Holomorphic line bundles on a domain of a two-dimensional Stein manifold

by MAKOTO ABE (Kumamoto)

Abstract. Let D be an open subset of a two-dimensional Stein manifold S. Then D is Stein if and only if every holomorphic line bundle L on D is the line bundle associated to some (not necessarily effective) Cartier divisor \mathfrak{d} on D.

1. Introduction. It is well known that every holomorphic line bundle L on a projective algebraic manifold P is associated to some (not necessarily effective) Cartier divisor \mathfrak{d} on P (see Griffiths–Harris [5, p. 161]). A similar fact holds for reduced Stein spaces. For every holomorphic line bundle L on a reduced Stein space S there exists a holomorphic global section s of L such that s does not vanish identically on any irreducible component of S. Therefore L is the line bundle associated to the effective Cartier divisor div(s) on S (see Gunning [6, pp. 120–122]).

On the other hand a holomorphic line bundle L on the punctured didisk $X := \Delta^2 \setminus \{(0,0)\}$, which is not Stein, is holomorphically trivial if and only if L is the line bundle associated to some Cartier divisor on X (see Remark 1.4 of Ballico [1]).

In this paper we prove that an open subset D of a two-dimensional Stein manifold S is Stein if and only if every holomorphic line bundle L on D is the line bundle associated to some (not necessarily effective) Cartier divisor \mathfrak{d} on D (Theorem 3). By using the method of Kajiwara–Kazama [10] the proof is deduced from the above-mentioned property of the punctured didisk.

If S is a Stein manifold of dimension more than two, then there can exist an open subset D of S such that D is not Stein and every holomorphic line bundle L on D is the line bundle associated to some effective Cartier divisor \mathfrak{d} on D.

2. Lemmas. Let X be a reduced complex space. Let \mathfrak{d} be a Cartier divisor on X defined by a meromorphic Cousin-II distribution $\{(U_i, m_i)\}_{i \in I}$

²⁰⁰⁰ Mathematics Subject Classification: 32E10, 32L10, 32T05.

Key words and phrases: holomorphic line bundle, Cartier divisor, Stein manifold.

M. Abe

on X. We denote by $[\mathfrak{d}]$ the holomorphic line bundle on X defined by the cochain $\{m_i/m_j\} \in Z^1(\{U_i\}_{i \in I}, \mathscr{O}^*)$. We say that $[\mathfrak{d}]$ is the holomorphic line bundle associated to \mathfrak{d} .

Let $\Delta := \{t \in \mathbb{C} \mid |t| < 1\}$. A holomorphic line bundle L on the punctured didisk $X := \Delta^2 \setminus \{(0,0)\}$ is holomorphically trivial if and only if there exists a Cartier divisor \mathfrak{d} on X such that $L = [\mathfrak{d}]$ (see Remark 1.4 of Ballico [1]). More generally we have the following lemma.

LEMMA 1. Let S be a two-dimensional Stein manifold with $H^2(S, \mathbb{Z}) = 0$. Let A be a non-empty discrete subset of S. Let L be a holomorphic line bundle on the open set $S \setminus A$. Then L is holomorphically trivial if and only if there exists a Cartier divisor \mathfrak{d} on $S \setminus A$ such that $L = [\mathfrak{d}]$.

Proof. Assume that there exists a Cartier divisor \mathfrak{d} on $D := S \setminus A$ such that $L = [\mathfrak{d}]$. Since D is Cousin-II (see Theorem 8.25 of Hitotumatu [7, p. 174]), $L = [\mathfrak{d}]$ is holomorphically trivial. The converse is clear.

Let S be a reduced complex space and D an open subset of S. Let p be a boundary point of D in S. Then we say that D is *locally Stein* at p if there exists a neighborhood U of p in S such that $U \cap D$ is Stein. By using the method of the proof of Lemma 11 of Kajiwara–Kazama [10] we prove the following lemma.

LEMMA 2. Let S be a purely two-dimensional reduced Stein space and D an open subset of S. Assume that for every holomorphic line bundle L on D there exists a Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$. Then D is locally Stein at every point $p \in \partial D \setminus \operatorname{Sing}(S)$.

Proof. Assume that there exists a point $p \in \partial D \setminus \operatorname{Sing}(S)$ such that Dis not locally Stein at p. Since S is Stein, there exist a holomorphic map $\psi : S \to \mathbb{C}^2$ and a neighborhood W of p such that W is non-singular, $\psi(W)$ is an open subset of \mathbb{C}^2 and $\psi|_W : W \to \psi(W)$ is biholomorphic (see Grauert–Remmert [4, p. 151]). Take a Stein open subset V of \mathbb{C}^2 such that $\psi(p) \in V \Subset \psi(W)$. Then $U := \psi^{-1}(V) \cap W$ is a Stein neighborhood of p and $\psi(U) = V$. Since D is not locally Stein at p, the open set $\psi(D \cap U)$ is not Stein. By Lemma 1 of Kajiwara–Kazama [10] (see also the proof of Lemma 11 of [10]) there exist $H, P, \varepsilon, \varphi$ and (b_1, b_2) with the following properties:

$$\begin{split} H &= \{ (w_1, w_2) \in \mathbb{C}^2 \mid |w_1| < 1, \ |w_2| < 1 \} \\ &\cup \{ (w_1, w_2) \in \mathbb{C}^2 \mid 1 - 2\varepsilon < |w_1| < 1 + 2\varepsilon, \ |w_2| < 1 + 2\varepsilon \}, \\ P &= \{ (w_1, w_2) \in \mathbb{C}^2 \mid |w_1| < 1 + 2\varepsilon, \ |w_2| < 1 + 2\varepsilon \}, \quad 0 < \varepsilon < 1/2, \\ \varphi : \mathbb{C}^2 \to \mathbb{C}^2 \text{ is a biholomorphic map}, \quad \varphi(H) \subset \psi(D \cap U), \\ |b_1| &\leq 1 - 2\varepsilon, \quad |b_2| = 1, \quad \varphi(b_1, b_2) \in \partial(\psi(D \cap U)). \end{split}$$

Let $\theta = (\theta_1, \theta_2) := \varphi^{-1} \circ \psi : S \to \mathbb{C}^2$. Let $T := \{ |\theta_1| < 1 + 2\varepsilon \}, T_0 := \{ |\theta_2| < \varepsilon \}$ $1+2\varepsilon\}\cap T\cap U$ and $T_1:=\{|\theta_2|>1+\varepsilon\}\cup (T\setminus \overline{U})$. Then T is a Stein open subset of S and $\{T_0, T_1\}$ is an open covering of T. The function $1/(\theta_2 - b_2)$ is holomorphic on $T_0 \cap T_1$. Since $H^1(\{T_0, T_1\}, \mathscr{O}) = 0$, there exist $v_i \in \mathscr{O}(T_i)$, i = 1, 2, such that $1/(\theta_2 - b_2) = v_1 - v_0$ on $T_0 \cap T_1$. We define a meromorphic function v on T by the equalities $v = v_0 + 1/(\theta_2 - b_2)$ on T_0 and $v = v_1$ on T_1 . Then v is holomorphic on $(\{\theta_2 \neq b_2\} \cap T_0) \cup T_1$. Let $D_1 := \{\theta_1 \neq b_1\} \cap D$ and $D_2 := ((\{\theta_2 \neq b_2\} \cap T) \cup (T \setminus \overline{U})) \cap D$. Then $\{D_1, D_2\}$ is an open covering of D and the function $v/(\theta_1 - b_1)$ is holomorphic on $D_1 \cap D_2$. By assumption there exist invertible meromorphic functions g_i on D_i , i = 1, 2, such that $\exp(v/(\theta_1-b_1)) = g_1/g_2$ on $D_1 \cap D_2$. The function $g'_1 := \exp(-v_0/(\theta_1-b_1)) g_1$ is meromorphic on $T_0 \cap D_1$ and $\exp(1/((\theta_1 - b_1)(\theta_2 - b_2))) = g_1'/g_2$ on $T_0 \cap D_1 \cap D_2$. Let $H_i := \{(w_1, w_2) \in H \mid w_i \neq b_i\}$ and $P_i := \{(w_1, w_2) \in H \mid w_i \neq b_i\}$ $P \mid w_i \neq b_i$ for i = 1, 2. Since P is the envelope of holomorphy of H, the open set P_i is the envelope of holomorphy of H_i for each i = 1, 2 by Satz 7 of Grauert–Remmert [3] (see Theorem 2.5.9 of Jarnicki–Pflug [8, p. 182]). Since $H_i \subset \theta(U)$ and $\theta^{-1}(H_i) \cap U \subset T_0 \cap D_i$ for i = 1, 2, the function $f_1 := g'_1 \circ (\theta|_U)^{-1}$ is meromorphic on H_1 and $f_2 := g_2 \circ (\theta|_U)^{-1}$ is meromorphic on H_2 . By Proposition 3 of Kajiwara–Sakai [11] there exists a meromorphic function \tilde{f}_i on P_i such that $\tilde{f}_i = f_i$ on H_i for each i = 1, 2. Since f_i is invertible on H_i , \tilde{f}_i is also invertible on P_i by the theorem of identity. We have $\exp(1/((w_1 - b_1)(w_2 - b_2))) = \tilde{f}_1/\tilde{f}_2$ on $P_1 \cap P_2$. This contradicts Lemma 1 because the function $\exp(1/((w_1 - b_1)(w_2 - b_2))) \in \mathscr{O}^*(P_1 \cap P_2)$ defines a non-trivial holomorphic line bundle on $P_1 \cup P_2 = P \setminus \{(b_1, b_2)\}$ (see Lemma 1 of Kajiwara [9] or Serre [12, p. 372]).

3. Theorem. We have the following theorem which characterizes a Stein open subset of a two-dimensional Stein manifold.

THEOREM 3. Let S be a two-dimensional Stein manifold and D an open subset of S. Then the following four conditions are equivalent.

- (1) D is Stein.
- (2) For every holomorphic line bundle L on D there exists an effective Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$.
- (3) For every holomorphic line bundle L on D there exists a Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$.
- (4) The image of the natural homomorphism $H^1(D, \mathscr{O}^*) \to H^1(D, \mathscr{M}^*)$ vanishes.

Proof. $(3) \Rightarrow (1)$. By Lemma 2 the open set D is locally Stein at every boundary point p of D in S. It follows that D is Stein by the theorem of Docquier–Grauert [2].

 $(1) \Rightarrow (2)$. Every holomorphic line bundle L on an arbitrary reduced Stein space is associated to some Cartier divisor $[\mathfrak{d}]$. For the proof of this fact we refer to Gunning [6, pp. 120–122].

 $(2) \Rightarrow (3) \Leftrightarrow (4)$. Clear.

For an open subset D of a Stein manifold S such that dim $S \ge 3$ the theorem above does not hold. As an example, we take a non-empty analytic subset A of S such that codim $A \ge 3$. The open subset $D := S \setminus A$ of S is not Stein. Let L be an arbitrary holomorphic line bundle on D. There exists a holomorphic line bundle \tilde{L} on S such that $\tilde{L}|_D = L$ (see Shiffman [13, p. 340]). Since S is Stein, there exists an effective divisor $\tilde{\mathfrak{d}}$ on S such that $\tilde{L} = [\tilde{\mathfrak{d}}]$. Then we have $L = [\tilde{\mathfrak{d}}|_D]$ and condition (2) of Theorem 3 is satisfied.

References

- [1] E. Ballico, Holomorphic vector bundles on $\mathbb{C}^2 \setminus \{0\}$, Israel J. Math. 128 (2002), 197–204.
- [2] F. Docquier und H. Grauert, Levisches Problem und Rungescher Satz f
 ür Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94–123.
- [3] H. Grauert und R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorph-konvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, Comment. Math. Helv. 31 (1956), 152–183.
- [4] —, —, Theory of Stein Spaces, Grundlehren Math. Wiss. 236, Springer, Berlin, 1979.
- [5] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, Wiley, New York, 1978.
- [6] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables, Vol. 3, Wadsworth, Belmont, CA, 1990.
- [7] S. Hitotumatu, Theory of Analytic Functions of Several Variables, Baifûkan, Tokyo, 1960 (in Japanese).
- [8] M. Jarnicki and P. Pflug, *Extension of Holomorphic Functions*, de Gruyter, Berlin, 2000.
- J. Kajiwara, On Thullen's example of a Cousin-II domain, Sci. Rep. Kanazawa Univ. 9 (1964), 1–8.
- [10] J. Kajiwara and H. Kazama, Two dimensional complex manifold with vanishing cohomology set, Math. Ann. 204 (1973), 1–12.
- J. Kajiwara and E. Sakai, Generalization of Levi–Oka's theorem concerning meromorphic functions, Nagoya Math. J. 29 (1967), 75–84.
- [12] J.-P. Serre, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier (Grenoble) 16 (1966), no. 1, 363–374.
- B. Shiffman, Extension of positive line bundles and meromorphic maps, Invent. Math. 15 (1972), 332–347.

School of Health Sciences Kumamoto University Kumamoto 862-0976, Japan E-mail: mabe@hs.kumamoto-u.ac.jp

> Reçu par la Rédaction le 27.10.2003 Révisé le 12.3.2004

(1479)