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HOLOMORPHIC DEFORMATIONS OF BALANCED
CALABI-YAU 00-MANIFOLDS

by Dan POPOVICI

ABSTRACT. Given a compact complex n-fold X satisfying the 89-lemma and
supposed to have a trivial canonical bundle Kx and to admit a balanced (=semi-
Kéhler) Hermitian metric w, we introduce the concept of deformations of X that are
co-polarised by the balanced class [w"~!] € H*~1"~1(X,C) C H?>"~2(X,C) and
show that the resulting theory of balanced co-polarised deformations is a natural
extension of the classical theory of Kahler polarised deformations in the context of
Calabi—Yau or holomorphic symplectic compact complex manifolds. The concept
of Weil-Petersson metric still makes sense in this strictly more general, possibly
non-Kéhler context, while the Local Torelli Theorem still holds.

RESUME. — Soit X une variété complexe compacte lisse de dimension n, & fibré
canonique trivial, qui satisfait le lemme du 00 et posséde une métrique hermitienne
équilibrée (=semi-kdhlérienne) w. Nous introduisons le concept de déformations de
X co-polarisées par la classe équilibrée [w"~1] € H*~Ln~1(X,C) Cc H>"~2(X,C)
et montrons que la théorie des déformations équilibrées co-polarisées est une exten-
sion naturelle de la théorie classique des déformations kihlériennes polarisées dans
le contexte des variétés complexes compactes lisses de Calabi-Yau et dans celui
des variétés holomorphes symplectiques. La notion de métrique de Weil-Petersson
a encore un sens dans ce contexte strictement plus général, non nécéssairement
kahlérien, tandis que le théoréme de Torelli local est encore valable.

1. Introduction

Let X be a compact complex manifold (dim¢ X = n). Recall that a
Hermitian metric w on X (identified throughout with the corresponding
C* positive-definite (1, 1)-form w) is said to be balanced (see [15] for the
actual notion called semi-Kéhler there, [22] for the actual term) if

dw" ) =0,

Keywords: co-polarisation by a balanced class, 89-manifold, possibly non-Kéhler Calabi—
Yau manifold, deformations of complex structures, Weil-Petersson metric.
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674 Dan POPOVICI

while X is said to be a balanced manifold if it carries such a metric. In
dimension n > 3, the balanced condition on X, besides being weaker than
the Kéhler one, is even weaker than the Fujiki class C condition thanks to a
theorem of Alessandrini and Bassanelli [2]. (Recall that a compact complex
manifold X is said to be of class C if it is bimeromorphically equivalent to a
compact Kéahler manifold, i.e. if there exists a holomorphic bimeromorphic
map fi : XX , called modification, from a compact Kahler manifold X J)

On the other hand, all class C compact complex manifolds are known to
satisfy the 0-lemma (cf. [10]) in the following sense:

for every pure-type d-closed form on X, the properties of d-exactness,
0-exactness, 0-exactness and 00-exactness are equivalent.

There exist compact complex manifolds satisfying the dd-lemma that are
not of class C (see e.g. Observation 2.1), while the d0-lemma implies the
Hodge decomposition and the Hodge symmetry on X, i.e. it defines canon-
ical isomorphisms (the latter one by conjugation):

Hpp(X,C)~ @ H”(X,C) and H?P(X,C)~ HP4(X,C),
p+q=k

relating the De Rham cohomology groups H% ,(X,C) (k = 0,1,...,2n)
to the Dolbeault cohomology groups H?%(X,C) (p,q =0,1,...,n). These
manifolds, sometimes referred to as cohomologically Kéhler, will play a key
role in this work and thus deserve a name in their own right.

DEFINITION 1.1. — A compact complex manifold X will be said to be
a d0-manifold if the d0-lemma holds on X. If, furthermore,ithe canonical
bundle Kx of X is trivial, X will be called a Calabi—Yau 00-manifold.

While there are plenty of examples of compact balanced manifolds that
do not satisfy the 9d-lemma (e.g. the Iwasawa manifold), the answer to the
question of whether non-balanced d9-manifolds exist does not seem to be
known and constitutes in our opinion a problem worth investigating. Part
of the difficulty stems from the fact that neither twistor spaces (which are
always balanced by [16]), nor nilmanifolds (which are never A9 unless they
are Kéhler), nor any other familiar class of compact complex non-Kéhler
manifolds (e.g. the Calabi-Eckmann manifolds are never either balanced
or 85) can produce an example.

Our main object of study in this paper will be the class of balanced d0-
manifolds. The principal reason behind our interest in them stems from
their remarkable stability properties under both modifications and small
deformations. Indeed, if u : X — X is a modification of compact complex
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manifolds, Corollary 5.7 in [4] (see also [3]) states that
X is balanced if and only if X is balanced,

while by [10] we know that X is a dd-manifold whenever X is one. On
the other hand, although the balanced property of X is not open under
holomorphic deformations by another result of Alessandrini and Bassanelli
(cf. [1]), the @0-property and the simultaneous occurence of the balanced
and d0-properties are both deformation open by two results of Wu (cf. [31],
a partial survey of which can be found in [23, 4.3]). Specifically, if (X;)iea
is a holomorphic family of compact complex manifolds, C.-C. Wu proved
in [31] the following two theorems:

(1) if Xo is a 00-manifold, then X, is a 00-manifold for all t € A
sufficiently close to 0 € A;

(2) if X is a balanced 0-manifold, then X; is a balanced d0-manifold
for all t € A sufficiently close to 0 € A.

This paper will hopefully provide further evidence to substantiate the
view that non-Kéahler, balanced Calabi-Yau 80-manifolds form a class that
is well worth studying. We point out examples of such manifolds in Sec-
tion 2.1.

Our first observation (cf. Section 3) will be that the Kéhler assumption
can be weakened to the 99 assumption in the Bogomolov-Tian-Todorov
theorem. This fact, hinted at in the introduction to [27], is probably known,
but we take this opportunity to point out how the dd-lemma can be solely
relied upon in the proofs given in [27] and [28].

THEOREM 1.2 (Bogomolov-Tian-Todorov for Calabi-Yau d9-manifolds).
Let X be a compact complex manifold satisfying the 9-lemma and whose
canonical bundle Kx is trivial. Then the Kuranishi family of X is unob-
structed.

Here, as usual, unobstructedness means that the base space of the Ku-
ranishi family is isomorphic to an open subset of H%1 (X, T10X).

Given a compact balanced Calabi-Yau 00-manifold X of complex di-
mension n, by a balanced class [w"™'] € H"1"~1(X,C) c H*""%(X,C)
we shall mean the Dolbeault cohomology class of type (n — 1,n — 1) (or
the De Rham® cohomology class of degree 2n — 2 that is the image of
the former under the above canonical inclusion which holds thanks to the
90 assumption, see e.g. Lemma 3.1) of the (n — 1)** power of a balanced

(1) Dolbeault cohomology classes will be denoted by [ ], De Rham cohomology classes
will be denoted by { }.
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676 Dan POPOVICI

metric w on X. If A € H%'(X,TH°X) denotes the open subset that is the
base space of the Kuranishi family (X;):ea of X (with Xy = X)), we define
in Section 4 the notion of local deformations X; of X that are co-polarised
by the balanced class [w™ '] by requiring that the De Rham cohomology
class {w"™ '} € H* 2(X,C) be of type (n—1,n—1) for the complex struc-
ture J; of X,. Since all nearby fibres X, are again d9-manifolds by Wu’s
first theorem [31], the De Rham cohomology space H*"~2(X,C) (which is
independent of the complex structure J;) admits for all ¢ € A a Hodge
decomposition

(1.1) H*"?(X,C) = H"" *(X;,C)® H" " 1(X;,C)® H"?"(X,,C)

depending on the complex structure J; and satisfying the Hodge symmetry
H™"=2(X;,C) ~ H"=2n(X,,C) (after possibly shrinking A about 0). The
original balanced class {w" 1} € H?"~2(X,R) is said to be of type (n —
1,n — 1) for the complex structure J; of X, if its components of types
(n,n — 2) and (n — 2,n) in the Hodge decomposition (1.1) vanish. The
balanced class being real, this is equivalent to either of these components
vanishing. The condition is still equivalent to the De Rham class {w" "'} €
H?"~2(X,C) being representable by a form of Js-pure type (n — 1,n — 1).
We denote by

A[wnfl] CA and by - X[wnfl] — A[wnfl]

the open subset of local deformations of X co-polarised by the balanced
class [w" 1], resp. the local universal family of co-polarised deformations of
X. Since all sufficiently nearby fibres X, are again balanced 99-manifolds
by Wu’s second theorem [31], Observation 7.2 shows that the co-polarising
De Rham cohomology class {w" ™1} € H>"~2(X, C) can still be represented
by a form w'~! with w; a J;-balanced metric for every t € Apgn-1y (after
possibly shrinking A about 0).

We go on to show in Section 4.2 that in the special case where X is
Kéhler and w is a Kéhler metric on X, the local deformations of X that are
co-polarised by the balanced class [w"~!] € H"~1"~1(X C) are precisely
those that are polarised by the Kihler class [w] € H>*(X,C). Thus the
theory of balanced co-polarisations is a natural extension to the balanced
case of the classical theory of Kéahler polarisations.

The tangent space to Apn-1 at 0 is isomorphic under the Kodaira—
Spencer map to a subspace H*'(X,T"°X)n-1) C H"'(X,T'°X)
which, in turn, is isomorphic under the canonical isomorphism defined by
the Calabi-Yau property of X to a subspace H":**(X,C)c H*11(X,C):

prim

ToApn-1) =~ H*N (X, THOX) (yn-1) = Hl PN (X, C).

prim
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It is well known that in the case of deformations polarised by a Ké&hler
class [w], Hggri’l(X ,C) is the space of primitive (for the Kéhler class [w])
Dolbeault classes of type (n — 1,1). In the balanced case, since w need
not be closed, the standard definition of primitive (n — 1, 1)-classes is no
longer meaningful, but we use the analogy with the Kéhler case to define
ng;rll’l(X, C) in an ad hoc way (cf. Definition 4.9).

In Section 5, we give two applications of this construction. The Calabi-
Yau condition being deformation open when the Hodge number h™0(t) :=
dime H™°(X,, C) does not jump in a neighbourhood of t = 0,(?) Ky, is still
trivial for all ¢ € A sufficiently close to 0, so when the complex structure
Jp of X varies, we get complex lines

H™(X,,C) Cc H"(X,C), te€A,

varying in a fixed complex vector space in a holomorphic way with ¢ € A.
(The above inclusion follows from the d0-lemma holding on X; for all ¢
close to 0 by Wu’s first theorem [31].) We show (cf. Theorem 5.4) that the
resulting (holomorphic) period map

A >t 2 HMO(X,,C) € PH"(X,C)

in which every complex line H™%(X;,C) has been identified with a point
in the complex projective space PH™(X,C) is locally an immersion. This
means that the Local Torelli Theorem still holds in this context.

We also propose two variants w‘(,[l,)P, wl(,‘Z/)P (cf. Definition 5.6) of a notion
of Weil-Petersson metric on Ap,-1 associated with a C>° family of bal-

anced metrics (Wt)teAWkl on the fibres X; such that each w™' lies in

]
the co-polarising balanced class {w" ™1} € H?"~2(X,C). The metrics w‘(,‘l/)P
and w‘(,?,)P coincide if Ric(w;) = 0 for all t € Ap,n-1) (cf. Observation 5.7).
Although in the case of Kédhler polarised deformations, the Weil-Petersson
metric wy p coincides with the pullback P*wpg of the Fubini-Study met-
ric of PH™(X,C) under the period map (hence wy p is Kéhler) by Tian’s
Theorem 2 in [27], this need not be the case in our context of balanced
co-polarised deformations. However, we can compare these two metrics
(cf. Theorem 5.10 and Corollary 5.11), show that

wI(/IQ/)P > Prwps >0 on A[wn—l]

(2) This is indeed the case here since we assume X0 to be a dd-manifold. The non-jumping
actually holds more generally if we merely assume the Frolicher spectral sequence of Xo
to degenerate at F;
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and make the difference w‘(f,)P — P*wpg explicit. The obstruction to the
identity Wl(/12/)1> = P*wrg holding is now clearly seen to be the possible non-
existence of a form that is both primitive and d-closed in an arbitrary
Dolbeault cohomology class of type (n—1,1) which is assumed to be prim-
itive in the ad hoc balanced sense of Section 4 (cf. Section 4.3).

It is natural to ask whether the Weil-Petersson metric w‘(,‘z,)P is Kéhler.
We ignore the answer at this stage, although we cannot see why this should
be the case for balanced, non-Kéhler fibres X;.

Another natural question is whether there is a canonical choice of bal-
anced metrics w; on the fibres X; such that each w!~' lies in the co-
polarising balanced class {w" ™!} € H?"~2(X, C) and such that Ric(w;) = 0
for all ¢. This would induce a canonical (i.e. depending only on the co-
polarising balanced class {w™~'}) Weil-Petersson metric wy p on Ap,n-1j.
The answer would follow from the answer to another tantalising question:

QUESTION 1.3. — Does there exist a balanced analogue of Yau’s theo-
rem on the Calabi conjecture? In other words, is it true that every balanced
class contains the (n—1)%t power of a balanced metric for which the volume
form has been prescribed?

Remark. — Since the first version of this paper was posted on the arXiv,
an analogue of this problem for Gauduchon metrics in the context of the
Aeppli cohomology has been introduced in [24], also considered in [29] and
completely solved in [26], but the balanced case put forward here currently
seems out of reach.

In the last Section 6 we briefly discuss the case of co-polarised deforma-
tions of holomorphic symplectic manifolds.

2. Preliminaries
2.1. Examples of non-Kihler, balanced Calabi—Yau d9-manifolds

We now pause to point out a few examples in support of the theory that
will be developed in the next sections.

(1) We have seen that all class C manifolds are both balanced and
d0. However, the implications are strict and even the simultaneous
occurence of the balanced and 99 conditions does not ensure the
class C property.

ANNALES DE L’INSTITUT FOURIER
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OBSERVATION 2.1. — There exist compact balanced 09-mani-
folds that are not of class C. In other words, the class of compact
balanced 09-manifolds strictly contains Fujiki’s class C.

Proof. — To show that the class C property of compact complex
manifolds is not deformation open, [5] and [21] exhibit holomorphic
families of twistor spaces (X;)iea in which the central fibre X
is Moishezon (hence is also a d9-manifold), while, for every t €
A\ {0} sufficiently close to 0, the fibre X; has vanishing algebraic
dimension (hence is non-Moishezon, hence is not of class C since, by
another result of Campana [6], the Moishezon and class C properties
of twistor spaces are equivalent). However, all the fibres X; are
balanced since, by a result of Gauduchon [16], all twistor spaces
are balanced. Moreover, when t is close to 0, X; is a d0-manifold
by Wu’s openness theorem for deformations of d9-manifolds. Thus
any of the fibres X; with ¢ # 0 but ¢ close to 0 provides an example
as stated. g

Notice that the above examples are not Calabi—Yau manifolds
since the restriction of the canonical bundle of any twistor space
to any twistor line is isomorphic to Op:(—4), hence it cannot be
trivial.

(2) On the other hand, examples of compact non-Kéhler, class C, holo-
morphic symplectic manifolds were constructed by Yoshioka in [32,
Section 4.4]. In particular, Yoshioka’s manifolds are compact, non-
Kihler, balanced Calabi-Yau 09-manifolds. Thus they fall into the
category of manifolds that will be investigated in this paper. While
Yoshioka’s manifolds are of class C, it is natural to wonder whether
compact, non-class C, balanced Calabi-Yau d9-manifolds (i.e. man-
ifolds as in Observation 2.1 having, in addition, a trivial canonical
bundle) exist. They actually do (see (3) and (4) below) and it is
tempting to expect that such an example could be constructed by
taking our cue from e.g. [14]: by starting off with a compact Kéh-
ler Calabi—Yau manifold X, contracting X under a crepant map to
some (possibly non-Kéhler, but necessarily class C) manifold Y and
then slightly deforming Y to some (possibly non-class C, but nec-
essarily balanced Calabi-Yau 09) manifold Y;. The stability prop-
erties of balanced d9-manifolds under both contractions and small
deformations could thus be taken full advantage of if an explicit ex-
ample obtained in this way (in which Y is smooth) could be written
down.

TOME 69 (2019), FASCICULE 2
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We will now point out a class of examples, recently constructed in
the literature, of compact balanced Calabi-Yau 09-manifolds that
are not of class C. In [12, Theorem 5.2] (see also [17]), a (compact)
solvmanifold M of real dimension 6 and a holomorphic family of
complex structures (J,)aea on M are constructed (where A :=
{a € C; |a] < 1}) such that X, := (M, J,) is a balanced Calabi-
Yau d0-manifold for every a € A\{0}. Furthermore, it can be easily
checked that X, = (M, J,) is not of class C for any a € A by either
of the next two arguments.

(a) A direct calculation shows the existence of a C'* positive def-
inite (1, 1)-form w on X, such that i9dw > 0. Then, by Theo-
rem 2.3 in [9)], if X, were of class C, it would have to be Kéhler.
However, a direct calculation shows that no Kéhler metrics ex-
ist on any X,. This argument has kindly been communicated
to the author by L. Ugarte.

(b) Since the fundamental group is a bimeromorphic invariant of
compact complex manifolds, if X, were of class C, its funda-
mental group would also occur as the fundamental group of a
compact Kéahler manifold. However, this is impossible as fol-
lows from [8] (where it is proved that the Albanese morphism
ax : X — Alb(X) of any Calabi-Yau class C manifold X is
surjective) combined with [7] (where 71 (X) is studied when ax
is surjective). This argument has kindly been communicated to
the author by F. Campana.

Let us finally mention that in the very recent preprint [13], a large
class of compact, non-class C, balanced Calabi-Yau 89-manifolds
obtained via a construction of Clemens’s (that was subsequently
used by many authors, including Friedman himself and in [14]) was
produced. The original compact 3-fold X with trivial Kx is only as-
sumed to be 99 (so not necessarily Kéhler), to have h®! = h%2 = 0
(hence also h'® = h20 = 0 thanks to the Hodge symmetry that
holds on any ag—manifold) and to have disjoint smooth rational
(=1, —1)-curves C1, ..., C, whose classes [C;] € H*(X,C) satisfy a
linear dependence relation but generate H*(X, C). Friedman shows
in [13] that the singular compact 3-fold obtained from any such X
by contracting the C;’s has smooth small deformations that are 90-
manifolds, but are not of class C. They are not even deformation
equivalent to any class C manifold. Actually, all the small deforma-
tions lying in an open dense subset of the moduli space are shown in
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[13] to be A9-manifolds, while all small smoothings are conjectured
to be. They are balanced by [14].

2.2. The balanced Ricci-flat Bochner principle

We collect here some known facts that will come in handy later on.

PROPOSITION 2.2. — Let (X,w) be a compact complex Hermitian man-
ifold with dim¢ X = n. Let D = D' 4+ @ be the Chern connection of K x
equipped with the metric induced by w and let |-|, (resp. ||-||) be the
pointwise norm (resp. the L?-norm) of K x-valued forms w.r.t. this metric.

If w is balanced and Ric (w) = 0, every u € C;5(X,C) ~ C™(X, Kx)
satisfies

[[0ul[* = ||D"ul]?.
In particular, every holomorphic n-form v on X (i.e. u € H*(X,Kx)) is
parallel (i.e. Du=0) and satisfies

(2.1) lul2 = C (hence also " und = Cw"™) onX
for some constant C > 0.

It turns out that the balanced assumption is unnecessary in the last
statement of Proposition 2.2. Indeed, every holomorphic section of a flat
line bundle is parallel.

OBSERVATION 2.3. — Let (L,h) — X be a Hermitian holomorphic line
bundle over a compact complex manifold such that the curvature form
10, (L) vanishes identically on X. Then any global holomorphic section
o € H°(X, L) satisfies Do = 0, where D is the Chern connection of (L, h).

Both the statement and the proof of this observation have been kindly
pointed out to the author by J.-P. Demailly. These facts are actually well
known, cf. e.g. [18] and [15], so the proofs can be omitted.

3. The Bogomolov-Tian—-Todorov theorem for Calabi—Yau
00-manifolds

In this section we prove Theorem 1.2 by adapting to the &9 context
the proofs given in [27] and [28] for the Kéhler context. Two preliminary
facts are needed. The first is a simple but very useful consequence of the
d0-lemma (also observed in [10]) that will play a key role in this paper.
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LEMMA 3.1. — Let X be a compact 09-manifold. Then any Dolbeault
cohomology class of any type (p,q) on X can be represented by a d-closed
form.

In particular, this lemma defines a canonical injection HP'4(X,C) C
HP*4(X,C) (for any p, q) by mapping any Dolbeault class [u] € HP9(X, C)
to the De Rham class {u} € HPT4(X,C) of any of its d-closed representa-
tives u. Fresh applications of the d9-lemma easily show that this map is
independent of the choice of the d-closed representative of the Dolbeault
class and that it is injective.

Proof of Lemma 3.1. — Let « be an arbitrary d-closed (p, q)-form on
X. It represents a Dolbeault cohomology class [a] € HP9(X,C). We will
show that there exists a d-closed (p,g)-form 8 on X that is Dolbeault
cohomologous to «. In other words, we are looking for a (p,q — 1)-form v
on X such that

B:=a+ v
is d-closed. Since a is d-closed, the condition d(a + dv) = 0 amounts to

(3.1) d0v = —0da.

Now, da is both 0-closed (even d-exact) and d-closed (since « is d-closed
and 0 anti-commutes with 9), hence da is d-closed. Being a d-exact pure-
type form that is d-closed, da: must be dd-exact by the 99-lemma. Hence
a (p,q — 1)-form v satisfying (3.1) exists. O

The second preliminary fact is peculiar to manifolds with a trivial canon-
ical bundle. Fix an arbitrary Hermitian metric w on a given compact com-
plex manifold X (n = dim¢ X). Thus w is a Hermitian metric on the holo-
morphic vector bundle T%° X of vector fields of type (1,0) of X. Let D de-
note the corresponding Chern connection of (T1°X,w) and let D = D'+D"
be its splitting into components of type (1,0) and respectively (0, 1), where
D" = 9 is the 0 operator defining the complex structure of X. We denote,
as usual, by D”* = §* the formal adjoint of D" = d w.r.t. w and by

A" =00+ 9%0: C5 (X, T°X) — Cx (X, T X)

the corresponding anti-holomorphic Laplacian on 7% X-valued (p,q)-
forms. Since A" is elliptic and % = 0, the standard three-space orthogonal
decomposition holds:

(3.2) Co (X, THX) =ker A” ® Im 8 @ Im 0*.

ANNALES DE L’INSTITUT FOURIER
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On the other hand, a similar orthogonal decomposition holds for the space
of scalar-valued (n — 1,1)-forms on X with respect to 0 acting on scalar
forms, its formal adjoint 0* and the induced anti-holomorphic Laplacian A"
Suppose now that the canonical bundle K x of X is trivial. Fix a holomor-
phic n-form u with no zeroes on X (i.e. u is a non-vanishing holomorphic
section of the trivial line bundle Kx). Thus u can be identified with the
class [u] € H™(X,C) ~ C, so it is unique up to a nonzero constant factor.
It is then clear that, for every ¢ = 0,...,n, u defines an isomorphism (that
may well be called the Calabi—Yau isomorphism):
(3.3) T, : C35(X,THX) =% Cp2y (X,C)

n—1,q

mapping any 6 € C¢%, (X, T"°X) to T,(0) := 6u, where the operation
denoted by -1 combines the contraction of u by the (1, 0)-vector field com-
ponent of § with the exterior multiplication by the (0, ¢)-form component.
We now record the following well-known fact for future reference.

LEMMA 3.2. — Let X be a compact complex manifold (dim¢ X = n)
endowed with a Hermitian metric w such that Ric(w) = 0. If Kx is trivial
and if u € C;% (X, C) such that Ou = 0, u has no zeroes and

n
(3.4) i / wAT = / avi,, <Where v, = w)

then the Calabi-Yau isomorphism T, : C§9(X,T*°X) — C;2, 1(X,C)
(see (3.3) with ¢ = 1) is an isometry w.r.t. the pointwise (hence also the
L?) scalar products induced by w on the vector bundles involved.

Proof. — Fix an arbitrary point xg € X and choose local holomorphic
coordinates zy, ..., z, about zg such that

w(xg) =1 Z Ajdz; A dz; and u(xzg) = fdzg A+ ANdzy,.
j=1

A simple calculation shows that for any 6,7 € C§% (X, T"°X), the point-
wise scalar products at xg are related by

Al Ay
(0,m) = 1|f7|2 (0 u,mu).

Thus having (0,7) = (6ou,nou) at xo is equivalent to having |f|> =
A1 ... Ap. On the other hand, the identity i"” u A% = |u|? w™ implies that

1P = () Juld, (M- A).
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Thus T, is an isometry w.r.t. the pointwise scalar products induced by w
if and only if

1
(3.5) lu|? = = at every point of X.
n!

Since we know from (2.1) of Proposition 2.2 and from Observation 2.3 that
|u|2 is constant on X, we see from the identity i** u A% = |u|2 w™ that the
normalisation (3.4) of u is equivalent to (3.5), i.e. to T, being an isometry
w.r.t. the pointwise scalar products induced by w on the vector bundles
involved. 0

We shall now compare in the case ¢ = 1 the image under the opera-
tion -_u of the three-space decomposition (3.2) of C§3 (X, T"°X) with the
analogous three-space decomposition of C;° ; (X, C).

LEMMA 3.3. — Let X be a compact complex manifold (n = dim¢ X)
such that Kx is trivial. Then, for ¢ = 1, the isomorphism T, of (3.3)
satisfies:

(3.6) Tu(kerd) =kerd  and  T,(Imd) = Ima.
Hence T, induces an isomorphism in cohomology
(3.7) Ty« HON(X, TH0X) 24 pe-ti(x, ©)

defined by Tj,([0]) = [0u] for all [0] € H* (X, TH0X).
If w is any Hermitian metric on X such that Ric(w) = 0, T,, also satisfies:

(3.8) T.,Im9*) =Imd*  and  T,(ker A”) =ker A”.
Proof. — Tt relies on the easily checked formulae:

A(0u) = (90)su + 0(du) = (00,

A(Esu) = (9€) u — E5(du) = (9€) u

for all 6 € C59 (X, TH°X) and all £ € C~(X,T"°X). Note, however, that
the analogous identities for 0 fail. These formulae imply the inclusions:

(3.9)

T, (ker 9) C ker 0 and T,(Im9) C Im 0.

To prove the reverse inclusion of the former equality in (3.6), suppose
that 6_u € kerd for some 6 € C5 (X, T"0X). By (3.9), this means that
(06) u = 0, which is equivalent to 90 = 0 since the map T, of (3.3) is an
isomorphism. (Here ¢ = 2.)

To prove the reverse inclusion of the latter equality in (3.6), let 6 €
C§.(X, T0X) such that 6_u = v for some (n—1,0)-form v. With respect
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to local holomorphic coordinates z1,...,z, on some open subset U C X,
let 5
9:29%&&@5 and u= fdzy A--- ANdzy,
e /
where f is a holomorphic function with no zeroes on U. Then

Oou=> (-1 f0ldz, Adzy Ao Adzy Ao Adz,.
j.k

Letting v =}  vydz A+ -+ A d/\z] A -+ Adz,, the condition 6_u = dv reads

S (-1 el dz Ada A Adz A Adz,
gk
v —
:Z%dékAdzlAm/\dzj/\m/\dzn,
ik 07k

which is equivalent to 67, = %((fl)j ~1 ) for all j, k since f is holomor-
phic without zeroes. Setting &; := (—1)7~! UTJ for all j, we get the local
representative of a global vector field

e 9 e’} 1,0
g._zjzgja—zj € C®(X,THX)
satisfying 6 = 0¢ on X. Hence 6 € Im 0. We have thus proved that Im d C
T.(Im 9), hence the latter identity in (3.6).

Thus the identities (3.6) are proved. Then so is (3.7), an obvious conse-
quence of (3.6).

To get (3.8), recall that we know from (2.1) of Proposition 2.2 and from
Observation 2.3 that |u|? is constant on X whenever Ric(w) = 0. Then
the proof of Lemma 3.2 shows that (6, 7) = Const -(0_u, nou) for all 6,n €
C3q(X,TH°X), hence 6 L 7 if and only if #ou L nou. (The notation
is the obvious one.) This fact suffices to deduce (3.8) from the pairwise
orthogonality of ker A”, Im @ and Im §* in the three-space decompositions
of C35(X,T"°X) and C;° | (X, C) and from the identities (3.6). The proof
is complete. O

Now recall that the isomorphisms T, of (3.3) and their inverses allow
one to define a Lie bracket on ©,Cp%, (X, C) by setting (cf. [27, p. 631]):

(310) Kl’ 42] = Tu [Tu_1<17Tu_1C2] € Criofl,qﬂrqz (X7 TLOX)
for any forms (; € Cp% , (X,C) and (2 € Cp2, (X, C), where the op-

eration [,] on the right-hand side of (3.10) combines the Lie bracket of
the 710 X-parts of T, '¢, € Cg5, (X, T"°X) and T, !¢, € C§2, (X, T X)
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with the wedge product of their (0, ¢; ) — and respectively (0, g2)-form parts.
The definition (3.10) can be reformulated as:

(3.11)  [®1, Po]ou = [®yu, Pyuu] for all By, @y € CG (X, TH0X).

The main technical ingredient in the proofs of [27] and [28] was the
following general observation, the so-called Tian—Todorov lemma.

LEMMA 3.4 (cf. [27, Lemma 3.1], [28, Lemma 1.2.4]). — Let X be a
compact complex manifold (n = dim¢ X ) such that Kx is trivial. Then,
for every forms (1, (2 € Cp2q 1(X, C) such that 9¢; = d(a = 0, we have

[Cl, CQ} €Ima.

More precisely, the identity [01_u, 02 u] = 0(01(02u)) holds for 01,05 €
C35 (X, T X)) whenever 9(6y 1u) = d(02u) = 0.

We can now briefly review the main arguments in the proofs of [27] and
[28] by pointing out that they are still valid when the Kéhler assumption
is weakened to the 09 assumption.

Proof of Theorem 1.2. — Let [g] € H®'(X,T"°X) be an arbitrary
nonzero class. Pick any d-closed representative w; of the class [n]iu] €
H"~11(X,C). Such a d-closed representative exists by Lemma 3.1 thanks
to the &9 assumption on X. This is virtually the only modification of the
proof compared to the Kéhler case where the A”-harmonic representative
of the class [n]u[u] was chosen. Since A’ = A’ in the Kéahler case, A”-
harmonic forms are also 0-closed, hence d-closed, but this no longer holds
in the non-Kéhler case.

Since T), is an isomorphism, there is a unique ®; € C§5 (X, TH0X) such
that ®; _u = w;. Now dw; = 0, so the former equality in (3.6) implies that
0%, = 0. Moreover, since [®;u] = [wy], (3.7) implies that [®1] = [n] €
HO%Y(X, T19X) and this is the original class we started off with. However,
®; need not be the A”-harmonic representative of the class [] in the non-
Kahler case (in contrast to the Kéhler case of [27] and [28]). Meanwhile,
by the choice of w;, we have

8(@1_|u) = 0,

so Lemma 3.4 applied to {; = (o = ®1.u yields [®1u, P;u] € Imo.
On the other hand, [®;_.u, ®;u] € kerd as can be easily checked and is
well-known (see e.g. [28, Lemma 1.2.5]). By the d9-lemma applied to the
(n —1,2)-form 1/2 [®1_u, ®; u], there exists yo € Cp° 5 (X, C) such that

58’(/12 = % [<I>1Ju, (I)lJU}.
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We can choose 3 of minimal L?-norm with this property (i.e. 13 € Im(99)*,
see e.g. the explanation after Definition 5.5 in terms of the Aeppli cohomol-
ogy). Put wg := 9¢9 € Cp° 4 ;(X,C). Since T), is an isomorphism, there is a
unique ®5 € CF4 (X, TH°X) such that ®5u = ws. Implicitly, d(Pyu) = 0.
Moreover, using (3.9), we get

1

_ _ 1
(0®2) ou = I(Poau) = 3 [D1u, Py u] = 5

[(I)l, (I)l]J’U,,
where the last identity follows from (3.11). Hence

_ 1
(Eq 1) 8@2 = 5 [@17 (bl]

We can now continue inductively. Suppose we have constructed
®y,...,Py_1 € CF9(X,TH°X) such that

E

—1
[Dyou, Pp—yu], 1<k<N-1.
1

I(Pru) =0 and O(Ppou) =

DO =
T

By formulae (3.9), (3.11) and since Ty, is an isomorphism, the latter identity
above is equivalent to

k—1
- 1
(Eq. (k —1)) 0y = 5 ;[@l,@k,l}, 1<k<N-1.

Then it is easily seen and well known (cf. [28, Lemma 1.2.5]) that

N—-1 B
Z [D;u, Py —ju] € ker 0.
=1

N |

On the other hand, since ®;_u,...,®x_11u € ker 0, Lemma 3.4 gives
[Dou, Py _jou] € Im O forall I=1,...,N—1.

Thanks to the last two relations, the d9-lemma implies the existence of a
form ¢n € C;2 4 (X, C) such that

N-1

_ 1
3(91/)]\/ = 5 Z [(I)ZJU,(I)N_Z_IU].

=1

We can choose ¢y of minimal L?-norm with this property (i.e. ¥y €
Im(09)*). Letting wy = On € C;2; 4, there exists a unique ®x €
C35(X,TH°X) such that ®y_u = wy. Implicitly

8((13NJ’LL) =0.
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We also have 9(®y_u) = 3 Zf\sl[fbuu, ® N _;1u] by construction. By for-
mulae (3.9), (3.11) and since T, is an isomorphism, this amounts to
B L V-1

(Eq. (N — 1)) 00N = l; (@7, Py_i].

We have thus shown inductively that the equation (Eq.k) is solvable for
every k € N*. It is well-known (cf. [20]) that in this case the series ®(¢) :=
Ot 4 Dyt? + .- 4+ Oyt + ... converges in a Hélder norm for all t € C
such that |t| < e < 1. This produces a form ®(t) € C59 (X, T"°X) which
defines a complex structure d; on X that identifies with 0 — ®(t) and is
the deformation of the original complex structure d of X in the direction
of the originally given [] € H®'(X, T1°X). The proof is complete. 0

We end this section by noticing that the full force of the 99 assumption
is not needed in Theorem 1.2, but only a special case thereof, since only
two applications in very particular situations have been made of it.

First, we needed any Dolbeault cohomology class [a] € H" b1(X,C)
(denoted by [n]a[u] in the proof) to be representable by a d-closed form.
The proof of Lemma 3.1 shows this to be equivalent to requiring that any
d-exact (n, 1)-form Oa for which da = 0 be d9-exact. This is equivalent to
requiring the following linear map (which is always well defined)

(3.12) Ay s HY 7 VY(X,C) — HEa(X,C),  [o]y — [0a]sc
to vanish identically, where the subscript BC indicates a Bott—Chern coho-

mology group. By duality, the vanishing of A; is equivalent to the vanishing
of its dual map

(3.13) A} : HY" Y(X,C) — Hy" Y(X,C),  [ula — [0uls,

where the subscript A indicates an Aeppli cohomology group.

The other special case of the 9 lemma needed in the proof of Theo-
rem 1.2 was the requirement that any d-exact and d-closed (n — 1, 2)-form
B (denoted by [®;_u, ®;u] in the proof) be d0-exact. This is equivalent
to requiring the following linear map (which is always well defined)

(314) B : Hgal’z(X7 (C) — Hgilg(Xv C)? [B]BC — [5]8
to be injective. From the exact sequence
H%(X,C) 5 Hpo"?(X,€) - Hy (X, C),

we infer that B being injective is equivalent to the linear map Ay vanishing
identically, where

(3.15) Ay : Hy **(X,C) — Hpo"*(X,0), [v] 4 — [0V]Be-
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This discussion can be summed up as follows.

OBSERVATION 3.5. — Let X be a compact complex manifold with
dim¢ X = n whose canonical bundle Kx is trivial such that the linear
maps Ay and A, defined in (3.12) and (3.15) vanish identically. Then the
Kuranishi family of X is unobstructed.

4. Co-polarised deformations of balanced Calabi—Yau
00-manifolds

4.1. Definitions

Let (X,w) be a compact balanced Calabi-Yau 00- manifold (n =
dim¢ X). Denote by 7 : X — A the Kuranishi family of X. Thus = is
a proper holomorphic submersion from a complex manifold X', while the
fibres X; with t € A\ {0} can be seen as deformations of the given man-
ifold Xg = X. The base space A is smooth and can be viewed as an open
subset of H%!(X,T1°X) (or as a ball containing the origin in C", where
N = dim¢ H*'(X,T1°X)) by Theorem 1.2. Hence the tangent space at
0 is

ToA ~ H* (X, TH0X).
By Wu’s result [31, Theorem 5.13, p. 56], small deformations of balanced
d0-manifolds are again balanced d9-manifolds. Hence, in our case, X is a
balanced Calabi-Yau 09-manifold for all ¢ € A sufficiently close to 0.

Recall that in the special case where the class [w] € HY(X,C) C
H?(X,C) is Kéhler (and is furthermore often required to be integral, but
we deal with arbitrary, possibly non-rational classes here), it is standard to
define the deformations of Xy = X polarised by [w] as those nearby fibres
X; on which the De Rham class {w} € H?(X,C) is still a Kihler class
(hence, in particular, of type (1,1)) for the complex structure J; of X;. In
the more general balanced case treated here, w need not define a class, but
w1 does. Taking our cue from the standard Kéhler case, we propose the
following dual notion in the balanced context.

DEFINITION 4.1. — Having fixed a balanced class
W e H"P"TH(X,C) C H (X, C),
we say that a fibre X; is co-polarised by [w"~!] if the De Rham class
{wn—l} c H2n_2(X, (C)
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is of type (n — 1,n — 1) for the complex structure J; of X;.

The restricted family 7 : Xjyn-1) — A1) will be called the universal
family of deformations of X that are co-polarised by the balanced class
[w?~1], where Ayn-1 is the set of t € A such that X; is co-polarised by
[wnfl] and X[wnfl] = ﬂfl(A[wn—l]) Cc X.

After possibly shrinking A,»-1) about 0, we can assume that [wr1] €
H"=1=1(X, C) is a balanced class for the complex structure J; of the
fibre X; for every ¢ € Ap,n-1) (cf. Observation 7.2).

Note that in the special case where w is Kéahler on Xy = X, the (2n —2)-
class {w" ™1} is a balanced class for J; whenever the 2-class {w} is a Kéhler
class for J;. We shall see further down that the converse also holds, meaning
that in the special Ké&hler case the notion of co-polarised deformations of
X coincides with that of polarised deformations. Recall that when w is
Kaéhler, the deformations of X polarised by [w] are parametrised by the
following subspace of H%1 (X, T10X):

(4.1) HYY(X, TLOX)M
={[0) e H*'(X,T"°X); [f_w] =0 € H**(X,C)}

which is isomorphic under the restriction of T, (cf. (3.7)) to the space of
primitive Dolbeault classes of type (n — 1,1):

(4.2) HOY (X, T0X) Ty g, (X, Q).

prim
We shall now see that the co-polarised deformations of X are para-

metrised by an analogous subspace.

LEMMA 4.2. — For a given balanced class [w"~!] € H*~'"=1(X,C),
consider the following vector subspace of H%*(X, T*°X):

(4.3) HO’I(X TlvOX)[wn_l]
={[0) e H*' (X, T"°X); [fow" '] =0€ H">"(X,C)}.
Then:

(a) the space HO'(X,T'0X)y,n-1) Is well-defined (ie. the class
0wt € H"=27(X,C) is independent of the choice of repre-
sentative 6 in the class [f] € H*'(X,T"°X) and of the choice of
representative w™ ! in the class [w" '] € H"1"~1(X,C)). We can
therefore denote

(4.4) (0] 3[w™ Y] = 0w ).
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(b) the open subset A C H%1 (X, T1VX) satisfies
A[wn—l] =AnN HO’l(X, Tl’OX)[wn—l].
Imp]icit]y, TOA[wn—l] ~ I‘Io’l()(7 T170X)[wn—l].

Proof.
(a) follows from Lemma 4.3 below. Indeed, if 6 + O¢ is another repre-
sentative of the class [f] for some vector field £ € C°°(X,TH0X),
then

(0 +08) w1 =t + 9w h)

since w is balanced. Hence [(6 + 0¢)_w"™ 1] = [#_w™!]. Similarly, if
w1 4+ O is another representative of the Dolbeault class [w™ ]

for some (n — 1,n — 2)-form A, then
Oa(w" 4+ ON) = 6w + 0(62N)

since 9 = 0. Hence (02w + ON)] = [fuw™ ).
(b) Since X; is a d9-manifold for every ¢ close to 0, it admits a Hodge
decomposition which in degree 2n — 2 spells

I{2n72()(7 (C)
= Hn7n72(Xt7 C) @ Hnil)nil(Xt7 (C) @ Hn72}n(Xt’ C)’

with H"=2"(X;,C) =~ H""2(X;,C). In our case, the real
De Rham class {w"~ '} € H>"~2(X,R) splits accordingly as

W = (T e T T

with {wn= 112" = {ur=130""2 and {wn 110" real. Thus

the definition of Ap,n-1) translates to
A = {t € Ay {117 =0 € H'27(X,,C) }.

Moreover, {w" '} is of type (n—1,n—1) for Jo, so {w" 1}~ 2" =0
and {w" 1}"""% = 0. Let t1,...,tx be local holomorphic coordi-
nates about 0 in A. So t = (t1,...,ty) € A identifies with [f] vary-
ing in an open subset of H®! (X, T4%X). Let [0] € HO' (X, T10X)

0
Oti |t;=0

H%1(X,T19X). Then, under the Gauss-Manin connection on the
Hodge bundle A > t — H?"72(X;,C), the derivative of the class
[P~ ®" € H"27(X,,C) in the direction of ¢; at t; = 0 is the
class [#w"~ 1 € H'=2"(X,C). O

Here is the lemma that has been used in the proof of (a) above.

be the image of under the Kodaira-Spencer map p: ToA —»
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LEMMA 4.3. — Let X be a compact complex manifold (dim¢ X = n)
equipped with an arbitrary Hermitian metric w. Then:

(1) O(éaw™™ ) = (0€) w™ ™ — fJéW”jl, for every { € C*(X, THOX).

Hence, if w is balanced, we have A(Eawn™1) = (9€) wn L.

(2) 9(0w) = (99)w + 010w, for every 0 € C§3 (X, T"0X).
Analogous identities hold for forms of any type in place of w or w™ !
However, the analogous identities for  in place of d fail (intuitively because
0 increases the holomorphic degree of forms, while the contraction by a
vector field of type (1,0) decreases the same holomorphic degree).

Proof. — See Appendix (Section 7). O

4.2. Comparison to polarisations of the Kihler case

We now pause to observe that in the special case of a Kéhler class [w] €
HV1(X,C), co-polarised deformations of X coincide with polarised defor-
mations. Thus, although the space H%!(X,T"°X)y,; of (4.1) no longer
makes sense for a non-Kihler w, H%' (X, T"°X),n-1) defined in (4.3) nat-
urally extends its meaning to the case of a balanced class [w"™!].

PROPOSITION 4.4. — Let (X,w) be a compact Kéihler manifold
(n = dim¢ X ) such that Kx is trivial. Then the following identity holds:

(4.5) HONX, T X)) = HON(X, T X)) o).

Proof. — We start by noticing that for any Hermitian metric w (no as-
sumption is necessary on w here) and any 0 € C§9 (X, T19X), we have

(4.6) 0w = kwF A (Ow) for any k.

This follows from the property 0 (wAw*™1) = (fuw) AwF 1 +wA (fawk1).
Suppose now that w is Kéhler and let [0] € H>' (X, T"0X),, ie. 0w

is 0-exact. Writing 6w = v for some (0, 1)-form v, from (4.6) we get:

"t =(n—-1)w"2Ad=(n-1)0w" 2 Av)

since dw" 2 = 0 by the Kihler assumption on w. Thus #_w™ ! is d-exact,

proving that [0] € H*'(X,T"°X),n-1}. This proves the inclusion “C”.
Proving the reverse inclusion “2” in (4.5) takes more work. Let us con-

sider the Lefschetz operator

(4.7) LY C5%(X,C) = C2 5 (X, C), a—=w" i A,
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of multiplication by w”~2 which is well known to be an isomorphism for
any Hermitian (even non-Kéhler or non-balanced) metric w (see e.g. [30,
Lemma 6.20, p. 146]). We clearly have 0 .w" ! = (n—1) L"~2(6_w) by (4.6).

The next lemma explains how the three-space decomposition (w.r.t. w)

C5%(X,C) =ker A” @ Im 9 @ Im 0

transforms under L"~2 and compares to the analogous decomposition of
222, (X, C). Note that in C;°, (X, C) the subspace Im 0* is reduced to

n—2,n
zero for bidegree reasons. |

LEMMA 4.5. — Ifw is a Kahler metric on a compact complex manifold
X with n = dim¢ X, then the operator (4.7) satisfies

(4.8) L™ ?(ker A”) = ker A" and L' 2(Im0 @ Im0*) = Im .
This will follow from two formulae that have an interest of their own.

LEMMA 4.6. — Ifw is Kéhler, then for every a € Cg%(X, C) we have

(4.9) W2 ANa)=w" 2 A a+ (n—2)w" > Adda.
Proof. — Using the Kéhler commutation relation 0* = —i[A, 8], we get
(4.10) W2 ANa) = —i AW ? Ada) + i d(A (W2 Aa)).

In the first term on the right-hand side of (4.10), we have
(4.11) A" 2 Ada) = [A, L"?](0a) + w2 A A(Da) = w" "2 A A(D).
The last identity follows from the well-known formula (cf. [30, p. 148]):
(4.12) [L",A]=r(k—n+7r—1)L""" on k-forms, for every 7,

which, when applied with r = n—2 to the 3-form e, gives [A, L"~2](0a) =0.
In the second term on the right-hand side of (4.10), we have

A@"2Aa) = [A, L Z](a) +&" 2 AA(0) = (1=2) " Aa-+u 2 AA(a),

where the last identity follows again from (4.12) applied with r =n — 2 to
the 2-form . (Note that Ao = 0, but we ignore this here.) Taking d on
either side of the above identity and using the Kéhler assumption on w, we
get

(4.13) AW 2 AQ)) = (n—2)w" 3 Ada+w" % AIA(a),
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Thus, putting (4.11) and (4.13) together, we see that (4.10) transforms
to

W2 ANa) = —iw" 2 AANOQ) + (n —2) w3 ANida + w2 NidA(a)
=w" 2 Ni[0,A)(a) + (n —2)w" 3 Nida
=W 2N+ (n—2)w" 3 Nida.
This is what we had set out to prove. Note that we have used again the
Kéhler commutation relation [0, A] = —i[A, 0] = 0*. O
The next formula we need is the following.
LEMMA 4.7. — If w is Kéhler, then for every a € C5%(X, C) we have
(4.14) AW 2 ANa) = w2 A A
Proof. — This is an immediate consequence of the commutation prop-
erty
[Ly,, Al =0, hence [LE, A1 =0 for all k,
which in turn follows from the Kéhler identities. Alternatively, we can use
Lemma 4.6 and the Kéhler identities to give a direct proof as follows. Since

A(w" 2 A a) = 0 for bidegree reasons, A”(w" 2 A «) reduces to its first
term, so using (4.9) we get

AW 2 ANa) = 00" (W2 Aa) = 0w TP A a4 (n— 2) w3 Aida)
(4.15) = w2 N0 a + (n —2) w3 Aidda.
Now, using the Kihler identity 9* = —i[A, ], we get
W'TEAN* da = —i w2 A[A, 9)0a = —iw™ % A A(QDa) 4 i w2 A DA (D)
(4.16) = —iw" 2 A A(DDa)
because da is of type (0,3), so A(Ja) = 0 for bidegree reasons. Meanwhile
W2 AAN(00a) = [L"2, A)(00a) + A(w™ 2 A dda) = [L™ 2, A](00«)
(4.17) =(n—2)w" 3 Adda.

The second identity on the top line above follows from w™ =2 A 9da = 0 for

bidegree reasons (since w2 Adda is of type (n—1,n+1), hence vanishes),

while the last identity follows from formula (4.12) with r = n—2 and k = 4.
The combined identities (4.16) and (4.17) yield

WA 0a = —(n —2)w" P Nidda = (n — 2) w3 A idda.
This last identity combines with (4.15) to prove the claim. O

We need yet another observation.

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF BALANCED C-Y 88-MANIFOLDS 695

LEMMA 4.8. — For any Hermitian metric w on X, the normalised Lef-
schetz operator
1

n—2 ., oo 00
m Lw . 00,2 (X’ (C) - Cn—2,n(X7 (C)

is an isometry w.r.t. the L? scalar product induced by w on scalar-valued
forms.

Proof. — We will show that for every [ = 3, ..., n, the following formula
holds

(418) ((W" 2 Aa,w" 2 AB)) = (n—2)! -

for all forms a, 8 € C5%(X, C). We have

("2 A a2 A ) = (A" A )" A B))
(A, L" o, w2 A B))
=(n—2) (W3 Aa,w" 3 AB)),

where in going from the first to the second line, we have used the identities
A, L") a =AW ?ANa) —w" 2 AAa = Aw" 2 A ) since Aa = 0 for
bidegree reasons, while in going from the second to the third line we have
used formula (4.12) with 7 = n — 2 and the anti-commutation [A, L"7?] =
—[L™=2, A]. This proves (4.18) for [ = 3. We can now continue by induction
on [. Suppose that (4.18) has been proved for . We have

("t Ao, A B)) = (AW Aa), W A B)
= (([A, L e, w7 A B))
=(n—-0)1-1) (W " A, T AB))
by arguments similar to those above, where formula (4.12) has been used

with 7 = n — [. We thus obtain (4.18) with [ 4 1 in place of [.

It is now clear that (4.18) for [ = n proves the contention. O

End of proof of Lemma 4.5. — Since the map L2 of (4.7) is an iso-
morphism, it follows from Lemma 4.7 that L2 (ker A”) = ker A!. Since
L"~2 maps any pair of orthogonal forms in C5%(X, C) to a pair of orthog-
onal forms in C3°, ,,(X,C) by Lemma 4.8, it follows that the orthogonal
complement of ker A7 in C§%(X, C) (i.e. Im 0@ Tm 0*) is isomorphic under
L2 to the orthogonal complement of ker A} in C2°, (X, C) (i.e. Imd).
Note that Im 9* = 0 in Cr2 9.0 (X, C) for type reasons. The proof is com-
plete. O
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End of proof of Proposition 4.4. — Recall that we have yet to prove
the inclusion “O” in (4.5). Let [0] € H*!'(X,T"X),n-1j. This means
that _w"™' € Imd C C°,,(X,C) (cf. (4.3)). Since fow"™! = (n —
1) L 2(0w) (cf. (4.6)) and 6w is of type (0,2), we get from Lemma 4.5
that

(4.19) 0w € Imd & Im0* C C5%(X,C).

On the other hand, 00 = 0 (since 0 represents a class [0] € H>'(X, T1°X))
and dw = 0 (since w is assumed Kéhler). Hence (4i) of Lemma 4.3 gives

(4.20) 9(fw) =0, ie. faw € ker d = ker A’ $Imd C Ci%(X, C).

Since the three subspaces in the decomposition C§%(X,C) = ker Al @
Im 0 @ Im 0* are mutually orthogonal, (4.19) and (4.20) imply that 6w €
Imo, ie. [0] € H*'(X,TH0X) ) (cf. (4.1)). O

4.3. Primitive (n — 1,1)-classes on balanced manifolds

In the case of a Kéhler class [w], primitive Dolbeault cohomology classes
of type (n — 1,1) (for [w]) play a ivotal role in the theory of deformations
of X that are polarised by [w] thanks to the isomorphism (4.2) induced
by the Calabi—Yau isomorphism. However, if [w] is replaced by a balanced
class [w™™1], primitive classes can no longer be defined in the standard way
except in the case of (1, 1)-classes or, more generally, in that of De Rham 2-
classes (since the definition uses then the (n—1)** power of w that is closed
by the balanced assumption). In particular, defining an (n—1, 1)-class [a] as
primitive by requiring that wAa be d-exact would be meaningless if w is not
closed since this definition would depend on the choice of representative a
of the class [a]. However, since the space H%!(X, TLOX)[wnfl] carries over
the meaning of H*(X,T"°X)(, to the balanced case, it is natural to
make the following ad hoc definition in the balanced case.

DEFINITION 4.9. — Let X be a compact balanced Calabi—Yau d9-man-
ifold (n := dim¢ X ). Fix a non-vanishing holomorphic (n,0)-form u and a
balanced class [w™ '] on X. The space of primitive classes of type (n—1,1)
(for [w™™1]) is defined as the image under the Calabi-Yau isomorphism

Ty - HOY(X, 790x) 2 gn=t1(x, ©)
in (3.7) of the subspace H*'(X,T"0X)j,n-1) C H*'(X,TH0X), i.e.
HY (X, C) o= Ty (HH (X, TV X ) (ynor)) € HP (X, C).

prim
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Explicitly, given the definition (4.3) of H' (X, T"YX)(,n-1|, this means:

(4.21) 0] e H'VN(X,C)  iff  [fuw"Tl =0e€ H"2"(X,C)

prim
for any class [0] € H' (X, T"0X).

It is clear that Hggnll’l(X ,C) does not depend on the choice of u (which
is unique up to a constant factor), but depends on the choice of balanced
class [w™™1]. When w is Kéhler, the ad hoc definition of ng;l’l(X, C)
coincides with the standard definition thanks to the isomorphism (4.2) and
to Proposition 4.4.

Recall that unlike cohomology classes, primitive forms can be defined in
the standard way for any Hermitian metric w: for any k < n, a k-form «
on X is primitive for w if wn—k+1
be equivalent to A,a = 0. No closedness assumption on w is needed.

In the rest of this subsection we shall investigate the extent to which

A o = 0. This condition is well known to

the ad hoc primitive (n — 1,1)-classes defined by a balanced class re-
tain the properties of primitive classes standardly defined by a Kéahler
class. We start with the form analogue of (4.21). By the Calabi-Yau iso-
morphism (3.3), all (n — 1,1)-forms are of the shape 6 u for some 6 €
C5q (X, THX).

LEMMA 4.10. — Let (X, w) be an arbitrary Hermitian compact complex
manifold (n := dim¢ X ) with Kx trivial. Fix a non-vanishing holomorphic
(n,0)-form u. Then for any 6 € C§9(X,T"°X), the following equivalences
hold:

(4.22)  Ou is primitive for v = fw=0 <<= Hw" ' =0.

Proof. — By the definition of primitiveness, the (n — 1,1)-form 0_u is
primitive for w if and only if w A (6_u) = 0. Meanwhile

0=01(wAu)=(0w)ANu+wA (0u),

where the first identity holds for type reasons since the form w Aw is of type
(n+1,1), hence vanishes. Thus the vanishing of w A (fu) is equivalent to
the vanishing of (f_w) A u which, in turn, is equivalent to the vanishing of
f_w as can be easily checked using the property u # 0 at every point of X.
This proves the first equivalence in (4.22). The second equivalence follows
from

o™t =(n—1Dw" 2 A (Iw)

(cf. (4.6)) and from the map (4.7) being an isomorphism. O
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We have seen in Lemma 3.1 that every Dolbeault cohomology class on
a 00-manifold can be represented by a d-closed form (which is, of course,
not unique). The question we will now address is the following.

QUESTION 4.11. — Is it true that on a balanced Calabi-Yau 00-man-
ifold, every primitive (n — 1,1)-class (in the sense of the ad hoc Defini-
tion 4.9) can be represented by a form that is both primitive and d-closed?

Should the answer to this question be affirmative, it would bear signifi-
cantly on the discussion of Weil-Petersson metrics in Section 5.2. It is clear
that in the Kéhler case the answer is affirmative: the A”-harmonic repre-
sentative of any primitive (in the standard sense defined by the Kéhler
class = the ad hoc sense in the case of (n — 1, 1)-classes) (p, ¢)-class is both
primitive and d-closed. We shall now see that the balanced case is far more
complicated.

LEMMA 4.12. — Let (X,w) be a compact Hermitian manifold (n :=
dime¢ X ) and let v be an arbitrary primitive form of type (n —1,1) on X.
Then the following equivalences hold:

(4.23) Pv=0<=0v=0 and O =0<+= dv=0.

Proof. — Tt is well-known (cf. e.g. [11, VI, §5.1]) that 0* = — x &% and
0% = — x O, where x : APIT*X — APO"~PT*X is the Hodge star
operator associated with w. On the other hand, the following formula for
primitive forms is also known:

(4.24) xu =" 220 forallv € C (X, C)prim.

(Recall that for primitive forms v of arbitrary type (p, ¢), the formula reads
w"TPTI A
(n—p—qV
see e.g. [30, Proposition 6.29, p. 150].) Since  is an isomorphism, we see

that the identity 9*v = 0 is equivalent to d(xv) = 0, hence to dv = 0
by (4.24). The equivalence for 0*v = 0 is inferred similarly. O

(4.25) * v = (—1)FkFD/2p=a where k :=p + ¢,

COROLLARY 4.13. — Under the assumptions of Lemma 4.12, we have:
(1) ifv € C32 4 1(X,C)prim and v = 0, then

dv=0<= A"v=0.
(2) ifv e Oy 1(X,C)prim and dv = 0, then

dv=0<= A'v=0.
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(3) ifv e O34 (X, C)prim and dv = 0, then
Av=0, Av=0 and Av = 0.

Proof. — Since X is compact, we have ker A” = kerd N ker 9* and
ker A’ = ker & N ker *. Since for any pure-type form v, the equivalence

dv=0<=dv=0and v =0

holds, (1) and (2) follow immediately from the two equivalences in (4.23).
Now (1) and (2) obviously give A’v = 0 and A”v = 0 under the assumptions
of (3). To infer that Av = 0, it suffices to notice that for any pure-type
form v on a compact Hermitian manifold (X,w), we have

(4.26) ({Av,v)) = ({A"v,0)) + ((A"v,v))

since ((Av,v)) = [[dv|* + [|d*v[[?, ((A'v,v)) = [|0v]|* + [|0*v][* and
{(A"v,v)) = ||0v]|? + [|0*v]|?, while ||dv||?> = ||0v|]? + ||0v||? (because
v and dv are pure-type forms of different types, hence orthogonal) and
similarly ||d*v]|? = ||0*v]|? + ||0*v||? (because 9*v and 0*v are orthogonal
for the same reason). Since A'v = 0 and A”v = 0, from (4.26) we get

({Av,v)) = 0 which amounts to dv = 0 and d*v = 0, hence to Av =0. O

The conclusion (3) of the above Corollary 4.13 is that if an (n — 1, 1)-
form is both primitive and d-closed, it must be harmonic for each of the
Laplacians A’, A” and A. Thus, if a representative that is both primitive
and d-closed of a primitive (n — 1,1)-class exists, it can only be the A”-
harmonic representative. Fortunately we have

LEMMA 4.14. — Let (X,w) be a compact Hermitian manifold (n :=
dim¢ X ). Suppose v is a primitive (n — 1, 1)-form such that A"v = 0. Then
A’v =0 and Av = 0. In particular, dv = 0.

Proof. — The assumption A”v = 0 means that v = 0 and 0*v = 0.
Then (1) of Corollary 4.13 implies that dv = 0, i.e. 9v = 0. Then (2) of
Corollary 4.13 ensures that A’v = 0. Then (4.26) ensures that Av =0. O

Thus Question 4.11 reduces to whether on a balanced Calabi-Yau 90-
manifold (X, w), the A”-harmonic representative of any primitive (n—1,1)-
class (in the sense of the ad hoc Definition 4.9) is a primitive form. It will
then also be d-closed by Lemma 4.14. Fix therefore a primitive (n — 1,1)-
class [0u] on X, where [0] € H>'(X,T"°X). By (4.21), this means that

(4.27) 0w" ™t € Tmd

Suppose furthermore that A”(6.u) = 0. The question is whether 6.u is
primitive, or equivalently (cf. (4.22)) whether §_ 1w~ ! = 0. Since ker A” and
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Im O are orthogonal subspaces of C>°,, . (X, C), (4.27) reduces the question

n—2,n
to determining whether

(4.28)  A"(w™ ') =0 or equivalently whether 0*(6uw™ ') =0,

since d(A_w”™ 1) = 0 (trivially since f_w™ ! is of type (n — 2,n)).
The next lemma transforms identity (4.28) whose validity we are trying
to determine.

LEMMA 4.15. — Let X be a compact complex manifold (dim¢ X = n)
equipped with an arbitrary Hermitian metricw. Fix any 0 € C§9 (X, THX).
The following equivalence holds:

0*(0w" ™) =0 = 9(fw) = 0.

Proof. — Formula (4.25) applied to the (primitive) (0, 2)-form v := 6_w
reads:

(420) % (0w) =

) wn—l
1.e. *(HJ(’H—]_)'> = H_Iw,

having also used the property 2 = Id on 2-forms. Now, 9* = — x 9, hence
the condition 9*(f_w™ 1) = 0 is equivalent to d(x(A_w” 1)) = 0 which in
turn is equivalent to 9(fuw) = 0 by (4.29). This proves the contention. [J

However, we can see no reason why the desired condition 9(f.w) = 0
should hold even if we exploit the assumption A”(6_u) = 0. Note that if
Ric(w) = 0, by (3.8) this assumption means that A”6 = 0, i.e. 9*0 = 0 since
we always have 90 = 0. The most we can make of the property 0*0 = 0 is
expressed in part (2) of the following lemma. Parts (1) and (3) show that
more can be said about scalar-valued (0, 1)-forms v, although even if that
information applied to the T1° X-valued (0, 1)-form 6, it would not suffice
to deduce that 9(6_w) = 0.

LEMMA 4.16. — Let X be a compact complex manifold (dim¢ X = n)
supposed to carry a balanced metric w.

(1) For every v € C§9(X,C), the following equivalence holds:
0*v = 0 <= Ov is primitive.
(2) For every 0 € C§% (X, T°X), the following equivalence holds:

90 =0« (D'O) Aw" ' =0€ C°, (X, TVX).

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF BALANCED C-Y 93-MANIFOLDS 701
(3) Suppose, furthermore, that X is a 00-manifold. Then, for every
v € C59(X,C) Nker d, the following equivalence holds:
AN'v=0<=0v=0 (<= Av=0).

Proof. — Since any (0,1)-form is primitive, for x : C§q(X,C) —
> 1. (X, C) formula (4.25) reads

n—1n
) wn—l
(430) *’U:?,'U/\m7 UECOJ(X7(C).
Since 0* = — * 0%, we see that the condition 9*v = 0 is equivalent to

A(v Aw™ 1) = 0. Since dw™ ! = 0 (by the balanced assumption), the last
identity is equivalent to (9v) A w™~! = 0, which is precisely the condition
that the (1,1)-form Qv be primitive. This proves (1).

The proof of (2) runs along the same lines as that of (1) using the formula
0* = — % D'~ when 0* acts on T"°X-valued forms and D’ is the (1,0)-
component of the Chern connection D of (T1° X, w). Indeed, formula (4.30)
still holds for 719 X-valued (0, 1)-forms 6 in place of v and

D'@OA"H) = (DA =N = (D'O) AW,

where the last identity follows from w being balanced.

To prove (3), fix an arbitrary form v € C§% (X, C)Nker 0. Since ker A” =
ker & N ker 0*, the condition A”v = 0 is equivalent for this v to 0*v = 0,
which is equivalent to dv being primitive by (1). We are thus reduced to
proving for this v the equivalence: dv is primitive <= dv = 0.

Notice that 9(dv) = 0 thanks to the assumption dv = 0. Hence the
pure-type form v is d-closed and d-exact, so by the d9-lemma it must be
d0-exact:

Ov =00y for some C™ function ¢ : X — C.
Then we have the equivalences:
Qv is primitive <= A, (i00p) = 0 <= A, p = 0 <= ¢ is constant ,

where the last equivalence follows by the maximum principle from X being
compact. Meanwhile, ¢ being constant is equivalent to the vanishing of
100, hence to the vanishing of Jv. a

The conclusion of these considerations is that Question 4.11 may have
a negative answer in general in the balanced case. Let us now notice that
even the answer to the following weaker question may be negative in the
balanced case.
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QUESTION 4.17. — Is it true that on a balanced Calabi-Yau d0-man-
ifold, every primitive (n — 1,1)-class (in the sense of the ad hoc Defini-
tion 4.9) can be represented by a primitive form?

Let [0u] € Hggnll’l(X, C) be a primitive class in the ad hoc sense. This
means that §_w" ™! is d-exact (for any representative @ of the class [0] €
H%Y(X,T"9X)n-11). Pick any representative 6 and any 0-potential w €
Cre g 1(X,C) of fuw™ !, ie. Ow = _w" 1. Since

L2 CP%(X,C) = C2y 1 (X,C), ar w3 Aa,

is an isomorphism (see e.g. [30, Lemma 6.20, p. 146]), since there is a
Lefschetz decomposition (cf. [30, Proposition 6.22, p. 147])

A1,2 — A1,2 ® (UJ/\AOJ)

prim
and since every C* (0, 1)-form can be written as (n — 1) £ _w for a unique
vector field ¢ € C*°(X,T1%X) (because w is non-degenerate), we see that
there is a unique primitive C* form «q of type (1,2) and a unique C'*°
vector field £ of type (1,0) such that

(4.31) w=w" A+ n—1D)wA ({w)) =w"3Aag+ Eaw™ L

Consequently, HJUE”_I = 0w = O(w" 3 Aap)+(0€) aw™ since O(Eawn™1) =
(0&) w1t — €4(0w™ 1) (cf. Lemma 4.3(1)) and here dw™~! = 0 by the
balanced assumption on w. Thus we get

(0 — &) w™ ! = W3 A ag).

We see that 6 — O represents the class [0] € HON(X, T"0X ) n-1j, so
(0 — O¢)u represents the class [fu] € Hggnll’l(X, C). We know from
Lemma 4.10 that the primitivity condition on the form (9—5§)Ju is equiva-
lent to (0 —0€&)w™ ! = 0, i.e. to A(w™ 3 Aag) = 0 in this case. However, we
can see no reason why this vanishing should occur, part of the obstruction
being the primitive (1,2)-form «q.

Thus in the balanced, non-Kéhler case, the answer to Question 4.17 may
be negative in general.

5. Period map and Weil-Petersson metrics
We now fix an arbitrary balanced Calabi-Yau d0-manifold X, dime X =
n. All the fibres (X;)iea in the Kuranishi family of X = X, are again

balanced Calabi-Yau d0-manifolds if ¢ is sufficiently close to 0 € A. This
follows from Wu’s theorem in [31] and from the deformation openness of the
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triviality of the canonical bundle Ky, when the dimension of H™%(X;, C)
is locally independent of ¢ (as the A9 assumption ensures this to be the
case here). Thus H™?(X,,C) is a complex line varying holomorphically
with ¢ inside the fixed complex vector space H™(X,C). The canonical in-
jection H™(X,,C) ¢ H"™(X,C) is induced by the dd-lemma property
of X; (cf. Lemma 3.1 and comments thereafter). The associated period
map A >t — H™(X,,C) takes values in the complex projective space
PH"(X,C) after identifying each complex line H™%(X;,C) with the point
it defines therein.

5.1. Period domain and the local Torelli theorem

Most of the material in this subsection before Theorem 5.4 is essentially
known, but we take this oportunity to stress that only minimal assumptions
are needed and to fix the notation for the rest of the paper.

Let w be a Hermitian metric on X. All the formal adjoint operators and
Laplacians will be calculated w.r.t. w. The Hodge x-operator defined by w
on n-forms

*: C°(X,C) — C*(X,C)
satisfies 2 = (—1)", so it induces a decomposition
(5.1) Cr(X,C)=A}Y A",

where A} stand for the eigenspaces of * corresponding to the eigenvalues
+1 (if n is even), +i (if n is odd). This decomposition is easily seen to be
orthogonal for the L? scalar product induced by w: for any v € A" and any
v € A™, one easily checks that ((u,v)) = —({u,v)) by writing u = xu (if n
is even) and u = —i (xu) (if n is odd) and using the easy-to-check identity
((*u,v)) = (=1)™ ({u,»v)) for any n-forms u, v.

When * is restricted to A-harmonic forms, it assumes A-harmonic values:

* : HL(X,C) — HL(X,C)

since A := dd* 4+ d*d commutes with * as is well known to follow from the
standard formula d* = — % d . Thus the Hodge isomorphism H"(X,C) ~
HX (X, C) mapping any De Rham class to its A-harmonic representative
extends the definition of * to the De Rham cohomology of degree n:

(5.2) *x: H"(X,C) — H"(X,C)
and we get a decomposition in cohomology analogous to (5.1):

(5.3) H™(X,C) = H(X,C)® H"(X,C),
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where H (X, C) are the eigenspaces of x corresponding to the eigenvalues
+1 (if n is even), &i (if n is odd). Thus HY} (X, C) (resp. H" (X, C)) consists
of the De Rham classes {a} of degree n whose A-harmonic representative o
lies in A"} (resp. A™). Note that no assumption whatsoever (either Kahler
or balanced) is needed on the Hermitian metric w.

On the other hand, the Hodge-Riemann bilinear form can always be
defined on the De Rham cohomology of degree n:

(5.4) Q:H"(X,C) x H"(X,C) — C,

n(n—1)

({a}, {B)) — (-1)™% /X an B = Q{a}. (8).

It is clear that Q(-,-) is independent of the choice of representatives «
and [ of the respective De Rham classes of degree n since no power of w
is involved in the definition of @, so no Kéhler or balanced or any other
assumption is needed on w unlike the case of the De Rham cohomology in
degree k < n. Thus @ is independent of w and of the complex structure
of X, depending only on the differential structure of X. It is also clear
that @ is non-degenerate since for any A-harmonic n-form «, *a is again
A-harmonic and

n(n—1) n(n—1)

Q{a}, {xa})=(-1)" =7 /X aAxa=(-1)"=z /}((a,a>dew
= ()T lalZ £0 ifa#0.
Hence the associated sesquilinear form
H:H"(X,C)x H"(X,C) — C,
(55  ({ah{8) — (-1)=52 / a = (=) Q{a}, {B})
X

is non-degenerate.

LEMMA 5.1.

(1) H({a},{a}) > 0 for every class {a} € H}(X,C) \ {0}. Hence H
defines a positive definite sesquilinear form (i.e. a Hermitian metric)
on H™(X,C).

(2) H({a},{a}) <0 for every class {a} € H*(X,C) \ {0}.

(3) H({a},{B}) = 0 for every class {a} € H(X,C) and every class
{B} € H" (X, C). Hence the decomposition (5.3) is orthogonal for H.
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Proof.

(1) Let a be a A-harmonic n-form such that the class {a} € H? (X, C).
If n is even, x @ = «, hence taking conjugates we get x@ = a. Thus

H({a}. {a}) = (-1)"5 i /X o Axd = /X a2dV,, = [|a| > 0

if a # 0, since (—1)n(n2+1)
n? + 2n € 47 when n is even.)

If n is odd, *a = i, hence taking conjugates we get xa = —ia.
n(n+1)
2

n(n41)
2

. . .
i" =i" 2" = 1 when n is even. (Indeed,

Equivalently, & = ixa. On the other hand, (—1) n = §nien =
—i when n is odd since n? 4+ 2n € 4Z+ 3 in this case. We then get as
above that again H({a}, {a}) = ||a||? > 0if a # 0. This proves (1).
The proof of (2) is very similar and is left to the reader.

(c) Let o and 8 be A-harmonic n-forms such that {a} € H}(X,C)

and {8} € H"(X,C). If n is even, this means that xa = a and
* 3 = —f. Using the property x 8 = —f3, we get

(5.6)

H({a}, {B}) = —(~1)™F2 jn /X o AxB = —(=1) "5 i (0, B

while using the property xa = «a, we get
H({a} ) = ()™ [ wani=(-0" (0" [ Gava
X X

(5.7) (1) /X BravadV, = (—1) "5 i (0, B))

having used the fact (—1)"2 = 1 since n is even and the identity
(B, ), = (@, B)w. The expressions (5.6) and (5.7) for H({a},{8})
are now seen to differ only by a sign, hence H({a}, {}) = 0.
When n is odd, we have xa = i« (hence @« = —ix ) and x5 =
—i 3 (hence B = —i % (). Using the former and then the latter of
these two pieces of information, we get as above two expressions for
H({a},{B}) that differ only by a sign. Hence H({a},{5}) =0. O
We now bring in the complex structure of X (that is supposed to have
the 90 property which induces the inclusion H™°(X,C) c H"(X,C)).

LEMMA 5.2. — Let X be a compact complex d0-manifold (dimec X =n).
Then the following inclusions hold:

H™(X,C)c H?(X,C) ifn is even, H™(X,C) C H"(X,C) if n is odd.

In particular, the restriction H : H™%(X,C) x H"%(X,C) — C of H to
H™Y(X,C) is positive definite if n is even and is negative definite if n is
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odd thanks to Lemma 5.1 (hence we get a Hermitian metric on H™°(X, C)
defined by the scalar product induced by H when n is even and by —H
when n is odd).

Before proving this statement, we make a trivial but useful observation.

LEMMA 5.3. — Let (X,w) be any compact complex Hermitian mani-
fold (dim¢ X = n). For every (n,0)-form «, the following equivalence and
implication hold:

ANaoa=0= ANa=0= Aa=0.

Proof. — Since X is compact, ker A” = kerd N ker 9* and ker A’ =
ker dNker 0*. However, da = 0 and 0*a = 0 for any (n, 0)-form « for trivial
bidegree reasons. Hence, for any a € C;% (X, C), the following equivalences
hold:

ANa=0&0a=0 and A'a=0e da=0.

Consequently, from the identity 9* = — % 9% (cf. e.g. [11, VI, §5.1]) and
from the fact that * is an isomorphism, we get the equivalence: A'a =0 &<
d(*a) = 0. Since « is of type (n,0), it is primitive (w.r.t. any metric, hence
also w.r.t. w), so formula (4.25) applied to a reads: x o = (—1)*(*+D/2jn o,

Thus the previous equivalence implies the following equivalence:
ANa=0 < da=0,

while the equivalence da = 0 < A”« = 0 has already been observed. We
have thus proved the equivalence claimed in the statement. The implication
claimed in the statement now follows from identity (4.26) applied to the
pure-type form « and the fact that ((Aq, a)) > 0 with equality if and only
if Aa = 0. O

Proof of Lemma 5.2. — Let [a] € H™°(X,C) be an arbitrary Dolbeault
cohomology class of type (n,0). Since the only d-exact form of type (n,0)
is the zero form, the class [a] contains a unique representative «. Clearly, «
is of type (n,0) and A”-harmonic, so from Lemma 5.3 we get Aa = 0. On
the other hand, formula (4.25) applied to « (which is primitive since it is of
type (n,0)) reads: xa = (—1)*("+1/24nq = i7("+2) o Hence, if n is even,
a € A% since i"("*2) = 1, while if n is odd, o € A" since "("+2) = —j.
Therefore the De Rham cohomology class {a} € H" (X, C) represented by
the A-harmonic form o must belong to H? (X, C) when n is even, resp. to
H™(X,C) when n is odd. O

Let us now consider a holomorphic family (J;);ea of Calabi-Yau 90
complex structures on a compact differential manifold X. We set X; :=
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(X, J;) and let n := dim¢ X; for all ¢ € A. Notice that @ and H (cf. (5.4)
and (5.5)) depend only on the differential structure of X. Thus,

Ci = {{a} € H"(X,C)/H({a},{a}) > 0} C H"(X,C),
and
C_:= {{a} € HY(X,C)/ H({a},{a}) < 0} C H"(X,C)

are open subsets of H" (X, C) and depend only on the differential structure
of X. Furthermore, if we equip the fibres X; with a C*° family of arbitrary
Hermitian metrics (w¢)ien, the corresponding Hodge x operator x = x; has
eigenspaces HY (X;,C) and H" (X, C) (cf. (5.3)) depending on the complex
structure J; via the metric wy (which is in particular a Je-type (1,1)-form).
Lemma 5.1 ensures that
H(X,C)\{0} C C4 and H™(X:,C)\{0} Cc C_ for all t € A.
Moreover, Lemmas 5.1 and 5.2 imply the following inclusions:
53) H™%(X,,C)\ {0} ¢ H(X,;,C)\ {0} C C;4 C H*(X,C) if n is even,

7 H™O(X,,C)\ {0} c H"(X;,C)\ {0} c C_ c H"(X,C) if n is odd.

It is clear that for any class ¢; = [oy] € H™%(Xy, C), Q(¢1, 1) = 0 since
ar Aay = 0 for any form of Ji-type (n,0). Thus the period domain, contain-
ing the complex lines H™°( X, C) varying inside H"(X, C) when J; varies,
can be defined as in the standard (i.e. Kahler) case as

D ={C-linel Cc H*(X,C); V¢ €1\ {0}, Q(p,p) =0 and H(p, ) > 0}
if n is even (so, in particular, I C C whenever [ € D), and as
D ={C-linel Cc H*(X,C); ¥V p €1\ {0},Q(p,p) =0 and H(p,¢) < 0}

if n is odd (so, in particular, I C C_ whenever [ € D). Given the natu-

ral holomorphic embedding D C PH™(X,C), the complex manifold D is

projective and is contained in the quadric defined by @ in PH™ (X, C).
We can now show that the local Torelli theorem holds in this context.

THEOREM 5.4. — Let X be a compact Calabi-Yau 90-manifold,
dim¢ X = n, and let 7 : X — A be its Kuranishi family. Then the
associated period map

P:A— DCPH"(X,C), A>t— HY(X,,C),

is a local holomorphic immersion.

TOME 69 (2019), FASCICULE 2



708 Dan POPOVICI

Proof. — As usual, we denote by (X)iea the fibres of the Kuranishi
family of X = Xy. They are all C"*°-diffeomorphic to X and the holo-
morphic family (X¢);ca can be seen as a fixed C*° manifold X equipped
with a holomorphic family of complex structures (J;)tea. Let (ut)ien be a
holomorphic family of nowhere vanishing n-forms on X such that for every
t € A, uy is of type (n,0) for the complex structure .J; and d,u; = 0. The
form w, identifies with the class [u,] it defines in H™%(X,, C), hence with
the whole space H™(X;,C) = Cu;. Thus the period map identifies with
the map

ABti—)Ut

It suffices to prove that P is a local immersion at ¢ = 0. Recall that in the
present situation the Kodaira—Spencer map p : TpA — HY(X, TH0X) is
an isomorphism (thanks to Theorem 1.2) and that for any tangent vec-
tor 9/0t € TyA, the choice of a representative 6 in the class p(9/0t) =
[0] € HOY (X, T0X) determines a C™ trivialisation ® : X — A x X,
(after possibly shrinking A about 0), which in turn determines about
any pre-given point € X a choice of local Ji-holomorphic coordinates
z1(t), ..., zn(t) for every ¢t € A.

Denote u = ug. Fix an arbitrary tangent vector 9/t € ToA \ {0} and
choose a representative 0 of the class p(9/0t) € H®'(X,T1°X) such that
the representative 6_u of the class [#_u] € H" 11(X,C) is d-closed. This
is possible by the 9 assumption on X and by Lemmas 3.1 and 3.3. The
associated local C* trivialisation ® : X — A x X induces C*° diffeomor-
phisms (IDt_l : Xo = X4, t € A, so the differential of the period map at
t = 0 in the 9/0t-direction identifies with

(P ") uy

5.9
(59) ot [t=0

=0.u+v on X,

where v is some (n,0)-form on X = Xj. The identity in (5.9) can be
proved in the usual way (see e.g. [27, proof of Lemma 7.2]): having fixed
an arbitrary point € X, one writes

(5.10) ug = fedz1(E) A+ Adzg(t)

where f; is a holomorphic function in a neighbourhood of z in X; and
z1(t),...,zp(t) are the local Ji-holomorphic coordinates about = deter-
mined by the choice of § in the class p(9/0¢). Taking 9/0t at t = 0 in (5.10),
one finds on the right-hand side the sum of the form v =
(Ofi/0t)14=0d21(0) A --- A dzn(0) of Jo-type (n,0) with the form 6.u of
Jo-type (n—1,1). The latter form is easily seen to be the sum of the terms
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obtained by deriving one of the dz;(¢) in (5.10) since, with the above choices
of 0 and z1(t),...,zn(t), we have

%(dz_j(t))‘tzo = 60.dz;(0), j=1,...,n.
Now, duy = 0 for all ¢, hence the left-hand term in (5.9) is a d-closed n-form
on X. Thus d(fuu+v) = 0. By our choice of 8 (based on a key application
of the 30 lemma), d(f.u) = 0, hence dv = 0. In particular, v is a Jp-closed
form of Jo-type (n,0), so v = cu for some constant ¢ € C.

It is now clear that if (dP)o(9/0t) = 0, then 6_u = 0 and v = cu = 0,
so 6 = 0 (since Tp,(8) = 6w and T, is an isomorphism, see (3.3)), hence
0/0t = 0 (since the Kodaira—Spencer map is an isomorphism here). This
last vanishing contradicts the choice of 9/9t # 0. We have thus shown that
P is a local immersion at ¢ = 0. |

5.2. Weil-Petersson metrics on A

We start with a refinement of Lemma 3.1 singling out a particular d-
closed representative of a given Dolbeault cohomology class on a d0-man-
ifold.

DEFINITION 5.5. — Let X be a compact dd-manifold equipped with
an arbitrary Hermitian metric w. Given any Dolbeault cohomology class
[a] € HP9(X,C), let « be its Al/-harmonic representative and let vy €
Im(09)* C C°,_1(X,C) be the solution of minimal L? norm (w.r.t. w) of
equation (3.1).

The d-closed (p, q)-form amin := &+ OVpmin will be called the w-minimal
d-closed representative of the class [a]. (It coincides with the A -harmonic

representative if w is Kéhler.)

A word of explanation is in order. Recall that the Aeppli cohomology
group of type (p, q) is standardly defined as

HR(X,C)
_ ker(00 : C5(X) = C524 411 (X))
Im(0 : Cg‘qu(X) — O, (X)) +1Im(0 : C;S,oq—1(X) — O, (X))
and that the fourth-order Aeppli Laplacian A% : Cr,(X,C) = Cx,(X,C)
(cf. [19], also [25, 2.c., p. 9-10]) defined by

AP = 00* + 50" + (9)*(99) + (90)(0D)* + 09 (95*)* + (95" )* 05"
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is elliptic and thus induces a three-space decomposition

2 (X,C) = ker AR? @ (Im 9 + Im 0) @ Im(90)*
that is orthogonal w.r.t. the L? scalar product defined by w and in which
(5.11) ker(89) = ker AR @ (Im d 4 Im 9),

yielding the Hodge isomorphism H%?(X,C) = ker A%7. Since the solution
v of equation (3.1) is unique only modulo ker(99), the solution of minimal
L? norm is the unique solution lying in ker(99)* = Im(99)*. Note that if
the A”-harmonic representative a of the class [a] happens to be d-closed
(for example, this is the case if the metric w is Kéhler), then da = 0 and
Umin = 0, 80 amin = a. Thus aynin can be seen as the minimal d-closed
correction in a given Dolbeault class of the A”-harmonic representative of
that class.

Recall that if we fix a compact balanced Calabi-Yau d9-manifold (X, w)
(dimc X = n), the base space Ap,n-1) of the local universal family
(Xt)te Apn) of deformations of X that are co-polarised by the balanced
class [w" ] € H" ' (X C) identifies to an open subset of
IT[O’1 (X, Tl’OX)[wn—l] and

TtA[wnfq ~ Ho’l(Xt,Tl’OXt)[wnfl} ~ Hn_l’l(Xt, (C), te A[wn71].

prim
We shall now define two Weil-Petersson metrics on Ap,n-1) induced by

pre-given balanced metrics on the fibres X; whose (n — 1) powers lie in
the co-polarising balanced class.

DEFINITION 5.6. — Fix any holomorphic family of nonvanishing holo-
morphic n-forms (u¢)iea on the fibres (X¢)ien. Let (Wt)teAWHl] be a C*°

family of balanced metrics on the fibres (X;)iea such that wffl €

[wn—1]
{w”’l} for all t and wg = w. The associated Weil-Petersson metrics GE}V)P
and G%,?,)P on Ay,n-1y are defined as follows. For any t € Aj,n-1] and any
[(9,5}, [’17,5] S Ho’l(Xt, T170Xt)[wn—1], let

({0, me)) wi'

(5.12) G%)p([et]a [ne]) = W, (Where dv,, = n')
X, wi !

(O ug, meaug))

in? th wp AUy

where 6, (resp. n;) is chosen in its class [0;] (resp. [n:]) such that 6, u,
(resp. nuy) is the wy-minimal d-closed representative of the class [0y 1uy] €
H"Y1(X, C) (resp. [nou] € H*V1(X,,C)), while ({-,-)) stands for the
L? scalar product induced by w; on the spaces involved.

(5.13) G2L((6:], i) =

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF BALANCED C-Y 88-MANIFOLDS 711

The C* positive definite (1,1)-forms on Aj,n-1) associated with Gg,[l,)P
and G%)P are denoted by

(1)

wy'p >0 and w(z)

>0 on A[wn 1.

Since every u; is unique up to a constant factor, the definition of G\% wp is
independent of the choice of the family (u;)tea. From Lemma 3.2 we infer

OBSERVATION 5.7. — If the balanced metrics can be chosen such that
Ric(w;) = 0 for all t € Aj,n-1), then

w%,[l,)P = wI(AZ/)P on Apn-1).

5.3. Metric on A induced by the period map

Let L = Opgn(x,c)(—1) be the tautological line bundle on PH"(X,C).
We will endow the restrictions of L to two open subsets of PH™ (X, C) with
Hermitian fibres metrics induced by H. We set:

Ut :={[l] e PH"(X,C)/lis a C-line such that { ¢ C;.} Cc PH"(X,C),
and
U :={[l] e PH"(X,C) /1l is a C-line such that | ¢ C_} c PH"(X,C),

where [I] denotes the point in PH™(X, C) defined by the line I ¢ H"(X, C).
It follows from the discussion of C'y and C_ in Section 5.1 that U} and
U™ are open subsets of PH"(X,C) and depend only on the differential
structure of X.

Moreover, for every [I] € U, the fibre Ly = 1 C C is endowed with the
scalar product defined by the restriction of H. Thus L‘Ui has a Hermitian
fibre metric A} induced by H. The (negative) curvature form i@hz (Lyor)
defines the associated Fubini-Study metric on U} by

w}sz—i@hz(L‘Ui) >0 on U C PH"(X,C).

Likewise, for every [I] € U™, the fibre Ly = [ C C_ is endowed with the
scalar product defined by the restriction of —H. Thus Ljy» has a Hermitian

fibre metric h; induced by —H. The (negative) curvature form i © he (Lyyn)
defines the associated Fubini-Study metric on U" by

wpg = —10)-(Ly=) >0  on U CPH"(X,C).
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It follows from the above discussion that wj ¢ and wy ¢ depend only on the
differential structure of X. Composing the period map with the holomor-
phic embedding D < PH™(X, C), we obtain a local holomorphic immersion
toP: A —PH"(X,C) (cf. Theorem 5.4). From (5.8), we get:

Im(coP) c U} ifniseven, Im(coP)CU" ifnisodd.

Taking the inverse image of w;CS when n is even, resp. of wyg when n is
odd, we get a Hermitian metric (i.e. a positive definite C*° (1, 1)-form) ~y
on A which is actually Kéhler:

vi=(toP)*(wfg) >0 ifniseven, 7:=(toP) (wpg) >0 ifnisodd.

COMPUTATION OF ~. — We can compute v at any point t € A (e.g. at
t = 0) in the same way as in [27, §7]. We spell out the details for the
reader’s convenience. Let (ut)ica be a holomorphic family of nonvanishing
holomorphic n-forms on the fibres (Xt)tca. Recall that a tangent vector
(0/0t)|4=0 to A at 0 identifies via the Kodaira-Spencer map with a class

0] € HOY (X, T"°X). Fix any such class [0]. We will compute o ([6], [0]).

We have: L,, = C-u; = H"°(X;,C). Thus:
(1) if n is even, then L,, C H} (X, C) and (—i)" Q(us,u;) =
H(ug,ug) = |u,5|i+ = e M), where p denotes the local weight func-
L

tion of the fibre metric hz of L‘UJT:. We get

p(t) = —log((=1)" Q(ur, wr));

(2) if n is odd, then L,, C H"(X:;,C) and —(—i)" Q(us,uy) =
—H(ug,ug) = |ut|i_ = ¢ M) where p denotes the local weight
L

function of the fibre metric hy of Lig~. We get

p(t) = —log(—(—i)" Q(us, Ur))-

Now suppose that n is even. The curvature form of (L, h}) on a C-line
C-t in a small neighbourhood of 0 equals i0;0:p(t), which in turn equals:

_ 92 log((—4)" Q(us, u))
ot ot

*’l:atét log((—z)" Q(Ut,ﬂt)) = dt/\dt_,
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This means that for [0] = p(0/0t;—o), using the fact that % = 0 (since
uy varies holomorphically with t), we get:

Yo([6] [6])
B _32 log((—i)™ Q(uy, iir)) _ 9 (1) Q (e, %)
- ot Bf [t=0 N ot Q(Ut,ﬂt) |t=0
- (71)n+1 Q(%‘t:w %\t:o) B Q(%‘t:()?a()) ' Q(UO, %H:O)
B Q(uo, o) Q(uo, uo)?

Now recall that in the proof of Theorem 5.4 a key application of the 00
lemma enabled us to choose the representative 6 of the class |0] such that
d(0su) = 0. With this choice, if u := ug, in formula (5.9) we had v = cu

and
aut

Ot Ji=0
where ¢ € C is a constant, if we identify u; with (<I>t_1)*ut when @, : X; —
Xy (t € A) denote the C™ isomorphisms induced by the choice of 6 in [f].
Using this, the above formula for ~y([0], [0]) translates to

Y(16],16]) = (_1)n+1 Q(u, @) - Q(Ou, 0u) + |2 Qu, w)? — |¢|? Qu, u)?

=0.u+cu,

Q(u,u)?
= (—1)m+! Q(0u, 0_u) _ —H({HJU},{HJU}).
Qum T feuna

In the case when n is odd, the formula for ~vy([0], [0]) gets an extra (—1)
factor. The conclusion of these calculations is summed up in the following

LEMMA 5.8. — The Kéhler metric y defined on A by v := (10P)*(whg) >
0 when n is even and by v := (1o P)*(wgrg) > 0 when n is odd, is indepen-
dent of the choice of any metrics on (Xt)iea and is explicitly given by the
formula:

— fX (9t_lut) N (atJ’U,t) . —H({HtJut}, {et_IUt})

0], 16:]) = - T
Ve ([04], [0:]) in? fX w Ay 2 fx w Ny , 1fn is even,
—1 0 A (6 H
%qet]) [et]) _ (3 fXg mut) (_tJ’ut) _ ({OgJut}, {et_:_ut}) ) i is Odd,
i [ u A i [ wg A

for every t € A and every [0;] € HO'(X,, T"°X,).

In particular, we see that v;([0:], [0¢]) is independent of the choice of repre-
sentative 0, in the class [0;] € H*1(X;, T X;) such that 6;_u, is d-closed.
Since for every t € A, u, is unique up to a constant factor, «y is independent
of the choice of holomorphic family (ut)iea of Ji-holomorphic n-forms.
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Notice that " u; A @, > 0 at every point of X; for any non-vanishing
(n,0)-form wu;. On the other hand, it follows from Lemma 5.9 below that
H({0;aus}, {0;0us}) < 0 when n is even and that H ({0 us}, {6;0us}) >
0 when n is odd if a d-closed representative 6;.u; of the class [0;1u;] €
H"4Y(X,,C) € H"(X,C) can be chosen to be primitive. This reproves
that v:([0:],[0¢]) > 0 in this case (which does occur if primitivess is taken
w.r.t. a Kéhler metric).

5.4. Comparison of metrics on A

We shall now compare the Weil-Petersson metric wE/IQ,)P with the period-

map metric v on Ap,n-1). We need a general fact first.

Let X be a compact complex manifold (dim¢ X = n) equipped with a
Hermitian metric w and let x : A»~11 — A?~LI be the Hodge % oper-
ator defined by w on (n — 1,1)-forms. (Here A"~1! stands for the space
C211(X,C) of global smooth forms of bidegree (n —1,1) on X although
* acts even pointwise on forms.) Since x> = (—1)", % induces a decom-
position that is orthogonal for the L? scalar product defined by w on X
(cf. Section 5.1):

n—1,1 _ An—1,1 n—1,1
(5.14) AP = AT e AT

where Ai_l’l stand for the eigenspaces of x corresponding to the eigenvalues
+1 (if n is even), £ (if n is odd). On the other hand, the Hermitian metric
w induces the Lefschetz decomposition (cf. [30, Proposition 6.22, p. 147])
(5.15) AP = AP g (W A AR,

prim

which is again orthogonal for the L? scalar product defined by w on X,
where Agg;;l denotes the space of primitive (n — 1,1)-forms u (i.e. those
u € A"~ 11 for which w A u = 0 or, equivalently, Au = 0), while w A A?~2.0
denotes the space of forms w A v with v an arbitrary form of bidegree

(n—2,0).

LeEMMA 5.9. — The decompositions (5.14) and (5.15) coincide up to
order, i.e.

n—1,1 _ sAn—1,1 n—1,1 __ n—2,0 - :
AT =Apg, and AL =wAATTST ifn s even,

Aiﬁl’l _ A"*lvl and Aﬁfl’l =wAAN"20 ifn is odd.

prim
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Proof. — It suffices to prove the inclusions:

(A) Aot c APHY and (B) w AATT2O C AR if s even,

prim

(A) Aot c AP and (B) w AATT2O C AT i s odd.

prim

Let u € Agr_iél’l. Formula (4.25) gives xu = (—1)""+t1/2jn=24 —
V202 Tf n is even, n? +2n — 2 € 4Z — 2, hence " F202 = =2 = _1,
sou € A"V If nis odd, n? 4+ 2n — 2 € 4Z + 1, hence i" t27~2 = {50
u € Aiﬁl’l. This proves inclusions (A).

To prove inclusions (B), we first prove the following formula
(5.16) * (wAw) = "Dy Av for all v € A"~ 20,

Pick any v € A"~20, Then w Av € A"~ b1, For every u € A" 1!, we have

(5.17) /Xu/\*(w Av) = /){(u,w Av)dV, = ({(u,w Av)) = ((Au,v)).

On the other hand, the following formula holds

2
(5.18) wAu= % AAu  forall u € An~1L,

Indeed, w? AAu = [L% A]u = 2(n—n+2—1) Lu = 2wAu, where for the first
identity we have used the fact that L?u = 0 since L?u is of type (n+ 1,3),
while for the second identity we have used the standard formula (4.12) with
r=2and k =n.

Applying (5.18) on the top line below, for every u € A"~ 11 we get

/Xu/\(w/\v):/x(wAu)Av:/X(Z?/\Au)/\v
= /X (Au) A <°‘2’TAU) = 4n(n=2) /X (Au) A *D

(5.19) = un=2) / (Au, v)dV, = "= ((Au,v)),
X

where the last identity on the second line above has followed from the

formula

w?

*v = "2 ST vE A"20  (cf. (4.25) with (p,q) = (n—2,0)).
It is clear that the combination of (5.17) and (5.19) proves formula (5.16).

With (5.16) in place, inclusions (B) follow immediately. Indeed, if n is
even, n(n—2) € 4Z, hence i""~2) =1, so wAv € A" for all v € A2,
If n is odd, n(n —2) € 4Z — 1, hence i""2) = —i, so w A v € A" for
all v € A"=2.0, O
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For any 0 € Cg9 (X, T"°X), we denote by
(5.20) Oou=0u+wA

the decomposition of §_u € A"~ 1! induced by the Lefschetz decomposi-
tion (5.15). Thus 6’ Ju € Agr_ié]’l and ¢ € A2, By orthogonality we have

[102ul|* = 110" 2ul[* + [lw A ¢]|*. Now

[lw A CIIP = ((Aw A ), €)) = ([A, L] ¢, O)) = 2[[¢]P?,

since AC = 0 for bidegree reasons (hence [A,L]¢ = A(w A ) —w A AL =
Alw A ¢)) and [A, L] ¢ = 2¢ (by formula (4.12) with r =1 and k = n — 2).

THEOREM 5.10. — Let X be a compact balanced Calabi-Yau d0-man-
ifold of complex dimension n. Then the metrics GE,%,)P and 7 on the base
space Ap,n-1) of the local universal family of deformations of X that are co-
polarised by a given balanced class [w"™!] € H" 1" }Y(X,C) C
H?"~2(X,C) are given at every point t € Ayn-1] by the formulae (see
notation (5.20)):

0y sue| 2421161
5.21) G2 (0., [01]) = L=
( ) WP¢([ t],[ t]) in? fX N
107w = 2] G
in2 fX Us N\ dt

, [0 € HON( Xy, TV X ) (on-1y,

(5'22) ’Yt([etL [et]) ) [9,5] € HO?l(Xtv Tl’OXt)[w"*I]'

Here 0, is chosen in its class [0¢] such that 0; . is the wi-minimal d-closed
representative of the class [0y u;] € H"~5Y(X,,C) (where the w; € {w"~ 1}
are balanced metrics in the co-polarising balanced class given beforehand).

Proof. — We may assume that ¢ = 0. Formula (5.21) follows immediately
from (5.13) and from the above considerations. To get (5.22), notice that
Lemma 5.9 shows that if n is even, then 0.u = x(—60'_u + w A (), from
which we get

/X(eJu)Amz/X(eourmg)A(—*(9uu)+*(mg))
= —[|0"ul* + 2][¢|P?,

while if n is odd, then 6_u = *(—i 0’ Ju + iw A ¢), from which we get

/}((QJU)A(GJU):/}(<9JU+WA<)A(i*(e/JU)—i*(WAC))
= [0/ ul|* = 23 [[]1*.

Now (5.22) follows from these expressions and from Lemma 5.8. O
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COROLLARY 5.11. — For all [0;] € H*(X;, T"°X;)(,n-1)\ {0}, we have

(GE’?/)P = )e([04], [94) — 4[|

— >0, t € Apyn-1y,
inz fxtut/\ﬂt = [w 1]

hence the Hermitian metric w‘(,‘z/)P on Ap,n-1y defined by GE?V)P is bounded
below by the Kéhler metric .

It is now clear that the obstruction to the metrics wl(f,)P and v coinciding

on Apn-1j is the possible negative answer to Question 4.11 in the case of
balanced, non-Kéhler fibres. Indeed, if every class in H;r;rll’l(Xt, C) could

be represented by a form n;uu; that is both primitive and d-closed, we

would have, thanks to Lemma 5.9, that x(n;uu) = ¢ (nioug) with ¢ = —1
(if n is even), ¢ = —i (if n is odd). Hence, from Lemma 5.8, we would
get wi(f,)P = v as in the case of Kahler polarised deformations of [27] since

formula (5.13) can be re-written in the following obvious way:

B th (QtJut) A *(’f}tJUt)
B inz th ug N\ ﬂt

G2, (164, i)

6. Balanced holomorphic symplectic 99-manifolds
6.1. Primitive (1, 1)-classes on balanced manifolds

Let (X,w) be a compact, balanced manifold (dim¢ X = n). The balanced
class [w"~ 1] € H*~1"~1(X, C) enables one to define the notion of primitive
2-classes on X in the same way as in the standard Kéahler case. Indeed, at
the level of Dolbeault cohomology, the linear operator

6.1) L '. gY(X,C) — H"™(X,C)~C, [o]+— [Ww" ' Aq],

is well defined bec?use, thanks to the balar_lced assumption on w, 5(w"_’1 A
@) = 0 whenever da = 0 and Wt Ao = 9wt A B) whenever a = 903 is
0-exact. We can then call primitive those classes that are in the kernel of
L=t e

(6.2) HYL (X,C) = {[o] € H"Y(X,C); w" ' Aavis  — exact}.

prim
Analogous definitions can be made for De Rham 2-classes and Dolbeault
(2,0) and (0, 2)-classes, but all (2,0) and (0, 2)-classes are primitive for triv-
ial bidegree reasons. Thus, if the d0-lemma is supposed to hold on X, the
Hodge decomposition H?(X,C) = H*%(X,C) ® H"(X,C) ® H*?(X,C)
shows that only the H%!(X,C) component supports a nontrivial notion
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of primitivity. Notice that for k£ > 2, there is no corresponding notion of
primitive k-classes if w is only balanced since w™ **! is not closed unless
w is Kahler. It had to be replaced in bidegree (n — 1,1) by the ad-hoc
Definition 4.9 using the Calabi—Yau isomorphism when Ky was assumed

to be trivial.

LEMMA 6.1. — Let (X,w) be a compact, balanced manifold (dim¢ X =
n). Then a class [o] € HYY(X,C) is primitive if and only if it can be
represented by a primitive form.

Proof. — By the standard definition (applicable to any Hermitian met-
ric w), a (1,1)-form « is primitive if w"1 A o = 0. It is thus obvious
that any class representable by a primitive form is primitive. To see the
converse, pick any class [a] € H;;ilm(X ,C) and any representative a. We
have to prove the existence of a (1,0)-form u such that the representative
a4+ du of [a] is primitive. This amounts to w™ ' A (a + du) = 0, which is
equivalent to O(w" ' Au) = —w" ! A« thanks to the balanced assumption
Ow™ ' = 0. Now, w" ! Aa is d-exact by the primitivity assumption on the
class [a]. Pick any w € C5%,_1(X,C) such that ow = —w" ' A a. Tt thus
suffices to prove the existence of a (1,0)-form u such that w™ ' A u = w.
The linear operator

(6.3) L1 CR(X,C) — O, (X, C), w WA,

n,n—1
is an isomorphism (for any Hermitian metric w), so there is a unique (1, 0)-
form u such that w” ' Au = w. O
The primitive representative of a primitive class [a] € H>!(X, C) need
not be unique, but we can single out a particular one that is uniquely
determined by the metric w in the given primitive class in the following
way.

CHOICE OF A PRIMITIVE REPRESENTATIVE (x). — Given a primitive
(1,1)-class, let o be its Al'-harmonic representative. Then choose w €

> (X, C) to be the solution of minimal L?-norm (w.r.t. w) of the equa-
tion Ow = —w" ! A . Since the map (6.3) is an isomorphism, the (1,0)-
form u such that w"~ ' Au = w is uniquely determined by w. Since the
above choices of a and w make them unique, the primitive representative
« + du of the primitive class [a] is uniquely determined in this way by w
and [a] € H;iilm(Xv C).

When w is Kéhler, the A’ -harmonic representative a of a primitive class
is a primitive form, a standard fact that follows from A" and L,, commuting

(as can be easily seen from the Kihler identities). Thus w™ 1 A a = 0,
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hence w = 0 is the minimal L?-norm solution of equation dw = —w™ A
Consequently, v = 0 and o 4+ du = «, showing that our choice (%) of
primitive representative coincides with the standard A!-harmonic choice
when w is Kéhler. However, when w is only balanced, it is not clear whether
the A!-harmonic representative of a primitive class is a primitive form.
This accounts for the need of introducing the choice (x).

6.2. Co-polarised deformations of holomorphic symplectic
manifolds

Let (X,w) be a compact, balanced dd-manifold (dimc X = n). Suppose
there exists a C> d-closed (2,0)-form o that is non-degenerate at every
point of X and that such a o is unique up to a nonzero constant factor.
Thus H?°(X,C) ~ C and o defines a holomorphic symplectic structure on
X. The form o naturally identifies with the class [0] € H?°(X, C).

It follows from the dd-assumption on X that o is actually d-closed by the
following observation which is standard when X is Kéhler (and probably
also under the weaker aé—assumption). The standard Kahler-case proof,
using the Laplacian equality A’ = A”, no longer holds in the dd-case for
which we spell out the argument below for the sake of completeness.

LEMMA 6.2. — Every holomorphic p-form is d-closed on any compact
complex 00-manifold X for any 0 < p < n = dim¢ X.

Proof. — Fix any p and let o € C5%(X,C) be O-closed. To show that
da = 0, it suffices to show that da = 0. Now, da is d-closed since « is, while
9 and 0 anti-commute. Thus o is a d-closed, d-exact form of pure type
(p+1,0). By the 90-lemma, da must be dd-exact, i.e. da = IS for some
(p, —1)-form B. Since 5 must vanish for type reasons, da vanishes. O

We are now ready to connect the primitive (1,1)-cohomology to the
parameter space of co-polarised deformations defined by a balanced class
via the natural isomorphism associated with the holomorphic symplectic
structure.

LEMMA 6.3. — Let X be a compact complex manifold (dim¢ X = n)
admitting a holomorphic symplectic structure o that is unique up to a
constant factor.

(1) The linear map defined by o as
(6.4) T, : C33(X,THX) =5 C9(X,C), 6+ T,(0) := 6o,
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is an isomorphism satisfying the following properties:
(6.5) T,(kerd) =kerd  and  T,(Imd) = Ima.

Consequently, T, induces an isomorphism in cohomology
(6.6) Ty HOY(X, T2 X) 29 g(x, ©)

defined by Tiy([0]) = [0o0] for all [f] € H*'(X, T X).

(2) If w is a balanced metric on X, then the image under Tj,) of the
subspace HO' (X, T X)) n-1) C H*Y(X, T"0X) defined in (4.3) is
the subspace H':\ (X,C) ¢ H“'(X,C) of primitive (1,1)-classes

prim
defined in (6.2), i.e.
(6.7) Tiy + HOMNX, TOX ) gn-1) — Hpji (X, C).

Proof. — It is clear that T, is an isomorphism. As in the proof of
Lemma 3.3, the rest of (1) follows from the easy-to-check formulae

B(60.0) = (96) .0 + 0.(9o) = (96) o,
d(€.0) = (0€) a0 — £4(D0) = (0€) 10
for all 0 € C5 (X, TH°X) and all £ € C>(X,T"°X) which readily imply

the inclusions T, (ker ) C ker d and T, (Im d) C Tm 0.
Let us prove, for example, the identity Im @ = T, (Im d). This amounts

(6.8)

to proving that 6 is 0-exact if and only if #_0 is d-exact. Having fixed local

holomorphic coordinates z1, ..., z, on some open subset U C X, let
0
_ a B8 _ « )
0= zﬁ 9[3 P dz” and o= 25 Oa,sdz® Ndz2°,
b ai

where the coefficients o, s are holomorphic functions (since ¢ is holomor-
phic) and the matrix (0q,5)a,s is invertible at every point since o is non-
degenerate at_ every point. Then 6.0 = Zaﬁ,é Hg (Cas — nga)diﬂ AdZ0.
Thus 6.0 is O-exact if and only if there exists a (1,0)-form v = > ; vsdz®
such that .0 = Ov, which amounts to
ov
> 05 (as —0sa)dz” Ad =7 S5dz" A de?
B, 58 0%

P 81}5
s ZGB (O’a,é — O'(;,Oé) = ﬁ

for all 3,6. The last identity is equivalent to 05 = s ggg (0% — g™9) =
a%(zé(oé’a — 09 vs) for all a, B, where the matrix (0%%), s is the in-
verse of (04,5)a,s- (We have used the fact that the o%*’s are holomor-
phic functions since the o, 4’s are.) This, in turn, is equivalent to 6 =
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I, (505 =) v5) 8%), i.e. to @ being 0-exact. We have thus proved
that 0_0 is O-exact if and only if 6 is 0-exact, i.e. the latter identity in (6.5).
The remaining inclusion in the former identity of (6.5) is proved in a
similar way.
The proof of (2) will run in two steps. First we prove the inclusion

(6.9) Tt (H*M(X, T"OX ) (yn-1)) € Hophh (X, C),

prim
which amounts to proving that for every class [] € H%'(X,T*°X) for
which 6w~ ! is d-exact, W' A (Auo) is also D-exact. Now, we always
have
0=0,w"" Ao)= (0w Ao +uw" 1 A(0a0),
where the first identity follows from the fact that w™ ! A o is of type
(n+1,n — 1), hence vanishes. Thus

(O™ Y ANo=—w"" P A (Aao) forall € Coa (X, TYX).

Now, if #_w™ ! is supposed to be 0-exact, then (A_w” ') A o is d-exact,
too, since o is 0-closed. Hence w™ ! A (o) is 0-exact whenever 6_w™ lis,
proving the inclusion (6.9).

Since T, is injective by (1), it suffices to prove the dimension equality

(6.10) dim HON(X, T X) (-1 = dim H_;} (X, C)

prim

to be able to conclude that the inclusion (6.9) is actually an identity.
By definition (6.2), we have

Hyt (X,C) =ker (L' : HY(X,C) — H™(X,C) ~ C).

prim
The linear map (6.1) cannot vanish identically, so it is surjective. Hence

(6.11) dim HY! (X,C) = p'' —1,

prim

where h!! := dim HV!(X,C). Meanwhile, definition (4.3) translates to

HN X, T X ) n1]

Tlon—1)

= ker <H0»1(X,T1»°X) >[0] =" e H (X, (C)),

while H"=2"(X,C) ~ H?%(X,C) ~ C by Serre duality and the unique-
ness (up to a constant factor) assumption on the holomorphic symplectic
structure [o] € H*?(X,C). It is clear that the linear map Tj,»-1) does not
vanish identically, so it must be surjective. Thus we get

(6.12) dim H"'(X,T"°X)(yn-1) = dim H*'(X,T"°X) =1 =n"" -1,
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where the last identity follows from the isomorphism (6.6) dealt with un-
der (1). It is now clear that the dimension equality (6.10) is a consequence
of the combined identities (6.11) and (6.12). The proof is complete. O

The use of the isomorphism 7}, in (6.6) in the holomorphic symplectic
case may be an alternative to the use of the isomorphism 7j,) in (3.7) of
the more general Calabi—Yau case while running the construction of the
Weil-Petersson metrics of Section 5.

7. Appendix

We start by briefly recalling Wu’s argument in [31] proving the defor-
mation openness of the simultaneous occurence of the 99 and balanced
properties (and even more).

THEOREM 7.1 (C.-C. Wu [31]). — Let (X¢)tea be a holomorphic family
of compact complex manifolds.

If the fibre X is a balanced d0-manifold, the fibre X, is again a balanced
d0-manifold for every t € A sufficiently close to 0.

Moreover, every balanced metric wy on Xy deforms to a family of bal-
anced metrics wy on Xy varying in a C* way with t for t in a small enough
neighbourhood of 0.

Proof. — We reproduce Wu’s arguments in a slightly different notation.
Let (v¢)tea be an arbitrary C*° family of Hermitian metrics on the fibres
(Xt)tea. If Apc(t) denotes the Bott—Chern Laplacian (cf. [19]) induced by
the metric ¢, the following 3-space orthogonal decomposition is well-known
(see e.g. [25] or [24] for some background) in every bidegree (p, q):

(7.1)  C2 (X, C) =ker Apc(t) ® Im(9,0;) ® (Imd; +Im 9}), te€ A,

where ker 8; N ker 9; = ker Apc(t) ® Im(ﬁtét). Letting F; stand for the or-
thogonal projection w.r.t. the L%t inner product onto ker Ag¢(t) and letting
Ap¢(t) stand for the Green operator of the elliptic operator Apc(t), every
form a; € G5, (X, C) splits uniquely as a; = Fray + ABc(t)Ag,é(t)at.
Moreover, if a; € ker 9; N ker 0, this splitting reduces to

oy = FtOét =+ 3t5t(6t5t)*A§é(t) Q.

(See Wu’s original argument or the later Theorem 4.1 in [24].)
Let wg be a balanced nﬂletric on Xg and n the corflplexidimension of X;.
Then wgfl € ker 9gpNker gy, SO wgfl = Fy wg*1+aoao(aoao)*A;C(o) wgfl.
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Extend wp in an arbitrary way to Hermitian metrics &; varying in a C'*°
way with ¢ on the nearby fibres X; such that wy = wp. Put

Q= Re(F, 0] + 8,01(0,0,)* A e (@™ Y),  tE€A.

By construction, every §2; is a C*°, real, Ji-type (n — 1,n — 1)-form on X;
such that d€; = 0 for every t. Moreover, £y = wgfl

Now, since X is a d9-manifold, the fibres X, are again 0d-manifolds
for every t close to 0 by Wu’s first main result in [31] and the dimensions
h?4(t) of the Bott—Chern cohomology spaces H%A(t) are independent of ¢
close to 0 by Wu’s main technical preliminary result. Thanks to the Hodge
isomorphism HP%A(t) ~ ker Agc(t) and to the classical Kodaira—Spencer
theory for smooth families of elliptic operators, this implies that the op-
erators F; and Agc(t)~! vary in a C> way with t. Therefore, the real
differential forms €; vary in a C*° way with t. Since Q¢ = w371 > 0, we
get by continuity that Q; > 0 for every ¢ sufficiently close to 0.

Taking the (unique) (n — 1)** root w; > 0 of Q; > 0 for ¢ close to 0, we
get a C'* family of balanced metrics w; on the fibres X; whose element
corresponding to ¢ = 0 coincides with the original wy. O

We can now prove the following observation that was used in the paper.
While independent of the above approach of Wu, the proof uses similar
techniques and, in particular, reproves Theorem 7.1.

OBSERVATION 7.2. — Let (X;)tea be a holomorphic family of n-dimen-
sional compact complex manifolds such that the fibre X, is a balanced
00-manifold. We denote by X the differentiable manifold underlying the
fibres X; (after possibly shrinking A about 0.)

Let wgy be a balanced metric on Xy and suppose that the De Rham class
{wy™ Y pr € HE3(X, C) is of type (n—1,n—1) for the complex structure
Jy of X for all t close to zero and lying on a path through 0 in A.

Then, the De Rham class {w()’_l} pr contains a Ji-balanced metric for
every t as above sufficiently close to 0.

Proof. — Since X, is a 09-manifold for every t close to 0, there are
canonical isomorphisms H3E (X, C) ~ HY(X,,C) (for every (p,q)) and

HE2(X,C) = HES (X, C) @ Hip "1 (Xy, C) & Hpe”™ (X4, C)
~ HY" (X, C)@ Hy 2" (X, C) @ H >™(X,,C).

Now, let wl™t = QP2 4 Q! ""1 4 Q'™ be the splitting of wf ™
into components of pure Ji-types. In particular, Q?fl’nfl is a real Jy-type
(n —1,n — 1)-form that varies in a C*® way with ¢ and is positive definite
for every t sufficiently close to 0 since Q""" = wi~! > 0.
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Meanwhile, since dwf ™' = 0, it is easy to see (cf. e.g. [24]) that
9,8, """ = 0 and that the Aeppli cohomology class [Q) """ '] 4 is the
image of {wy '}pr under the projection Hpy?*(X,C) —
H% "X, C) defined by the latter cohomology splitting above.

To construct the image of [Q} """ '4 € HY " Y(X;,C) in
Hp "1 (X;,C) under the canonical isomorphism H; """ '(X;,C) =~
Hgal’"_l(Xt,(C), we can proceed as in [24] and look for the “most eco-
nomic choice” of a Ji-(n —2,n — 1)-form wu; and a Ji-(n — 1,n — 2)-form v,
such that the following Ji-(n — 1,n — 1)-form

5?7171171 = Q?il’nil + atut + étvt

is d-closed. This amounts to 9;0,u; = (79,5(2?71’"71 and 0,0,v;, =
—atQ;“l’”fl. If we choose v; := w4, the latter equation becomes redun-
dant, while the minimal L?Yt—norm solution of the former equation (which
is solvable since X; is a 85—manif01d) is given by the following Neumann-
type formula (see [31] or [24]):

U = (atét)*Aglc(t)étQ?—L"—l7 te A,

after possibly shrinking A about 0 to ensure that X; is a 09-manifold. (As
usual, we have fixed an arbitrary C*° family (v;):ca of Hermitian metrics
on the fibres (X¢)ten.)

Then, for all ¢ close to 0, we get

QT = QT 1 00,00 A (),
+ 9:(3:0:)* AL ()2~

When t = 0, 8ydpug = 5098_1’"_1 = Jowj ' = 0 (the last identity being
a consequence of wy being balanced), so the minimal L?-norm solution of
this equation is ug = 0. Note that ug, hence also QF "' depends in a
C*> way on t for the same reason as in Wu’s proof of Theorem 7.1: the
dd-assumption implies the invariance w.r.t. ¢ of the Bott—Chern numbers
R (t), which implies the smooth dependence on ¢ of AL%(t).

We have thus constructed a C*° family of real d-closed Ji-(n —1,n — 1)-
forms Q7 """ such that Q) ""' = w2~ > 0. By continuity, we must
Qb1 > 0, hence
t close to 0. (In particular, this gives another proof of Wu’s Theorem 7.1.)

Moreover, [ """ g is the image in Hpg™ (X, C) of [QF 1714
under the canonical isomorphism H} """ '(X;,C) — Hpg"" '(X;,C).
Since [ ""7']4 is the image of {wl '}pr under the canonical projec-
tion of H2=2(X,C) onto H ""~!(X,,C), we infer that [Q """ '|5¢ is

aon—1n—1
Qt

have defines a balanced metric on X, for all
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the image in Hpy,"™ " (Xt, C) of {w ™} pr under the canonical projection

of HE%(X,C) onto Hpy,"™ (X, C). Meanwhile, if the class {w '} pg €
Hfﬁ% 2(X,C) is supposed to be of Ji-type (n —1,n — 1), it coincides with
its projection [ """ z¢ (after the obvious canonical identification of
Hp "X, C) with its image in Haw ?(X,C)). This means that
{wi Y pr = {2 pg for all ¢ sufficiently close to 0 and lying on
the path through 0 in A along which {w{ '}pr is assumed to be of J;-
type (n — 1,n — 1). Thus, the class {w) '} pr contains the Ji-balanced
metric Q71" for all these t's. O

The other issue dealt with in this appendix is the following computation.

Proof of Lemma 4.3. — Fix an arbitrary point g € X and let z1, ..., z,
be local holomorphic coordinates about xg. If we denote

W= N apdza AdZy and E= ) ¢ %,
a,f J J

asdza//-\\délg ::dzl/\~-~/\(Iz:/\~-~/\dzn/\dil/\---/\gé\g/\---/\dén,We
get

é-—lwn—l _ ,L"n—l Z(_l)]_l fj’Vaﬁ (dzj /\EZQ\/\ déﬁ)

j<a
+qnt Z ffyaﬁ dza /\dzj /\dzﬁ)
jSa
=" (1) Evap + (<) aryp) (d2y Adza AdEp),
B
JjLla

where we have used the notation

(dz; A dze A dZg)
=dzy A Adz A Adzg A Adzg AdEL A= AdZg A+ AdZ,.

Hence, by applying 0, we get

(72) D€ty = in 12 )i 1{ 1yt Do %B
]<a
0 0&, —
+(_) fj aﬁ"’( ) ga ’Y]B ( 1) E o= ViB de/\dZa.

8z 0zg 073
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Similar calculations yield
(7.3) (9€)w™ !
non— COE; o 080 —
=(=1" ! Z(—l)ﬂ < 1)’ 6_J Yap — (—1)< B %5) dz; A dzq,
j<a

showing that (9¢)_w™ ! equals the sum of the second and fourth groups of
terms in the expression (7.2) for (9¢)_w™ 1. On the other hand, we get

op 0Z3
leading to
546%”‘1
07
_ n -n—1 j+B 1 aﬁ dz /\d
2GS a
j<a
n:n— j 87(1 3
D™ 1 Z(_l)JJrﬁ&j?; dzq A dz;
j>a
(1t S~ D08 (1), D) 45 A
J 0z 0Z3 J

j<a
Thus £,0w”™ ! equals the sum multiplied by (—1) of the first and third
groups of terms in the expression (7.2) for d(¢€_w" ). Combining with (7.2)
and (7.3), we get the identity claimed in (1). Similar calculations
prove (2). O

BIBLIOGRAPHY

[1] L. ALESSANDRINI & G. BASSANELLI, “Small Deformations of a Class of Compact
Non-Kéhler Manifolds”, Proc. Am. Math. Soc. 109 (1990), no. 4, p. 1059-1062.

, “Metric Properties of Manifolds Bimeromorphic to Compact Ké&hler

Spaces”, J. Differ. Geom. 37 (1993), p. 95-121.

, “Modifications of Compact Balanced Manifolds”, C. R. Math. Acad. Sci.

Paris 320 (1995), no. 12, p. 1517-1522.

, “The class of Compact Balanced Manifolds Is Invariant under Modifica-
tions”, in Complex Analysis and Geometry (Trento, 1993), Lecture Notes in Pure
and Applied Mathematics, vol. 173, Marcel Dekker, 1996, p. 1-17.

[5] F. CAMPANA, “The Class C Is Not Stable by Small Deformations”, Math. Ann. 290
(1991), p. 19-30.

, “On Twistor Spaces of the Class C”, J. Differ. Geom. 33 (1991), p. 541-549.

2]
[3]
[4]

[6]

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF BALANCED C-Y 88-MANIFOLDS 727

(7] , “Remarques sur les groupes de Kéhler nilpotents”, Ann. Sci. Ec. Norm.

Supér. 28 (1995), no. 3, p. 307-316.

, “Orbifolds, Special Varieties and Classification Theory”, Ann. Inst. Fourier
54 (2004), no. 3, p. 499-630.

I. CHIOSE, “Obstructions to the Existence of Kéhler Structures on Compact Com-
plex Manifolds”, Proc. Am. Math. Soc. 142 (2014), no. 10, p. 3561-3568.

[10] P. DELIGNE, P. GRIFFITHS, J. MORGAN & D. SULLIVAN, “Real Homotopy Theory
of Kéhler Manifolds”, Invent. Math. 29 (1975), p. 245-274.

[11] J.-P. DEeMAILLY, “Complex Analytic and Algebraic Geometry”, http://
www-fourier.ujf-grenoble.fr/~demailly/books.html.

[12] A. FiNo, A. OTAL & L. UGARTE, “Six Dimensional Solvmanifolds with Holomorphi-
cally Trivial Canonical Bundle”, Int. Math. Res. Not. 2015 (2015), no. 24, p. 13757-
13799.

[13] R. FRIEDMAN, “dd-Lemma for General Clemens Manifolds”, https://arxiv.org/
abs/1708.00828v1, 2017.

[14] J. Fu, J. L1 & S.-T. YAu, “Balanced Metrics on Non-Kéhler Calabi-Yau Three-
folds”, J. Differ. Geom. 90 (2012), no. 1, p. 81-129.

[15] P. GAUDUCHON, “Fibrés hermitiens & endomorphisme de Ricci non négatif”, Bull.
Soc. Math. Fr. 105 (1977), p. 113-140.

, “Structures de Weyl et théorémes d’annulation sur une variété conforme
autoduale”, Ann. Sc. Norm. Super. Pisa, CI. Sci. 18 (1991), no. 4, p. 563-629.

[17] H. Kasuya, “Techniques of Computations of Dolbeault Cohomology of Solvmani-
folds”, Math. Z. 273 (2013), no. 1-2, p. 437-447.

[18] S. KoBayasHI & H.-H. Wu, “On Holomorphic Sections of Certain Hermitian Vector
Bundles”, Math. Ann. 189 (1970), p. 1-4.

[19] K. KopaIlrA & D. C. SPENCER, “On Deformations of Complex Analytic Structures,
ITI. Stability Theorems for Complex Structures”, Ann. Math. 71 (1960), no. 1,
p. 43-76.

[20] M. KURANISHI, “On the Locally Complete Families of Complex Analytic Struc-
tures”, Ann. Math. 75 (1962), no. 3, p. 536-577.

[21] C. LEBRUN & Y.-S. PooN, “Twistors, Kéhler Manifolds, and Bimeromorphic Ge-
ometry. I1”, J. Am. Math. Soc. 5 (1992), no. 2, p. 317-325.

[22] M.-L. MICHELSOHN, “On the Existence of Special Metrics in Complex Geometry”,
Acta Math. 149 (1982), no. 3-4, p. 261-295.

[23] D. Poprovicl, “Deformation Openness and Closedness of Various Classes of Compact
Complex Manifolds; Examples”, Ann. Sc. Norm. Super. Pisa, CI. Sci. 13 (2014),
no. 2, p. 255-305.

, “Aeppli Cohomology Classes Associated with Gauduchon Metrics on Com-
pact Complex Manifolds”, Bull. Soc. Math. Fr. 143 (2015), no. 4, p. 1-37.

[25] M. SCHWEITZER, “Autour de la cohomologie de Bott-Chern”, https://arxiv.org/
abs/0709.3528v1, 2007.

[26] G. SZEKELYHIDI, V. TOSATTI & B. WEINKOVE, “Gauduchon Metrics with Prescribed
Volume Form”, Acta Math. 219 (2017), no. 1, p. 181-211.

[27] G. TIAN, “Smoothness of the Universal Deformation Space of Compact Calabi-
Yau Manifolds and Its Petersson-Weil Metric”, in Mathematical Aspects of String
Theory (San Diego, 1986), Advanced Series in Mathematical Physics, vol. 1, World
Scientific, 1987, p. 629-646.

[28] A. N. ToDOROV, “The Weil-Petersson Geometry of the Moduli Space of SU(n > 3)
(Calabi-Yau) Manifolds I”, Commun. Math. Phys. 126 (1989), p. 325-346.

(8]

[0

(16]

[24]

TOME 69 (2019), FASCICULE 2


http://www-fourier.ujf-grenoble.fr/~demailly/books.html
http://www-fourier.ujf-grenoble.fr/~demailly/books.html
https://arxiv.org/abs/1708.00828v1
https://arxiv.org/abs/1708.00828v1
https://arxiv.org/abs/0709.3528v1
https://arxiv.org/abs/0709.3528v1

728 Dan POPOVICI

[29] V. TosATTI & B. WEINKOVE, “Hermitian Metrics, (n — 1,n — 1)-forms and Monge-
Ampere Equations”, https://arxiv.org/abs/1310.6326, to appear in J. Reine
Angew. Math., 2013.

[30] C. VoisiN, Hodge Theory and Complex Algebraic Geometry. I., Cambridge Studies
in Advanced Mathematics, vol. 76, Cambridge University Press, 2002.

[31] C.-C. Wu, “On the Geometry of Superstrings with Torsion”, PhD Thesis, Harvard
University (USA), 2006.

[32] K. YosHIOKA, “Moduli Spaces of Stable Sheaves on Abelian Surfaces”, Math. Ann.
321 (2001), p. 817-884.

Manuscrit regu le 14 septembre 2017,
révisé le 6 février 2018,
accepté le 13 mars 2018.

Dan POPOVICI

Institut de Mathématiques de Toulouse
Université Paul Sabatier

118 route de Narbonne

31062 Toulouse Cedex 9 (France)

popovici@math.univ-toulouse.fr

ANNALES DE L’INSTITUT FOURIER


https://arxiv.org/abs/1310.6326
mailto:popovici@math.univ-toulouse.fr

	1. Introduction
	2. Preliminaries
	2.1. Examples of non-Kähler, balanced Calabi–Yau partial bar partial-manifolds
	2.2. The balanced Ricci-flat Bochner principle

	3. The Bogomolov–Tian–Todorov theorem for Calabi–Yau partial bar partial-manifolds
	4. Co-polarised deformations of balanced Calabi–Yau partial bar partial-manifolds
	4.1. Definitions
	4.2. Comparison to polarisations of the Kähler case
	4.3. Primitive (n-1, 1)-classes on balanced manifolds

	5. Period map and Weil–Petersson metrics
	5.1. Period domain and the local Torelli theorem
	5.2. Weil–Petersson metrics on Delta
	5.3. Metric on Delta induced by the period map
	5.4. Comparison of metrics on Delta

	6. Balanced holomorphic symplectic partial bar partial-manifolds
	6.1. Primitive (1, 1)-classes on balanced manifolds
	6.2. Co-polarised deformations of holomorphic symplectic manifolds

	7. Appendix
	Bibliography

