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1 Introduction and the main result 

We say that a map F from a complex manifold E to cq is a proper holomorphic 
embedding of  E into cq if it is a holomorphic immersion which is one to one 
and such that the preimage of every compact set is compact. If  F:  E ~ C q 
is a proper holomorphic embedding then F ( E )  is a closed submanifold of  
C q . 

By a theorem of Remmert-Narasimhan-Bishop [Re, Na, Bi] for every p-  
dimensional Stein manifold E there is a proper holomorphic embedding of  E 
into C q where q = 2p  + 1. Forster [Fo] showed that one can take q = 2p if 
p > 2. Recently Eliashberg and Gromov [EG] proved that one can take any 
q > (3p  + 1)/2 and showed that this is sharp for even p. 

In the case p = 1 the question remains open: Given an open Riemann 
surface E does there exist a proper holomorphic embedding of E into C2? 
Trying to answer this question it is natural to begin with planar domains, i.e. 
open connected subsets of  C. Very few results are known and even in the 
simplest cases the construction of such an embedding is not easy. Kasahara 
and Nishino [KN, St] used a technique involving the Fatou-Bieberbach map 
from C 2 to C 2 to prove that the unit disc can be properly holomorphically 
embedded into C 2. Their method can be used to prove that for each M E ,W" 
there is an M-connected domain in C which can be properly holomorphically 
embedded into C 2. Laufer [La] showed that every annulus can be properly 
holomorphically embedded into C 2. Alexander [AI] used elliptic modular func- 
tions to construct such an embedding of  the punctured disc into C 2 which, 
after a slight modification, becomes a proper holomorphic embedding of  the 
unit disc into C 2. 

Our main result is the following 
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Theorem 1,1 Every bounded, finitely connected domain D C C without 
isolated points in the boundary can be properly holomorphically embedded 
into C 2. 

Given M we shall start out by finding a large class of  M-connected domains 
which can be properly holomorphically embedded into C 2. Then we shall show 
that every M-connected domain as in the theorem is conformaily equivalent to 
one of these embeddable domains which will imply our theorem. 

2 A metric on the space of M-connected domains bounded 
by Jordan curves 

We denote by d the open unit disc in C and b_y r the Riemann sphere. With no 
loss of generality we work with domains in C which contain oo. Fix M E JV, 
the connectivity of the domains to be studied. For our purposes it will suffice 
to consider domains whose boundaries consist of  M pairwise disjoint Jordan 
curves contained in C, i.e. domains of the form fl = (~\l..J~l L3i where for 
each j, Dj is a bounded domain in C whose boundary is a Jordan curve Jj and 
where D~ N Dj = 0 for i 4~j. Thus such a domain is uniquely determined by 
an M-tuple J = ( J I  . . . . .  JM) of Jordan curves as above and any permutation of 
curves "11 will produce the same domain which we call the domain bounded 
by J. For our purposes, rather than with domains we prefer to work with M- 
tuples (Jl . . . . .  JM) of  Jordan curves as above. Obviously, such an M-tuple can 
be identified with the domain it determines together with an enumeration of its 
boundary curves. If all curves Jj above are circles then f2 is called a circular 
domain. Again, an M-connected circular domain together with an enumeration 
of its boundary components can be identified with an M-tuple of the form 
((al,rl) . . . . .  (aM,rM)) where for each j ,  1 ~_ j ~ M, aj ~ C is the center and 
rj > 0 is the radius of the j ' t h  bounding circle. The obvious condition to be 
satisfied is 

r t + r  3 < la~-a/I ( i~ j ,  1 < i,j < M ) .  (2,1) 

We denote by ,,r the set of all M-tuples of Jordan curves as above and by 
JC'u the set of all M-tuples ((al,rl) . . . . .  (a~,rM)) satisfying (2.1). 

Clearly d / u  inherits a metric from (C x R) M. To define a metric on ,,r 
we first define the distance between two Jordan curves ,/1 and J2 in C. Let 
H(JI, J2) be the set of  all homeomorphisms from dt to ,/2. Define 

P(JL,Jz) = inf max Iq~(z) - z I 

and ifJ = (Jl ..... J~), J' = (J( ..... J~) belong to ,~M define 

d(J,.,") = max p ( 4 , ~ ' ) -  
l ~ij :ibf 

It is easy to see that d is a metric on JM.  Without a possibility of confusion 
we identify ((al ,  r�91 ) . . . . .  (aM, rM)) C ~ with ({( C C:lff - at l = rl } . . . . .  {( 
C: 1s - aul  = rM}) C JM.  
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3 The idea of the proof 

To explain the first part of  the proof suppose that we want to get a holomorphic 
embedding of  A into C 2 in a constructive way, that is, to begin with an injective 
immersion and then, in an inductive process, push the values near bA out to 
get the desired embedding in the limit. Here is a way to do this: 

Let {Tn} be a sequence of  positive real numbers and let {Am} be a sequence 
of  positive integers. The maps 

Fl(~) = (Tl~,0) 

F2(~) = (TIC, r2~ N2) 
F3(~) = (Tl~ + T3(~N2 ) N3, T2~ N2 ) 

F4(~) = (Tl~ + T3( ~N2 )N3, T2~ N2 
\ 

+ r4 (~N~)N3 + 

are injective immersions of  ,~ to C 2. As we see we keep adding functions of  
the form Tkq~ Nk where I~0kl approximately equals 1 on hA. We will choose 
our constants Tk so that they will converge to infinity since we want our 
functions Fk to get larger and larger on the boundary and thus achieve that 
the limit of  Fk blows up when we approach the boundary. Since [q~k[ are not 

exactly equal to 1 on bA we loose control over [q~fk[ on bA when Nk have 
to become larger and larger i f  we want to achieve uniform convergence of  

Fk on compact sets. To get good control over [q~41 we would need I~okl = 
1 on bA. As this is not the case we pass from A = 120 to the domain Ok 
bounded by {~ E C: [~ok(~)l = 1} which, provided that the sequences {Tk} and 
{Nk} converge to infinity fast enough, is a small perturbation of A. In fact, 
each I2k is a small perturbation of g2k-~ and, if  we choose the sequences 
{Tk} and {Ark)_ carefully, the domain f2 = limf2k is, by the Riemann mapping 
theorem, con~rr~ally equivalent to A, and the functions Fk converge, uniformly 
on compact subsets of O, to a proper holomorphic embedding of I2 into C 2. 
So if  co: A ~ O is a conformal map then F o 09 is the desired holomorphic 
embedding of  A into C 2. 

In the ease of  multiply connected domains we begin by a circular domain 
120, that is, with u E .AgM and perform a similar procedure. Again, i f  done 
carefully, the process will produce a holomorphic embedding of  I2 = lim Ok, 
a domain bounded by M Jordan curves, into C 2. Now, in general 12 will not 
be conformally equivalent to 120 and we will have to use additional arguments 
to prove that I20 embeds holomorphically into C 2. Starting with u E Jt'M we 
shall denote by 09re(u) E ] M  the result of such a process where each m E JV" 
denotes a different choice of  sequences {Tk} and {Ark}. The first part of  our 
proof will consist of  proving 
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Lemma 3.1 Let M E ,IV. Given uo E ,IIM there are a neiahbourhood U c ,4tM 
of  uo and a sequence of  continuous maps On:U --~ JM such that 

as n ~ cr O.(u) E JM converges to u E .r162 C JM, uniformly on U ,  
(3.1) 

and such that for every n E ,/ff and u E U the domain bounded by On(U ) 
can be properly holomorphically embedded into C 2. 

The second part of the proof depends on a different circle of ideas, the ones 
related to the "continuity method" of Koebe and to the convergence theorem 
for conformal maps of variable domains. One proves that to prove Theorem 
1.1 it is enough to prove the existence of holomorphic embeddings for the 
domains in Lemma 3.1: 

Lemma 3,2 Let M E ~:  and let U C ,,tlM be a neighbourhood of  ((at , r l ) ,  
. . . .  (aM,rM)) E.,KM. Let D =  c \ u ~ t ( a j + r j A ) .  Suppose that there is 
a sequence of  continuous maps t~n: U --* JM satisfying (3.1). Then there 
are v E X and ~ E U such that D is conformally equivalent to the domain 
bounded by Ov(t~). 

That Theorem 1.1 now follows from Lemmas 3.1 and 3.2 is a consequence 
of the fact that every N-connected domain D C t~, r E D, without isolated 
points in the boundary, is conformally equivalent to an N-connected circular 
domain [Go]. 

4 Conformal maps of multiply connected domains 

In this section we list some facts that we need in our proofs. Their proofs can 
be found in [Go]. 

4,1 Let ~p:Dt ~ / ) 2  be a conformal map where DI,D2 C C are M-connected 
domains, both containing c~ and each of them bounded by M .pairwise disjoint 
Jordan curves. Then go extends to a homeormorphism from Dl to /32. 

If  Dr, /)2 are two domains both containing cr and if go:Dr ~ D2 is a 
conformal map then r is called normalized if go(c~) = 0r and if in a neigh- 
bourhood of oo the map go has the form 

~o(z) = z + + -~ + . . . .  

4.2 Given an M-connected domain D C C, r E D, without isolated points in 
the boundary, there is a unique normalized conformal map go:D---* ~o(D) such 
that tp(D) is a circular domain. 

We will not need the fact that 4.2 still holds if D has isolated points in the 
boundary. In this case q~(D) also has isolated points in the boundary. 

Let Bn C (~ be a sequence of domains, all containing ~ .  The kernel of Bn 
is the largest nonempty domain B C C which contains ~ and has the propta'ty 
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that for every compact set E C r contained in B there is an n(E) < oo such 
that E C Bn for all n E .A:, n >- n(E). We say that a sequence of  domains 
B,, C C, c~ E Bn (n E ,/V'), converges to a domain B and write Bn ~ B if 
every subsequence of  Bn has a kernel which coincides with B. 

4.3 Let f n:An '-* Bn be normalized conformal maps where An C C, oo E An 
(n E ,W'), is a sequence of  domains converging to a domain A. The following 
are equivalent 

(a) f n  converges uniformly on closed sets E C C,E C A, to a one-to-one 
map f 

(b) Bn has a kernel B and converges to B. 
If either (a) or (b) holds then f is the normalized conformal map from A 
toB.  

There is a well defined map ~ : J M  ~ .A/M where ( (a l , r t )  . . . . .  (aM,rg)) 
= ~((Jl . . . . .  J g ) )  where the circular domain bounded by Fj = {~ E C: 
I~ - aj[ = rj}, 1 < j < M, is the image of  the domain bounded by Jy, 1 < 
j ~ M, under the unique normalized map and that this map maps J./ to Fj, 
I < j < M .  

5 Proof of Lemma 3.2 

Part 1. We first prove that ~ is continuous. Suppose that Qn E J u  con- 
verges to Q0 E J g .  For each n E ,A r let Dn be the domain bounded by Qn 
and let Do be the domain bounded by Qo. For each n E ,A r write ~(Qn) = 
((anl,rnt) . . . .  (a,~t,rnM)) and F,q = {~ E C:[~-a,~j[ =rny} (1 < j  __< M)  and 
let On be the M-connected domain bounded by Fnj, 1 < j < M. It is clear that 
Dn ~ Do; in particular, all Dn contain a fixed neighbourhood of  c~ so there 
is an R < oo such that bDn C RA for all n. If  ~p.:Dn ~ On are normalized 
conformal maps Koebe's covering theorem [Go, p. 178, Hilfssatz 2] implies 
that bg2n C 2RA (n E .A:). In particular, 

{~(Qn): n E Y }  is a bounded subset of  (C x R) M . (5.1) 

Assume that ~(Qn) does not converge. By (5.1) there are two subsequences 
Qn,,Q,nk such that ~(Qnk) ~ (b,p) = ((b, ,pl)  . . . . .  (bM,pM)) and O(Qmk) 
(c,#) = ((el,#1) . . . . .  (CM,#M)) where (b ,p)+(c ,#) .  It is easy to see that I2, k 

converges to A, the unbounded component of  C \ uY=l(bj + pjz]) and I2,, k 

converges to B, the unbounded component of  C\[..JY=l(c: + pill). By 4.3 the 
sequence tPnk converges on Do uniformly on each closed set E C C, E C Do, 
to the normalized eonformal map from Do to A and q~r, k converges on D 
uniformly on each closed set E C C,E C Do, to the normalized eonformal map 
from Do to B. By the nature of  the sets Do,A,B it follows that both A,B are 
M-connected circular domains and so the uniqueness part of 4.2 implies that 
A = B. In particular, ((b~, Pt ) . . . . .  (bM, PM)) differs from ((Cl,/~l ) . . . . .  (CM,/~M)) 
only for a possible permutation of  entries. 

With no loss of  generality assume that the first components of  (b, p), (c, p) 
do not coincide. This means that there are two different boundary circles AI,A2 
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of c0(D) such that the circle co.~(Qn~l) is arbitrarily close to At and the circle 
~Omj(Q,.jl ) is arbitrarily close to A2 provided that k , j  are large enough. Let F C 
Do be a Jordan curve separating Qot from Q02 . . . . .  QoM and oo. Since Q. --, 
Qo,D. ~ Do it follows that for sufficiently large n, I" C D. separates Q.1 from 
Q.2 . . . . .  Q.M and o~. Since f~. ~ ~o(D) there is a neighbourhood U C cO(D) 
of cO(F) such that U C f2. for all sufficiently large n. Now, cO~(F) separates 
~0.(J.~) from ~n(Jn2)  . . . . .  ~o.(J.M) and zx~. Since (p.---* q9 uniformly on F it 
follows that for n large enough, ~o.(F) C U is arbitrarily small perturbation 
of cO(F). Since U does not meet b(~(D.)) .b(q~(Do)) if n is large enough it 
follows that cO(F) separates ~0.(Q.i) from cO.(Q.2) . . . . .  cO.(Q.M) and e~ if n is 
large enough. This implies that At and A2 are both in the bounded component 
of C \  cO(F) contradicting the fact that F separates one boundary component 
of D from all the others. This proves that ~(Q.)  converges in J/M. Now 4,3 
together with a separation argument similar to the one used above shows that 
the limit of ~(Q~) must be 4~(Q0). This completes the proof. 

Part 2. Let 0 C U be a compact neighbourhood of ((a~,rt) . . . . .  (aar We 
prove that for each 6 > 0 there is an n(6) such that 

]#(~9.~)(u))-  ul < ,~ (u c 0 ) .  

To see this, assume that there are 6o > 0, a sequence uk C U and nk ---, c~ 
such that 

Ir ukl _-> 0o (k E Y ) .  (5.2) 

By the compactness of 0 we may, passing to a subsequence if neces- 
sary, assume that u~ ---, uo E O. By (3.1), 6~,k(uk) -- uk ~ 0. Since uk ~ uo 
in .AcM C JM it follows that O~k(uk) ~ u0 which, by Part 1, implies that 
q'(~9,k(uk)) ~ r Since r = uo this contradicts (5.2). 

Part  3. Let G C 0 be a closed ball centered at (a ,r)  = ((a~,rt) . . . . .  (aM,rM)) 
and let/a be its radius. By Part 2 there is a v E Jr  such that Ir - u[ < 
tt (u E G) which, by the continuity of �9 and 61~ implies that 

u ~ H ( u )  = (a, r) + u - q>(~O~(u)) 

is a continuous map from G to G. By Brouwer's fixed point theorem there 
is a a ~ G such that H(~)  = ~, that is, ~(@(~)) = (a ,r)  which, in particular, 
implies that D is conformally equivalent to the domain bounded by 6~v(~). This 
completes the proof of Lemma 3.2, 

6 Proof of Lemma 3.1, Part 1 

Composing by a fractional linear map we may assume that the initial domain 
I2o is the open unit disc from which we remove M - 1 pairwise disjoint closed 
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discs contained in A: 
M 

ao = ,t \ U ( z j  +r:2). 
j=2 

We understand that zl = 0 and rl = 1. Choose y > 0 so small that 87 < rj 
(1 < j < M )  and that the sets 

z j + ( r j + 8 7 ) , ] ,  2 < j  < M ,  and { r  Ill >= 1 - 8 7 }  

are pairwise disjoint. Define 

M 
I2 = (1 + 67)A \ U(zj + 27z t )  �9 

./=2 

For each j ,  1 < j < M, define the annulus d j  = {~ �9 C: rj - 67 < I~ - zjI < 
rj + 67}. The closed convex hulls of d j, 2 < j < M, are pairwise disjoint and 
all contained in the bounded component of C \  ~r Also, ~g C 12 (1 < j < 
M). 

We now define small perturbations of O0 that we shall need in our proofs. 

Definition 6.1 Let p = (Pt . . . . .  PM): bA ~ ( -57,57)  m be a continuous func- 
tion. The domain 

D = { z l + 2 ( r l + p l ( ~ ) ) ~ : ~ E b A , O _ - <  2 < 1} 
M 

\ U {zg + 2(rj + p j ( ( ) ) ( : (  �9 bA, O _< 2 _< 1} 
j=2 

is called a standard domain and p is called the parametrization of  bD. 

By the properties of 7 and pj, 1 ~ j =< M, every standard domain is M- 
connected. Its boundary bD consists of M Jordan curves s = {zj + (rj + 
p j ( ~ ) ) ~ : ( � 9  bA} c d j ,  1 <-_ j <= M. Note that each curve s consists of 
points obtained by moving, for each ~ E bA, the point zj 4-(rj from the 
circle zj + rjbA for p:(( )  along the ray {Zg 4- re: t > 0}. Since pj  is suffi- 
ciently small, s is a small perturbation of zj 4- rjbA. Under radial projec- 
tion z ~ zj + r j ( z -  z j ) / l z - z j [ ,  Fj is homeomorphic to the circle zj + rjbA 
and the domain bounded by s is a domain which is starlike with respect to 
zj. 

Proposition 6.1 Suppose that ~: f2 --* C is a nonconstant holomorphic func- 
tion. I f  there is a standard domain D such that ](li[ = 1 on bD then there is 
only one such domain D. 

Proof. Assume that there are two such domains, D and D I, and denote by 
P = (Pt . . . . .  PM), Pl = (P~ . . . . .  pig) the parametrizations of their boundaries. 
If 2 < j ~ M then the maximum principle on D implies that for each ( E 
hA, [~(zj + (t)[ < 1 for each t, rj + pj(r < t < rj + 57, and the maximum 
principle on D ~ implies that for each ~ E bA, ]~(zj + ~t)l < 1 for each t, rj + 
p~(~) < t < rj + 57. Since [O(zj + (rj + pj(~))~)[ : [~(zj + (rj + pj.(r = 
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1 (~ e bA) it follows that p~(~) = PJ(~) (~ ~ bA). A similar argument gives 
P~ = Pt. This completes the proof. 

Definition 6.2 Given a standard domain whose boundary F is parametrized 
by (Pl . . . . .  PM) and given e, 0 < e < ~, we call the set 

M 
U {zj + (r: + pj(~) + ,~)~: ~ E ba, - 6  < ,~ < ~} 

j=l 

the e-belt along F. 

Thus the e-belt along F is a particularly nice neighbourhood of F. 
Assume that f E ~ l ( , d )  where ~1 = U ~ l  "~r We now define the radial 

derivative D~f  of f ,  which, in each annulus ~r will be the radial derivative 
with respect to the center zj : 

Definition 6.3 For each j ,  1 < j < M, 

( D r f ) ( ~ ) =  lim l |fl~+s~|_f(~)|/ / f - z ,  \ \ (~ ~ ~ 6 ) .  
sER\O,s-.-~O S \ ',, I ( , - z j l /  ] 

Denote by 37" C C u x R u the closed ball o f  radius ~ centered at (zl . . . . .  zu,  
r h . . . , r u ) .  

We shall call a special shear on C 2 a map from C 2 to C 2 which is either 
o f  the form (z,w) ~ (z + Tw",w) or o f  the form (z,w) ~ (z,w + Tz") with 
n E .A r and T E R. Note that the special shears are particularly nice examples 
o f  automorphisms o f  C 2. 

To prove Lemma 3.1 we shall use an induction process. It will begin by 
a choice of a large positive integer m and by defining, for t = (~l,.. . ,~M; 
Pt . . . . .  PU ) E o~ the functions 

~ 

~o](t ,~)= Pl : +j=2 \~---~j] Fl(t,~)=(~l(t,~),~). 

The maps at each step of the induction process will be of the form (~--, 
A(Fl(t,~)) where A is a composition of a finite number of special shears. 
We have 

Proposition 6.2 Let H: C 2 ~ C 2 be a composition o f  a finite number o f  
special shears. The map (t , ()  ~ H(Ft( t , ( ) )  is continuous on ~r x fl  and for 
each t E ~" the map ~ ~ H(Ft ( t , ( ) )  is one to one on t2. Moreover, there 
are constants MI,M2, 0 < Mi < M2 < c~, depending only on m and H such 
that 

IH(F, ( t ,~ ) ) I  < M2, M, < I~H(F,(t,~)) < M2 (~ ~ 1~, t s ~ ' ) ,  
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7 A perturbation lemma 

Given a domain 12 C C and M < c~ we denote by g (12 ,M)  the set of  all 
holomorphic functions h on f2 which satisfy Ih(()l < M (( E I2) and Ih'(s 
< M (( E f2). 

To construct lots of  domains holomorphically embeddable into C 2 in order 
to prove Lemma 3.1 we shall, given t = (~1 . . . .  ,~M, Pb . . .PM)  C ..q-, start with 
the circular domain t20(t) = (~1 + t lA) \ U~=2(r + tjA) and then, in an induc- 
tive process, construct a sequence I2n(t) of standard domains each of  which is 
a small perturbation of  f20(t) such that this sequence has a limit, a standard do- 
main I2(t), which is again a small perturbation of f20(t) and has the additional 
property that it is holomorphically embeddable into C 2. On each step the bound- 
ary bt2n(t) will be of  the form {~ E ~ :  lan(~)l = 1} where an is a holomorphic 
function on d with nonzero derivative on the set where its modulus equals 1, 
and the boundary bl2n+l(t) will have the form {~ E M: lan(() N + bn(r = 1} 
where bn is holomorphic and small on .~r and N is a large positive integer. To 
get the precise control over the changes of these boundaries in the induction 
process we prove a perturbation lemma. Note that in order to prove Lemma 
3.1 we need uniform control over the changes for all t E f f  and this is why 
the lemma has to be more complicated than what one would expect. 

Lemma 7.1 Let  7 > 0, R > 87, 0 < r '  < 7, q > 0, M < oo and 0 < # < 7. 
Write I2 = {~ E C: R - 67 < I~1 < R + 67}. There are r, 0 < r < r', p > O, 
and sequences rn, vn,O < rn < 7, Vn > 0 such that the following holds: 

Let  �9 E J f ( f 2 ,M)  and assume that there is a (smooth) function d: 
bA---+(-47,47) such that I~1 = 1 o n  r =  {(R+d(~))~:  ~ E b A }  and such 
that IOrlr > ,1 on n ( r ' ) =  {(R +d(~)+s)~:  ~ E bA, - r '  < s < r'}. Then 
for every T E J f ( t2 ,p)  and for  every N E JV, N > 2, there is a (smooth) 
function f N ( T ) :  bA ~ ~ such that 

(i) i f B ( r )  = {(R + d(~) + s)~: ~ E bA, - r  < s < r} then {(R + fN(T)(~))~:  
E bzt) -= {~ E B(r): I~(~) N + ~'(~)l = 1) 

(ii) iDri~N + Ti2i > VN on {(R + f~ (Ys ) (~ )+  s)~: s E bA, --rg < S < rN}. 

If  A is a bounded domain in R 2 we denote by ~dl(A) the space of  all 
real valued functions on A which are, together with their first order partial 
derivatives, uniformly continuous on A and write 

ilfll ,( , : sup lf(r +sup ~-~(~) + sup ~-~fy(~) . 
~EA ~'~A ~EA 

To prove Lemma 7.1 we first prove 

Suhlemma 7.1 Let 7 > O, R > 87, M < oo, 0 < r < 7, ot > 0 and 0 < l~ < 
7. There are constants p > 0 and L < oo such that the following holds: Let  
d: bA ~ ( -47 ,47)  be a ~gl function. Write A = {(R + d ( ~ ) +  s)~: - r  < s < 
r, ~ E bA} and assume that f E cgl(A), [If Ill,cA) < M, f ( ( R  + d ( ( ) ) ( ) =  0 
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(~ E bA) and [(Orf)(() l  > ~ (~ ~ A), and let co E ~r satisfy Ilcoll~,(A) < p. 
Then there is an F(co) E cgl(bd) such that 

(i) {~ E A: f ( ~ )  + co(~) = 0} --- {~(R + F(co)(~)): ~ C bA) 
(ii) IF(co)(~) - d(~)[ < /1 (~ E bA) 

(iii) ~oF(co)(ei~ < L (0 E R.) 

Proof Choose p > 0 so small that p < ~r, p < p~, p < ~/2 and assume that 
d, f and co satisfy the assumptions above. With no loss of generality assume 
that (Drf)(~) > ~t (~ E A.) Since f ( R  + a ( 1 ) ) =  0 the mean value theorem 
for t ~ f ( R  + d(1 ) + t) on ( - r ,  r)  implies that f (R  + d(1) + r) > ~r, f ( R  + 
d ( l ) -  r) < -~ r .  Since Ico(R + d ( 1 ) + t ) l  < p < ~r ( - r  < t < r) it follows 
that ( f + c o ) ( R + d ( 1 ) - r ) <  O, f ( R + o o ( R + d ( 1 ) + r ) >  0 so there is at 
least one t, - r  < t < r, such that ( f + o o ) ( R + d ( 1 ) + t ) = 0 .  Since p < a/2 

A P  

we have ~--~(f(t)+co(t)) > cr162 on ( R + d ( 1 ) - r , R + d ( l ) + r )  which 

implies that t ~ f ( t )  + co(t) strictly increases on (R + d(1) - r,R + d(1) + r)  
so there is precisely one point t E ( - r , r )  such that ( f  + e))(R + d ( l )  + t) = 
0. The preceding discussion also implies that ( f  + co)(R + d(1) + t) > at - 
p (0 < t < r) and ( f + ~ o ) ( R + d ( 1 ) + t )  < - ~ t + p  ( - r  < t < 0.) Thus, 
- r  < t < r and ( f  + co)(R + d(1) + t) = 0 implies that -p /a  < t < p/~ and 
since p/a < # it follows that Itl < ~. 

Repeating the preceding discussion for t ~-~ ( f  + co)(~(R + d(~) + t)) for 
E bA and Itl < r we prove, for each o9 as above, the existence of a function 

F(co): bA ~ R satisfying (i) and (ii). 
To prove the smoothness of  F(co) and (iii) assume that f and co satisfy 

the assumptions above and consider ( 0 , t ) ~  Q(O, t ) =  f ( t e  iO) -b co(eiO), a call 
function on K = U 0 ~ { 0 }  • (d(e iO) - r,d(e iO) + r) which satisfies 

d 
-~Q(O,t) > ~ - p  > c~/2 > 0 .  (7.1) 

Thus, i f  (Oo, to) E K and Q(Oo, to) = 0 then by (7.1) the implicit mapping the- 
orem implies that 0 ~ F(co)(e i~ is smooth near 00. Further, by the properties 
of  f and co there is a constant c < oc depending only on R and ~ such that 

(O,t) <- f ( t ( e  iO) + o)(te iO) < c(M + p) .  

Now, Q(O,F(co)(e i~ - 0 and (7.1) give 

d F(co)(ei~ = ~0 (O'F(~176 <= 2c(M + p) 

~t  (O,F(o~)(eiO)) ot 

This completes the proof. 
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Proof  o f  Lemma 7.1.Part 1. Note that if g: I2 --~ C is a holomorphic function 
then in the usual identification R 2 - C we have 

gradlg(~)l z = 2~[0(ff)O(~)] = 29(~)9'(~). 

There is an M '  < ~ such that IDol,/,121 < M'  on f~ for all �9 E .,~ff(g2,M). It 
follows that there are r, 0 < r < r ' ,  and /3 > 0 such that if  ~ E . , ~ ( 1 2 , M )  
satisfies I~l = 1 on F then I~'1 >/3 on the r-belt B(r) along F. This implies 
that there is a constant M "  < ~x~ such that 

IDr~ol < M "  on B(r) (7.2) 

whenever ~ H ~(~) = S(~)e i~(;), S(~) real, and F satisfy the assumptions in 
the lemma. 

We now show that there is a P0 > 0 such that for every r as in the lemma 
we have 

{ ]grad[~ u + T[2(~)[ > r//3 for every N,N > 2, for every T E 9f'(•,po) ], 

and for every ( C B(r) which satisfies [~(()N + ~(()1 = 1 , f 
(7.3) 

To see this, choose P0 > 0 so small that Po < 1/3, P0 < r//3. Assume that 
E B(r). Our assumption implies that ]gradl~12(()[ > ~/, that is, 2[~(()1Tr 

> r/. If, in addition, ]~/,(()iv + ~(()[ = 1 then I~e(~)l < p0 implies that ]~(()[u 
> 2/3. Thus, Igrad]~>'v + ~ul2(~)l = Iq~(~) N + 7'(~)] �9 IN~([)N-t~ ' (~)  + 
~'(~)] => N(Z/3 )(N-Z)/N~l/2 -- PO > 2(2/3)(q/2) -- (r//3). This proves (7.3). 

Part 2. Let q) be a holomorphic function on ~ which satisfies the as- 
sumptions of  the lemma. Write q~(~)= S(~)e i~(~) with S(r real and T ( ~ ) =  
u(~) + iw(~) with u(~),w(~) real. Now, I~(~)N + ~(~)[ = 1 is equivalent to 
[S(~) N cosN~o(~) + u(r 2 + [S(~) N sinN~o(~) + w(~)] 2 = 1, that is, to S(~) 2u + 
2S(()N[u(() cosNq~(() +w(( )  sinNcp([)] +u(()  2 + w ( ( )  2 - 1 = 0 which, if  we 
assume that u(~), w(() are small enough (which we may with no loss of  gen- 
erality), is equivalent to 

S({) 2 - 1 + o~(~) = 0 

where 

co(~) = _p({)z /u  + 1 and P({) = - Q ( { )  + [1 - u({) 2 - w(~) 2 + Q({)Z]l/= 

where Q({) = u({)cosN~p({) + w({)sinN~o({). Observe first that if  supa [~1 
is small enough then supa IQ[ is arbitrarily small, uniformly with respect 
to N E ,/if, so supa I P -  11 is arbitrarily small, uniformly with respect to 
N E ,,4/', which implies that supa ]to] is arbitrarily small, uniformly with re- 
spect to N E ~V" provided that supo, t~  [ is small enough. Further, D r t o =  
- 2 ( N - ~ D r P ) / P  1-~/N and 

1 
1 D r p  = I [D~Q + 2 ( 1 - u  ~ - w 2 + QZ) '/~(-2uD~u - 2wD~w + 2QDrQ)]. 
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Since N -  I D, Q = N -  t ( D~u cos N(o - Nu sin N~p "Drop + Dr w sin N~p + Nw cos N~p 
�9 D~o) it follows by (7.2) that supa(r ) IN-~D~QI is arbitrarily small, uniformly 

with respect to N E .A/', provided that SUPa IT[, supa I~ ' l  are small enough. 
Apply Sublemma 7.1 with f (~ )  = S(~) 2 - 1 to get p > 0, p < P0, such 

that for each N ~ d/', N ->__ 2, we get a constant LN > 0, and for each ~, kv 
satisfying the assumptions of the lemma we get a function fN(IP) satisfying 
(i) and 

f f-~fN(~)(e ~0) < LN (0 E R ) .  

This means that for each N E X ,  N => 2, there is a constant Q~ > 0 such that 
whenever ~, T satisfy the assumptions of the lemma the angle ~b(w) between 
the tangent line at w to {(R + fN(T(~)) ( :  ( ~ bd} containing w and the ray 
through w emanating from the origin satisfies I sin ~(w)l >= 3qN. By (7.3) it 
follows that ID, I ~N + ~e[2(w)l -- Igradl ~N + ~12(w)[ �9 [sin r ~ tlq N so 

IO~l~ + ~12(w)l ~ ~qN (w E {(R + fN(~)(~))~: ~ E bA}). (7.4) 

Fix N E J~',N ~ 2. By Cauchy's inequalities there are a slightly smaller do- 
main I2' CC fl and a constant PN < o~ such that 1(r162162 + T)"I <Pt r  on fl '  
whenever �9 E .,~(I2,M), ~ E g ( I 2 , p )  and consequently there is a constant 
P~r < oo such that for all such ~ and ~P we have 

ID~(D~[~N + ~[2)1 < P~v on I2'. (7.5) 

Put vN =~lqN/2. For every w E  I2' such that the segment [ w - t w / [ w [ , w +  
tw/Iwl] belongs to t2', (7.5) implies that IDrl~ N + ~12(w + tw/Iwl) -Drlr  ~ + 
~12(w)l = [ fo• O,(Orl ~ + ~r'lZ)(w + Aw/lwDdAl < Itl. e~r so putting rN = 

min{(rlqN)/(2P~),y/2 } and using (7.4) we get IDrl~ + ~12(w + tw/lwl)l ~_ 
eqN - I t l e ~  ~_ eq~r - rNP~ = vN (ill < rN,w ~ {(R + frr ~ E bA}). 
This completes the proof. 

8 A lemma of Narasimhan 

In our induction process we will need the fact that sufficiently small holomor- 
phic perturbations of holomorphic functions that are one to one and regular 
on an open set are still one to one and regular on a compact subset. Such a 
lemma was proved and used by Narasimhan in ['Na, p. 426]. Here we need 
a somewhat more general lemma of this sort as we want to perturb an entire 
family of functions depending on a parameter t E 5 :  

[,emma 8.1 Let ,$- C R ;  be a compact set, let 12 C C be a bounded domain 
and let (t, ~) ~-~ f ( t ,  ~) be a continuous function on 3 r x I2 with values in C 2 
such that for  each t E 9-, ( ~ f ( t , ( )  is holomorphic on t2. Assume that there 
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are constants m > 0 and M < oo such that 

m < t,~) < M  ( t E g ,  ~ E I 2 ) ,  

and that for  each t C ~-- the function ~ ~-* f ( t ,  ~) is one to one on t2. For 
each R > 0 there is an e(r) > 0 with the following property: 

I f K C t 2 i s  a compact set such t h a t K + r A C O  and if g: K + r A ~ C  2 i s a  
holomorphic function such that for some t E ~" we have 

[g (~ ) - f ( t , ~ ) [  < e(r) (~ E K  + r A )  

then g is one-to-one and regular on K. 

Sublemma 8.1 Let R > 0 and let h:RA ~ C 2 be a holomorphic function. 
Assume that Ih'(0)l >_ a > 0 and Ih'(~)l _-< M (~ ERA). Then h is regular 
and one-to-one on rA where r = (Ra)/(21/:M). 

Proof. The assumptions imply that for one component, say for hi, we have 
Ih~(0)l _-> 2-1/2a and Ih'~(()l _-< M (( ERA). By a classical result of Landau 
[Ha, p.11] this implies that hi is one-to-one and regular on rA which completes 
the proof. 

Proof  o f  Lemma 8.1. Since 12 is bounded the set P = {( E ~ : dist((, bf2 -> 
r} is a compact set which contains every compact set K such that K + rA C 
12. Cauchy's inequalities show that there is an e(r) > 0 with the following 
property: 

Whenever K is a compact set, K § rA C 12, and whenever g is holomorphic 
on K + rA such that for some t E 3-  

[g(~)--f( t ,~)[  < e ( r )  ( ~ E K + r A )  (8.1) 

then ~- < [gl(~)l < 2M ~ E K + A and consequently, by Sublemma 8.1, 

for each ( E K, g is one-to-one and regular on ( + (21/2rM)(16M)-IA.  
(8.2) 

Denote by D the diagonal in Q x ~. The preceding discussion implies that 
there is an open neighbourhood U(r) of (P • P)  M D such that 

whenever K is a compact set, K + c and g i s a  holomo hic / 

function on K + rA satisfying (8.1) for some t E ~--, and 

(x ,y )  E K x K , ( x , y )  E U(r) \D,  then g(x)4:g(y) .  

(8.3) 

Let 
/~ = inf t e~- [ f ( t ,x )  - f ( t ,  Y)I  �9 

(x,y)~(pxP)\U(r), 
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We claim that # > 0. If not then there are t~ ~ ~-, (xn, yn) ~ (P x P) \U(r)  
such that [ f ( t . , x . )  - f ( t ~ ,  y.)[ - .  0. By compactness of ~ and (P x P)\U(r)  
we may assume that t. --* to ~ Y and (x. ,y .)  ~ (xo, Yo) ~ (P x P)\U(r).  In 
particular, xo #Y0. By the continuity of  f we get f ( to,xo)= f(to, Yo) contra- 
dicting the fact that ~ ~ f(to, ~) is one to one on Q, 

Now shrink e(r) i f  necessary to get 0 < e(r) < /~/4. Thus, i f  K is a com- 
pact set satisfying K + rA C ~ and if g is holomorphic on K + rA and satisfies 
(8.1) for some t 6 Y" then if (x,y)  ~ (K x K) \ U(r) we have [g(x) - g(y)[ > 
]f(t,x) - f ( t ,  y)[ - [g(x) - f(t ,x)[ - [g(y) - f ( t ,  y)[ :> # - #/4 - #/4 = #/2 
> 0. Together with (8.3) this proves that g is one-to-one on K. This com- 
pletes the proof. 

9 Proof of Lemma 3.1 continued 

Part 1. Let zl . . . . .  zM,rl . . . . .  r~,y, f 2 , f  and dffl,...,d2~M, have the same mean- 
ing as in Sect. 6. Note that 7 < 1. For each t = (~l . . . . .  ~M,Pl,...,PM) C J" 

A M let f20(t ) = (r + Pi )\[..Jj=2(~J + pjzi). Clearly 12o(t) is a standard domain; 

let p0(t): bA --, ~M be the parametrization of bI20. By the properties of  ~" 
we have 

[p0(t)(~) I < y (~ E bA, t E 3-) .  (9.1) 

Let 0 < # < y. Lemma 7.1 implies that there are m E ./V, e~l, 0 < e] < #/2, 
and 61 > 0 such that if  t = (~1 . . . . .  ~M, Pl . . . . .  p , )  E ~ and if 

( ~ - r  P~ ~ 

then there is a standard domain ~ l ( t )  such that i f  pl(t) :bA --~ ~M is the 
parametrization of b~ l ( t )  then 

I p l ( t ) ( ( ) -  po(t)(()] < # (( E bA) (9.2) 

I~oL(t,()l = 1 ((  ~ bl21(t)), (9.3) 

and 
IDr[~ot(t,~)[21 > 61 on e'l-belt along b~l(t) .  (9.4) 

The point here is that if  m is large enough then ]qh(t,~) I = 1 determines the 
boundary of  a standard domain which is a slight perturbation of  the boundary 
of  D0(t). Note that by Proposition 6.1, (9.3) implies that (2t(t) is uniquely 
determined by t. Put ~,l(t,~) = ~ (t E o~) and St = TI =N1 = 1. 

We shall show that one can choose sequences {S.}, {T.} of positive num- 
bers converging to cx~, a sequence {N.} of  positive integers, and a sequence 
{en} of positive real numbers, e. < #/2" (n E X )  such that if  we put 

Tn ~.(t,~) and ~o.+l(t,~)= q~.(t,~) if  n is odd qt"+t(t'~) = ~Pn(t'~)N"+' + Tn+! 

(9.5) 
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and 

tp.+l(t, () = ~.(t, ()u.+, + cS_~_n ~o.(t, () and t~n+l(t, ~) = ~kn(t, ~) if  n is even 
J n + l  

(9.6) 

then for each n E JV" and for each t E ~J- there is a smoothly bounded standard 
domain On(t) such that 

bf2,+l(t) is contained in the en-belt along bf2n(t) (9.7) 

and such th~ 
I@n(t,~)l = 1 (~ E bf2.(t)) i f n  is even (9.8) 

Iq~.(t,~)l = 1 (~ E b~2.(t) i f n  is odd. (9.9) 

Note that if T./T.+I and Sn/S.+I above are very small then by Lemma 7.1 it is 
clear that b~2.+l(t) is a slight perturbation of bf2n(t). Note that by Proposition 
6.1, (9.8) and (9.9) imply that for each n E Y ,  f2,(t) is uniquely determined 
by t E ~-. For each t E 9-  and n E ./V" let p,( t )  be the parametrization of 
bf2n(t). Then (9.7) and the fact that e, < p/2" (n E /V') imply that for each 
t C ~--, p , ( t )  converge on bA uniformly to a function p(t): bA --~ ~ t  and by 
(9.2) we have 

I p ( t ) ( ~ ) -  p0(t)(~)[ < 2p (~ E hA) .  (9.10) 

For each t E J -  denote by 12(t) the (not necessarily smoothly bounded) 
standard domain whose boundary is parametrized by p(t). Then On(t) 
f2(t) (t E ~--). We shall show that if one chooses m, and the sequences 
{Tn}, {Sn}, {Nn}, {en} in the right way then for each t E 9"- the maps 

~-0 Fn(t,~) = (S~on(t,{),T,O,(t,~)) 

converge, uniformly on compact subsets of f2(t), to a holomorphic embedding 
of f2(t) into C 2. 

Note that after fixing m and the sequences {Sn}, {Tn}, {N~} the domain f2(t) 
is uniquely determined by t E Y.  We shall also show that if m, {S,}, {Tn}, {N,} 
are chosen in the right way then t ~ g2(t) is a continuous map from ~" to vg~t. 

Assume that we have already proved all above. To conclude the proof of 
Lemma 3.1 choose a sequence {/~j} of positive numbers converging to 0. For 
j E .A/" put # = pj and choose m and the sequences {Sn}, {In}, {Nn}, {en} as 
above and for each t E ~-" denote the domain 12(t) obtained by the process 
above (or more precisely, the M-tuple (Jl(t) . . . . .  JM(t)) where for each j ,  J2(t) 
is the component of bg2(t) contained in ~r by Oj(t). Now (9.10) implies 
that the sequence O/ has all the properties required in Lemma 3.1. 

Part 2. Let 0 < /a < 7 and choose m,~ol,Ol,S1,TI,Nl and e~ as above. Put 
e0 = 7. In an induction process we shall now construct sequences {S~}, {Tn}, 
{N~} and a decreasing sequence {en}, of positive numbers, together with de- 
creasing sequences {e',},{e~}, of positive numbers, sequences {6,},{x~} of 
positive numbers, and sequences On(t), t E ~-, of standard domains such that 
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i f  the sequences cpn(t,~), ~On(t,~) are defined by (9.5) and (9.6) and if  for 
n E J V ' , t E ~  r ,  

K.(t)  = 12.(t)\(3e.)-belt  along bfln(t), 
5Pn(t) = t2.(t)\(4e.)-belt along bOn(t), 
0 . ( t )  = On(t)O (3en)-belt along b~2n(t) 

then the following holds for each t E ~" and each n E JV': 
(Al ' )Sn+l  = S .  ~ n i f n  is odd 
(AI")T.+t  = Tn :> n i f n  is even 
(A2) 4en < e~n <= Iz/2n, en < en-t/4 
(A3) bl2.+l(t) is contained in e.-belt along bl~.(t) 
(A4 ' )  [~p.(t,() I = 1(( ~ bf2.(t)) if n is odd 
(Aa")[~0~(t,()] = 1(~ ~ b~2.(t)) if  n is even 
(AS') [D~l~P.(t,()[21 > 6. on the etn-helt along bl2.(t) i f n  is odd 
(AS")[Drl~O.(t,()[21 > 6. on the e'n-belt along bf2.(t) if n is even 
(A6) 5r + grid C K.(t)  
(A7 ' )  [Sntp.(t,~)l > n -  1(( E (2.( t) \K.( t))  if n is odd 
(A7")tT.(Jn(t,() I > n -  1(( E ('2.(t)\K.(t)) i f n  is even 
(A8 ' )  [S.+l~b.(t,()tr < e . /2"((  E Kn(t)) if n is odd 
(A8")lT.+~q%(t,()~v.+~ I < e . /2"((  ~ K.(t))  if n is even 
(A9) i f a  holomorphic function h: Int K.(t)  --* C ~ satisfies Ih(~)[ < e.  ((  E 

Int Kn(t)) and i f  F.(t, ~) = (S.cp.(t, (), T.~n(t, ())  then ( ~ F.(t, ~) + h(() is 
one-to-one and regular on 5e.(t). 

Note that by (A1) and by (9.5) and (9,6) we have 

(Sn+ ~ ~P.+t, T.+ ~ ~O.+ t ) = (S. ~p., Tn~bn + T.+ ~ ~p~"+~ ) if  n is odd, and 

(S.+~Pn+I, T.+t~k.+! ) = (S.~pn + S . + I ~  "+~, Tn~n) if n is even. 
Note also that i f  pn(t) is the parametrization of bI2.(t), n ~ ~V', t ~ .~', 

then (A3) and (A2) imply that 

Ip .+l( t ) (~)  - p , ( t ) ( r  < #/2" (~ E bA). (9.11) 

Part 3. Assume for a moment that w e  have proved the existence of all the 
functions, sets and numbers in Part 2 with the properties (AI ) - (A9) .  

Let t E ~ .  Clearly (9,11) implies that p.(t)  converge uniformly on b3 
to a (continuous) function p(t):  bzl--*~t a4. By (9.2) and (9.11) we have 
Ip( t ) ( ( )  - po(t)(~)[ < 2~ ((  E bzl) so p(t)  is the parametrization & t h e  bound- 
ary of  a standard domain that we denote by I2(t). Note also that by (A3) and 
(A2), the sequences Kn(t) and f in (T)  are increasing and we have I..).~=t K~(t) = 
LJ~=l sFa(t ) = f2(t), If  n E ..M and ~ E Kn(t) then for j ~ n 

IFy+l(t , ()-  Fy(t , ( )  { = T/+tq~j(/,g)~ +~ i f j  is odd and 
[Fj+t (t, ~) - Fj(t, ~)[ = Sj+I ~(t ,  ~)uj+l if  j is even 

so, since e.  is decreasing (AS) implies that 

~n IFj+t(t,;)-Fj(t,~)l < ~ < ~7 (~ ~ K.(0, j _~ . ) .  
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It follows that the sequence of  functions ( ~-~ Fn(t, ~) converges, uniformly on 
compact subsets of  s'2(t), to a function ~ ~ F(t, ~) holomorphic on I2(t) and 
that 

IF(t ,()  - F~(t,()l < e~ (( E gn( t ) ) .  (9.12) 

By (A9) it follows that for each n C JV, ~ ~ F(t, ~) is one-to-one and regular 
on 6a~(t) and consequently it is one-to-one and regular on I2(t). Further, since 
S~+t~Pn+t = SncPn for odd n and Tn+l~'~+I = Tnt~n for even n, (A7) implies 
that I F , + ~ ( ( , t ) l  > n - 1 (ff c (2~(t)\Kn(t)) which, together with (9.12) with n 
replaced by n + 1, implies that for each n E ~4/', 

[F(t)(~)[ > n - 1 - e~+l (~ ~ K,+~(t)\K~(t)). 

Since the sequence e,, is decreasing it follows that F(t) is a proper map from 
~(t )  to C 2. 

10 The conclusion of the proof of Lemma 3.1 

Part 1. Given /~ > 0 we now prove the existence of the functions, sets and 
numbers in Sect. 9, Part 2, which satisfy (A1)-(A9).  

We have already shown that there are ~Pl, ~q,SI, TI,Nt, e~, 61 and I21 (t) (t C 
J )  such that e'l satisfies the portion e'  t __< /~/2 of (A2) for n = 1, such that 
(A4) and (A5) hold for n =  1 and such that SI => 1. Put e 0 = ? , e 0 =  1. 

Suppose that k E JV" is odd and that we have already shown that for j < k 
there are ~pj,@,Sy, Tj, N/,e~,6/ and f2y(t) (t E 3-)  and that f o r j  < k -  1 there 

t < are ej, •y, ey such that e j, e~, ey decrease with j and such that the portion r = 

1~/2 k of  (A2) for n = k holds, such that (A4) and (A5) hold for n -- k, and 
such that Sk > k. Put Sk+l = Sk So that (A1) is satisfied for n = k. 

Using Sublemma 7.1 in the trivial case when co = 0 together with Propo- 
sition 6.2, we see that (A4) and (A5) for n = k imply that there is a constant 
Ik < oo such that 

d i0 -d~Pk(t)(e ) < lk (0 E ~ , t  c 9 - ) .  (10.1) 

Further, Proposition 6.2 implies that there is a constant l~ < c~ such that 
[grad[~pk(t,()[21 < l~ (~ E f2, t E 9"-) which, by (A4) for n =k,  and by the 
fact that Sk => k, implies that there is a number e~, 0 < ek < ek-l/4,  4ek < e~ 
(so that (A2) is satisfied for n = k), such that for each t E 9-  

ISk~pk(t,r,) I > n - 1 (( E ((3ek)-belt along b.Qk(t)). (10.2) 

Define Kk(t ) ,~k( t ) ,  ~k(t)  as in Sect. 9, Part 2. Now, (10.2) implies that (A7) 
is satisfied for n = k. Further, (10.1) together with a simple geometric argu- 
ment implies that there is a ~r > 0 such that (A6) is satisfied for n = k. The 
point here is that xk-neighbourhood of  ff~(t) is contained in Kk(t) with xk 
independent of  t so that we can apply Lemma 8.1. Now, Lemma 8.1 together 
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with Proposition 6.2 implies that there is an e,, 0 < ek < e , - l ,  such that (A9) 
holds for n = k. 

We now apply Lemma 7.1 together with Proposition 6.2 to the function 
�9 (~) = q~k(t, ~), r '  = ek and r / =  6~ in each of  the annuli d j ,  1 < j < M, 
to get r , ,  0 < rk < ek, Pk > 0, and sequences flu > 0,?u > 0 such that the 
following holds: 

Choose Tk+I _~ k + l  so large that for each t C T  the function ~ 
(Tk/Tk+l)d/k(t,~) belongs to ~t~(O, pk) (this is possible by Proposition 6.2). 
Then for every N > 2 and for every t E o3- the set 

Tk 
~) = 1} {~ E along bt2,(t): + ~k+l~lk(t, rk-belt qgk( t, ~ ) N 

is the boundary of a standard domain bD(N,t)  and we have 

~o~(t,()u Tk r 2 Dr + ~ > ?u on f/u-belt along bD(N, t ) .  

Note that we have not chosen N = Nk+t yet. Since 4ek < e~, (A5) for n = k 
implies that [D~lq~,(t,()[2[ > 6k on (4ek)-belt along bl2k(t) which, together 
with the maximum principle implies that there is a constant vk < 1 such that 
kok(t,()[ < vk (~ E bKk(t), t E s and that the maximum principle further 
gives [~0k(t,()[ < vk (( E Kk(t) , t  E 37-). Choose N = Nk+l C .W" so large that 
Tk+�91162 vk+~ < ek/2 ~. Then (AS) is satisfied for n = k. In the preceding discussion 
put N = Nk+t, Ok+l(t) = D(Nk+1, t), e~+ I = min{flNk+~,/~/2 k+t }, 6k+l = ?Uk+~. 
Then (A3) is satisfied for n = k and (A4), (A5) are satisfied for n = k + 1. 

If  k E ..V" is even then we repeat the procedure with roles of ~0, S and if, T 
interchanged. This completes the proof of  the induction step. 

Part 2. Given p > 0 and having chosen the sequences S,, T, and N, as above 
we know by Proposition 6.1 that given n E A/" and t E Y- the domain O,(t)  
is the unique standard domain such that [q~n(t,()[ = 1 (( E bt2,(t)) i f  n is 
odd and [~n(~)[ = 1 (( E bl2n(t)) if  n is even. If for each n E JV" the function 
pn(t) parametrizes bl2n(t) then f2(t) was defined as the standard domain whose 
boundary is parametrized by p(t), the limit in ~(bA)  M of  the sequence p,(t) .  
Thus t ~ .Y" determines f2(t) uniquely. It remains to prove that t ~ t2(t) is 
a continuous map from Y" to J ~ .  It is enough to prove that t ~ p(t)  is a 
continuous map from ~-- to C~(bA) ~t. By (9.11) p,( t )  converges to p(t )  in 
C~(bd) u ,  uniformly with respect to t ~ .~'. Thus it is enough to prove that for 
each n ~ r t ~ p , ( t )  is a continuous map from Y- to (bA) ~.  

Assume that n ~ ~V" is odd. We know that 12.(t) is the unique standard 
domain such that kon(t,~)[ = 1 (~ ~ bO.(t)).  For t,t' ~ Y" consider the func- 
tion ~ ~ h(t,t ')(~) = k o . ( t ' , C ) [  ~ - l q , . ( t , ~ ) l  ~. I t  is  easy to see that given 2 > 0 
there is a 6 > 0 such that t,t' ~ ~' ,  It - t'] < 6, implies that Ilh(t,t')lf~r,(a) < 
2. Since [Orko.(t,r > ~.  on en-belt along bfin(t), Sublemma 7.1 applies to 
show that given e > 0 there is a 6 > 0 such that if  t, t '  fi Y', It' - t[' < ~5, 
then bO.(t ' )  is contained in c-belt along bO.(t). This proves that t ~ pn(t) is 
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continuous. I f  n is even then the same reasoning applies with q~n replaced by 
~k~. This completes  the p roo f  o f  Lemma 3.1. Theorem 1.1 is proved. 
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