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O. I n t r o d u c t i o n  

In this paper we shall prove some of the basic results in the theory of 

holomorphic curves using the method of negative curvature which has 

recently been fruitful in the study of equidimensional holomorphic map- 

pings. The eventual goal of the theory is to understand the position of 

holomorphic curves in general algebraic varieties: and it seemed to us that 

substantial progress on this problem necessitated finding new proofs of the 

classical results. To explain this a little better, it may be useful to give a 

historical sketch of the subject. 

The classical theory deals with a non-degenerate holomorphic mapping 

f:C---~P", which we shall call a hofomorphic curve, and in brief outline 

developed as follows: 

(i) E. Borel (1896, [4]), showed that the image curve f(C) can miss at 

most n + 1 hyperplanes in general position, thus extending Picard's theorem 

( n  = I). 

(ii) A. Bloch (1926, [3]) proved Borel's theorem in finite form, among 

other things computing the Kobayashi metric [18] of p2_ {4 lines in general 

position}. 

(iii) H. Cartan (1928, [8]) clarified and extended the work of Bloch, along 

the way essentially proving that P" -{2n  +1 hyperplanes in general 

position} is complete hyperbolic (cf. [11], [15], [12], and [17] for further 

developments). 

(iv) H. and J. Weyl (1938,[21]) undertook the task of extending the 

quantitative form of Picard's theorem, the beautiful defect relation of R. 

Nevanlinna [19], to holomorphic curves in P" (cf. [21]). Although unable to 
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accomplish this, they did develop the important theory of associated curves 

and non-compact  PI/Jcker formulae. 

(v) Finally, L. Ahlfors (1941, [2]) was able to prove the defect  relations, 

not only for the holomorphic curve but for  the associated curves as well. (An 

earlier paper by H. Cartan [9] contains a defect  relation for the holomorphic 

curve alone.) Ahlfors '  work stands as the culmination of a 60 year develop- 

ment in the branch of function theory dealing with Picard's theorem and the 

study of the value distribution of entire functions (cf. the introduction to 

[21]), and was followed by a lull in the subject,  until being recently revived 

by Chern [[0], Kobayashi  [18], Wu [22], and others. 

As one reason for this lull, we think that the great beauty of the subject 

was perhaps offset by the technical difficulty in the proofs of the main 

theorems, the theorems of Bloch and Ahlfors. (A glance at the introductions 

of [21], [22], and [10] reveals an awe of the difficulty of Ahlfors '  proofs.) 

As a consequence,  the proofs of these results may have loomed larger 

than the basic principles of the s u b j e c t - - t h e  Second Main Theorem and 

related question of con t ac t - - t hus  hindering further  progress on the general 

theory. (The Ahlfors theorem strikes us as one of the few instances where 

higher co-dimension has been dealt with globally in comprex-analytic 

geometry.)  In this paper we give what is hopefully a conceptually simple and 

technically straightforward proof of the Ahlfors defect  relation, a proof 

based on the use of negatively curved metrics. 

The general philosophy is that a metric of negative curvature forces very 

strong global behaviour  on a holomorphic mapping. Instead of attempting to 

formalize this philosophy, which would probably be a mistake anyway,  we 

have tried to illustrate how it is used operationally by showing in Section 2 

how such a negatively curved metric leads to Schot tky-Landau theorems 

and defect  relations. The method here is to use a potential-theoretic integral 

formula (Section i), which is related to Jensen's theorem and the Gauss- 

Bonnet theorem [22]. Having a metric h(~')ldsrl 2 of negative curvature 

means that h is subharmonic,  and thus the signs in potential-theoretic 

integral formulae all go the right way. 

If the reader is thus at least somewhat convinced that having a metric of 

negative curvature  gives a defect  relation, lhen the proof of the Ahlfors 

theorem follows by simply writing down such a metric (6.3) and computing 

its curvature.  (The reader who is familiar with the standard foundational 
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material on holomorphic curves ([21], [22]) and the formalism of Frenet 

frames [10] may find a proof of the Ahlfors theorem in Sections i(a) and 

6(a).) Actually, instead of just one metric we use a collection of n metrics 

constructed from [ and its associated curves,  none of which individually has 

negative curvature,  but where the collection as a whole has negative 

curvature.  The general philosophy of negatively curved metrics applies to 

such collections as well (Section 2(c)). The form of the metrics (6.3) was 

suggested by the Poincar6 metric (2.3) on the punctured disc. (The heuristic 

reasoning which led to the metrics (6.3) is given in Section 6(d).) The 

calculation of the curvature is most effectively carried out using the Frenet 

equations for the holomorphic curve, which are reviewed in Section 5(a). 

As further applications of the use of negatively curved metrics, we have 

given: 

(i) in Section 5(b) a proof of the Ahlfors inequalities [2], which are 

traditionally derived by integral geometry and which furnish the main tool 

for  the previous proofs of the defect relations; 

(ii) a proof of the big Picard theorem for maps of the punctured disc into 

P" - { n  + 2 hyperplanes in general position} (Section 6(c)); and 

(iii) a proof of the defect  relations for  the associated curves to a 

holomorphic curve (Section 7). In his paper [2], Ahlfors deduced the defect  

relations for the holomorphic curve from the general result on associated 

curves, but we feel that it is conceptually clearer to treat the special case 

separately, since the main ideas appear here and might become lost in the 

combinatorial arguments necessary in the general situation. 

A final comment  concerning our viewpoint on defect  relations: the First 

Main Theorem (Section 3(a)) for a holomorphic curve f :C--~P"  gives an 

inequality (cf. (3.4)) 

(0.1) N(A,r) < To(r)+ C 

bounding the counting function N(A, r) for  the points of intersection of f(C) 

with a hyperplane A by its average (cf. (3.5)) To(r) = f N ( A , r )  ritz(A), 
A 

called the order function of f. By a defect relation we shall philosophically 

mean a lower bound 

(0.2) ~ N (A~, r) >= CTo(r) + C', 
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where  the sum is o v e r  a set  of  h y p e r p l a n e s  in genera l  posi t ion,  and  where  the 

notat ion I1 m e a n s  that  the s ta ted inequal i ty  holds outs ide  excep t iona l  

intervals .  P laying off the upper  bound  (0.1) against  the lower  bound  (0.2) 

gives  the usual  f o r m  of  de fec t  relat ions,  but  it s eems  concep tua l ly  c learer  to 

us to think of  t h e m  as the combina t i on  of  an uppe r  and lower  bound.  

1. I n t e g r a l  f o r m u l a e  

(a) Bas ic  i n t e g r a l  f o r m u l a .  L e t A ,  = { ~ r E C : [ s r l < s } b e t h e d i s c o f  

radius  s in C. S u p p o s e  given on this disc a funct ion h(~ r )  such  that:  

(i) near  a point  ( o C A , ,  h ( ( )  has the f o r m  

(!.1) h(ff) : [g" - ~oJ ~ (Iogl ~" - srol)Z"ho(ff) 

where  ho(~') is pos i t ive  and C ~, and 

(if) h(~') is pos i t ive  and C ~ near  ~" = 0 (this condi t ion is not  essent ia l ,  but 

a l lows more  u n i f o r m  formulas) .  We  call /x = p-(~'0) the multiplicity of  ~r0 in 

(1.1), and define the d iv isors  

R = ~  /z(ffo) - sro 

O = ~ - ~ ( ; 0 ) -  ;, ,  
~x<0 

Here ,  for  r e a sons  to be  expla ined  be low,  R s tands  fo r  " r ami f i c a t i on"  and D 

for  "s ingular  d iv i so r" .  

Counting functions n(D,r) and N(D,r)  are defined as usual  by  

(1.2) 

n(D, r) = degree  o f  (D  N A,) = ~ - tz (~'0), ro E A, 
~t<0 

r 

0 

and similarly fo r  n(R,r) and N(R,r).  In addi t ion to the ex te r io r  de r iva t ive  

(~ = re'~ 
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d=a+a=~rdr+o@dO,  

we define the real ope ra to r  

47r ~ r~r dO 4rrr O0 

and obse rve  that 

d d  C - 
X / - I  02 

' -  d5 ^ d~ 
2rr 0505 

is essential ly the Laplacian .  

dr, 

P r o p o s i t i o n .  (Basic integral formula.)  For r < s, 

(1.3) 

1 f Iogh.dO+N(D,r)  
I~ 'p=r 

r 

0 A o 

P r o o f .  An easy  a rgumen t  shows that bo th  sides of  (1.3) are con t inuous  

func t ions  of  r, and so we may  assume that  log h is C ~ on the circle ] ~r ] = r. In 

A ..... we may thus wri te  

h(~') = 7r(5) �9 h,,(~') 

where  the p roduc t  

m 

is over  all points  in (R + D)  fq A . . . .  ~ind where  locally a round  any  ~o ~ A~+,, 

ho(~r) = (log I ~" _ 5o1)2Vh,(5) 



98 M I C H A E L  C O W E N  A N D  P H I L L I P  G R I F F I T H S  

with h,(~') being posit ive and C ~. It will obviously suffice to prove (1.3) for 

7r(~r) and ho(~') separately.  

For 7r ((),  (1.3) results f rom Jensen "s theorem [19] whose fundamenta l  role 

in value distr ibution theory may be explained as follows: 

Given an entire holomorphic  funct ion f(~), the number  of solut ions n(r,a ) 

of the equation 

f(~') = a 

in the disc I z [ < r is given by the Cauchy integral formula 

n(r'a)=-2-~i f ( ~ ) - a  27ri . Olog[f(~)-a]. 
[~l=r [~l=r 

The difficulty in using this equation to es t imate  n (r, a ) is that  the integrand is 

complex while n (r, a )  is real. This suggests  that  we  add to it the conjugate  

formula  obtaining 

' l  ' f  
n (r, a ) = ~ -  . ,9 Iog[f - a ] - ~ -  9̀ Iog[f - a ] 

r~'l=r r~'[=r 

4761 f ~I f  I 2 g l o g [ f  ]2 - a I o -  a - - a 

[~l=r 

( ~ l o g [ f -  a]  = O) 

: f d C l ~  2 
!~l=r  

r ~ { !  a I: dO) : ~r~4~ f logJf- 
I~'l=r 

by the formula  for  d '  given above. Integrat ing the equat ion 

( 1  f logif_al:dO) n(p'a ) = P-~p 
r(~ l=p 
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F I / ' ]  

with respect to - "  f rom 0 to r gives 
P 

1 floglf_al:dO, Ioglf(O) - a I+ N(r,a ) = 

which is Jensen's  theorem, and which implies (1.3) for ~(~'). 

As for h~,(~), in case there are no local (logier -~'o[) 2v factors, logho is C ~ 

and 

i ( f d d  '+'ogh,,)-~= i (  f d '+ l~176 
0 ar o I~-[=p 

r 

I ,9 dp 

o I•l=p 

= l__4rc f IoghodO-;logho(O), 
I(l=r 

where we have used Stokes'  theorem and the formula for d C in polar 

coordinates given above.  

In general, singularities of the type log(log[ ~"- ,~o[) 2v are sufficiently mild 

that the same calculation still goes through (cf. [6, Lem. 1.4]). Q.E.D. 

(b) A variant  for the punctured  disc .  Let A * = { 0 < [ ~ ' [ < I }  be 

the punctured disc. We shall be interested in possible singularities at the 

puncture ~" = 0, and shall thus always assume that the functions under 

consideration are defined on the larger punctured disc {0 < [ f f ] <  I + r for 

some 6 >0 .  Given h(ff) on A* which has the local form (1.1) and which has 

no singularities on I~rl-- 1, we set 

n (D, r) = degree of (D FI A,) 

r 

I 
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The same proof  as for  (!.3), only applied now to the annuli Ao, gives: 

P r o p o s i t i o n  1 .4 .  With the above assumptions and notation, 

r 

1 
41r f l o g h d O + ~ ( f d d ' l o g h ) ~ - (  f d'logh)logr 

l ~ l = i  I a o I,; I=1 

, j  = NtD, r ) + ~  Iogh dO. 
Ir  I = I / r  

C o r o l l a r y .  If R is empty and h >=!, then 

+ N(R,r) 

(1.5) N(D,r, =f(f dd',ogh) d +ciogr+C ' 
P 

I A p  

2. M e t r i c s  of  n e g a t i v e  c u r v a t u r e  

(a) A S c h o t t k y - L a n d a u  t h e o r e m  f o r  o n e  p s e u d o - m e t r i c .  A 

pseudo-metric to on A~ is given by a differential form of type (! ,  1), 

to -  2rr h(~)d~ ^dg, 

with h(ff) being a C ~ function such that locally 

(2.1) ~tx h(s r) = 1~ - ~ol- ho(~') 

where ho is positive, Iz is non-negative,  and h ( 0 ) ~ 0 .  (The adject ive 

"pseudo"  means that the coefficient function h(~') is C ~ but may have 

isolated zeroes.  In case h(~) only satisfies (i.1), we shall refer  to to as a 

singular metric.) The Ricci form Ric r is the C ~ (1, 1) form given by 

~ -  I a 21ogh 
R i c t o = d d r l o g h -  -~ ~ - ~  d~ ^ d~. 
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(Ricci  fo rms  are  d i s c u s s e d  in a genera l  se t t ing  in [14, Sect .  0(b)]. T h e  main 

p r o p e r t y  we shall  use  is the  re la t ion  

Ric(e  ~ �9 to ) = dd' l~ + Ric to 

I cglogh . 
for  a func t ion  p,.) If  K ( h ) -  h 0~ro~ Is the  Gauss ian  curva ture  of the  

2 

Hermi t i an  me t r i c  h (~')ld~" I ,  then  

Ric to = - K ( h )  - to 

so that  the  c o n d i t i o n s  

Ric  to => to 

K(h)<= - I 

c~ 21ogh 
are  equ iva len t .  S ince  c~'c~ is C a, the  po in t s  w h e r e  h = 0 shou ld  be  

c o n s i d e r e d  as  hav ing  c u r v a t u r e  -o0 .  

The  Poincar~ metr ic  ~s given  on As b y  

sat isf ies  

tbs = - -  
V ~-  I s2d;~d~ 

( s : - 1 ~ [ 2 )  2 

(2.2) Ric  a3s = ~s.  

U s i n g  the  c o v e r i n g  t r a n s f o r m a t i o n  

W "--~ ~" = e 2"a'/w 

from the upper half plane l m w  > 0 to the punctured disc A* = {0 < I~" I < 1}, 

the Poincar6 metric induces on A* the metric 
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x/-:-i  d? ^ (2.3) o3~, - - -  

which still satisfies (2.2). 

Propos i t ion  2.4.  (Schottky-Landau for negatively curved pseudo- 

metrics.) Given on A,  a pseudo-metr ic  o) which satisfies Ric tas > r then 

s <= S(h(O))  < o~. 

First proof.  By the Ahl fors  l e m m a  [I], [18], 

2S 2 

the R.H.S. being the coefficient of the Poincar6 metric discussed above. 

Taking sr = 0 gives 

s< h 0 = )-  

S e c o n d  p r o o t .  This argument, which is based on the integral formula 

(I.3), is more complicated but has the advantage of applying to metrics 

where the coefficient function h may have singularities, In fact,  it is this 

proof together with the construction of suitable negatively curved metrics 

which will give the defect relations (cf. Section 2(b)). 

Define the order funct ion  for co by 

(2.5) 
dp 

0 A o 

Then 

r 2~r 

r--d-Z = w =  y h(oe '~  odp, 
,x, 0 0 
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so that differentiating once more gives 

103 

1 [ d2T~ ] I f h(~)dO. 
(2.6) r z [(dlogr) 21 = ~-- 

I~'l=r 

Referring to the basic integral formula (I.3), where we assume for simplicity 

that h(0)=  1, and using 

N(D, r) ~ 0 

N(R,r)>_O 

2 ~  2 7  

l ( f  log,dO)<-log(~-~ f ,dO) 21r 
o 0 

(concavity of the logarithm--concavity of the logarithm is ubiquitous in 

Nevanlinna theory), we obtain 

which by (2.6) gives 

(2.7) 

T~(r)~�89 f hdO), 
I~1 = ,  

2 

T~(r) = 2log [r  2 (d log r)2] " 

Now the order function T~ (r) is a convex function of log r, and because of 

the log on the R.H.S. it seems reasonable that an inequality such as (2.7) 

cannot hold for arbitrarily large r. To make this precise, we assume for a 

moment that s - -  + oo and seek a contradiction. The following calculus 

lemma is taken from [19]: 

L e m m a .  Suppose that , ( r ) ,  g(r) ,  a ( r )  are positive increasing,unctions 
o, r where g'(r) is continuous and F(r) is piecewise continuous. Then 
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(2.8) f ' (r)  <= g ' (r)a  (f(r)) 

outside a union E of exceptional intervals where 

f dg <= a(r)"  
E ro 

P r o o f .  

f fr(r)drfdr 
dg <= ~(f(r))  <= a(r)" 

E E ro 

Q.E.D.  

We shall use the  nota t ion 

A ( r ) < - B ( r )  

to mean that the s ta ted inequali ty holds outs ide  an except ional  set E where  

f dr< +~c. 
r 

E 

Taking f ( r )  = T~(r) ,  g(r)  = log r, and a ( r )  = r '§ in (2.8), we obta in  

(2.9) dT~(r) _ rdT~(r) <= T~(r),+,. 
d l o g r  dr 

dT~(r) and g,a as be fore ,  N o w  taking f ( r ) =  d l o g r  

d2T~(r) < {dT~(r)~ '+" 
(2.10) ~ =  \ d l o g r /  " 

Combin ing  (2.9) and  (2.10) and using a slightly larger E gives 

d2T~'(r) < r ' r  [~ .~1  I+"  

(2.11) (d logr)2 = t . ~ , , j  . 



HOLOMORPHIC CURVES 105 

On the o ther  hand,  h(~)  is a s u b h a r m o n i c  func t ion  and thus by  the  mean  

value principle 

< 1 
h(O)=~--~ f h(~)dO. 

Ir 

In tegra t ing  this twice  gives  r e spec t ive ly  

(2.12) 

h(O)p2< f to, 

Ap 

~h(O)r2<= T~(r) .  

It  is now clear  tha t  (2.7), (2.11), and (2.12) c anno t  all hold, and so we  have  a 

cont rad ic t ion  to the a s s u m p t i o n  s = + ~. 

By being more  ca re fu l  in our  use of  the ca lculus  l emma,  it is poss ib le  using 

(2.12) to p rove  tha t ' s  -< S(h(O)) (cf. [5, pp. 289-290]). Q .E .D.  

(b) D e f e c t  r e l a t i o n  f o r  o n e  s i n g u l a r  m e t r i c .  A singular metric 
to on C is given by 

x/-sT 
t o -  2rr h(~)d~ ^ d ~  

where  the coeff icient  func t ion  h satisfies (1.1) above .  The  Ricci  f o r m  is again 

def ined by Ric to = dd ~ log h. 

L e m m a  2.13. (i) to is integrable r tx >- - I and u <  - ~  if  l~ = - 1 ;  

(ii) if Ric to _ to, then to is integrable ; and 

(iii) Ric to is a lways  integrable. 

P r o o f .  Using  polar  coord ina tes  ~" - ~o = re '~ in ( I . I ) ,  we see tha t  

ho 
h =  

-2~ 
r 
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and so (i) fo l lows  because  

f rdr <o0 

only under  the s ta ted  condi t ions.  

T o  p rove  OiL we look in the punc tu red  disc A* = {0 < I'~ - ~01 < g }  a round  

~'0 where  (1.1) holds.  For  s implici ty,  change  coord ina te s  to m a k e  E -- 1. Then  

by the  Ahl fors  l e m m a  

in A*, where  the  Poincar6  metr ic  oSa. is g iven  by  (2�9 which  is the case  

/~ = - 1, u = - �89  in ( I . l ) .  N o w  app ly  (i). 

Finally,  (iii) fo l lows  f r o m  the c o m p u t a t i o n  

0~.0~ log log 

which is the s t a t e m e n t  that  the G a u s s i a n  c u r v a t u r e  of tSa. is cons t an t  

negat ive .  Q.E.D.  

Le t  to,4, be  s ingular  met r ics  on C and a s s u m e  tha t  

(2.14) Ric to  _--> ~b + to. 

(The  use of  nega t ive  c u r v a t u r e  in the guise of  an excess relation by the 

singular  metr ic  4' will be the mos t  conven ien t . )  Accord ing  to the Scho t tky -  

L a n d a u  T h e o r e m  2.4, w mus t  have  singulari t ies ,  and we can even  e s t ima te  

where  the first one  occurs �9  Our  next  resul t  will give a lower  b o u n d  on the 

size of  the s ingular  d iv isor  D of  to ; it is essentially a defect relation. Before  

s tat ing it, we r e m a r k  that ,  by (2.13), to and  ~b are both  integrable  and  so their  

o rde r  func t ions  T , ( r )  and T~(r) are defined�9 

Propos i t ion  2.15. (Defec t  relat ion fo r  a single nega t ive ly  cu rved  met-  

ric.) I f  to, 4~ are singular metrics on C which satisfy (2.14), then given e > 0 we 

have an estimate 
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(2.16) 

P r o o f .  

r>=l, 

N ( D ,  r)  >= T , ( r )  + (I - e )T=(r ) .  II 

Using (2.14) and the basic integral formula (1.3), we obtain for 

T + ( r ) +  T ~ ( r ) < = N ( D , r ) + ~  Iogh . dO + C 

,. [ d 2 T o ( r )  ] 
<= N ( D ,  r ) +  ~,og [(--d-~og~2 j + C, 

the last step being (2.6). Applying (2.11) we have 

[ d 2 T ~ ( r )  ] 
e T ~ ( r ) - ' l o g [ ( d l o g r ) 2  j - C >-0,  

which when added to the previous inequality gives (2.16). Q.E.D. 

(c) The  c a s e  of s e v e r a l  m e t r i c s .  The geometric situation of a 

holomorphic curve in P" will give us, instead of a single metric, a collection 

(2.17) X / -  ! 
to, = 2 zr h,d~ A d~  ( i = I , . . ., n ) 

of singular metrics, none of which individually is negatively curved,  but 

where we have an inequality of essentially the following sort 

(2.18) 2 Ric ~o~ => 2 o)i. 
i = 1  i = 1  

D e f i n i t i o n .  We shall say that the co l l ec t i on  {tol} o f  m e t r i c s  is nega t i ve l y  

c u r v e d  if (2.18) is satisfied. 

Given a negatively curved collection of metrics (2.17), we may construct  a 

single negatively curved metric ~o - 
x/-=l 

2~r 
- - -  h d~" ^ d~ by setting 

(2.19) h = (hi" '"  h,) '/". 
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Then, using the inequality of arithmetric and geometric means, 

R i c c o = d d  c Iog h =l_n ( ~ R i c c o , )  

= 2rr n ( h , +  . . .  + h . )  d ~ ^ d ~  

>V-I 
= 27r 

(h, "'" h.)""d~ Ad~ = w. 

Applying (2.4) to co we obtain: 

P r o p o s i t i o n  2.20. (Schottky-Landau for a negatively curved collection 

of pseudo metrics.) Let {co,} be a negatively curved collection o f  pseudomet-  

tics on A,. Then 

s <~ S(h,(O), . . . ,h .(O))  < ~.  

Before giving the defect  relation, we observe  from (iii) in (2.13) and (2.18) 

that co, is integrable, and thus the order function 

f(fo)  
0 ,'t o 

is defined. The singular divisor of co, is denoted by D, 

P r o p o s i t i o n "  2.21. (Defect relations for a negatively curved collection 

of metrics.) Let  {co~}, ~b be singular metrics on C and assume that 

~ Ricw,_- > ~ o ~  +ok. 
i i 

Then, given E > 0 we have 
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P r o o f .  Define k = h ,  . . .  h,, so that 

{ dd ~ Iogk _>-YoJ, +& 

D=D,+ ... +D. 

where D is the singular divisor of k. From (1.3) we have, assuming for 

simplicity that k(0)=  1, 

-<-~'~N(D"r)+ 1~4~ f iogkdO. 
I,;-I= r 

On the other hand, by (2.6), 

l 1 
~lr f l ogkdO=~-~  f logh,dO 

I,;l=r I,;l=r 

[ 2 (log T,(r)] 
_-<~�89 ~3 ( d l o g r y  ] '  

which using (2. I I) gives, for r _-> I, 

(2.24) f < I II+~ 1 IogkdO = ~'~ ~log[ T~(r) . II 
477" 

I~l=r 

Combining (2.24) and (2.23) gives (2.22) as in the case of a single metric. 

Q.E.D. 

3. H o l o m o r p h i c  c u r v e s  in a l g e b r a i c  v a r i e t i e s  

(a) T h e  o r d e r  f u n c t i o n  a n d  F i r s t  M a i n  T h e o r e m  (F.M.T.) .  

Let M be a compact, complex manifold. A holomorphic mapping f :C- ->M 

will be called a holomorphic curve. A natural problem is to study the position 
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of f(C) in M. In particular, for obvious dimension reasons, we wish to see 

how the image f(C) meets the divisors on M. 

For this the terminology of line bundles and Chern classes gives a 

convenient  formalism (cf. [14, Sect. 0] for  a general discussion). Suppose 

that L---~M is a positive line bundle with metric ]tr[ 2 (~r ~ 0 ' ( L ) )  and 

corresponding positive Chern class 

1 
(3.1) to = dd" l~ i 

We denote by ILl  the complete linear system of all effective divisors 

D = (or) (or E O'(M,L) = H~ By the compactness  of M, 

d im(7(M,L)<~ and ( a ) =  (~r') if, and only if, ~ =Atr '  for  some A EC* .  

Thus t L[  is a finite-dimensional project ive space. 

To measure the "growth"  of a holomorphic curve f : C--+ M relative to the 

given line bundle, we set tot = f ' t o  and define the order function 

(3.2) 

3- 
0 &o 

If f is non-constant,  then clearly T(L,r ) -+~ as r - - -~ .  Moreover ,  changing 

the metric in L ---~M changes the order  function by an O(I)  term ([14, Sect. 

51). Thus T(L,r)  is essentially intrinsic. 

The holomorphic curve f: C---~ M is said to be non-degenerate relative to 

L ~ M if the image f(C) does not lie in any D E I L I. Assuming this to be the 

case, we set Ds = f-~(D) and define the counting function 

N(D,r) = N(DI, r), 

the R.H.S. being given by (I.2). Choose o- E O'(M, L ) with D = (tr) and set 

! 
m(D,r)= ~--~ f I log ~ dO 

I~1=, - 

(proximity form ). 

A different choice  of  or changes m (D, r) by an additive constant,  and it will 

be convenient  to always assume that 1o-[~ 1 so that m(D,r)>~0. 
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Propos i t ion  3,3. (F.M.T.) 

N ( D , r ) + m ( D , r ) =  T (L , r )+O(1 ,D) .  

111 

P r o o f .  In case OEDI, we may take h(~ ')= l/[~r(f(~'))[ 2 in the basic 

integral formula (I.3), and use (3.1) and (3.2) to obtain the F.M.T. If 0 E D r, 

then near ~" = 0, I o-(f(~'))12 = I ~" [2, ho where ho(0) > 0. We may then apply (1.3) 

to h(s r) = icr(f(r))]2 to obtain the F.M.T., where the counting function must 

now be defined by 

r 

N(D,r)  = f [n(D,o)- n(O,p)] do+ n(O,r)logr 
O 

0 

since (1.2) no longer has meaning. Q.E.D. 

Coro l lary .  (Nevanlinna inequality.) 

(3.4) N(D,r) <-<_ T(L,r)  + O (1 ,D ) .  

The beautiful inequality, which generalizes the estimate on the number  of 

zeroes of an analytic function by its maximum modulus, underlies all of 

Nevanlinna theory. The reader is invited to read the discussion in [19] of the 

F.M.T. and subsequent inequality (3.4) for  a very pretty explanation of the 

global symmetry in an entire meromorphic  function. 

(b) Crof ton ' s  f ormula  and the L i o u v i l l e  theorem.  Suppose 

now that M = P" and L --->P" is the hyperplane line bundle. The metric and 

Chern class in L will be given explicitly in Section 4 below. For  the moment  

all we need to know is that the unitary group operating on C "+' induces an 

action on L-->W leaving the metric and Chern class oJ invariant. The 

complete linear system I L I is the dual project ive space W" of hyperplanes in 

P", and there is a unique measure d/~ (D) on P~ which is invariant under  the 

unitary group and which satisfies f d/~(D) = !. 
ip~ a*n 
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P r o p o s i t i o r t  3.5. (Crofton's formula.) 

f N(D,r)dtz  (D) = T(L,r) .  
D E p  n" 

P r o o f .  Let G be the unitary group and dl~(g)(g E G )  the invariant 

measure with suitable normalization. For an integrable function r/(D) 

defined on P"* and fixed hyperplane Do, 

(3.6) rl(D)dlz(D)= f rl(gDo)dtx(g). 
D n* g ~ G  

Fixing ~o E G(P", L)  which defines Do, 

f l f i log I cro(gx )l 2 d~ (g) = log [g*cro(X )1 ~ d/x (g) 
R E G  g ~ G  

is a constant C independent of x ~ P "  since G acts transitively on P". 

1 
Changing cro to Acro adds log ~ to C, and so we may assume that C = 0. 

Thus by (3.6) and the definition 

; 2 s , .o )  m(O,r)dtx(O ) = (~---~ Iogl or(f(ff))]2 dtx(O) 
D E P  n~ D "~ I ( l = r  

1 f ( f l o g  l ) = 4 - - - ~  ig.o.o(f(~))12dtz(g) dO = O. 
I r  g E G  

Similarly, f 
D EIUm" 

I 
O (1, D)dtz (D) = 0 since O (1, D) = log 1 ~r (f(0))12 for 0~D~. 

Integrating the F.M.T. (3.3) over P"" gives (3.5). Q.E.D. 
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R emark .  Differentiating (3.5) gives 

(3.7) 
fp n(D'r)dtz(D)= f o~t, 

D " ~r  

which is the usual form of Crofton's  formula ([20, pp. 12-13]). Chern has 

remarked that the Nevanlinna inequality 

N(D, r) <= T(L, r) + O(1) 

should be viewed as a non-compact  version of the Wirtinger theorem, which 

states the degree ( o N ( D ,  r)) of an algebraic curve in P" is equal to its area 

(~--~ T(L, r)). (This ties in nicely with Hermann Weyl 's  interpretation of the 

Second Main Theorem as non-compact Plficker relations.) It is the combina- 

tion of the Nevanlinna inequality (3.4) and Crofton formula (3.5) which seem 

to force such delicate and refined results as the Picard theorem and defect  

relations. As a first indication of this, we shall prove the following: 

C o r o l l a r y  3.8. (Liouviile theorem.) A non-degenerate holomorphic 

curve in P" meets almost all hyperplanes" D E P"'. 

Proof .  Let E CP"" be the set of hyperplanes which / (C)  misses. By (3.5) 

and (3.4), 

T(L,r)= ~ N(D,r)dlx (D) 
D n* 

= f .  N(D,r)dlz (D) 
D E  n - E  

=/z (P"  - E) T (L , r )+  O(1), 

f rom which it follows that E cannot contain an open set E C P"'. Q.E.D. 
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R e m a r k .  Ahlfors '  proof  of the defect  relation was a great refinement of 

this argument, where the averaging was with respect to a singular density in 
p n~" 

4. H o l o m o r p h i c  C u r v e s  in P"; t h e  S e c o n d  M a i n  T h e o r e m  

(a) P r o j e c t i v e  s p a c e s  and  G r a s s m a n n i a n s .  We shall represent 

points in P" by homogeneous coordinates 

Z = [Zo, '"  ",z,]. 

The hyperplane line bundle L--~P" has global sections ~(P", L ) given b y  the 

linear forms A = ( a0 , - ' . , a , )  on C "+' where 

A (Z) = (Z, A ) = ~ z,a,. 
i=0 

The divisor associated to A is given by ( Z , A ) = 0 ,  and we denote this 

hyperplane also by A. The complete linear system I L l =  P"" is the dual 

projective space of hyperplanes in P". The metric in L---~P" is given 

explicitly by 

(4.I) IA(Z)]  2= I(Z'A)I2 = IZ 'A t2 
IZI21A [2 IZI2[A IS, 

where the first equality is a definition and the second is notation. The Chern 

class 

1 Is (4.2) 1~ = dd c log [A (Z)] 2 - ddC log ]Z 

is the K~ihler form associated to the usual Fubini-Study metric on P". 

The Grassmann manifold of linear k-spaces in P" is denoted by G(k, n). 

Using the identification 

G(k, n ) = {(k + 1)-planes through the origin in C"+'}, 
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a point  A E G(k ,  n ) is g iven by  choos ing  k + I vec to r s  Z o , . . . ,  Zk which  span 

A. If  we deno te  the s t andard  basis  for  C "~' by  eo , - . . , e , ,  then  

(4.3) Z o ^ . ' - ^ Z k  = ~ A s . . . . , k e ~ ^ " - ^ e , k  
i 0  < �9 � 9  < i k 

where  the A,o...ik are the h o m o g e n e o u s  Pliicker coordinates  bf  G ( k , n )  in 

p(~:l)-,. Accord ing  to (4.2), the metr ic  on G ( k , n )  induced by  the  Pl i icker  

e m b e d d i n g  is 

(4.4) f L  = dd ~ IoglA[ 2= dd c l o g l Z o ^  . . .  ^ gk I z 

A ho lomorph ic  m a p p i n g  f : A  r ---~ P" will be  cal led a holomorphic  curve. We 

m a y  represen t  f (~ )  by a ho lomorph ic  v e c t o r  Z ( ~ ' ) =  [Zo(( ) , . . . , z , (~ ' ) ] .  It is 

useful  to al low tha t  z(~ro) = (0 , . . - , 0 )  for  i so la ted  points  sro. I f  this happens ,  

then near  ~ro we wri te  

(4.5) Z ( O  = ( (  - ~'o)~2(g'), 2(~'o) / ( 0 , - . . , 0 ) ,  

and  [ is given by  Z(~') .  To  c o m p u t e  the  ramification of  f at ~',, where  

Z(r 7 z O, one p r o c e e d s  as fol lows:  

By a sui table l inear  t r ans fo rma t ion ,  br ing Z(~') to the f o r m  

(4.6) Z ( ; ' )  = [! + . - . , (~"  - ~'0) ",+' + . . . , . . . , ( ~ "  - ~'o)"~ +' + . . .  ] 

where  0 _-__/x, _-< �9 �9 �9 =</x, and " . -  . "  deno te s  higher  order  t e rms  in (,~ - ~'o). 

Then the ramification index o f [  at ~o is ixj. 

(b) T h e  a s s o c i a t e d  c u r v e s .  Let  f :Ar--->P" b e a h o l o m o r p h i c c u r v e  

given by Z ( ~ ' ) E  C "+'. I t  is permiss ib le  to mul t ip ly  Z(~') by  a h o l o m o r p h i c  

func t ion  p ( ( ) ,  to change  coord ina tes  in C "§ by a non-s ingular  ma t r ix  if we 

are  in teres ted  in the l inear  s t ruc ture ,  and by  a uni tary  matr ix  if we are  using 

the metr ic  s t ructure .  T h e  ho lomorph ic  c u r v e  is non-degenerate  if the  image  

does  not lie in a p r o p e r  l inear subspace  of  P". This  is equ iva len t  to the 

condi t ion  

(4.7) Z(~') ^ Z ' (~ ' )  ^ . . -  A Z'" ' ( ,~)  = det  (zl~'(~')) # 0, 
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where det(z~k~(~r)) is the Wronskian of the coordinate  functions 

z0(~),-",z,(~r).  Such an analytic condition for non-degeneracy is not yet 

available for  hoiomorphic  curves in general algebraic varieties. 

Given a holomorphic  curve f, there are naturally associated holomorphic  

mappings 

f k 'Ar- - -~G(k ,n)  (k = 0 , . . . , n  - i) 

given by the homogeneous  coordinate  vectors  

Ak(~) = Z(~)  ^ "-" ^ Z'k~(~) @ C '~+p. 

Thus f0 = f,f ,  is the tangent line to the curve,  f~ is the osculating 2-plane, etc. 

/ 

Z(~)^Z'(~) ^ Z"(~)~ Z(g) A Z'(~) 

~ z(~) 

These associated curves are of fundamental  importance in the theory. 

Geometr ical ly  they provide a means for  interpolating between the l- 

dimensional curve  and n-dimensional  project ive  space. 

It is standard that a non-constant  meromorphic  function f(~') has around 

~" = 0 the local fo rm 

f ( ~ ) =  ~- + . . .  

in a su i tab le  l inear  c o o r d i n a t e  s y s t e m  on P ' .  In h o m o g e n e o u s  c o o r d i n a t e s  

this  is the  s a m e  as  

(4.8) f ( ~ ) =  [1 ,~-  + . . . 1 ,  
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and  we want  to genera l ize  this normal  fo rm to a non -degene ra t e  ho iomor-  

phic curve.  I n t roduce  integers  a_,,ao,...,a,,_, such that 

(4.9) Z'~ ' ' * ~  '+%'(0),...,Z' . . . . .  + . . . . .  . - , ' ( 0 )  

are the lowest  o rder  l inear ly  i n d e p e n d e n t  de r iva t ives  at ff = 0. The  poin t  is a 

regular point in case ao . . . . .  a,_, = 0; o therwise  we have  a stationary 

point. Choos ing  the vec tors  (4.9) as a l inear  coord ina te  sys tem for  C ~ and 

mul t ip ly ing Z(ff) by a sui table factor,  we may  give f (s  r) by 

(4.10) Z ( ~ ) : [ 1 , ~ ' + % + ' " , 1 ~ 2 + " ~  "+% . . . . . .  - ' + . . . ] .  

This  is the ana logue  of (4.8). F r o m  (4.10), 

(4.11) Ak(~') = ffk%+~-~,,, . . . . . .  ~-' eo ^ - - - ^  e~ + ' ' "  

= ~ e o A ' ' ' A e ,  + ' ' ' .  

L e m m a  4.12. The associated curve fk :A , -+G(k ,n )  has a ramification 

point of  order a~ at ( = O. 

P r o o f ,  We shall do the case n = 3, k = 1. T h e n  

z ( ? )  = [ i , ~ '~~  + . . . ,~2+o+~ + .. . ,~3+o+~+c + . . .] ,  

A,(s r) = ~r~ e, + ~'+~ e2+ " "  

= ~"{eo^e,+~'+'eoAe2 + ..-}. 

Using  the prescr ip t ion  at the end  of Sec t ion  4(a), A,(ff) has a ramif icat ion of  

order  b at ~" = 0. Q.E.D.  

R e m a r k .  Referring to (4.1I), 

(4.13) ak = vk+~ + vk-~ - 2vk 
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is the second difference of the uk 's. If ak > 0, we say that ~" = 0 is a stationary 

point of index k and order ak. The divisor 

Rk = X a k ( O  �9 ~r 

measures the ramification of the k th associated curve, and we set (cf. (I.2)) 

(4.14) Nk(r) = N(Rk, r). 

(c) T h e  S e c o n d  M a i n  T h e o r e m  (S.M.T.). Given a non-degenerate 

holomorphic curve f :C-~P",  we denote by 

(4.15) V ' -  I 
l L = d d ~ l ~  27r hkd~^d~ 

the pseudo-metric on C induced by the standard metric (cf. (4.4)) on G(k,n ), 

and let 

r 

dp 

fIl )-; 
| )  ~,p 

be the order [unction for the kth associated curve. Then To(r) is the order 

function for [. The S.M.T. regulates the balance between the growth of the 

various T~'s, and represents an intrinsic form and generalization of the 

relation between the growth of an analytic function and of its derivative. 

According to a beautiful remark of H. Weyl [21], the S.M.T. should be 

thought of as non-compact Pliicker [ormulae. 

We wish to compute  the Ricci form 

Ric Ilk = d d '  log hk 

for t~k given by (4.15), and the following is the main step: 

L e m m a  4.16. 

hk -- [Ak-'12 [Ak+'12 
[ A ~ I  ~ 
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P r o o f .  It will suffice to check (4.16) at a regular point ~'o; this is because 

h~ is obviously C ~, and t A~-il2lAk*' 12 Ak]4 is C ~ since a + , + a - , - 2 u k  =>0 (cf. 

(4.1 I) and (4.13)). Representing f ( r )  by a vector  Z(ff), we wish to first find 

a , , ' " . a k + ,  such that, if 

ak+, ,~ ~.o)k+,] 2 ( 0  = ! + ~ , ( ~ -  6)  + " "  + ~ t ~ -  z ( o ,  

then the inner products 

(4.17) (Z(k+"(~'o), Z('(sro)) = 0 (j = 0 , . . . ,  k). 

./ o - o  Now 2('(~'o) = Z('(~ro)+ ( l ) a , Z  (~ 'o )+""  + ( ] )  ajZ(~'o), 

equivalent to the system 

(2'k+"(sro), Z~'(6))  = 0 

so that (4.17) is 

0 = O , ' " , k )  

of k + 1 linear equations in the k + i unknowns a ~, 

coefficient matrix (Z<'(~'o),Z~ (0 _-< i,j  - k). Solving these equations 

gives (4.17). 

Changing notation, we assume (4.17) for Z(~'). Then at ~" = ~'o, 

�9 �9 ", ak+, with non-singular 

Computing derivatives at ~" = sro, we find 

hk(~o) 8 2 1 o g ( Z ^ " ' A Z  ' k ' , Z  ^ ' '  " ^ Z ~k~) = (by (4.15)) 
a~at" 

a ((ZA'' '  A Z % Z ^ ' "  ^Z'k-"^Z ''+'')'~ 
= ;, : - : - ; - Z " 3  ] ( g Z " '  = O) 

(4.18) 

IA,] = 

(i) ( Z A ' ' ' A Z  `*', Z ^ " ' ^ Z ' * - " ^ Z  '~+'')=0 

(ii) ( Z A - - ' ^ Z  c*-''AZ'**', Z ^ - ' - ^ Z ' * - " ^ Z  ~*+'~) 
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--  ( Z  A - ' '  ^ Z (k-I, ^ Z {k+l,, Z ^ " "  A Z ( k - ' ,  ^ Z (k+l)) 

(Z ^ . . .  ^ Z <k~,Z ̂ . . .  ^ Z  ~k') 
(by (4.18i)) 

=lAk ,121Ak+,l 2 
[Ak [' (by (4.18ii)). 

Q.E.D. 

(Our proof of (4.16) is a little different from the usual argument in that we 

have chosen a special representative Z(ff) for /(~') to make the "cross- 

terms" drop out, thus circumventing much of the linear algebra. This device 

will be used consistently; roughly speaking, the general philosophy is that 

terms which have no intrinsic meaning may, by suitable choice of coordi- 

nates, be made equal to zero at a given point.) 

From (4.15) and (4.16) we find 

(4.19) Ric f~k = dd c log hk = f~k+, + Ok-, - 2flk. 

Applying the basic integral formula (1.3) to (4.19) gives: 

Second  Main  T h e o r e m  

(4.20) 1 j C'. Tk-,(r)+ Tk+,(r)+ Nk(r)= 2Tk(r)+~--~ loghkdO + 
j~l=r 

C o r o l l a r y  4.21. Tk_,(r)+ Tk+,(r)<2T~(r)+ClogTk(r)+C ' 

P r o o f .  This follows from (4.20) and 

1 
47r f l~176 f hkdO) 

I~l=r I~l=r 

2 d2Tk(r) ] 
=�89 ~ (d iogr)2j (by (2.6)) 

<<- ClogTk(r) (by (2.11)). ]] 
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R e m a r k .  The S.M.T. 4.20 may be written as 

Tk_,(r) -2Tk(r)+Tk(r)=e(Tk(r))  

e(Tk(r)) <= C log Tk(r) + C',  

an estimate on the second differences of the T~(r) which should be 

compared with (4.13). 

From (4.21) we obtain the inequalities (see [22]) 

(4.22) 
(k + l)T~(r)_-<(l+ l )Tk(r)+e(T(r))  (k <1)  

(n + l-I)Tk(r)<=(n + 1 - k ) T t ( r ) + e ( T ( r ) )  (k <1)  

where T(r)= maxkTk(r). It is in this sense that the original curve  and its 

associated curves have the same order of growth. Thus, e.g., f is rational <:> 

To(r)=O(iogr) <:> Tk(r)=O(logr)  for  some k; f has finite order <:> 

To(r) = O(r*) <:> Tk(r) = O(r ~) for some k, etc. For  n = 2, the inequalities 

(4.22) reduce to 

(4.23) 
T,(r)<=2To(r)+e(T(r) ) 

To(r) <-<_ 2T,(r)  + e(T(r)). 

5. H o l o m o r p h i c  c u r v e s  in P"; t h e  F r e n e t  f o r m a l i s m  

(a) Following Chern [I0], we shall use the Frenet  frames associated to a 

non-degenerate holomorphic curve. As may be familiar f rom the study of 

ordinary differentiable curves in R 3, this formalism most clearly exhibits the 

geometry of the curve,  especially those aspects dealing with contact which 

the curve may have with a linear space, in terms of the parametric equations 

of the curve. We shall use frames on an intuitive level, letting "dZ"  

symbolize an "infinitesimal displacement of  Z'" and so forth. The rigorous 

basis for  this symbolism is given in [7, Chap. 3]. 

A frame is a unitary basis {Zo,." . ,Z,} for  C "§ The set of frames is a 

manifold F,+~, which may obviously be identified with the unitary group 
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U.+,. If Z:F.+,--- ,C "+' is a smooth function, the infinitesimal displacement 

dZ may be resolved into its components  relative to the frame vectors: 

dZ = ~ OkZk, 
k =O 

where the 0k are l-forms on F.+,. Applying this principle to the frame 

vectors themselves gives 

(5.1) dZk = ~ Ok, Z,, 
I = 0  

where the Ok, = (dZk,Z~) are the basic Maurer-Cartan forms on F.+~. Dif- 

ferentiation of (Zk, Zi) = 6 ~ gives 

(5.2) 0k, + ~k = 0, 

and exterior differentiation of (5.1) gives 

(5.3) dOkl = ~ Ok~ ^ Ou. 
i = 0  

The relations (5.1)-(5.3) are the structure equations for F,+,. 

The map Fo+, ~ ~P" given by ~ '{Zo, . . . ,Z,} = Z0 is a fibration with fibre 

F.. As an illustration of how one calculates with frames, we shall prove: 

L e m m a  5.4. 

27r o=, 

1~ being the standard Kiihler form on P". 

P r o o f .  The mapping ~" is given by 

Z ir 
(5.5) Zo = ~-~e 

where Z is a homogeneous coordinate on P" and ~ is C ~ and real. 



HOLOMORPHIC CURVES 123 

Differentiating ]Z 12 = ( Z , Z )  gives 

(5.6) 21zl d IZ[=  (dZ, Z)+ (Z, ctZ). 

Combining (5.5) and (5.6) we obtain 

(dZ, Z) d l Z l + i d  ~ 
O~176176176 IzI 2 Izl  

_ (dZ, Z )  1 
[Zl :  2[Z i  : { ( d Z , Z ) + ( Z , d Z ) I + i d O  

1 
= 2[Z [z{(dZ, Z )  - (Z, dZ)}  + idqJ 

= ~(a - g) roglZ l: + idtO. 

Thus 

(5.7) 
2 ~  0oo = - log lZ I ~ - d4J. 

Taking the exterior derivative of (5.7) gives 

"n'*O = dd c loglZ 12 (by (4.2)) 

x / z 5  
2 ~  dOoo (by (5.7)) 

(by (5.3) and (5.2)). 

Q.E.D. 

D e f i n i t i o n .  Given a non-degenerate holomorphic curve, a Frene t f rame  

{Zo,. . . ,  Z,} is a unitary frame such that Zo , . . . ,  Zk and Z , - . . ,  Z <k) span the 

C , i.e., same linear space in "+" 
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�9 Z (k) 
e'*klZ A-- "" ~ Z ( ~ , l -  Z o ^ " "  ^Z~ (k = 0 , . . . , n ) .  (5.8) Z ^ ^ 

Frenet frames are defined at the regular points of the curve,  and there 

they provide a coordinate system especially adapted to the curve in a 

neighborhood of the point. A Frenet  frame is unique up to rotations 

(5.9) Z .  2,~;~ -"> e ~Z~. 

Restricting the structure equations (5.1)-(5.3) to Frenet  frames,  they simp- 

lify as follows: 

L e m m a  5.10. (Frenet  equations�9 (i) 0, = 0 for i + 1 < j and  0;.,+, is o f  

type (i,0); and 

(i i) { dZk = G.k ,Zk , + Ok.~Zk + O~.k+, Zk+, 

l 

P r o o f .  Since Zk is a linear combination of Z , Z ' , . . . , Z  (~', dZk is a linear 

combination of Z , Z ' , . . . , Z  (k+') which implies that 0~i = ( d Z ~ , Z j ) = O  for 

i + 1 < j. Similarly, since cTZ ('~ = 0 it follows that 5Zk is a linear combination 

of Z0, . . - ,  Zk, and thus 0~,k+z = (JZk, Zk+,)= 0. This proves (i), and the first 

equation in (ii) follows from (i) and (5�9 

To prove the second equation there, we first derive the relation 

(5.11) 
~-1 (0o,o + " "  +0k.k) = - d C l o g l Z A ' . . A Z ( k ) ]  2 -  d~b~ 

using the same method as in the proof  of (5.7)�9 Taking exterior  derivatives 

gives 

f~k = dd c IoglZ ^ " "  ^ Z(~'] ~ (by (4.15)) 

_ X~ ~ 1 (dOo.o + �9149 + dOk.k ) (by (5�9 ! 1)) 
2rr 

,,/-1 
- 2 ~  0~.~. ,  ^ t~.~+, 
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by (5.2) and using that dO~.~ = 0~.~_, ̂  0~_~.~ + 0,.~+, ̂  0~+,.~ so that the sum 

telescopes. Q.E.D. 

For future easy reference, we collect together the structure equations for 

the curve using Frenet  frames: 

S t r u c t u r e  e q u a t i o n s  5.12. 

(i) ZoA' ' "  A/k e ' * ~ Z A . . ' A Z ( k ' = e , , ,  Ak 
= [ z ^ ' " ^ z ' k ' [  IA~I; 

(ii) dZk = Ok.k-,Zk , + Ok.kZk + Ok.k+,Z~+," 

(iii) 0k.k+, has type (1,0); 

(iv) 
0,~ + b~, = 0 

dO~i = ~ 0~ ^ Okj ; 
k 

_ x / : - i  
(v) 1~ N/~ - Iddc log lA~]2 -  0~+,^0~k+," and 

2~r 2~r " " ' 

(vi) ~k-N/-~hkd~2~ ^d~  where hk = IAk-ll2llAk+'12jAk 

(b) Th e  A h l f o r s  i n e q u a l i t i e s .  As an application of the calculus of 

Frenet frames, we shall derive the Ahlfors inequalities [2] in the form of the 

conjectured equation (124) in [10]. An heuristic discussion of our method 

appears at the end of this section. These results will not be needed for the 

proofs of the defect relations in Sections 6,7 below. 

We begin with the following linear algebra convention: For a k-vector B 

and an h-vector C in C "+', the in ter ior  p r o d u c t  ( B , C )  is the unique 

( k - h ) - v e c t o r  such that 
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for all ( k -  h ) -vec to r s  D. We also set 

I<B,c)l = IR, c l .  

Let /:C--->P" be a non-degenerate holomorphic curve, and A E (C"+L) * a 

unit vector defining a hyperplane A C P% Setting 

(5.13) 

ckk = c~k(A ) = IZo, A [2 + . . .  + [Zk, A [2 

= I Z ^ ' . .  ^ Z ' k ' . A  12 
I Z ^ . . . A Z , * , I ~  , 

we observe that ~bk (~r0) = 0 r the curve  has  c o n t a c t  o f  o rder  k + I with A at 

~o. 

Propos i t ion .  (Ahlfors '  inequalities.) Given  r > 0, f o r  Ix > t z (r  >- I, 

r 

Proof.  For a positive C ~ function ok, 

(5.15) ~ - -  ! ag tog ~ - V-:--~ aa I o g ~  x / -  1 a6 ^ ~6 

( ) 1 2 27r Iog l/~b § 2rr 4~ 2 log~- 4~- Iog~- 

This equation is straightforward to check. Using functions of the sort 

as potentials is suggested by the formula for  the Poincar6 metric (2.3) on the 

punctured disc. We wish to use (5.15) when 4~ = 4~,[tx, and so we need the 

following two lemmas, which together with (4.16) constitute the main 

computations of this paper: 

Lemma 5.16. 2----~(0qbk A b~k) = (~k+,-- ~k)(~k -- ~b~-,)~k. 



X/-L-_ 1 
L e m m a  5.17. 

27r 
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- -  Oh" log +k [~bk +,q~k -,'~ ~ _ D.k. 
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P r o o f  of  (5.16). Us ing  a rota t ion (5.9), we  may  a s s u m e  that  0~.j(~'o)= 0 

at a g iven point  fro. Calcula t ing  de r iva t ives  at ~'o and using (ii) and (iii) in 

(5.12), we have  

OCl'k = O( (Zo^  " "  A Z~ ,A  ) , (ZoA " " A Zk, A )) 

= ((ZoA " '" A /k  , A l k + , , A ) , ( Z o A ' " A g k ,  A))Ok.k+, 

= Ak +, Ak 0k.k +, 

where  Ak = (Zk, A ) .  T h u s  by (5.12v) and (5.13) 

27r (a&k^SdPk)= lAk§  (0k.k+, ^ 0k.k+,) 

= t 6 k + , -  4,~)(4,k - 6k ,)ilk. 
Q.E.D.  

P r o o f  of  (5.17). By the definit ion (5.13) and  (5.12v), 

[Ak, A I 2 
4 'k=  I Ak f" 

~:-  I ag  log lAk I ~ = nk 
27r 

Thus  we must  check  that  

- ( 4~k +, 4~k , "~ ,~ (5.18) V ~ 1 0glog[Ak,  A [2 
2~ ~ /o,k, 

which  will turn out  to be  the S.M.T. (4.16) for  the c o n t r a c t e d  h o l o m o r p h i c  

curve  

AA (~) = (A,(~ ' ) ,A) .  
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Indeed, we will check that 

(Aa)k-, 
(5.19) (Ak, A ) = (Z, A )k ,, 

which upon using (5.12vi) and (4.16) gives 

V ~ - I  ob'loglAk,  a [5_ X/~_ I 0~logl(Aa)k_, 12 
2~r 

v ' -  1 [(A~)k_:l : [(Aa)k 12dff ^ d~ 
2rr [(Aa)k ,1' 

X/-1  [A~ ,,A [~IAk+,,A I ~ 
27r IAk,A I' 

_ 6k , 6 k + , , ~  
at, k, 

4, k 

thereby proving (5.18). 

It will suffice to verify (5.19) at a regular point ~'o where (z(~ro),A)~0. 

Arguing as in the proof of Lemma 4.16, we may assume that 

(5.20) (Z<~'(~o),A) = 0 (j = 1,- .- ,n).  

We now proceed by induction, assuming (5.19) for k and then deriving it for 

k + 1. Calculating at ~o, 

(AA)k , = (Z, A )k , (Ak, A ) 

= ( Z , A ) k  , ( Z ^ Z , A . . . A Z  'k ' ,A) 

= ( Z , A ) k Z ' ^ . . .  ^ Z  <k, 

(Aa)<k,= (Z ^ Z ~k+'', A) 

= ( z , a ) Z  <k+'' 

(by induction) 

(by definition) 

(by (5.20)); 

(by (5.20)) 

(by (5.20)); 
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and so finally 

(AA)k = (Am)k-I A (AA)(k) 

= ( Z , A ) k + ' Z '  A ' ' "  A Z (k§ 

= <Z,A >' (Ak+,,A) 
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(by definition) 

(by (5.20)). 

Q.E.D. 

Continuing with the proof of (5.14), we use (5.16) and (5.17) in (5.15) with 

4~ = ~bk//z to obtain 

+ 2 [  (~k+l-~k)(~k-~k ')-I ~k+,~k ,l,.(~k ' 

[ 

which easily implies the main technical inequality of this paper 

(5.21) 

provided/z =/x (~). Applying the basic integral formula (1.3) to the function 

we obtain from (5.21) the estimate 

< e T k ( r ) + C  

since h is bounded. Q.E.D. 
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R e m a r k s .  We wish to discourse a little on inequalities of the type (5.14) 

and their relationship to the philosophy of negative curvature. Using 

(A < 1) 

in (5.14), we arrive at an inequality 

(5.22) 

r 

0 di e 

after suitable adjusting of constants. This is the conjectured inequality (124) 

in [10], which, as was carried out in [10] in the case n = 2, leads to the 

Ahli'ors defect relation, a result which we shall prove by a somewhat 

different method in the next section. Taking k = 0, (5.22) becomes 

r 

(5.23) f ( f lZo ,  Ar+lZ',At211o) d~o <(i l~_~)To(r)+C. 
IZo, al  

0 4 o 

The (1,1) form 

llo 
fZo,A [~" = ,o.(A) 

fails to be integrable exactly where the hyperplane A has high order contact 

with the hoiomorphic curve. Thus, by Lemma 2.13 (iii), to~ (A) cannot be the 
Ricci form of a singular metric. However,  the factor IZo, A 12+IZ, ,A[ 2 

vanishes when A has high contact with A, and when put in front of w~(A) 

gives an integrable (1,1) form. Thus it is at least possible that 

IZo, A r+IZ,,A rao 

be dominated by the Ricci form of a singular metric, in which case [Ahlfors] 

type inequalities may be expected to follow from the basic integral formula 

(1.3). 

By extremely ingenious arguments in integral geometry (cf. the introduc- 

tions to [21] and [22]), Ahlfors derived estimates of the general type as (5.22). 
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Our main point is that if one adopts the philosophy of trying to find metrics 

of negative curvature using the potential suggested by the Poincar6 metric 

on the punctured disc as a guide, then the Ahlfors estimates and much more 

(cf. Sections 6,7 below) fall out quite naturally using straightforward 

computations based on the Frenet frames. 

6. D e f e c t  r e l a t i o n  for  a h o l o m o r p h i c  c u r v e  and  s o m e  

a p p l i c a t i o n s  

(a) P r o o f  of the  d e f e c t  r e l a t i o n .  Letf:C---~P" be a non-degenerate 

holomorphic curve with order function 

r 

To(r )=f ( f  12~ 
0 A o 

relative to the hyperplane line bundle. For  each hyperplane A C P", the 

counting function N(A, r) measures the number  of points of intersection of 

the curve with A, and satisfies the Nevanlinna inequality (3.4) 

N(A, r) <~ To(r) + C. 

Using this, one defines the Nevanlinna defect 

(6.1) 6(A )= I _I~m( N(A'r)~ 
T---~S J ' 

with the properties 

{ 1 
6(A)  = 1 if f(C) fails to meet A. 

In general, the defect  6(A ) >  0 exactly when the curve meets A less than it 

meets an average hyperplane (cf. (3.5)). The Ahlfors defect relation [2] is the 

estimate 

(6.2) ~'~ 6 (A,) =< n + ! 
v 
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where A. is a set of  hyperplanes in general position ; i.e., no n + 1 of the A , ' s  

are linearly dependent .  We will prove  (6.2) using the basic integral formula  

(1.3) and a negatively curved collection of metrics (Section 2 (c)). Referring 

to (2.22), the idea is to find singular metr ics  leading to a lower bound on the 

sum 

Z N ( A ~ , r ) ,  

which may then be played off against the upper  bound in the Nevanl inna 

inequality. 

Now (6.2) is obvious  if there are less than n + 2 hyperplanes  A~, and so we 

may assume that A , , . . . , A N  are hyperplanes  in general position with 

n + 2 =< N < ~, and will then prove (6.2). Define for  i -- 0 , . . . ,  n - 1, 

(6.3) 
- - -  l . / ( n - i l  

al, = c, H [ +,+,(A.) \ l-l,. 

" ~ b , ( A ~ ) ( l o g ~ ) )  

P r o p o s i t i o n .  Given �9 > 0, for suitable choice o f  constants c~,tz we have 

(6.4) ~ ( n  - i)RicoJ~ > = ( N - n  - I)1~o + ~ w ,  - � 9  1~ . 
i = 0  i = 0  

Aside f rom the term with the �9 (6.4) says that the {~o~} form a negatively 

curved collection o f  metrics (Section 2 (c)). Moreover ,  the te rm with the �9 

may be est imated by (4.22). Thus the proof  of Proposition 2.21 will still apply 

to yield the desired lower bound. 

In fact, let us assume (6.4) and carry out in detail the proof  of (6.2). Using 

the method of (2.21), we will first derive the lower bound 

(6.5) S" N(A , ,  r) >= ( N  - n - 1 - ~ )To (r) + C. [1 

Proof  of (6.5). Let  N~(A,,r) be the counting function for  the points 

r E C where f(C) has contact  of order i + 1 with A,, and N,( r )  the counting 
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function for the stationary points of index i. Writing to, = `/v 2 ;  l h,d~^ d~ and 

applying the basic integral formula (1.3) to h,  we find 

(6.6) n-if -47 Iogh, dO = (n - i)N,(r) 
r~p=r 

+~[N,+,(A.,r)-N,(A.,r)]+(n-i)f(fRicto,)~-+C,. 
0 A r 

Using (2.6) and (2.11), we may estimate the boundary integrals for r => ! by 

an inequality 

(6.7) n - i f C '  , 4~- log h,dO <= log (T~ (r)). 11 
[~[=r 

Finally, using (4.22) we have 

e ('V~_, I Ti(r)) <= C",To(r). II (6.8) 

Now sum (6.6) for i =  0 , . - . , n -  I use (6.4), (6.7), and (6.8) to obtain an 

estimate 

(6.9) ~ N(A~,r)>=~(n - i ) N , ( r ) + ( N - n  - 1-e)To(r)+C II 
v i 

(where e has replaced EC). Q.E.D. 

~ (  N(A~,r)) 
P r o o f  of (6.2). ~'~8(A~) = l - ! i m  To(r) 

v 

/ N(A~, r) 
< N - l i m  { 

< n + l + ~  

by (6.5). Q.E.D. 
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Proof  of (6.4). We first note that 

n--I ~I--I 

(6 .10 )  , =~'o~ ( n  - i ) R i c  {L = ~=o ~" ( n  - i ) (11,_, + O,§ - 2fI ,  ) ( 4 .19 )  

= - ( n  + l)f~o. 

Since the sum telescopes (this is the n + I in the Ahlfors defect relation). 

Next, by (5.21), 

(6.11) d d ~ l o g ( [  llz "~l >-- --ElIk + 
\~log ~----~)} ] 

24~k +l(A~)llk 

for sufficiently large p.. Summing (6.11) gives 

"- '  [17 &i+,(Au) .1 dd ~ log 
,=o [ l?  ~b, (A.) (log p~ Id,, (A~))2J 

"-' dd log ( i o g p . / ~ b , ( A ~ ) ) 2  = - ~ dd c log ~bo(A~) + ~ ~ c 1 
v i = 0  v 

~ A t . ,  } =>Sno+2E Z... +'( n,, 
i=o[ ~ Oit.~t~)lOg[P. lqgi[~)) J i=o 

the middle step being by telescoping a sum. Combining this with (6.10) gives 

(6.12) ~ (n - i)Ric to, >_- (N - n - l)lqo 
t = 0  

+ 2 "-I qSi+l(A.) l~i "~ _ e~]~ , .  

~=~o { ~ 4~,(a~) ( l o g ~ )  z J ,=o 

Using that Ric (cto)= Ricto, (6.4) follows from (6.12) and the final: 

L e m m a .  (Sums into products.) For {A~} in general position, 

ck~+~(A~) 2 ___ Ci]-~i ( ~ ,2) ''~" " 
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P r o o f .  Fo r  B a unit  (i + 1)-vector  in C"+l, (B, Av) = 0 for  at m o s t  n - i 

of  the Av, since the Av are in general  posit ion.  Using cont inui ty  and 

compac tne s s  of  the Grassmannian ,  

I(B,A~)I2>=m > 0  

for  all but  at mos t  n - i  of  the A~ and all B. In part icular,  

~bi(Av)>-_m > 0  

for  all but  at mos t  n - i  of  the A,. Set  

r = ~b,+,(Av) 

By what  was just  said, there exists a cons tan t  L > 0 such that  qbv _--_ L fbr  all 

but  at mos t  n - i  o f  the A , ' s .  

We may  r e n u m b e r  so that  ~,(~ ' )  > L at mos t  fo r  v = 1,. �9 q -< n - i. Then  

at ~', 

q 

v v = l  

q 

> c l - I  <b~/q 
v = l  

(ar i thmetic  and geometr ic  means)  

N 

= C I - I  qbl/q" L ~q-N'/'~ 
v = l  

IV 

_->'C' I-I OY'"-". 
v = l  

(b) The Bore l  t h e o r e m .  

P r o p o s i t i o n .  (Borel  [4].) Let f : A s - - > P " - ( A ~ +  . . .  +A.+~) be a non- 

degenerate holomorphic curve which omits n + 2 hyperplanes in general 

position. Then 

(6.14) 
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We will derive (6.14) from (6.4) and the following assertion about 

pseudo-metrics: 

Let {~o~}, ~b, 4, be pseudo-metrics on As and assume that the conditions 

(6.15) 

Ric w, => ~ w, + ~b - 4, 
i 

�9 / 1 d2T , ( r )  \ 
T,(r)  <= , og l  75 ~ } ~- ,T~,(r) ( ,  < 1) II 

are satisfied. Then 

(6.16) s <oo. 

P r o o f .  

inequality 

As in the proof of (2.22), the assumptions (6.15) imply the 

(6.17) ~] T=, (r) + (1 - E ) T , ( r )  
i 

=< ~'~ C log T=,(r) + C' log To(r) + C" [1 
i 

where C, C'  are universal constants and C" depends on ~o~(0),~b(0), 4,(0). It 

follows immediately that s ~ + ~. Q.E.D. 

(c) A big P i c a r d  t h e o r e m .  Let A * = { 0 < l ~ ' l < l } b e  the punctured 

disc and A , . . . , A , . 2  hyperplanes in general position in W. 

P r o p o s i t i o n  6.18. ([15]) A non-degenerate holomorphic mapping 

[:A*-->p" - (A1 + . . .  +A.§ extends across ~ = O. 

The proof breaks naturally into four short steps. We assume throughout 

that all functions are defined on the slightly larger disc {0 < [ ~r I < 1 + ~ } for 

some e > 0. 

Step one. We begin with a simple one-variable lemma. 
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L e m m a  6.19. Suppose that tp(~) is a meromorphic function on A* such 

that, for some open set U CP' and constant  B > 0, the equation 

(6.20) tp(() = a (a E U) 

has at most B solutions. Then ~b(~) extends across ~ = O. 

P r o o f .  Let  a o E  U be an interior point where (6.20) has a max imum 

number  of solutions ~',,..-,ff,,. If  p = mini_~ .,, [ffi I, then in the punctured 

disc 0 < < p - ~ the meromorphic  funct ion qj(r) omits an open neighbor- 

1 
hood of ao. Thus is bounded near  ~" = 0, and so the Riemann 

~(~) - a o  

extension theorem applies. Q.E.D. 

Step two. let f : A * - - , p "  be a holomorphic  mapping, ~ =Z~/Zo the 

rational coordinate  functions on P", and 

~,, .  = f * q , o  

the corresponding meromorphic  funct ions on A*. The mapping f extends 

across ff = 0 if, and only if, the meromorphic  functions q'~ extend. Referring 

to (6.20), the solutions to that equation for  ~ are given by f - l ( A )  where 

A CP" is a suitable hyperplane.  Setting Ar = {l /r  < < 1} and 

n ( A , r )  = degree ( f - ' (A  ) (3 At)  

I 

we obtain f rom L e m m a  6.19 the following: 

L e m m a .  f : A*--->P" extends across ~ = 0 if, for some open set o fhyperp-  

lanes U C P"' ,  we have 

(6.21) N ( A , r ) < = B l o g r  + B '  

for A ~ U. 

Indeed, it is clear that n ( A , r ) < B  if, and only if, (6.21) is satisfied. 
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Step three. Keeping/ ;A*-->P"  as above, we let 

r 

To(r)=f(f 
1 Ap 

be the order function. 

L e m m a .  f extends across ~ = 0 if, and only i], 

(6.22) To(r) = O(log r).  

P r o o f .  The set S of hyperplanes A such that f -I(A) meets the circle 

Isrl = 1 is closed and lower dimensional in W'. Taking h = 1/[trA [2 in 0.5) 

where ira E ~(P" ,L)  defines the hyperplane A, we find an estimate 

(6.23) N(A,  r) < To(r) + C i o g r  

for all A E U where U is a relatively compact  open set in P " ' -  S. Our 

lemma now follows from (6.21)-(6.23). Q.E.D. 

Step four. Proposition 6.18 follows now from (6.4), (6.22), and the 

following lemma about metrics. 

L e m m a  6.24. 

for some E < 1, 

Let {tol }, d', ~b be pseudo-metrics on A* and assume that, 

f ~ '~Ric to ,_ ->~to ,+6- t / ,  i i 

T,(r) <= ~r,(r)  + C. 

Then it [ollows that 

T,(r) = O(log r).  

P r o o f .  Applying (1.4), (2.6) (which also holds on A*), and (2.1 I) we have 

T~, (r) + T,(r)  <= A logr + ~ B log T~, (r) + eT,(r) + C, [] 
i 
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which simplifies to an estimate of the sort 

(6.25) T.(r)  <-_ A logr  + B. 

We claim that (6.25) implies 
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(6.26) 

f ~ < A  

A r  

for  all r, thus proving the lemma. If (6.26) is false for  some r0, then for  r > r0, 

r 

ro(r)=f(f P 
r 0 Ap 

r 

ro A r  o 

> A log r + C, 

which contradicts (6.25). Q.E.D. 

(d) I n t u i t i v e  r e m a r k s  on  t h e  c o n s t r u c t i o n  of  n e g a t i v e l y  c u r v e d  

m e t r i c s .  If, on the basis of the arguments in Section 2, one believes that 

finding metrics of negative curvature will lead to Picard theorems,  defect  

relations, etc., then the following heuristic arguments may show how metrics 

of the form (6.3) naturally arise. For  simplicity, consider a holomorphic 

plane curve f:C---~P 2 in which we want to see how it meets a set of  lines 

A ~,-. -,AN. Recalling that 

{ Cko(A)=IZo, A[~ ( =  0r meets A)  

Ckl(A)=lZo, A I2+[ZI,A 12 ( = 0 r 1 6 2  meets A to 2nd order), 

the Ahlfors lemma and formula (2.3) for  the Poincar6 metric suggest looking 

at 
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(6.27) to' = ( ~  qS0(A~ 1 1 . 2 ~ 1)o. 

The Ricci form of to~ is given by (cf. (4.19)) 

(6.28) Ric to, = (N - 2)1)o + 12, + ~ dd ~ log [log ~b~(A~ ) 1  ]2 

and thus, for N _-> 3 and using ( 5 . 2 1 ) ,  

Ric to = X " to 

where X > 0 but where X(r if f (~) tends tangentially toward a line A~. 

Thus what is suggested is that we modify (6.27) by setting 

co: = ( i -  I ,;bl(a~) )f~o. 

Letting 1),(A) = dd c loglZ ^ Z ' , A  12, 

l 2 
(6.29) Ricto2 = ( N - 2 ) l ~ o - ( N - 1 ) 1 ) 1  + ~-~1),(A~) + ~ddC l~ -1 "~" 

Ignoring the trouble arising at points of intersection of two of the lines, it 

follows from (5.21) that 

(6.30) Ricto2>= X . to2 + (~/  l l ~ ( A ~ ) - ( N -  l)1)~) 

where X is bounded away from zero. Thus, aside from the C = term 

(Ev f/~(A.)- ( N -  1)f~,), to2 has negative curvature. To take care of the C | 

term, we use a second metric 
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(6.31) 
~b,(A~)log 

whose Ricci form is given by 

141 

(6.32) R i c 0 ) , = ( N - 2 ) l ' ) , + Q o -  ~'~fL(Av)+ ~ d d ' l o g [  l l  1"" 

,, ~ k l o g ~ l - - ~  / 

Adding (6.29) and (6.32) gives 

(6.33) R i c w 2 +  Rico)3 = ( N -  1)~o - fL + ( ' " )  

where ( . . . )  are the dd c log( l / logf  terms. Now by the S.M.T. (cf. (4.23)), we 

have roughly that 

fL_-<(2 + e ) f L ,  

and another  ef~o is required to make the dd c log(1/Iogf terms positive 

((5.21)). Thus (6.33) implies roughly that 

(6.34) Ric 0)2 + Ric 0) 3 ~ (N  - 3 - e ) I'/o + (~o~ + 0)3). 

Consequently,  aside f rom the trouble arising at intersection points of lines, 

we have a negatively curved collection of metrics for N > 4. The fractional 

exponents in (6.3) are used to resolve the trouble at points of intersection. 

7. D e f e c t  r e l a t i o n s  f o r  t h e  a s s o c i a t e d  c u r v e s  

Let f :C- ->P,  be a non-degenerate holomorphic curve, and let 

fk :C-->G(k,n), the Grassman manifold of project ive k-planes in P,, be the 

kth associated curve. Since G(k,n) can be imbedded in P(Ak+'C "§ ~_pN 

where  N = ( n  k + l  + 1) _ 1, then fk can be viewed as a holomorphic curve in pN. 

If A k is a unit (k + l ) -vec tor  in C "§ Ihen fk may lie in the hyperplane in pN 

defined by A k, i.e., 
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(Ak, Ak>-=0 

and thus fk may  be degenerate.  Howeve r ,  if A ~ is decomposable ,  then 

(Ak, Ak) -=0  implies /" is degenerate.  Indeed, if A ~'= a0"^ ' - . ^  ak, then 

(Ak, Ak) = 0 if and only if the holomorphic  curve 2 :C-- -~C k§ given by 

(7.1) 2 = (<Z, a 0 ) , " - , ( Z ,  ak >) 

satisfies 2 ^ . . .  ^ ~k~ = 0, i.e., if and only if 2 is degenerate,  which implies Z 

is degenerate.  

Thus for decomposab le  A ~, we may still consider the deficiency ~5(A k), 

for fk considered as a curve in pN. In [1], Ahlfors showed that the defect  

relation (6.2) holds for  fk as a curve in pN, even though f~ may be degenerate;  

that is 

(7.2) ~ ' ~ 6 ( A ~ ) < = N  + 1 

<(n+l) 
= k + l  

for  {A~} a family of  hyperplanes  in general position in pN defined by 

decomposable  (k + D-vec tors  A~; u = 1 , . - . ,q .  

The proof  of  (7.2) is similar to that of (6.2) in that we apply our main 

inequalities (5.21) to the c o n t r a c t e d  c u r v e  (Ak, Ak- ' ) ,  where A k-' is a 

decomposable  k -vec to r  in C "+', and then construct  a collection of metrics 

having negative curvature.  Of course,  the defect  relations for  a non- 

degenerate holomorphic  curve (6.2) are a special case of (7.2); but the 

combinatorial  problems which arise in treating the associated curves are 

trivial in the case k = 0. Thus we feel it is conceptually clearer  to treat  the 

holomorphic curve  1" and its associated curves fk separately.  

We will use the notation A h for a decomposab le  unit (h + l ) -vec to r  in 

C "§ and 

(7.3) 4,k(A h) = IAk, A h I2/IA~ [: 

(7.4) l-lk ( A  h ) = d d  ~ log lAk, A ~ 12 

(7.5) AA" = (Ah+,, A h) 
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for  k -> h. We adopt  the conven t ion  that ~bk (A h ) = 0 for  k < h and 4)k (A - ' )  = 

1. 

Le t  A = A h = a o ^  " " ^ ah, aj E C ~ and put  

A �9 = {z E C"+ ' ; (z ,  aj) = O, j  = O , . . . , h } .  

Then  the con t rac ted  cu rve  AA h :C--~A ~ is a ho lomorph ic  curve  in P(A � 9  

P"-~-~. The  assoc ia ted  curves  of  A n  ~ sat isfy  the relation: 

(7.6) (AAh) i  = (Ah, A h) i (Ah+,+j, A h) ,0-< j _--< n - h - 1. 

P r o o f .  

and A ~ such that  A T M  = A  h ^ A  ~ Then  

m a  . . . .  (Ah+2,A "+') 

= ( ( A , + 2 , a h ) , a  ~ 

= ( A h ,  A h ) - ' ( ( A A , ) , , A ~  b y t h e  

induct ion  hypothes is .  Thus  

(AA.+,) i  = ( A h , A  h )-~ ( (AAh ) , , a  ~ ) i 

= ( A , , A  h )- ' J+"(AA,,A ~ ~ ( ( A A . ) ~ + ~ . A  ~ 

= (A,§ a h+,)~ (A,+i+z, a h+,). 

Q.E.D.  

N o t e  that (7.6) in the case  ] = n - h - 1 implies that  Aah is a n o n - d e g e n e r a t e  

ho lomorph ic  curve .  

Apply ing  (4.16) to AA~, using (7.6) to c o m p u t e  the associa ted  curves ,  we 

have  

r ftk(A ") = d d  c logl(AAh)k-h-, 12 

&k-,(A h)&k +,(A h)Ok. 
= &k2(a h ) 

True  for  h = 0 by (5.19). A s s u m e  true for  h. Given  A "+', find A h 
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We wish to apply  the est imate  (5.21) to the curve  AA" ; in o rder  to avoid 

confus ion  we use the nota t ion # to deno te  "re la t ive  to the curve  Aa h''. 

Assume A h+ '=  A h ^ A ~  then 

(7.8) # ~bk(A ~ = I (AA")k' ~ r I (AA. )g  

= [(A,+k+,,Ah ) ,A~ 2 

IA.§ 12 

_ 4~h+k+l(A h+') 
4'h +k +, ( a  h ) 

and 

(7.9) 
# Ok = dd ~ log l(Aa.)k 12 

=dd~loglA.+k§ 

= l)h +k +, (A h) (by (7.4)). 

Thus  (5.21) yields,  fo r  j > h, 

(7.10) X / -  ! ,9c7 log I h 12 h 
27r io_/X4~(A ) + ~ f l i ( A  ) 

> 2c~j+,(Ah+')/CbJ+,(Ah)l~J(A h) 

l o g ~  2 r ( chj( )) 

> .~yb~§ h+~) thj-~(A h)Oj 
= .  #~j(A h+l) {lo../xg~j(Ah)] 2, (by (7.7)). 

c~j(Ah)\ ~ cbi(Ah+,)} 

For  a given A k choose  a sys tem of  o r thonorma l  vectors  spanning A k, and 

let A h CA h§ be spanned  by h, h + l  of  these vec tors ,  respect ive ly .  

Summing (7.10) ove r  the finite number  of  possible A h C A h§ (relat ive to the 

fixed o r thonormal  sys tem) we obtain 
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(7. I I ) ~2~ I OS log ( l'- I Io - ~+' ( A I  h )|'~ 2 + �9 Y+ ft.+ (A h ) 

++,CA "+')] 

> "~ { X' ~bj +,(A h+,) ~bj_,(a ~) ]_ 1"~, )+ 
/.t4>,CA h) - = '- \x.~ ~b+CAh+,) <bj(A h) / l_i( iogo,(Ah+,)  

But, following Weyl [21], we have 

(~.+4>j+t(a 
"+')qS, , ca" ) ]  0,ca "+') > <k,-,ca") 

~bj(a "+') +s,(ah) ]"~'+ "+') (k ~ h ) ~ +j+,(A = O+~-Xh ) 

since for fixed A ~ there are (k - h )  Ah+"s containing the A h. Putting 

(7.12) 

we have from (7.11) that 

tO,.h(A ~) = X" 4~J(Ah) +~-+,(a-r), 

(7.13) V'-Z-- 1 0~log / 1- I 1 '~ 2+ e Ei~j(Ah ) 
2z- \ I t~Oi(Ah)] 

og ~bj ( A  h + ') ] 

> 2(k - h)  O'-Lh(Ak) 1-I - 1 j (Ah),21~j ' = tkj+h +,(a k ) {io,,/z+ck 
\ +'ckj(Ah+')] 

for i > h ,  k > h .  

The proof of (5.14) applied to (7.13) yields the Ahl fors  inequalities: 

r 

(7.14) - - - - - -  A h) 2 
*i.n +I(A k )I--I (log ~b~ h + , ) ) [ P  

-<_ �9 2; T~(A ") + C, for a suitable constant ~, 

where we have set 

145 
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(7.15) 

r 

T,(A~)= f f n,(A")~. 

Since ~b~(A")_-< 1, our basic integral formula (1.3) with h(~) = 1/~bi(A h) 

implies: 

(7. i 6) 

r 

T~-Ti(Ah)+O(1)=-f ( ;dd~iogl / (a i (Ah))~+O(1)~O.  

Thus (7.14) and (7.16) yield: 

(7.17) 

r 

~bJ-"h (A k) Oi } ~  

Cj., +,(A k ) 1-I (log ~J(A?~)) ) 2 

--<EE +C.  

Let {A~} be a family of decomposable  hyperplanes in PN, i.e., each A~ is a 

decomposable  (k + l ) -vector  in C "§ g = l , . . . , q .  Define pk(i,h) to be the 

maximum possible number of A~'s  such that Oi(Ah)(~ ' )=0 for all A m 

contained in A ~ at any point ~" E C. 

L e m m a  7.18. 

Pk(J'h)= / + I  --l ;]>-h'k>=h" 
I h 

= - ~ C  , P r o o f .  L e t B  boA..Abi,  b, "+' and V be the span of {bo,'",bi}. 

Put 

n + l  V I = { z E C  [(b,,z)=O,i=O,'",]} 

and let W be any complementary subspace to V 1 in C"+t Then <B,A h) = 0 

for all A h C A  * if and only if A k = A ' ^ A  ~-'-', A ' a decomposable  

( / + l ) - v e c t o r  in V 1, A k-'-' a decomposable  (k - l ) -vec tor  in C "+', and 

k - l - l < h .  

Thus if (B, Ah> =0 for all A h CA k then A ~ is in the subspace 
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A ~ " ( V ' ~ ) ^ A k ' W ' w h i c h h a s d i m e n s i ~  ~ l + l  \ k - I  . B u t g e n -  
I = k - h  I = k  h 

eral position implies that the number of A ~'s in any proper subspace cannot 

exceed the dimension of the subspace. Q.E.D. 

Define 

(7.19) 
oJj = cth f i  f~t~ ~t ,.h ,(A kv) \,;~o.h, 

io"/z c,b; (A h-,)~ 21 a t  
~=' .,~(Ak~)l-I( s qSt(A h) / / 

for j => h _-> 0. 

R e m a r k .  The metric coih is singular only where ~bjh(A~) = 0 for some v. 

It is not enough only to consider when tht (A ~) = 0, i.e., when (At)• f3 A ~ 0 

(where we now interpret As, A = A k as subspaces of C "§ instead of as j + 1, 

k + 1 vectors). We must also know the dimensionality of the intersection, 

i.e., when dim(A;) l fq A = k - h + l ,and this occurs only when ~bt.h(A~) = 0 

and tpt.h+,(A k~) ~ O. 

P r o p o s i t i o n .  Given e > 0, .for suitable choice o[ constants csh and ~, we 

have .for k <=n- l, q >  + l " 

k n l + h  - k  

(7.20) ~ ~'~ pk(],h)RicoJsh 
h = o  . / = h  

kn+hk [ (n+')] 
>----E ~'~ tO,.h+ q -  ak 

h=o j=h k + 1 

k n - I + h - k  

- "  E • E fl,( Ah-')" 
h = O  j = h  A h ICA&u 

P r o o f .  By ( 7 . 1 8 ) , p k ( j , h ) = 0 i f  k - h = > n - . / , t h u s  

k n - I + h - k  

(7.21) ~, ~, pk(j ,h)Ric~, 
h = o  i = h  

k n - I  

= ~_, ~_~ pk(j,h)Ricl'~; 
h = 0  i = h  

k - |  j n - - I  k 

= ~_, ~ pk(j, hlRicf~s + ~, ~, pk(j,h)Ricf~,. 
j = o  h = o  i ~ k  h = o  
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In order  to s impl i fy  (7.21) we use the  Vandermonde convolution 

(7.22) E S - -  (;) o(r ;)(;) 
which is a s imple  c o n s e q u e n c e  of  

(l+x)S-P(l+x)P=(l+x) s, for  O<-p<-s. 

Then  f o r 0 _ - < j = < k - 1 ,  

(7.23) 
h=o h=O,=k-h k - 1)  

( ) ) [ l + j - k + l ]  n - j  { j+ l  
t=k-j / + 1  \ k - l  

n - j  ~l  

(" )  
= [ ] +  1] k + l  (by (7.22)). 

Fo r  k_-<j < n - l ,  

(7.24) 
h =o h =o t = k - h  - 1 ) 

= ~] [I + 1]  
t=o ! + 1  - 1  

( ) ) = ~ ] [ n - j ]  n - j - 1  ( j + l  
t=o 1 \ k  - !  

= I . - , t~ t  ~y~7.~,,. 
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Now 

(7.25) 
k - I  

(j + I)Ric•j = ~ ( j  + l){~j , -  2D., +l)i§ 
i = o  j = o  

= kt)k - ( k  + 1) l)k-,, 

since the sum telescopes; similarly, 

(by 4.16) 

n - I  

(7.26) ~] (n - j )Ric f~j = (n - k ) ~ ' ~ k - l -  ( n  - -  k + 1).~k. 
J=k  

Using (7.23)-(7.26) we can simplify (7.21) to obtain 

k n - l + h  - k  

(7.27) ~ ~ pk(j,h)RicF~ 
h = 0  j = h  

( ) (~ = n { k ~ k - ( k + l ) . Q k - l } +  k {(n-k)fL_,-(n-k+l)lq~} 
k + l  

: _ ( ;  

In (7.12) we see that 

so that 

t~i.k(A k) = chi(A ~)/~b~+,(A k) 

k n l +h - k  

(7.28) Z Z 
h = 0  j = h  

= - ~ d d ~ l o g ( [ I  ~Oi.k(Ak~) ) --dd~log(l~I ok(Ak.) ) 

q 

v = l  

(by (7.3) and (7.4)) 

= ql~,,  

since (Ak, A k) is a holomorphic function implies tL (A k) _- 0. 
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From (7.13) we obtain 

(7.29) dd, logl-I(nlo~,tz~J(Ah+')) -2 \ ' '  ~, &j(A h) 

> c ~  
h 

Or ,.h ,(A~)lqj 

4sjh (A ~) 1- I /1oo P~q~J (A h-')'~ 2 \ ~' 4,i(A h) ] 

-e  ~ kf~i(A" '). 
A h I C A  v 

Now (7.27)-(7.29) imply 

(7.30) • "-~" ~p~(j,h )Ricwj,, 
h = 0  j = h  

n - I ~ h  k 

, , = o  , = , ,  ~ , ,  (joo~O,(A"-')~ tP+,,(A,,)I~\ ~, -~-~,+,~- ] 

+ 
q -  k + l  h=o ~=h a h 'car 

L e m m a .  (Sums into products,)  

position: q > ( n + l )  
k + l  " 

Then 

Let {Ak~}, v =  l , . . . , q ,  be in general 

(7.31) 
,, 4,,, (A k )i_i ( log t t~ i (A  , o  (A h )') )2 

n[ n[ ]J 
#j-,.h ,(A ~) -] 1/p,,j.h, 

" - - - -  h - - I  2 --> c~h k /,t~bs (A "- ) 
tkj, h (A~)  log &s (A h ) 
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P r o o f .  By the same method  as in the p roof  of(6.13), there  is a cons tan t  

mj~ such that 

(7.32) ~hi, (A ~ ) >~ mih > 0 

fo r  all but  at most  pk (j, h)  of  the v's.  

Put 

(7.33) @. = 
Oi ,.h ,(A~) 

k [1o_/x~bj(A k-') ] ~" 

Since ~,_,(A" ~)<4, i (Ah- ' ) ,  then tOi-,,h ,(Ak)<--~ k / + 1) \ = h , the n u m b e r  of  

A"-~'s  in A ~. Thus  there  exists L > 1 such that  

(7.34) qb =< L ,  

fo r  all but  at most  pk( j ,h)  of  the v 's .  S ince  q, the number  of  A~ 's  satisfies 

q >--pk (j, h ), the p roof  of  (6.13) can now be applied to (7.34) and (7.31) is the 

result.  Q.E.D. 

Write wj~ - VnZ--I and let Ni,(Ak),. N i ( A  k) denote  the count ing 

func t ion  for  the zeros  of  tO,.h (A k ), ~b~(A k ) respec t ive ly .  Using (1.3) we find 

(7.35) pk(j ,h)  J -  4 ~  f logH~hdO 

= pk (j, h )Ni (r)  + ~] [Nj_,.h_,(A ~ ) - Nj.h (A ~)l 
v 

0 A t , 

For  r _-> 1, 
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(7.36) pk(j,h) 1~ 
27r f IogHj.dO 

I ~ ' l = r  

r 

<-_o.(,.h,'og{f(f 
0 A o 

r 

0 A p  

Using (7.16) and (4.22) we have 

k n + l + h  k 

(7.37) " ~'~ Z Ah ~Ca k 
h = 0  i = h  v 

Tj(A h ') <= E ~ ' ~  Ti <= ECTk. 

Summing (7.35) for h = 0 , - . . , k '  ] = h , . . - , n - l + h - k ,  we obtain from 

(7.20), (7.36) and (7.37), 

n I 

(7.38) ~'~ ~'~ Nj.~ (A ~) 
j = k  

>= ~ ~_~ pk( j ,h)Ni(r )+ q -  - ~  Tk(r). 
~=o i=h + 1 

But N~.k(Ak) = Nj(Ak) -N~+, (Ak) ,  so that (7.38) yields 

(7.39) ~'~ Nk (A k ) 
v 

k n + , k  I I >= V ~' pk( i ,h)Ni tr )+ q -  - ~  Tk(r). I[ 
,%-"o j='--', k + I 

The proof that (6.5) implies (6.2) can now be applied to show that (7.39) 

yields the desired defect relations (7.20). Q.E.D. 
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