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Holomorphic line bundles on a domain
of a two-dimensional Stein manifold

by Makoto Abe (Kumamoto)

Abstract. Let D be an open subset of a two-dimensional Stein manifold S. Then D
is Stein if and only if every holomorphic line bundle L on D is the line bundle associated
to some (not necessarily effective) Cartier divisor d on D.

1. Introduction. It is well known that every holomorphic line bundle
L on a projective algebraic manifold P is associated to some (not necessarily
effective) Cartier divisor d on P (see Griffiths–Harris [5, p. 161]). A similar
fact holds for reduced Stein spaces. For every holomorphic line bundle L on
a reduced Stein space S there exists a holomorphic global section s of L
such that s does not vanish identically on any irreducible component of S.
Therefore L is the line bundle associated to the effective Cartier divisor
div(s) on S (see Gunning [6, pp. 120–122]).

On the other hand a holomorphic line bundle L on the punctured didisk
X := ∆2 \ {(0, 0)}, which is not Stein, is holomorphically trivial if and only
if L is the line bundle associated to some Cartier divisor on X (see Remark
1.4 of Ballico [1]).

In this paper we prove that an open subset D of a two-dimensional Stein
manifold S is Stein if and only if every holomorphic line bundle L on D is the
line bundle associated to some (not necessarily effective) Cartier divisor d
on D (Theorem 3). By using the method of Kajiwara–Kazama [10] the proof
is deduced from the above-mentioned property of the punctured didisk.

If S is a Stein manifold of dimension more than two, then there can
exist an open subset D of S such that D is not Stein and every holomorphic
line bundle L on D is the line bundle associated to some effective Cartier
divisor d on D.

2. Lemmas. Let X be a reduced complex space. Let d be a Cartier
divisor on X defined by a meromorphic Cousin-II distribution {(Ui,mi)}i∈I
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on X. We denote by [d] the holomorphic line bundle on X defined by the
cochain {mi/mj} ∈ Z1({Ui}i∈I ,O∗). We say that [d] is the holomorphic line
bundle associated to d.

Let∆ := {t ∈ C | |t| < 1}. A holomorphic line bundle L on the punctured
didisk X := ∆2 \{(0, 0)} is holomorphically trivial if and only if there exists
a Cartier divisor d on X such that L = [d] (see Remark 1.4 of Ballico [1]).
More generally we have the following lemma.

Lemma 1. Let S be a two-dimensional Stein manifold with H2(S,Z)
= 0. Let A be a non-empty discrete subset of S. Let L be a holomorphic line
bundle on the open set S \ A. Then L is holomorphically trivial if and only
if there exists a Cartier divisor d on S \A such that L = [d].

Proof. Assume that there exists a Cartier divisor d on D := S \ A such
that L = [d]. Since D is Cousin-II (see Theorem 8.25 of Hitotumatu [7,
p. 174]), L = [d] is holomorphically trivial. The converse is clear.

Let S be a reduced complex space and D an open subset of S. Let p be
a boundary point of D in S. Then we say that D is locally Stein at p if there
exists a neighborhood U of p in S such that U ∩ D is Stein. By using the
method of the proof of Lemma 11 of Kajiwara–Kazama [10] we prove the
following lemma.

Lemma 2. Let S be a purely two-dimensional reduced Stein space and
D an open subset of S. Assume that for every holomorphic line bundle L on
D there exists a Cartier divisor d on D such that L = [d]. Then D is locally
Stein at every point p ∈ ∂D \ Sing(S).

Proof. Assume that there exists a point p ∈ ∂D \ Sing(S) such that D
is not locally Stein at p. Since S is Stein, there exist a holomorphic map
ψ : S → C2 and a neighborhood W of p such that W is non-singular,
ψ(W ) is an open subset of C2 and ψ|W : W → ψ(W ) is biholomorphic (see
Grauert–Remmert [4, p. 151]). Take a Stein open subset V of C2 such that
ψ(p) ∈ V b ψ(W ). Then U := ψ−1(V )∩W is a Stein neighborhood of p and
ψ(U) = V . Since D is not locally Stein at p, the open set ψ(D ∩ U) is not
Stein. By Lemma 1 of Kajiwara–Kazama [10] (see also the proof of Lemma
11 of [10]) there exist H, P , ε, ϕ and (b1, b2) with the following properties:

H = {(w1, w2) ∈ C2 | |w1| < 1, |w2| < 1}
∪ {(w1, w2) ∈ C2 | 1− 2ε < |w1| < 1 + 2ε, |w2| < 1 + 2ε},

P = {(w1, w2) ∈ C2 | |w1| < 1 + 2ε, |w2| < 1 + 2ε}, 0 < ε < 1/2,

ϕ : C2 → C2 is a biholomorphic map, ϕ(H) ⊂ ψ(D ∩ U),

|b1| ≤ 1− 2ε, |b2| = 1, ϕ(b1, b2) ∈ ∂(ψ(D ∩ U)).



Holomorphic line bundles 271

Let θ = (θ1, θ2) := ϕ−1 ◦ψ : S → C2. Let T := {|θ1| < 1 + 2ε}, T0 := {|θ2| <
1 + 2ε} ∩ T ∩ U and T1 := {|θ2| > 1 + ε} ∪ (T \ U). Then T is a Stein open
subset of S and {T0, T1} is an open covering of T . The function 1/(θ2−b2) is
holomorphic on T0 ∩ T1. Since H1({T0, T1}, O) = 0, there exist vi ∈ O(Ti),
i = 1, 2, such that 1/(θ2−b2) = v1−v0 on T0∩T1. We define a meromorphic
function v on T by the equalities v = v0+1/(θ2−b2) on T0 and v = v1 on T1.
Then v is holomorphic on ({θ2 6= b2}∩T0)∪T1. Let D1 := {θ1 6= b1}∩D and
D2 := (({θ2 6= b2}∩T )∪ (T \U))∩D. Then {D1,D2} is an open covering of
D and the function v/(θ1 − b1) is holomorphic on D1 ∩D2. By assumption
there exist invertible meromorphic functions gi on Di, i = 1, 2, such that
exp(v/(θ1−b1)) = g1/g2 onD1∩D2. The function g′1 := exp(−v0/(θ1−b1)) g1

is meromorphic on T0 ∩ D1 and exp(1/((θ1 − b1)(θ2 − b2))) = g′1/g2 on
T0 ∩ D1 ∩ D2. Let Hi := {(w1, w2) ∈ H | wi 6= bi} and Pi := {(w1, w2) ∈
P | wi 6= bi} for i = 1, 2. Since P is the envelope of holomorphy of H,
the open set Pi is the envelope of holomorphy of Hi for each i = 1, 2 by
Satz 7 of Grauert–Remmert [3] (see Theorem 2.5.9 of Jarnicki–Pflug [8,
p. 182]). Since Hi ⊂ θ(U) and θ−1(Hi) ∩ U ⊂ T0 ∩ Di for i = 1, 2, the
function f1 := g′1 ◦ (θ|U )−1 is meromorphic on H1 and f2 := g2 ◦ (θ|U )−1 is
meromorphic on H2. By Proposition 3 of Kajiwara–Sakai [11] there exists a

meromorphic function f̃i on Pi such that f̃i = fi onHi for each i = 1, 2. Since
fi is invertible on Hi, f̃i is also invertible on Pi by the theorem of identity.
We have exp(1/((w1 − b1)(w2 − b2))) = f̃1/f̃2 on P1 ∩ P2. This contradicts
Lemma 1 because the function exp(1/((w1 − b1)(w2 − b2))) ∈ O∗(P1 ∩ P2)
defines a non-trivial holomorphic line bundle on P1∪P2 = P \{(b1, b2)} (see
Lemma 1 of Kajiwara [9] or Serre [12, p. 372]).

3. Theorem. We have the following theorem which characterizes a
Stein open subset of a two-dimensional Stein manifold.

Theorem 3. Let S be a two-dimensional Stein manifold and D an open
subset of S. Then the following four conditions are equivalent.

(1) D is Stein.
(2) For every holomorphic line bundle L on D there exists an effective

Cartier divisor d on D such that L = [d].
(3) For every holomorphic line bundle L on D there exists a Cartier

divisor d on D such that L = [d].
(4) The image of the natural homomorphism H1(D,O∗)→ H1(D,M ∗)

vanishes.

Proof. (3)⇒(1). By Lemma 2 the open set D is locally Stein at every
boundary point p of D in S. It follows that D is Stein by the theorem of
Docquier–Grauert [2].
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(1)⇒(2). Every holomorphic line bundle L on an arbitrary reduced Stein
space is associated to some Cartier divisor [d]. For the proof of this fact we
refer to Gunning [6, pp. 120–122].

(2)⇒(3)⇔(4). Clear.

For an open subset D of a Stein manifold S such that dimS ≥ 3 the
theorem above does not hold. As an example, we take a non-empty analytic
subset A of S such that codimA ≥ 3. The open subset D := S \ A of S is
not Stein. Let L be an arbitrary holomorphic line bundle on D. There exists
a holomorphic line bundle L̃ on S such that L̃|D = L (see Shiffman [13,
p. 340]). Since S is Stein, there exists an effective divisor d̃ on S such that

L̃ = [d̃]. Then we have L = [d̃|D] and condition (2) of Theorem 3 is satisfied.
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