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HOLOMORPHIC MAPPINGS OF POLYDISCS
INTO COMPACT COMPLEX MANIFOLDS

K. KODAIRA

In this paper we prove an inequality in the manner of the Nevanlinna theory
expressing certain properties of holomorphic mappings of n-dimensional poly-
discs into compact complex manifolds of the same dimension and discuss some
of its applications.

1. Let W be a compact complex manifold of dimension n. For a point w
in W, we denote a local coordinate of w by (w\ w2, , wn). Take a complex
line bundle L over PF. By a theorem of de Rham, the Chern class c(L) of
L can be regarded as a J-cohomology class of d-closed 2-forms on W. We say
that a real (1, l)-form

7 — i Σ Saβ(w)dwa Λ dwβ , / = v - 1 ,

on W is positive semidefinite (or positive definite) if the Hermitian matrix
(gaβ(w))a,β=i, . ,n is positive semidefinite (or positive definite) at every point
w eW. Denote the canonical bundle of W by K. In this section we assume
the existence of a complex line bundle L over W together with a positive integer
m satisfying the following condition: The Chern class c(L) contains a positive
semidefinite d-closed real (1, l)-form and

( 1 ) dim H°(W, Θ(Km (x) L"1)) > 0 ,

where Θ(Km ®L~ι) denotes the sheaf over W of germs of holomorphic sec-
tions of Km®L~\

Cover W by a finite number of small neighborhoods Uj, j = 1, 2, , and
fix a local coordinate: w —• (w), , wj) on each Uj. Take a 1-cocycle {ljk}
determining the line bundle L composed of nonvanishing holomorphic func-
tions ljk = ljk(w) defined, respectively, on U5 Π Uk. We then find a 0-cochain
{aj} composed of C°°-difϊerentiable functions aj = aj(w) > 0 defined, respec-
tively, on Uj satisfying

aό(w)m = \ljk(w)\2ak(w)m , on Uj Π Uk ,

such that
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n _

ϊ = * Σ 8jaβ(w)dWj Λ dvP§ = /33 log Λ/W)

is positive semidefinite. Note that the d-closed real (1, l)-form my belongs to
the Chern class c(L). We choose a holomorphic section

φ 6 H°(W; (9(Km <g> L"1)) , φ Φ 0 ,

and denote by ̂ (w) the fibre coordinate of φ(w) over Vά. It is clear that

v = aj(w)\φj(w)\2/m(ί/2)ndw) A dw) A Λ dw] A dw]

is a volume element, i.e., a real continuous 2n-form which is nonnegative
everywhere on W. Fix a point p° eW such that (̂/?°) Φ 0, and assume that
p°€ϋ1. We normalize the volume element v by the condition:

Let O denote the space of n complex variables, define |z| = max \zλ\ for

z — (z19 ,zλ, , zn) β C71, and denote by Δr a polydisc of radius r:

Take a polydisc J ^ C O , consider a holomorphic mapping / of ΔR into PF,
and assume that the Jacobian of / does not vanish at the origin 0 € ΔR and that

( 3 ) /(0) = f .

For simplicity we write

dV(z) = (iβYdz, Adz, A •" Adzn A dzn ,

and let /*(v) denote the volume element on ΔR induced from v by the mapping
/. Then we have

f*(v) = ξ(z)dV(z) , f(z) - aj(f(z))\φj(f(zWm\Jj(z)\2 ,

where

Jj(z) = det (3w5/3zi)βli=v..,n , (wj, , wj) =

By hypothesis the Jacobian Jj(z) of / does not vanish identically, and therefore
the equation ξ(z) = 0 defines a proper analytic subset of ΔR. Hence, by apply-
ing a suitable linear transformation to Cn if necessary, we may assume that, for
any fixed values of z19 ,z λ . 1 9 z λ + 1 , ,z n 9 the function ξ(z19 --,zi9 ,z n )
of zλ does not vanish identically and that
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( 4 ) 7,(0) = 1 .

Set

σλ = (//2)7l-1ί/z1 Λ dz1 A Λ dzλ_x Λ dzλ+1 Λ Λ dzn ,
n

° = Σ <*i >

where (>v̂ , , wf) = /(z). Moreover, setting ẑ  = r^*^, we introduce polar
coordinates (ri9 θλ) and let

dS(z) = Σ Ά Λ σ, .

We denote the bundary of the polydisc Δr by 3Jr.
Now we define functions M(r), A(r) and N(r) of r, 0 < r < /?, as follows:

N(r) = Aπm ι ί a + 4ττ j <7 ,

where (/*0 and (7) denote, respectively, the divisors of the holomorphic func-
tions ψj(f(z)) and Jj(z).

Theorem 1. We &αv£ the inequality:

A(t)rιdt + (rN(t)rιdt < M{r) .
0 0

. Let

The set Γ = {z\ξ(z) = 0} is a proper analytic subset of J Λ , and //(z) is C°
differentiable outside Γ. For brevity we write

z = (Zi, ζ) , ζ = (z2, , zn) .

We set
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Lemma, μ^r, ζ) is a continuous function of (r, ζ), 0 < r < R, | ζ | < R,
and is a piecewise smooth function of r, 0 < r < R, when ζ is fixed.

To prove this lemma, take a point ζ°, |ζ°| < R, and a real number r°, 0 <
r° < R, such that ( r V , ζ°) <£ Γ for 0 < θ < 2π. Moreover, for each ζ,\ζ\<R9

denote by ^ ( ζ ) , h = 1, 2, 3, , the roots of the equation:

φj(ί(z19 ζ))Jj(zl9 ζ ) m = 0 .

Then for a small positive number ε we have, for \Zχ\ < r°, |ζ — ζ°| < ε,

= 2 m " 1

where the summation is extended over all roots ^ ( ζ ) with \ph(ζ)\ < r°, and r(z)
is a C°°-diίϊerentiable function of z. Using the formula

Γ*log \reiθ - p\dθ = 2π max {log r, log \p\} ,
0

we hence obtain

( 6 ) //^r, ζ) = Aπm~ι 2 max {log r, log ||0Λ(ζ)|} + τx{r9 ζ) ,

where τλ(r, ζ) is a C°°-differentiable function of (r, ζ), |r | < r0, |ζ — ζ°| < ε.
Since the roots ph(ζ), arranged in an appropriate order, are continuous func-
tions of ζ, |ζ — ζ°| < ε, the formula (6) proves the lemma.

Define

M O Ί , r2, , rn) = j μ(zl9 z2, , zn)dθιdβ2- -dθn ,

where the integral is extended over the domain: 0 < θλ < 2π, 0 < g2 < 2ττ,
• , 0 < θn < 2π. Since

M(r19 r 2 , . . . , r B ) = J /i^Γj, z2, , zn)dθ2- -dθn ,

we infer from the above lemma that M(rx, r2, , rn) is a continuous function
of (r15 r2, , rn) ψ (0, , 0), while, by (2), (3) and (4), the function μ(z) of
z is C°°-differentiable in a neighborhood of 0. Consequently M{rλ, r j is a
continuous function of (r1? , rn), 0 < rλ < R.

Let 3λ denote the exterior differentiation with respect to the variable zv We
then have
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= id1d1logaJ(f(z)) = |9/(z)/dzrfidz, Λ dz, .

Define

B(r, ζ) = J 2/3131/ί(z) = J 2|9/(z)/9z1|
2/<fe1 Λ ̂  .

\zi\<r \zi\<r

Setting Zι = x + iy, we have

2id$λμ = d*dμ, *dμ = (dμ/dx)dy — (dμ/dy)dx .

Moreover the function μ(z19 ζ) is C°°-difϊerentiable in zx for zλ Φ ρh(ζ). Hence,
letting

£ *dμ(z) = ljm J *dμ(z19 ζ) ,

\Zl-p\=t

we obtain

B{r' ° = L
<j> *dμ(z) = 0 for p Φ p/L(ζ)9 h = 1, 2, . We denote by v(r, ζ,Note that <

and v(r, ζ, / ) , respectively, the number of the roots on the disc \zλ\ < r of the
equations <p(f(z19 ζ)) = 0 and 7/z, ζ) = 0. Since

μ(z) = logα//(z)) + 2m-1log|^,(/(z))| + 21og|/, (z)| ,

we have

Σ (*dμ(z) - 4πm-^(r9 ζ, /*0 + 4πv(r, ζ, 7) .
\9\<r J

p

Moreover we see readily that

J *dμ(z) = rdμ1(r,Q/dr.
\zχ\ = r

Hence, setting

(r,U*ψ) + 4πv(r,ζ,J) ,

we obtain
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and therefore

(7) JrB(t, Or 1* + j\(t, Or 1* - μι(r, ζ) - μι(s, 0 .

This proves the inequality

μι(r, z2, , z J > /^(s, z2, - - -, z j , for r > ,s > 0 .

It follows that

M(r, r2, , rn) > M(^, r2, , rn) , for r > s .

Thus we infer that M(r1? , rλ, , rn) is a monotone nondecreasing junction
oj each variable rλ. Since, by (2), (3) and (4), f(0) is equal to 1, we get

( 8 ) M(rί9 r2, . , rn) > 0 .

Define

A(t,u) = J B(t,QdV(ζ) ,

M x(ί, w) —
where

rfF(ζ) = σι = {i\2γ-χdz2 Λdz2Λ ' - ΛdznΛ dzn .

Since idzλ Λ ί/ẑ  = 2rλdrλdθλ, we have

M x(r, u) = I M(r, r2, r3, , rn)r2dr2r3dr3 - rndrn ,

0

where the integral is extended over the domain: 0 < rλ < u, λ = 2, 3, , n.
Hence, using (8), we obtain from (7) the inequality

(9) jrA(t, u)rιdt + JrN(t, u)rιdt < MSr, u).
0 0

Set
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Mλ(r) = JTM(t2, - 9ti9r9 tί+19 , tn)t2dt2 -tndtn ,
0

Λ2(r) = 4J\dKz)/dzλ\
2dV(z) ,

N 2 (r) = 4τrm-1 J σA + 4^: J <y2 .

Since Mx(r) = Mx(r9 r), Aλ(t) = A(t91) < A(t9 u) and N^t) = N(t91) < N(t, u)
for / < u, we derive from (9) the inequality

I A1(t)t~1dt + I Nί(t)t~ιdt < Mj(ί) .
0 0

We infer in the same manner that

(10) Γ Aλ(t)Γιdt + Γ Nλ(t)rιdt < Mλ(t) .
0 0

Since

rM(r) = Cμ(z)dS(z) = Σ Γ μ(z)rλdθλ Λ dσ2 ,

we have

M(r) = Σ Mλ(f) ,

while it is obvious that

A(t) = t Λ,ω,

Hence the inequality (5) follows from (10). q.e.d.
For a positive number β, we define

Ωβ(r) = Jξ(zydS(z) ,
djr

and set

S(r) =
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Theorem 2. We have the inequality

(11) ^ A(i)Γ'dt + pNiOr'dt < β-'r-'S(r) log (Ωβ(r)/S(r)) .
0 0

Proof. Since log x is a concave function of x, x > 0, we have

rM{r) = Jlog£(z)dS(z) - /T1 J l
3J 3J

which together with (5) gives the inequality (11). q.e.d.
We have assumed so far that the system of coordinates (z1? , zλ, , zn)

is general in the sense that, for each λ and any fixed values of z1? , zλ-.19

Zλ+i> ' ' ' >Zn> the function ξ(zί9 , zi9 , zn) of zλ does not vanish identically.
However, this assumption is irrelevant to the inequality (11). The inequality
(11) holds for any system of coordinates (z1? , zn) satisfying the conditions
(3) and (4). To prove this, suppose that the coordinates (z1? , z n ) are ob-
tained from a fixed system of coordinates (z{0), , z^0)) by means of a linear
transformation u — (uλv) with det (uλv) = 1:

zλ = Σ uλ^ .
v = l

There exists an everywhere dense subset G of the special linear group SL(n, C)
such that, for every u e G, the corresponding system of coordinates (z1? , zn)
is general and, consequently, the inequality (11) holds. For our purpose it
suffices, therefore, to verify that each term of (11) depends continuously on u.

It is obvious that j A(t)t~ιdt and Ωβ(r) are continuous in u. Denoting the
0

positive part of log x by Iog+Λ:, we have

ΓN(t)Γιdt = Aπm-1 Γ log+ (r/\z\)σ ,

(f*ψ)+m(J)

which shows that I N(t)t~ιdt depends continuously on u. q.e.d.
0

Note that

(12)

Since A(f) and N{i) are nonnegative, the inequality (11) implies that
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(13) Ωβ(f) > S(r) .

Combining this with (12), we get

(14) fξiz)βdViz) > πnr2n .
Δr

In particular, setting β = 1, we obtain

(15) ff*iv) > πnr2n .

2. A holomorphic mapping is said to be totally degenerate if its Jacobian
vanishes identically. Let vQ be a volume element which is positive everywhere
on W. Then, for any holomorphic mapping / of Δr into W, the quotient

I f*iVo)/ I ô m a Y be regarded as a mean degree of the mapping f:Δr—>W.

Δr W

Define

deg(/ |J r ) =

and further set

Pm = dim #°(W, 0(XTO)) , for m]= 1, 2, 3, .

Theorem 3. Let W be a compact complex manifold of dimension n. If
there exists a holomorphic mapping f of Cn into W which is not totally de-
generate, and if

(16) liminf r~2n deg (/1Δr) = 0 ,

then all the plurigenera Pm of W vanish.
Proof. Suppose that one of the plurigenera, say P m , is positive. Then, lett-

ing L be a trivial bundle, we have the inequality (1). Hence, by (15), we obtain

Γ/*(v) > πnr2n ,
Δr

which contradicts (16), since the quotient v/vQ is bounded on W. q.e.d.
By a surface we shall mean a compact complex manifold of dimension 2.

A surface W is said to be regular if the first Betti number b^W) of W vanishes.
A regular surface W is rational if and only if all the plurigenera Pm of W
vanish (see [9, Theorem 54]).
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Theorem 4. // a regular surface W contains C2 as its open subset, then W
is a rational surface.

Proof. Let Ψ b e a regular surface containing C2 and let /: C2 Q W denote
the inclusion map. It is obvious that deg (/1 Δr) < 1 for each polydisc Δr C C2.
Thus by Theorem 3 all the plurigenera Pm of W vanish, and hence W is a
rational surface, q.e.d.

Letting U be a non-empty open subset of a compact complex manifold W,
we call W a compactification of £/ if the complement W — £/ of U is an ana-
lytic subset of W. F. Hirzebruch mentioned in his list [6] of problems the
classification of all compactifications of Cn. Concerning this problem, A. Van
de Ven [13] pointed out that all the known examples of compactifications of
C2 are rational surfaces.

Theorem 5. Every compactification of C2 is a rational surface.
Proof. Let W be a compactification of C2. It is then obvious that bλ(W) =

bλ{C2) = 0. Hence, by Theorem 4, W is a rational surface, q.e.d.
The condition C2 Q W is much weaker than that W is a compactification of

C2. In fact, there exists an infinite sequence of mutually disjoint open subsets
U19U2,UZ, of C2 each of which is biholomorphically isomorphic to C2 (see
§ 4 below). Thus, if C2 Q W, then U.QC'Q W, and the existence otU.QW
together with the vanishing of bx(W) already implies the rationality of W.

3. Letting W be a projective algebraic manifold of dimension n, we call
W an algebraic manifold of general type if

(17) lim sup m~n dim H\W, Θ(Km)) > 0 ,

where K denotes the canonical bundle of W. Recently Iitaka [7] introduced
the concept of canonical dimension. The condition (17) is equivalent to saying
that the canonical dimension of W coincides with the dimension n of W. In this
section we apply Theorem 1 to algebraic manifolds of general type and derive
a recent result of Griffiths [5].

Let W be an algebraic manifold of general type of dimension n, X a general
hyperplane section of W, and L = [X] the complex line bundle over W deter-
mined by the divisor X. Then, letting Kx denote the restriction of K to X, we
have the exact sequence:

0 _> H°(W, Θ(Km (x) L-1)) -> H°0V, Θ(Km)) — H\X,

while dim ff°(Z, 0(K%)) is a function of m of order O(mn'1). Hence, by (17),
dim/f°(X, Θ{Km ®L~1)) is positive for a large integer m, and thus we have
the inequality (1). Obviously we may assume that the real (1, l)-form

i Σ gjaβWdWj Λ dw$ = idd log α/w)

is positive definite. Therefore, setting
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gj(w) = det (gJaβ(w)) ,

we find a positive constant c such that

(18) aj(w) I ψj(w) \2/m < cngj(w) , for w e W .

Now consider a holomorphic mapping f:ΔR—>W satisfying the conditions
(3) and (4), and set

β(r) = flvn(r), Γ(r) = J ξ(z)ι/ndV(z) .

Since

^•(/(>v))|//z)|2< f\\df(z)/dzλ\
2 ,

we have, in consequence of (18),

ξ(z) < c» Π |a/(z)/az,|2 , f(z)1^ < n-'c Σ \df(z)/dzλ
λ=l λ=l

from which follows

T(r) < (AnYιcA(r) .

Combining this with (11) we obtain

(19) §rT(t)Γ'dt < (4r)-'cS(r) log (β

Set

Q(r) =Γτ(t)Γιdt , Ψ(r) =
0

and note that, by (14), Γ(r) > TΓV71, Q(r) > (2n)-ιπnr2n and iΓ(r) > 1. The
inequality (19) implies that

r < r0 , r0 = ro(c, n) ,

where ro(c, n) is a constant depending only on c and n (see Nevanlinna [11,
p. 235]). In fact, if Ω(r) < r2Q(r)\ then the inequality (19) yields

rψ(r) < n2c{A log Ψ(r) + (6n + 3) log r + 3n log π) .
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Since Ψ{r) > 1 and e log x < x for x > 0, this proves that

r < rx = max {1, n2ce~\6n + 7) + 3n log π] .

Therefore, if r > r19 then (19) implies that Ω(r) > r 2βW 4. It follows that either
Ω(r) > T{r)2 or T(r) > rQ(r)2. If fl(r) > Γ(r)2, then

dr = Ω{rYιdT(r) < T(rY2dT(r) .

If Γ(r) > rβ(r)2, then

Jr = T(rYιrdQ(f) < Q(rY2dQ(r) .

Hence we get

J r fr

dt < — d(T(tYι + QW"1)
J

< Γ ^ ) - 1 + Q(r^~l < (2n + l)ττ-n ,

which proves that

r < r0 , ro = r ι + (2n+ l)π~n .

Thus we obtain the following
Theorem 6. Let W be an algebraic manifold of general type, and pQ a

point on W such that φ(p°) Φ 0 for an element φ e H\W, Θ(Km ® L"1)). Then
there exists a constant r0 with the following properties: For any holomorphic
mapping f: ΔR^W with /(0) = p° and /x(0) = 1, the inequality R < rQ holds,
where Jx(ϋ) denotes the Jacobian of f at the origin 0.

This theorem has been proved by Griffiths [5] under the assumption that the
canonical system \K\is ample. We remark that his proof also applies to the case
in which \K\v& not assumed to be ample, and establishes the above Theorem 6
(see Kobayashi and Ochiai [8, Addendum]).

4. Bieberbach [2] constructed an example of a biholomorphic mapping /
of C2 onto a proper open subset U of C2. His construction is as follows. Let
η: z —> ηz be a biholomorphic automorphism of C2 of which the origin 0 is a
fixed point: ηθ = 0. Obviously η induces a linear transformation of the tangent
space Γ0(C2)( = C2) of C2 at 0. Let λ and μ denote the eigenvalues of this linear
transformation, and assume that \λ\ < \μ\ < 1. Then there exists a biholomor-
phic mapping fo:z-> fo(z) of a neighborhood TV of 0 into C2 with /O(0) = 0
such that g = UxηU takes the normal form

g: z = (z19 z2) -> gz = fa + βzl, μz2) ,

where p is a positive integer and β is a constant which vanishes unless λ = μp

(see Lattes [10], Sternberg [12]). Obviously g is a contraction in the sense that
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lim gmz = 0 , for z e C2 .

For every positive integer ra, we have

(20) Uz) = rt(gwz) , for z € JV ,

provided that gN c Λf. Since η~mfog
m is denned on g- m N and U £~mN = C2,

it follows from (20) that fQ can be continued analytically to a biholomorphic
mapping / of C2 onto an open subset U of C2 (see Sternberg [12, p. 816]).
For every integer m we have

f(z) = η-mf(gmz) , for z e C2 .

It follows that

t/ = {z I lim ηmz = 0} .

Now we specify η to be the automorphism

η: z = (Zχ,z2) -> 57Z = (z2,λ
2Z! + U2 — l)(sinz2 — z2)) ,

where λ is a constant with 0 < \λ\ < 1. Note that the normal form of this η is

g: z = (z1? z2) -> gz = Wz1? — ̂ z2) .

We define a translation

τ: z = (z1? z2) -> fe + 2π, z2 + 2π) .

Then Ύ] and τ are commutative: ητ = τη, and therefore, for each integer k,
τk0 = (2^τr, 2/:7r) is a fixed point of 27 and

τ

kU = ίzl lim )9mz = τfc0} .

It follows that τkU and r J i/ are disjoint for k Φ j . Thus we obtain an infinite
sequence of mutually disjoint open subsets τkU, k = 0, ± 1, ± 2 , , each of
which is biholomorphically isomorphic to C2.

Letting {r} denote the infinite cyclic group generated by τ, we have

C2/{τ) - C* X C .

Clearly we may regard U = U τkU/{τ} as an open subset of C* X C. Thus
k

we see the existenc of a biholomorphic mapping: C2 Q C* x C. Combining
this with Theorem 4, we infer that if a regular surface W contains C* x C as
its open subset, then W is a rational surface. This result can be verified also in
the same manner as in the proof of Theorem 4. In fact, if C* X C C W, then
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/: (z19 z2) —»(exp z1? z2) is a holomorphic mapping of C2 into W with deg (/1 Δr)
= O(f). Thus by Theorem 3 all the plurigenera of W vanish, and hence W is
a rational surface.
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