HOLOMORPHIC LEFSCHETZ FIXED POINT FORMULA

BY V. K. PATODI ${ }^{1}$
Communicated by Michael Atiyah, December 27, 1972

1. Let X be an n-dimensional complex analytic manifold and $\varphi: X \rightarrow X$ a holomorphic map. Let Ω be the sheaf of germs of holomorphic functions on X and $H^{i}(X, \Omega)$ the i th cohomology group of X with coefficients in the sheaf Ω. The map φ defines endomorphisms, $H^{i}(\varphi)$ of $H^{i}(X, \Omega), i \geqq 0$. Let $L(\varphi)$ be the Lefschetz number defined by

$$
L(\varphi)=\sum_{i=0}^{n}(-1)^{i} \text { trace } H^{i}(\varphi)
$$

We are concerned with the problem of computing $L(\varphi)$.
Remark. Let G be a compact Lie group acting on X as a group of holomorphic diffeomorphisms and $\varphi \in G$. The problem in this case has been solved by Atiyah and Singer, see [2]. Also in the case φ has isolated fixed points, the problem was solved in the nondegenerate case (see §2 for definition) by Atiyah and Bott in [1] and by Toledo and Tong in [6] and [7] in the degenerate case.
2. The statement of main theorem. Let X_{φ} be the fixed point set of the $\operatorname{map} \varphi, X_{\varphi}=\{x \in X$ s.t. $\varphi(x)=x\}$. We start by stating the conditions under which we have been able to compute the Lefschetz number $L(\varphi)$.
$\left(C_{1}\right) X_{\varphi}$ is a complex analytic submanifold of X and moreover with this complex analytic structure, X_{φ} is a Kähler manifold.

Let us write X_{φ} as a finite union of closed connected submanifolds of X :

$$
\begin{equation*}
X_{\varphi}=\bigcup_{i=1}^{N} Y_{i} \tag{1}
\end{equation*}
$$

Let $\lambda_{1}^{i}, \ldots, \lambda_{m_{i}}^{i}$ be the eigenvalues of the endomorphism $\left(\varphi_{*}\right)_{z}$ of $T_{z}(X)$, $z \in Y_{i}$, with multiplicities $n_{1}^{i}, \ldots, n_{m_{i}}^{i}$; eigenvalues λ_{j}^{i} are independent of $z \in Y_{i}$ because of the holomorphic nature of the situation. If 1 is an eigenvalue of the map φ_{*} we take $\lambda_{1}^{i}=1$.

The vector bundles $\left.T(X)\right|_{Y_{i}}$ decompose as a direct sum of holomorphic vector subbundles $E_{j}^{i}\left(1 \leqq j \leqq m_{i}\right)$ whose fibres $\left(E_{j}^{i}\right)_{z}$ are defined by:

$$
\left(E_{j}^{i}\right)_{z}=\left\{v \in T_{z}(X) \text { s.t. }\left(\varphi_{*}-\lambda_{j}^{i} I\right)^{n_{j}^{i}} v=0\right\}
$$

We now state our other conditions.
$\left(\mathrm{C}_{2}\right)$ The fixed points are nondegenerate: 1 is an eigenvalue of

[^0]Copyright (C) American Mathematical Society 1973
$\varphi_{*}: T_{z}(X) \rightarrow T_{z}(X)$ iff the dimension r_{i} of Y_{i} is greater than zero and in case $r_{i}>0, n_{1}^{i}=r_{i}$.
$\left(\mathrm{C}_{3}\right)$ There exists a hermitian metric h in $T(X)$ such that
(a) $h\left(v_{z}, w_{z}\right)=0$ if $v_{z} \in T_{z}\left(Y_{i}\right), w_{z} \in \sum_{\lambda j_{j} \neq 1}\left(E_{j}^{i}\right)_{z}, z \in Y_{i}$.
(b) If Ω is the canonical 2-form associated to h, then, $(d \Omega)_{z}=(\nabla d \Omega)_{z}=0$, $z \in X_{\varphi}, \nabla$ is the hermitian connection defined by h.
$\left(\mathrm{C}_{4}\right)$ The vector bundles E_{j}^{i} decompose as

$$
\begin{equation*}
E_{j}^{i}=\sum_{k=1}^{N_{i j}} E_{j k}^{i} \tag{2}
\end{equation*}
$$

such that each $E_{j k}^{i}$ is a holomorphic subbundle and $E_{j N_{i j}}^{i}=0$ and $\varphi_{*}-\lambda_{j}^{i} I$ maps $E_{j k}^{i}$ into $E_{j k+1}^{i}, k \geqq 1$.

It is not very natural to impose conditions $\left(C_{3}\right)$ and $\left(C_{4}\right)$. We however have simple conditions which always guarantee the conditions $\left(C_{3}\right)$ and $\left(C_{4}\right)$:
(1) Let X be a Kähler manifold and φ preserves the metric. Then the conditions $\left(C_{1}\right)$ to $\left(C_{4}\right)$ are all satisfied.
(2) The condition $\left(C_{3}\right)$ is satisfied if for positive integers $i(1 \leqq i \leqq N)$ such that $r_{i}>1\left(r_{i}=\right.$ dimension of $\left.Y_{i}\right)$ the eigenvalues λ_{j}^{i} satisfy the following inequality: $\lambda_{j}^{i} \lambda_{j^{\prime}}^{i} \neq 1$ for $j, j^{\prime} \geqq 2$.
(3) Suppose that X is a Kähler manifold and $H^{0,1}\left(Y_{i},\left(\Sigma_{j} E_{j}^{i}\right)^{*}\right)=0$ for $1 \leqq i<N$ such that $r_{i}>1$, where given a vector bundle ξ, ξ^{*} denotes the dual bundle. Then the condition $\left(\mathrm{C}_{3}\right)$ holds.
(4) If the maps $\left(\varphi_{*}-\lambda_{j}^{i} I\right)^{k}: E_{j}^{i} \rightarrow E_{j}^{i}, 1 \leqq k \leqq n_{j}^{i}, 1 \leqq i \leqq N$ such that $r_{i}>1$, are of constant rank, then the condition $\left(C_{4}\right)$ holds.

We note that if each r_{i} is either $n-1$ or is at most one, then the condition $\left(C_{4}\right)$ is satisfied and $\left(C_{3}\right)$ is also satisfied if $\varphi_{*}: T_{z}(X) \rightarrow T_{z}(X)$ does not have eigenvalue -1 for $z \in Y_{i}$ such that $r_{i}=n-1$.

We now proceed to state our theorem. Let $C_{1}, C_{2}, \ldots, C_{n_{j}^{i}}$ be Chern classes of E_{j}^{i} and consider the formal factorization:

$$
1+\sum t^{k} C_{k}=\prod_{k=1}^{n_{j}^{i}}\left(1+t x_{k}\right)
$$

The formal power series

$$
\begin{equation*}
\mathscr{U}_{j}^{i}=\prod_{k}\left(\frac{1-\lambda_{j}^{i} \exp \left(-x_{k}\right)}{1-\lambda_{j}^{i}}\right)^{-1}, \quad \lambda_{j}^{i} \neq 1 \tag{3}
\end{equation*}
$$

is symmetric in x_{i} 's and hence can be expressed as a polynomial in C_{k} 's.
Theorem 1. If the conditions $\left(\mathrm{C}_{1}\right)$ to $\left(\mathrm{C}_{4}\right)$ are satisfied, then

$$
\begin{equation*}
L(\varphi)=\sum_{i=1}^{N}\left(\prod_{\lambda_{j} \neq 1}\left(1-\lambda_{j}^{i}\right)^{n_{j}^{i}}\right)^{-1} \times\left\{\left(\prod_{\lambda_{i} \neq 1} \mathscr{U}_{j}^{i}\right) \mathscr{T}\left(Y_{i}\right)\right\}\left[Y_{i}\right] \tag{4}
\end{equation*}
$$

where the class \mathscr{U}_{j}^{i} is defined by (3), $\mathscr{T}\left(Y_{i}\right)$ is the Todd class of $T\left(Y_{i}\right)$ and given a class $\alpha \in H^{*}\left(Y_{i}, C\right),\{\alpha\}\left[Y_{i}\right]$ denotes the evaluation of the $2 r_{i}$ th component of $\alpha\left(r_{i}=\right.$ complex dimension of $\left.Y_{i}\right)$ on the fundamental cycle of Y_{i} determined by its natural orientation.
3. Outline of the proof. We first observe that under the conditions $\left(\mathrm{C}_{1}\right)$ to $\left(\mathrm{C}_{4}\right)$ there exists a hermitian metric h in $T(X)$, the tangent bundle of X, such that the condition $\left(C_{3}\right)$ is satisfied and furthermore $h\left(v_{z}, w_{z}\right)=0$ if $z \in Y_{i}, v_{z} \in\left(E_{j k}^{i}\right)_{z}, w_{z} \in\left(E_{j^{\prime} k^{\prime}}^{i}\right)_{z}$, the pair $(j, k) \neq\left(j^{\prime}, k^{\prime}\right)$, where the bundles $E_{j k}^{i}$ are the ones occurring in the decomposition (2) of condition $\left(\mathrm{C}_{4}\right)$.

Let $\Lambda^{0, q}$ be the bundle of differential forms of type $(0, q)$ with the metric induced from h, d_{z} be the canonical operator (exterior differentiation with respect to \bar{z}) from $C^{\infty}\left(\Lambda^{0, q}\right)$ to $C^{\infty}\left(\Lambda^{0, q+1}\right), 0 \leqq q \leqq n$, and $d_{\bar{z}}^{*}$ be its adjoint. Let $\Delta_{\bar{z}}^{q}=-\left(d_{\bar{z}} d_{\bar{z}}^{*}+d_{\bar{z}}^{*} d_{\bar{z}}\right): C^{\infty}\left(\Lambda^{0, q}\right) \rightarrow C^{\infty}\left(\Lambda^{0, q}\right)$ be the Laplace operator and $e^{q}\left(t, z^{\prime}, z\right)$ be the fundamental solution of the heat operator $\partial / \partial t-\Delta_{\bar{z}}^{q}$.

Now there exists an $\varepsilon>0$ such that the disc bundle N_{ε} over the fixed point manifold X_{φ} defined by

$$
N_{\varepsilon}=\left\{v \in T_{x}(X) \text { s.t. } x \in X_{\varphi} \quad \text { and } \quad\|v\|<\varepsilon\right\}
$$

(where $\|\|$ is defined by the metric) is diffeomorphic to a neighborhood of X_{φ} in X. The form $\left(\varphi_{z^{\prime}}^{*} e^{q}\left(t, z^{\prime}, z\right)\right)_{z^{\prime}=z_{z}}^{*} 1$ defines under this diffeomorphism a form on N_{ε}, which we shall denote by $E^{q}(t, z)$.

There is a natural map $\pi_{*}: C^{\infty}\left(\Lambda T^{*}\left(N_{\varepsilon}\right)\right) \rightarrow C^{\infty}\left(\Lambda T^{*}\left(X_{\varphi}\right)\right)$ such that $\int \psi_{1} \wedge \pi_{*}\left(\psi_{2}\right)=\int \pi^{*}\left(\psi_{1}\right) \wedge \psi_{2}, \psi_{2} \in C^{\infty}\left(\Lambda T^{*}\left(N_{\varepsilon}\right)\right), \quad \psi_{1} \in C^{\infty}\left(\Lambda T^{*}\left(X_{\varphi}\right)\right)$, $\pi: N_{\varepsilon} \rightarrow X$ being the projection.

Let $\psi_{t}^{q}=\pi_{*}\left(E^{q}(t, z)\right)$. We have the following proposition:
Proposition 2. $H(\varphi)=\sum_{q=0}^{n}(-1)^{q} \int_{X_{\varphi}} \psi_{t}^{q}$, as $t \downarrow 0$, the forms ψ_{t}^{q} turn out to be independent of $\varepsilon>0$ (as $t \downarrow 0$).

Moreover we have the following theorem:
Theorem 3. (Local form of Lefschetz fixed point formula.) We have at each point $z \in Y_{i}, 1 \leqq i \leqq N$,

$$
\begin{aligned}
\sum_{q=0}^{n}(-1)^{q} \psi_{t}^{q}(z)= & \left(\prod_{\lambda_{j} \neq 1}\left(1-\lambda_{j}^{i}\right)^{n_{j}^{i}}\right)^{-1} \\
& \times 2 r_{i} \text { th component of }\left[\left(\prod_{\lambda_{j}^{i} \neq 1} \mathscr{U}_{j}^{i}\right) \mathscr{T}\left(Y^{i}\right)\right](z)+O(t)
\end{aligned}
$$

as $t \downarrow 0$,
where \mathscr{U}_{j}^{i} 's are the characteristic classes defined in $\S 2$ and here represented as a differential form by Andre Weil's homomorphism, the connections used in $T\left(Y_{i}\right), E_{j}^{i}$ are the hermitian connections defined by the hermitian metric.

Theorem 1 is an immediate consequence of Proposition (2) and Theorem (3). Theorem (3) is of course stronger than Theorem (1). Our proof of Theorem (3) depends on the method developed in [4] and [5].

Remark. The results have natural extension to the situation when one considers the Lefschetz number associated to the data: a holomorphic vector bundle ξ over X, a holomorphic map φ of X into itself and a vector bundle analytic homomorphism $\tilde{\varphi}$ of $\varphi^{*}(\xi)$ into ξ.

The author wants to express his thanks to Professors M. F. Atiyah, R. Bott, I. M. Singer and Dr. R. S. Kulkarni for useful discussions.

References

1. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I and II, Ann. of Math. (2) 86 (1967), 374-407, 88 (1968), 451-491. MR 35 \# $3701 ; 38$ \# 731.
2. M. F. Atiyah and I. M. Singer, The index of elliptic operators. I and III, Ann. of Math. (2) 87 (1968), 484-530; 87 (1968), 546-604. MR 38 \# 5243; 38 \# 5245.
3. T. Kotake, The fixed point theorem of Atiyah-Bott via parabolic operators, Comm. Pure Appl. Math. 22 (1969), 789-806.
4. V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5 (1971), 233-249.
5. \quad, An analytic proof of Riemann-Roch-Hirzebruch theorem for Kähler manifolds, J. Differential Geometry 5 (1971), 251-283.
6. D. Toledo, On the Atiyah-Bott formula for isolated fixed points, J. Differential Geometry (to appear).
7. Yue Lin L. Tong, deRham's integrals and Lefschetz fixed point formula for $d^{\prime \prime}$ cohomology, Bull. Amer. Math. Soc. 78 (1972), 420-422.

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

School of Mathematics, Tata Institute of Fundamental Research, Bombay-5, India (Current address)

[^0]: AMS (MOS) subject classifications (1970). Primary 58G10, 53C65; Secondary 32A99.
 ${ }^{1}$ Supported in part by National Science Foundation grant GP-36418X.

