &
Tor)=0(") & T(r)=O(r") for some k, etc. For n =2, the inequalities
(4.22) reduce to

Ti(r)=2To(r)+e(T(r)
(4.23)

To(r)=2T(r)+ e(T(r)).

5. Holomorphic curves in P*; the Frenet formalism

(a) Following Chern [10], we shall use the Frenet frames associated to a
non-degenerate holomorphic curve. As may be familiar from the study of
ordinary differentiable curves in R’, this formalism most clearly exhibits the
geometry of the curve, especially those aspects dealing with contact which
the curve may have with a linear space, in terms of the parametric equations
of the curve. We shall use frames on an intuitive level, letting *“dZ”
symbolize an ‘‘infinitesimal displacement of Z and so forth. The rigorous
basis for this symbolism is given in [7, Chap. 3].

A frame is a unitary basis {Z,,:--,Z,} for C"*'. The set of frames is a
manifold F,.,, which may obviously be identified with the unitary group
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U.... f Z:F,.,—C""" is a smooth function, the infinitesimal displacement
dZ may be resolved into its components relative to the frame vectors:

dZ = i Gka,
k=0

where the 6, are 1-forms on F,.,. Applying this principle to the frame

vectors themselves gives
5.1 dZ. = 0uZ,
=0

where the 6, = (dZ,,Z,) are the basic Maurer-Cartan forms on F,.,. Dif-
ferentiation of (Z,,Z;) =8} gives

(5-2) O + 9_lk =0,

and exterior differentiation of (5.1) gives
(5.3) dOu = 6 A By,
i=0

The relations (5.1)-(5.3) are the structure equations for F,.,.
The map F..,——P" given by w{Z,,---,Z,} = Z, is a fibration with fibre
F,. As an illustration of how one calculates with frames, we shall prove:

Lemma 5.4.

’fr*n=—_l{ 009/\_04)}9
2@ |4

=1
Q being the standard Kdhler form on P".
Proof. The mapping 7 is given by

= Z
(5.5 zo—lzle*

where Z is a homogeneous coordinate on P" and ¢ is C™ and real.
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Differentiating | Z|> = (Z,7Z) gives
(5.6) 21Z|d|Z|=(dZ,.Z)+(Z.dZ).
Combining (5.5) and (5.6) we obtain

6., = (dZo, Zy =922 _d|Z] 4,

1z |Z]

__ 1 _ .
= 2’Z’2{(dZ,Z) (Z,dZ)} + idys
=43 —3d)log|Z|*+ idi.

Thus

5.7 VvV —1

— < Z_L
'Tﬂ—@ou = —dlog|Z| o dir.

Taking the exterior derivative of (5.7) gives

740 = dd* log| Z|? (by (4.2))
V-l
= - —Eﬂ—d(iﬂ, (by (5.7))
V —1

" 2m {?—:"A_} (by (5.3) and (5.2)).

Q.E.D.

Definition. Given a non-degenerate holomorphic curve, a Frenet frame
{Z,,---,Z,} is a unitary frame such that Z,, -+, Z; and Z,---, Z* span the
same linear space in C**'; i.e.,
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w. ZA A Z®
k

(5.8) e m:ZOA”‘AZk (k=0,---,n).

Frenet frames are defined at the regular points of the curve, and there
they provide a coordinate system especially adapted to the curve in a
neighborhood of the point. A Frenet frame is unique up to rotations

(5.9 Z,—>e’™Z,.

Restricting the structure equations (5.1)—(5.3) to Frenet frames, they simp-

lify as follows:

Lemma 5.10. (Frenet equations.) (i) 6; =0 fori+1<jand 6., is of
type (1,0); and

dz, = Ok Zi— + O Zi + 0k,k+IZk+l
(ii)
Qk = 2—_l0k,k+| A 6k.k+l .
m
Proof. Since Z, is a linear combination of Z,Z’,---,Z%, dZ, is a linear

combination of Z Z’,---,Z%“*'" which implies that 8, =(dZ,Z)=0 for
i +1<j. Similarly, since dZ“ = 0 it follows that 3Z, is a linear combination
of Z,, -+, Z, and thus 8}.., = (8Z, Zi.)) = 0. This proves (i), and the first
equation in (ii) follows from (i) and (5.1)—(5.3).

To prove the second equation there, we first derive the relation

(5.11) V -1

1
“ea = — < . L i~
5 (Opo + - + Bi) delog|Z n---nZP| gy din

using the same method as in the proof of (5.7). Taking exterior derivatives

gives
Qo =ddlog|Zna---AZ¥®|? (by (4.15))
V-1
= ——zﬂ—(dﬁm + -+ dby) (by (5.11))
=—_lok.k+| Ao_k.k+l

2m
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by (5.2) and using that df,; = 6. A8i-1i + 0iivi A B, sO that the sum
telescopes. Q.E.D.

For future easy reference, we collect together the structure equations for
the curve using Frenet frames:

Structure equations 5.12.

ehp“Z/\"'/\Z(kj i Al\
TUZA A Z%T ¢ TA
k

(1) Zo/\"'/\Zk

>

(i) dZz, = Ok Zior + 6k Zic + Ok Ziin s

(iti)  6i.+, has type (1,0);

0,‘,‘ + é_ﬁ =0
(iv)

dei;‘ = E By A By
X

V — 1

27

v) O = ddflog|Ak|2:~—”2;10k.k+.w}“.; and

— N 2 2
wi) O =Yg r df where hy = Ael [ Aen "
21 ]Akl

(b) The Ahlfors inequalities. As an application of the calculus of
Frenet frames, we shall derive the Ahlfors inequalities [2] in the form of the
conjectured equation (124) in [10]. An heuristic discussion of our method
appears at the end of this section. These results will not be needed for the
proofs of the defect relations in Sections 6,7 below.

We begin with the following linear algebra convention: For a k- vector B
and an h-vector C in C""', the interior product (B,C) is the unique
(k—h)-vector such that
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for all (k — h)-vectors D. We also set
[(B,C)| =|B,C]|.

Let f:C—P" be a non-degenerate holomorphic curve, and A € (C**')* a
unit vector defining a hyperplane A CP". Setting

& = (A) = IZo,A l2 + -+ !Zk,A Iz
(5.13)

_NZnrnZ% AL
[ZAonZ®P

we observe that ¢, (o) = 0 & the curve has contact of order k + 1 with A at
Lo.

Proposition. (Ahifors’ inequalities.) Given € >0, for p Z u(e)=1,

r

(5.14) !(A ;Z?‘;)z)‘;—pqmrwc

Proof. For a positive C~ function ¢,

(5.15) VvV —1

I V-l 8510gq§+\/—1 b A I
47 ’

1)2_ 27 logll¢ 2w ¢2(logl)z

(10z5 ¥

This equation is straightforward to check. Using functions of the sort

1
log (ﬁ)
lo —)
¢ ( L
as potentials is suggested by the formula for the Poincaré metric (2.3) on the

punctured disc. We wish to use (5.15) when ¢ = ¢/, and so we need the
following two lemmas, which together with (4.16) constitute the main

38 log

computations of this paper:

V-1

Lemma 5.16. TW—(a(bk A é_d)k) = (¢k+| - ¢k)(d>k - d’k—l)Qk-
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Lemma 5.17. —_laglogdn = (M_—I)Qk —O,.
2 di

Proof of (5.16). Using a rotation (5.9), we may assume that 6,;({,) =0
at a given point . Calculating derivatives at {, and using (ii) and (iii) in
(5.12), we have

6¢k = (9(<Z()/\"'/\Zk,A>,<Zo/\“'/\Zk,A>)
=(<Zol\ /\qu /\Zk+|,A>,<ZO/\"' /\Zk’A>)0k.k+l
= Ak+1A_k0k.k+|

where Ax =(Z,A). Thus by (5.12v) and (5.13)

V —1
27

#l(ﬂ(bk A(;d)k):lAnl'zJAk § (Beurin Bisr)

= (¢k+| - d’k)(d)k - ¢k —|)Qk-
Q.E.D.

Proof of (5.17). By the definition (5.13) and (5.12v),

¢k =—|—|Ak’Aa i
|A?
V-1

765 log| A [ = Q..

Thus we must check that

(5.18) VvV —1
2T

agloglAk,A IZZ (M:)qu
U

which will turn out to be the S.M.T. (4.16) for the contracted holomorphic

curve

AA(§)=<A|(§)sA>-
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Indeed, we will check that

(Aadi

(5°19) (AksA>:(Z A)kflv

which upon using (5.12vi) and (4.16) gives

V=1 - V=l :
?aa IOglAk,A |2=Taa lOg'(AA)k—||Z

— V -1 I(AA)k-zlzl(AA)k

I 7
2w I(AA)k—|I4 d{Ad{

_V-1lAcn A A,
27 [A AT

A |2d§/\df

¢k71¢k+l
el O,

thereby proving (5.18).

It will suffice to verify (5.19) at a regular point ¢, where (Z({,),A)#0.
Arguing as in the proof of Lemma 4.16, we may assume that

(5.20) (Z"(g0),A)=0 G=1,-",n).

We now proceed by induction, assuming (5.19) for k and then deriving it for
k + 1. Calculating at ¢,

Aair =(Z,AY (AL A) (by induction)
=(Z,AY (ZAZ' A---AZ",A) (by definition)
=(Z,AYZ'n--AZ* (by (5.20));

(A)F =(Z rZ""" A) (by (5.20))

=(Z,A)Zz*"" (by (5.20));



HOLOMORPHIC CURVES 129

and so finally

(A = (Ao A(ADY (by definition)
=(Z,AY'Z' A nZ*V

=(Z,A) (Av+i,A) (by (5.20)).
Q.E.D.

Continuing with the proof of (5.14), we use (5.16) and (5.17) in (5.15) with
¢ = ¢ /i to obtain

Y olgiog| e =[e-—2— |0
2m logL o
[ g Y

2[(¢k+1_¢k)(¢k ‘¢k—|) ¢k+1¢k I]Q
R 2\ ks
qﬁk(logd)k) b log¢k

which easily implies the main technical inequality of this paper

v —1 2 - Pi
(5.21) —27';-38 Iog[ } +e), =zZ2——————O,

log £ ¢k(log-£—k>2

b

provided u = u(e). Applying the basic integral formula (1.3) to the function

2

h=( lu)’
l S il
og 4

we obtain from (5.21) the estimate

2[([ — b Q)d—p<eTk(r)+—l— f loghd6 + C’
) p 4

¢k log—— 1£1=r

< GTk(r) + C
since h is bounded. Q.E.D.
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Remarks. We wish to discourse a little on inequalities of the type (5.14)
and their relationship to the philosophy of negative curvature. Using

2 _ A
d)k(logd)k) >C{(1- Ao A<

in (5.14), we arrive at an inequality

I (] s

after suitable adjusting of constants. This is the conjectured inequality (124)
in [10], which, as was carried out in [10] in the case n =2, leads to the
Ahliors defect relation, a result which we shall prove by a somewhat
different method in the next section. Taking k =0, (5.22) becomes

29 [([LzeAlzALg)d (1) rnsc

The (1,1) form

Q,

'Zo ’2A =wi(A)

fails to be integrable exactly where the hyperplane A has high order contact
with the holomorphic curve. Thus, by Lemma 2.13 (iii), w\ (A) cannot be the
Ricci form of a singular metric. However, the factor |Z,,A|*+|Z,,A |’
vanishes when A has high contact with A, and when put in front of w,(A)
gives an integrable (1,1) form. Thus it is at least possible that

|ZuA[+]Z0 AT
'ZO, IZA

be dominated by the Ricci form of a singular metric, in which case [Ahlfors |
type inequalities may be expected to follow from the basic integral formula
(1.3).

By extremely ingenious arguments in integral geometry (cf. the introduc-
tions to [21] and [22]), Ahlfors derived estimates of the general type as (5.22).
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Our main point is that if one adopts the philosophy of trying to find metrics
of negative curvature using the potential suggested by the Poincaré metric
on the punctured disc as a guide, then the Ahlfors estimates and much more
(cf. Sections 6,7 below) fall out quite naturally using straightforward
computations based on the Frenet frames.

6. Defect relation for a holomorphic curve and some

applications

(a) Proof of the defect relation. Let f:C—P" be a non-degenerate

holomorphic curve with order function

r

To(r)=f(jﬂo>i—p

0 a,

relative to the hyperplane line bundle. For each hyperplane A CP", the
counting function N(A, r) measures the number of points of intersection of
the curve with A, and satisfies the Nevanlinna inequality (3.4)

NA,r)=Ty(r)+C.

Using this, one defines the Nevanlinna defect

with the properties
{ 0=56(4)=1

5(A) =1 if f(C) fails to meet A.

In general, the defect §(A) > 0 exactly when the curve meets A less than it
meets an average hyperplane (cf. (3.5)). The Ahlfors defect relation|2] is the

estimate

(6.2) Y o(A)=n+1
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where A, is a set of hyperplanes in general position;i.e.,non + 1 of the A,’s
are linearly dependent. We will prove (6.2) using the basic integral formula
(1.3) and a negatively curved collection of metrics (Section 2 (c)). Referring
to (2.22), the idea is to find singular metrics leading to a lower bound on the

sum

EN(A,,r),

which may then be played off against the upper bound in the Nevanlinna
inequality.

Now (6.2) is obvious if there are less than n + 2 hyperplanes A., and so we
may assume that A, ---,Ay are hyperplanes in general position with
n +2=N <, and will then prove (6.2). Define for i =0,---,n — 1,

i/
(6.3) W = ¢ n( ¢iri(AL) )2) Q..

v H
¢I(AV) <]0g ¢1(Av)

Proposition. Givene >0, for suitable choice of constants c¢;, u we have

6.9) 'Z:(n—:')Ricwi;(N—n—l)ﬂo+2wi—e(295).

Aside from the term with the ¢, (6.4) says that the {w:} form a negatively
curved collection of metrics (Section 2 (c)). Moreover, the term with the €
may be estimated by (4.22). Thus the proof of Proposition 2.21 will still apply
to yield the desired lower bound.

In fact, let us assume (6.4) and carry out in detail the proof of (6.2). Using
the method of (2.21), we will first derive the lower bound

(6.5) SN(A.Nz(N-n-1-€)T,(r)+C. [l

Proof of (6.5). Let N:(A,,r) be the counting function for the points
¢ € C where f(C) has contact of order i + 1 with A,, and N.(r) the counting
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function for the stationary points of index i. Writing o, = %h,—dg A d{ and

applying the basic integral formula (1.3) to A, we find

(6.6) n
4

— f logh:dé = (n — i)N,(r)
w

1¢l=r
. ‘ . dp
+ S Ne(An P) = Ni(Aw )]+ (1 — l)f(leCw,->F+ C.

Using (2.6) and (2.11), we may estimate the boundary integrals for r = 1 by
an inequality

6.7) . f log hd6 = C’log (T, (r)). I

iZi=r
Finally, using (4.22) we have

(6.8) (S T(n)=CreTur). I

Now sum (6.6) for i =0,---,n —1 use (6.4), (6.7), and (6.8) to obtain an

estimate

(6.9) SN@ANZI(n—DON(r+(N—n—1-€e)To(r)+C I

(where € has replaced €C). Q.E.D.

r—sx

_—NC(A..T1)
Proof of (6.2). ES(A»>=Z(““’“ To(r) )

éN—m@N;?(:)r))

x
r— v

En+l+e

by (6.5). Q.E.D.
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Proof of (6.4). We first note that

n—1

H(n—i)RiCQiZS(n—i)(Q,v_.*FQ,-H—ZQi) (419)
[4] i=0

(6.10)

= _(n + I)Qo

Since the sum telescopes (this is the n + 1 in the Ahlfors defect relation).
Next, by (5.21),

2¢k+l(AV)Qk

. 1 \s_cq
6.11) dd 1°g(<log¢k&v)>z)' « +¢k(AV)(log¢k&y))2

for sufficiently large w. Summing (6.11) gives

NI &ii(Av)
2, dd ‘°g[U@(A»ﬂogmmv»z]

¢ = c _—_1—
= — X ddloguA,) + 3, X dd"log| oo

- = ¢.‘+1(Av)ni — S .
=NQo+ 22{ 2 5. (A) log(a 16 (Av))z} 2

the middle step being by telescoping a sum. Combining this with (6.10) gives

n—1

(6.12) Z(n—i)Ric @ =(N—n—-DQ

+2nz_l{z ¢i+1(Av)Qi )2}_€§Qi-

i=0) v M
éi(4.) ("’g & (A)

Using that Ric (cw) = Ricw, (6.4) follows from (6.12) and the final:

Lenrma. (Sums into products.) For {A,} in general position,

~N & (A) i Hn—i)
C'L[] (d’-’(Av)(logqsi(/‘/;V)) )

v

i di(A)

©13 > antan (o)
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Proof. For B aunit (i + 1)-vector in C**', (B,A,)=0 for at most n — i
of the A,, since the A, are in general position. Using continuity and
compactness of the Grassmannian,
[(B,A))|’zm >0
for all but at most n —i of the A, and all B. In particular,

¢i(Au)§m >0

for all but at most n —i of the A,. Set

_ bemA)

By what was just said, there exists a constant L > 0 such that &, = L for all

but at most n —i of the A,’s.
We may renumber so that ®,()> L atmostforv =1,---, g =n —i. Then

at ¢,

>o,

v

v

q
2.
V=1

v

q
C H P!l (arithmetic and geometric means)
v=1l
N N)/
%C (I)L/q,L(qA Ma
11
N
=C'|[] oV,
I

(b) The Borel theorem.

Proposition. (Borel [4].) Let f:A,—>P" —(A,+ :++ + A.s2) be a non-
degenerate holomorphic curve which omits n +2 hyperplanes in general

position. Then

(6.14)
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We will derive (6.14) from (6.4) and the following assertion about

pseudo-metrics:
Let {w:}, ¢, ¢ be pseudo-metrics on A, and assume that the conditions

ZRiji éEwi +¢—

(6.15)

Tw(r)élog(%{gl];;—(:))z>+er,(r) €<1) I
are satisfied. Then
(6.16) 5§ < oo,

Proof. As in the proof of (2.22), the assumptions (6.15) imply the
inequality

(6.17) 2 Tu(r)+ (1= e)Tu(r)

= ZClog T.(r)+C'logT,(r)+ C" I

where C, C' are universal constants and C” depends on w;(0),¢(0), ¢(0). It
follows immediately that s # + o, Q.E.D.

() A big Picard theorem. Let A*={0<|{|<1} be the punctured
disc and A, -, A.., hyperplanes in general position in P".

Proposition 6.18. ({15]) A non-degenerate holomorphic mapping
f:A*>P"—(A+ -+ + A,.2) extends across { = 0.

The proof breaks naturally into four short steps. We assume throughout
that all functions are defined on the slightly larger disc {0 <|{| <1+ €} for
some € > 0.

Step one. We begin with a simple one-variable lemma.
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Lemma 6.19. Suppose that »(¢) is a meromorphic function on A* such
that, for some open set U CP' and constant B >0, the equation

(6.20) y({)=a (aeU)

has at most B solutions. Then () extends across { = 0.

Proof. Let ao€ U be an interior point where (6.20) has a maximum
number of solutions ¢, -, {m. If p =mini_,.... ||, then in the punctured
disc 0 <|{| < p — € the meromorphic function ¢({) omits an open neighbor-

hood of a,. Thus is bounded near { =0, and so the Riemann

1
Y({)— ao

extension theorem applies. Q.E.D.
Step two. let f:A*—P" be a holomorphic mapping, ¢. = Z./Z, the
rational coordinate functions on P", and

V. = f*

the corresponding meromorphic functions on A*. The mapping f extends
across { = 0if, and only if, the meromorphic functions V.. extend. Referring
to (6.20), the solutions to that equation for ¥, are given by f'(A) where
A CP" is a suitable hyperplane. Setting A, ={1/r <|{] <1} and

n(A,r) =degree (f'(A)N A,)

N(A,r)=Jn(A,p)gf,

1

we obtain from Lemma 6.19 the following:

Lemma. f:A*—P" extends across { =0 if, for some open set of hyperp -

lanes U CP™", we have

(6.21) N(A,r)=Blogr+ B’

for Ae U.

Indeed, it is clear that n(A,r) = B if, and only if, (6.21) is satisfied.
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Step three. Keeping f:A*—P" as above, we let

r

oo~ (o)

1A,

be the order function.

Lemma. f extends across { =0 if, and only if,
(6.22) To(r)y=O(logr).

Proof. The set S of hyperplanes A such that f'(A) meets the circle
[¢]=1is closed and lower dimensional in P*". Taking h = 1/|a4 |? in (1.5)

where o4 € O(P",L) defines the hyperplane A, we find an estimate

(6.23) NA,r)=Ty(r)+Clogr

for all A € U where U is a relatively compact open set in P*"— S. Qur
lemma now follows from (6.21)-(6.23). Q.E.D.

Step four. Proposition 6.18 follows now from (6.4), (6.22), and the
following lemma about metrics.

Lemma 6.24. Let {w:}, ¢, ¢ be pseudo-metrics on A* and assume that,

for some € < 1,
ZRiCﬁ)i = Zwi +¢ - ‘1’
T.(r)=€T,(r)+C. [

Then it follows that

To(r)=0O(logr).

Proof. Applying(1.4),(2.6) (which also holds on A*), and (2.11) we have

2 To(r)+ To(r)S Alogr+ X, Blog T.,(r) + €T, (r) + C, I
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which simplifies to an estimate of the sort
(6.25) T,(r)=Alogr + B. I

We claim that (6.25) implies

A

(6.26) f b=A

for all r, thus proving the lemma. If (6.26) is false for some ro, then for r > r,

r

o= ([ o) 0

ro A,

(]

>Alogr+C,
which contradicts (6.25). Q.E.D.

(d) Intuitive remarks on the construction of negatively curved
metrics. If, on the basis of the arguments in Section 2, one believes that
finding metrics of negative curvature will lead to Picard theorems, defect
relations, etc., then the following heuristic arguments may show how metrics
of the form (6.3) naturally arise. For simplicity, consider a holomorphic
plane curve f:C—P? in which we want to see how it meets a set of lines
A, -+, An. Recalling that

{ d(A) =2, A’ (=0 f(C) meets A)

d(A)=|Z0, A’ +|Z:,A|? (=0 f(C) meets A to 2nd order),

the Ahlfors lemma and formula (2.3) for the Poincaré metric suggest looking

at
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(6.27) 0 = (H ! 1 )Qo.
#u(A.) log d)o(Au))

The Ricci form of w, is given by (cf. (4.19))

]2

(6.28) Ricw, = (N =20+ 0, + 3 dd* log [%
log A

and thus, for N =3 and using (5.21),
Rico =y w

where x >0 but where x({)—0 if f({) tends tangentially toward a line A,.
Thus what is suggested is that we modify (6.27) by setting

w2=(U ¢1(A») 1 Z)Qo.
$o(4.) ("’g BolA. ))

Letting Q(A)=ddlog|ZAZ',A|?,

(6.29) Ricw,=(N-2)Q— (N - DQi+ D Q(A,) + D, dd* log —1—1~ i
" V log s 4

Ignoring the trouble arising at points of intersection of two of the lines, it
follows from (5.21) that

(6.30) Ricw: = y - o+ (2 Q(A) (N - 1)91)

where y is bounded away from zero. Thus, aside from the C™ term
. Q(A,) — (N - 1)Q,), w, has negative curvature. To take care of the C~
term, we use a second metric
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(6.31) ws=[[1] ! | 2
Y ¢,{A,)log (m)

whose Ricci form is given by

2

(632)  Ricw=(N-2)0,+Q, - > Q(Av)+ > dd* k,g(._ll_) _
log 5 (a)

Adding (6.29) and (6.32) gives
(6.33) Ricw,+ Rico;=(N—-1DQ, = +(---)

where (- - -) are the dd“ log(1/log)’ terms. Now by the S.M.T. (cf. (4.23)), we
have roughly that

Q|§(2+8)Qo,

and another £, is required to make the dd‘log(l/log)’ terms positive
((5.21)). Thus (6.33) implies roughly that

(6.34) Ricw,+ Ricw; =Z(N —3—¢)Q, + (w,+ ws).

Consequently, aside from the trouble arising at intersection points of lines,
we have a negatively curved collection of metrics for N = 4. The fractional
exponents in (6.3) are used to resolve the trouble at points of intersection.

7. Defect relations for the associated curves

Let f:C—P, be a non-degenerate holomorphic curve, and let
fi :C— G(k,n), the Grassman manifold of projective k-planes in P,, be the
kth associated curve. Since G(k,n) can be imbedded in P(A**'C**") =PV

n+1
k+1

If A* is a unit (k + 1)-vector in C**', then f, may lie in the hyperplane in PV
defined by A% i.e.,

where N = < ) — 1, then £, can be viewed as a holomorphic curve in P
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(A, A*)=0

and thus f, may be degenerate. However, if A* is decomposable, then
(A, A*)=0 implies f is degenerate. Indeed, if A“=a,r - Aa. then
(A, A¥)=0 if and only if the holomorphic curve Z:C— C**' given by

(7.1 Z=(Z,a0), - (Z.a))

satisfies Z A -+ A Z* =0, i.e., if and only if Z is degenerate, which implies Z
is degenerate.

Thus for decomposable A*, we may still consider the deficiency 8(A*),
for f. considered as a curve in P™. In [1], Ahlfors showed that the defect
relation (6.2) holds for fi as a curve in P, even though f, may be degenerate;
that is

(7.2) > EAHSN+I

< <n + l)

“\k+1
for {A%} a family of hyperplanes in general position in P¥ defined by
decomposable (k + 1)-vectors A%; v =1,---,q.

The proof of (7.2) is similar to that of (6.2) in that we apply our main
inequalities (5.21) to the contracted curve (A, A*™"), where A*™' is a
decomposable k-vector in C**’, and then construct a collection of metrics
having negative curvature. Of course, the defect relations for a non-
degenerate holomorphic curve (6.2) are a special case of (7.2); but the
combinatorial problems which arise in treating the associated curves are
trivial in the case k = 0. Thus we feel it is conceptually clearer to treat the
holomorphic curve f and its associated curves f, separately.

We will use the notation A" for a decomposable unit (h + 1)-vector in
C"*! and

(7.3) G (A") = |Auw A" 2] AP
(7.4) D(A")=dd log|Aw A" |?

(7.5) Aar ={Ani, A")
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for k = h. We adopt the convention that ¢. (A*)=0fork <h and ¢ (A~") =
1.
Let A=A"=qaon - Aawa €C"', and put

At={z€C";{(z,q;)=0,j=0,---,h}.

Then the contracted curve A+ :C— A~ is a holomorphic curve in P(A*) =
P" "', The associated curves of A+ satisfy the relation:

(7.6) (Aar); = (A A"Y (Apsrsy A"),0=j=n—-h—1.
Proof. Truefor h =0 by (5.19). Assume true for h. Given A"*', find A"
and A° such that A""'= A" A A°. Then

A= <Ah+z,Ah+l>
= (Arers A"), A%
=(Aw, A" {(Aar), AD) by the

induction hypothesis. Thus

(Aare); = <Ah»Ah >7(i+l)(<(AAh)laA0>)f
= <Ah’Ah )v(i-H)(AAh’AO)i <(AA")]'+1’A0>

= (Apers A" (Apsjr, A" QED.
Note that (7.6) in the case j = n — h — 1 implies that A+ is a non-degenerate
holomorphic curve.
Applying (4.16) to A4+, using (7.6) to compute the associated curves, we
have

7.7 Q(A")=dd  log|(Aarion-i]|?

_d(AD)(A")
H(A")

O.
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We wish to apply the estimate (5.21) to the curve A4+ ; in order to avoid
confusion we use the notation # to denote ‘“‘relative to the curve A +”
Assume A""'= A" A A° then

(1.8) # b (A%) = W

_ A, AT AP
|Ah+k+15A |2

_ Prani(A")
¢h+k+l(Ah)

and
(7.9) # Q= dd* log|(Aar) |”
= ddc logIAHkH,A" |2

= (A") (by (7.4)).

Thus (5.21) yields, for j > h,

V-l

7100 Y1 ail0g [ !

(A")

2m log=———+
gd)’(A».H

}#en,-m“)

L 200(A") /6., (A", (A")
B(A" 104" (10gh240)

&; (A h+l)
>2¢<;>,+é(/;4"“)) ,,(bj_l(AM;,fi;\n) by,
¢1(A )(logm)

For a given A* choose a system of orthonormal vectors spanning A*, and
let A* CA"*' be spanned by h, h+1 of these vectors, respectively.
Summing (7.10) over the finite number of possible A* CA"*' (relative to the
fixed orthonormal system) we obtain
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277 J(A )
log &" 4w

(7.11) ——””aém(]‘[—’—) FeSOAY)

IIV

Rk L e o

But, following Weyl [21], we have

Sl A" S (A" = B (A" $(A")
(= S (A™) @(A"))E A“'r“‘ 20wy

since for fixed A" there are (k —h) A"*"s containing the A"*. Putting

dh(A )
(7.12) din(AY) = 2oty
we have from (7.11) that
(7.13) V-1 _- A
- aalog<1'1———lo A )> +eSQA")
Ep(a™T)
l/’l lh(A ) 1
=2k —-h) reeilR
Yin(AY) KP(AY)
H(]0g¢j(Ah+]))
for j > h, k > h.
The proof of (5.14) applied to (7.13) yields the Ahlfors inequalities :
i -1 (A5, dp
(7.14) | { | h 2}—
. K pdi(A)N 1 p
0 A, d’l.h+l(A )n(log¢‘(Ah+])>

= e X T,(A")+ C, for a suitable constant ,

where we have set
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r

(7.15) A= [aman?.

0 4,

Since ¢;(A")=1, our basic integral formula (1.3) with h({)=1/¢;(A")
implies:

r

(7.16) T, - T,»(A")+O(1)EJ(jdd“loglf¢,~(A")>i—"+ oM =z=0.

o 4,

Thus (7.14) and (7.16) yield:

3

r

f{ G- (A*)Q }d_p
(7.17) . ; pdi(A")Y tp
o |4, Yrinai(A )H(IOg@(A h+!))

=eT, +C.

Let {A%} be a family of decomposable hyperplanes in Py, i.e., each A isa
decomposable (k + 1)-vector in C**', v =1,--+,q. Define p.(j,h) to be the
maximum possible number of A%’s such that ¢;(A")({)=0 for all A"
contained in A% at any point { €C.

Lemma 7.18.

& (n—j j+1>_.
pim= 3 (1) (17))sizhk=h,
Proof. Let B=byA---aAb, b, €C*"', and V be the span of {bo,---,b;}.
Put

Vi={z€C"(b,2)=0,i=0,--,j}

and let W be any complementary subspace to V*in C**'. Then (B,A")=0
for all A*CA* if and only if A*x=A'AA*"", A' a decomposable
(I + D-vector in V*, A*'"' a decomposable (k —I)-vector in C"*', and
k—1-1<h

Thus if (B,A")=0 for all A" CA* then A* is in the subspace
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x

> ATV A AW, which has dimension D, (" _1) (;{+ l,) But gen-
\ _

1=k— PRV
eral position implies that the number of A’s in any proper subspace cannot
exceed the dimension of the subspace. Q.E.D.
Define

a o A',‘, 1p, Ghy
(7.19) W = Cin H( - L l(ud})(Ah") 2-> Q

v= . i)

"!lfvh(A")l—I<lOg d)](Ah) )

for j=zh =0.

Remark. The metric wy is singular only where ¢,(A%) =0 for some v.
It is not enough only to consider when ¢;(A%) =0, i.e., when (A;))* NA#0
(where we now interpret A;, A = A* as subspaces of C"*'instead of as j + 1,
k + 1 vectors). We must also know the dimensionality of the intersection,
i.e., when dim(A;)* N A = k —h + 1,and this occurs only when ¢;,(A%) =0
and Y, (A #0.

Proposition. Given € >0, for suitable choice of constants c;, and p, we

n+l1
haveforkgn—l,q><k+l),

P (], h ) Ric Win

n—1+h—k
h

(7.20) 2

i=

Proof. By (7.18), p:(jh)=0if k —h =n —j, thus

n—1+h—k

k
72y Y pi(j,h)Ric gy
h=0

i=h

a
|

p«(j, h)Ric ()

Il
M=

h

1
<
[

k
pe(j,h)RicQ; + Ek gopk(j,h)kicn,.

I
-

Il

<
¥
]

0
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In order to simplify (7.21) we use the Vandermonde convolution

(7.22) ( ) Z(r—t)(i>

which is a simple consequence of

(I+x)7?+x)=(0+x), for 0=p =s.
Then for 0=j=k —1,

(7.23) Zpk(y,h)—z > (7;{)(;:-1)

=0l=k~-h

-2 () (1)

i[]+1]<l+lj>(kil>

~i+n(,h,)  ®ya2.
Fork=j=n-—1
(7.24) Seam=3 3 (77 (15)

=tn-i1(;) by @22).
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Now

;] k-1
(7.25) §,(j+ DRic = > (i + D{Q; - 20, +Q,..} (by 4.16)

0 i=0
=k —(k + 1) Qi

since the sum telescopes; similarly,
n—1

(7.26) 2 (n—HRick = (n — k)i — (n — k + .
=k

Using (7.23)-(7.26) we can simplify (7.21) to obtain

n—-1+h—k

k
(727 > > pu(i,h)RicQy
A=0 j=h

() 0 =+ D0 () n =000 = (0 = K+ DY

n+1
- _<k+l)ﬂ“’
In (7.12) we see that

i (A*) = $(A") di(AY)

so that
(7.28) z da* 1og (T] -1 (AU (AY))
= —gddc log(]:[ Wik (At)) —dd© 1og(1:[¢k(Aﬁ))

since (A, A*) is a holomorphic function implies Q.(A*) = 0.
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From (7.13) we obtain

. »(Ahvl) -2
(7.29) dd logU(HIOgm_—-—d>j(A") )

ECE L//j—l.h—r(Aﬁ)Qi

" A [T (1og LAY

— € Z le‘(AhWI).

ARlca,

Now (7.27)-(7.29) imply

n—1+h—k

K
(7.30) 20 > pe(j,h)Ric wy,
h= j=h

I=h

kK n—-l+h—k l//jfl'h_](Af)Slj
=y > X

T o

1 kK n-1+h—k L
+[q~(z+l)_}nk—e§j > 0At).

h=0 i=h AP 'ca,

Lemma. (Sums into products.) Let {AY}, v=1,---,q, be in general

+
position ; q>(n ]).

k+1
Then
%—u.fl(/\f)
(7.31) P
" K IJ~¢1(A )
a1 (10g805 )

j-1,h—t A',‘, Up, ih)
= thnl: ¥ ( ) ]z]

in(AHT] [log%
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Proof. By the same method as in the proof of (6.13), there is a constant
m;. such that

for all but at most p.(j,h) of the v’s.
Put

¥ 1a-AL)

(7.33) D, = T3
« pdi(A°7)
wj.h(AV)I—Il:IOg ¢1(Ah) ]

Since ¢, (A" Y= (A", then P p(A¥)= (k ; l), the number of

A" "s in A% Thus there exists L > 1 such that
(7.34) b, =L,

for all but at most p«(j,h) of the v’s. Since q, the number of A%’s satisfies
q Z p.(j. h), the proof of (6.13) can now be applied to (7.34) and (7.31) is the
result. Q.E.D.

Write w;, = %H,—hd{df and let Ni,(A%), N;(A*) denote the counting

function for the zeros of ., (A*), ¢;(A*) respectively. Using (1.3) we find

(1.35) pe(i, h)II; f log Hy d6

i¢l=r
=p GNP + D IN;n-(AS) = Nin(AS)]
+pk(j,h)f(J Ricw,-,,>d—”+ o).
0 A p

Forr=1,
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) o
(7.36) pk(J,h)ﬁ f log H;, d6

[¢l=r
-

§pk(j,h)logU(Af w,-h>%] [

0 G

Using (7.16) and (4.22) we have

n—l+h—k

.
(7.37) €, > T(A")=eX X T =eCT..
h=0 T'CA,

iTh A

Summing (7.35) for h =0,--- k; j=h,---,n—1+h —k, we obtain from
(7.20), (7.36) and (7.37),

738 53 NaAh

PN +[a = (§ 1) = ¢| . ||

n—1+h—k
h

k
=2
h=0

i=

But N (A*)= N;(A*)— N;..(A*), so that (7.38) yields

(739 X N(AY)

k n—1+h—k . n+]
=3 S pdmNe+[a— (1) -e| T, I

The proof that (6.5) implies (6.2) can now be applied to show that (7.39)
yields the desired defect relations (7.20). Q.E.D.
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