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1. Let X be an n-dimensional complex analytic manifold and (p:X ->X 
a holomorphic map. Let Q be the sheaf of germs of holomorphic functions 
on X and H\X, Q) the îth cohomology group of X with coefficients in 
the sheaf Q. The map cp defines endomorphisms, H\cp) of Hl(X, Q), i ^ 0. 
Let L((p) be the Lefschetz number defined by 

L((P)= £ ( -1 ) ' t r ace ff'(<p). 
i = 0 

We are concerned with the problem of computing L((p). 
REMARK. Let G be a compact Lie group acting on X as a group of 

holomorphic diffeomorphisms and cp e G. The problem in this case has 
been solved by Atiyah and Singer, see [2]. Also in the case cp has isolated 
fixed points, the problem was solved in the nondegenerate case (see §2 
for definition) by Atiyah and Bott in [1] and by Toledo and Tong ii>[6] 
and [7] in the degenerate case. 

2. The statement of main theorem. Let X^ be the fixed point set of the 
map cp, X9 = {x e X s.t. cp(x) = x}. We start by stating the conditions 
under which we have been able to compute the Lefschetz number L(<p). 

(C^Xy is a complex analytic submanifold of X and moreover with 
this complex analytic structure, X9 is a Kâhler manifold. 

Let us write X^ as a finite union of closed connected submanifolds of 
X: 

(i) * ,= I U . 

Let X\,..., ÀÏn. be the eigenvalues of the endomorphism (cp*)z of TZ(X\ 
zeYi9 with multiplicities n[9..., nl

m.\ eigenvalues X) are independent of 
zeYt because of the holomorphic nature of the situation. If 1 is an eigen
value of the map cp* we take X\ = 1. 

The vector bundles T(X)\Y. decompose as a direct sum of holomorphic 
vector subbundles £}(1 Sj S mù whose fibres (E))z are defined by: 

(E% = {v e TZ(X) s.t. (cp* - X)lpv = 0}. 

We now state our other conditions. 
(C2) The fixed points are nondegenerate : 1 is an eigenvalue of 
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q>* : TZ(X) -» TZ(X) iff the dimension rt of Yt is greater than zero and in 
case rt > 0, n\ = rt. 

(C3) There exists a hermitian metric h in T(X) such that 
(a) h(vz,wz) = 0ifvzG Tz( Yf), w z 6 ^ , (£})„ze7, 
(b) IfQ is the canonical 2-form associated to h, then, (dQ)z = (V dQ)z — 0, 

z e Z^, V is the hermitian connection defined by h. 
(C4) The vector bundles E) decompose as 

(2) E) = "£ E)k 
fc=l 

such that each E)k is a holomorphic subbundle and JE^. = 0 and 
cp* — k)I maps £}fc into El

jk+1,k ^ 1. 
It is not very natural to impose conditions (C3) and (C4). We however 

have simple conditions which always guarantee the conditions (C3) and 
(Q): 

(1) Let X be a Kâhler manifold and 9 preserves the metric. Then the 
conditions (Cx) to (C4) are all satisfied. 

(2) The condition (C3) is satisfied if for positive integers i (1 ̂  i ^ N) 
such that rt > 1 (rf = dimension of Yt) the eigenvalues k) satisfy the 
following inequality: ktyy ^ 1 for7,ƒ ^ 2. 

(3) Suppose that X is a Kâhler manifold and H0'\Yh ÇZj £})*) = 0 for 
1 ^ i < N such that rt > 1, where given a vector bundle {, £* denotes the 
dual bundle. Then the condition (C3) holds. 

(4) If the maps (cp* - k)l)k:E) -• £}, 1 ^ k S n), l£i£N such that 
rt > 1, are of constant rank, then the condition (C4) holds. 

We note that if each rt is either n — 1 or is at most one, then the con
dition (C4) is satisfied and (C3) is also satisfied if (p* : TZ(X) -» TZ(X) does 
not have eigenvalue — 1 for z e Yt such that rt = n — I. 

We now proceed to state our theorem. Let C l9 C 2 , . . . , C„i. be Chern 
classes of E) and consider the formal factorization : 

l + I'kCfc= ftd + rxj. 
fc=i 

The formal power series 

is symmetric in xf's and hence can be expressed as a polynomial in Q's. 

THEOREM 1. If the conditions (Cx) to (C4) are satisfied, then 

(4) m = s I n a - ^)nj)_1 x {( n *J) Wi)krj> 
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where the class W) is defined by (3), $~{Yj) is the Todd class of T(Yt) and 
given a class a G H*(Yi9 C), {a} [Yt] denotes the evaluation of the 2rtth com
ponent of a (rt = complex dimension of Yt) on the fundamental cycle of Yt 

determined by its natural orientation. 

3. Outline of the proof. We first observe that under the conditions 
(C^ to (C4) there exists a hermitian metric h in T(X), the tangent bundle 
of X, such that the condition (C3) is satisfied and furthermore h(vz,wz) — 0 
if z G Yi9 vz e (E)k)z, wz e (E).k*)z, the pair (ƒ, k) # (ƒ, fc'), where the bundles 
E)k are the ones occurring in the decomposition (2) of condition (C4). 

Let A°'q be the bundle of differential forms of type (0, q) with the metric 
induced from h, dz be the canonical operator (exterior differentiation with 
respect to z) from C°°(A0^) to C°°(A0-q+1), 0 ^ q g n, and df be its adjoint. 
Let Af = ~{dsdf + didz):C

œ(A°^q) -> C™(A°>q) be the Laplace operator 
and eq{t, z', z) be the fundamental solution of the heat operator d/dt — Af. 

Now there exists an s > 0 such that the disc bundle Ne over the fixed 
point manifold Xv defined by 

Ne = {ve TX{X) s.t. xeXy and ||v|| < e}, 

(where || || is defined by the metric) is diffeomorphic to a neighborhood of 
X9 in X. The form (<p* eq(t, z', z))z>=* 1 defines under this diffeomorphism 
a form on Ne , which we shall denote by Eq(t, z). 

There is a natural map 7c#:C
œ(AT*(iVe)) -•C

00(AT*(ZÇ,)) such that 
J> i A TT,0A2) = KOAi) A 1A2, ^2eC°°(AT*(Ne)), ^ e C ° ° ( A T * ( ^ ) ) , 
7i:AT£ -• X being the projection. 

Let \//q = nJ(Eq{t, z)). We have the following proposition: 

PROPOSITION 2. H(cp) = Y?q=o (~ W U* ^?» a s f i °> r ^ /orms ^ turn 
out to be independent of s > 0(as 1j 0). 

Moreover we have the following theorem : 

THEOREM 3. {Local form of Lefschetz fixed point formula.) We have at 
each point zeYhl ^ i ' ^ iV, 

i <-i)v?(z) = ( n ( i -^ )" 1 

« = o Uj<jfci / 

r(nA^i^)^(n](^) + 0(r), 
Û5 * J 0, 

x 2rtth component of 

where W/s are the characteristic classes defined in §2 and here represented 
as a differential form by Andre Weil's homomorphism, the connections used 
in T(Y^,E) are the hermitian connections defined by the hermitian metric. 
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Theorem l is an immediate consequence of Proposition (2) and Theorem 
(3). Theorem (3) is of course stronger than Theorem (1). Our proof of 
Theorem (3) depends on the method developed in [4] and [5]. 

REMARK. The results have natural extension to the situation when one 
considers the Lefschetz number associated to the data: a holomorphic 
vector bundle Ç over X, a holomorphic map q> of X into itself and a 
vector bundle analytic homomorphism q> of cp*(Ç) into £. 

The author wants to express his thanks to Professors M. F. Atiyah, 
R. Bott, I. M. Singer and Dr. R. S. Kulkarni for useful discussions. 
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