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Abstract. A holomorphic motion of £ c C over the unit disc D is a map

/: DxC -> C such that f(0, w) = w , w € E , the function f{z, w) = fz(w)

is holomorphic in z , and fz : E —» C is an injection for all z € D . Answering

a question posed by Sullivan and Thurston [13], we show that every such /

can be extended to a holomorphic motion F: D x C —>C. As a main step a

"holomorphic axiom of choice" is obtained (concerning selections from the sets

C\fz(E), z e D). The proof uses earlier results on the existence of analytic

discs in the polynomial hulls of some subsets of C  .

1.  INTRODUCTION AND STATEMENT OF RESULTS

Holomorphic motions are isotopies depending ho) omorphically on a complex

parameter. Their study was originated by Mané et al. [8], in the context of the

dynamics of rational maps, and was continued by Sullivan and Thurston [ 13]

and Bers and Royden [2].

Definition [13]. Let £ be a subset of C. A holomorphic motion of E in C,

parametrized by the unit disc D, is a map f:DxE-*C such that (a) for any

fixed w G E, the map z ^ fi(z, w): D —>C is holomorphic; (b) for any fixed

z G D, the map w —► f(z, w) = fiz(w) is one-to-one; and (c) f0 is the identity

map on X.

Note that no continuity in w or (z, w) is assumed here. However, it holds

due to the following remarkable "lambda lemma" of Mané et al.

Lemma 1.1 [8]. If fi: D x E —> C is a holomorphic motion, then f(z, w) is

jointly continuous and has a continuous extension to F: D x E —► C. Further-

more, F is a holomorphic motion of E over D, and the injections Fz(-) =

F(z,-) are quasiconformal.
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348 ZBIGNIEW SLODKOWSKI

If we consider the "trace" of holomorphic motion, i.e., the set

(1.1) {(z, fz(w)): z G D, wgE}gDxC,

we observe that it is foliated by a family of analytic discs. (An analytic disc = the

graph of an analytic map D —> C.) A similar property was obtained for polyno-

mially convex hulls of some classes of subsets of C by Alexander and Wermer

[1], by Forstneric [3], and by the author [11, 12]. We quote next the most

general of those results. (Below, h(X) denotes the polynomial hull of the set

X.)

Theorem 1.2 [ 12]. Let X c dD x C be a compact set such that the fibers X(Q :=

{w G C: (f, w) G X} are connected for all Ç GdD. Assume h(X)nDxC ^ 0.

Then, h(X)\X is the union of a family of analytic discs. Furthermore, the

topological boundary S of h(X)\X in DxC is the union of a family of mutually

disjoint analytic discs.

An obvious reinterpretation of this result in terms of holomorphic motion

is that the part S of the boundary of the hull h(X) is the trace, in the sense

of (1.1) of some holomorphic motion (unique, in fact) of the fiber 5(0). (We

will also see in §3 that the whole set h(X)\X is the trace of some holomorphic

motion.) The purpose of this paper is to use the relation between polynomial

hulls and holomorphic motions to prove Theorems 1.3 and 1.4 below, answering

thereby two questions posed by Sullivan and Thurston [13].

The first concerns the extendability of holomorphic motions.

Theorem 1.3. Every holomorphic motion /:Z)x£-»C of an arbitrary subset

E of C can be extended to a holomorphic motion F: D x C —> C (that is

F\D x E — f) of C, parametrized by the same unit disc D.

Partial extension results already have been reached. Sullivan and Thurston

[13] proved the existence of F: D(0, r)xC-»C, where D(0, r) = {z: \z\ < r}

and r is a positive and uniform, but otherwise unspecified, constant. Bers and

Royden [2] gave another construction in which r = 3 . Our result amounts to

showing that r — 1 ; in addition, the methods are different from those of [2]

and [13], and are, arguably, simpler.

The next theorem asserts another conjecture of Sullivan and Thurston [13],

called by them the "holomorphic axiom of choice."

Theorem 1.4. Let f(z, w) — fz(w) be a holomorphic motion of a subset E c

C, parametrized by z G D. Then, for every point a outside E, there is a

holomorphic map g:Z)-»C such that

(i) g(0) = a and

(ii) g(z) <£ fz(E) for every zgD.

Since it has already been indicated by Sullivan and Thurston [13] that (and

how) the holomorphic axiom of choice would imply the extension result, our

main effort is directed toward obtaining Theorem 1.4. We prove its finite version
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in §2, and in §3 the derivations of Theorems 1.3 and 1.4 are briefly sketched.

We also present a "near converse" to Theorem 1.2—that the trace of analytic

motion, restricted to any smaller disc D(0, r), r < 1, is the polynomial hull of

a subset of dD(0, r)xC (Proposition 3.3).

2.  HOLOMORPHIC AXIOM OF CHOICE:  FINITE CASE

In this section we prove the following lemma, which asserts that Theorem 1.4

holds for holomorphic motions of finite sets E. (We will denote by H(D) the

class of holomorphic maps from D to C, and we will let A(D) = H(D)nC(D).)

Lemma 2.1. Let f0, fix, ... , fn G H(D), n > 1. Assume that for each z G D
all the values f0(z), fx(z), ... , fn(z) are distinct. Then, for every a G C such

that a t¿ f0(0), fx(0), ... , fn(0), there is a g G H(D) such that g(0) = a and,

for each zgD, g(z) ¿ f0(z), fx(z), ... , fn(z).

To prove this, we construct a special polynomial hull which, as stated above

(Theorem 1.2), must admit many analytic discs. One of them will be the graph

of the desired map g. In fact, there is no need to use the full generality of

Theorem 1.2, and we will apply an earlier result of Forstneric [3], which we

recall now, for the convenience of the reader.

Notations and Assumptions 2.2 [3]. For Ç G dD and 0 < t < 1, Af'(Ç) denotes

a Jordan curve in C with fixed homeomorphism onto

s-^b(s,t,0:R/Z^M'(Q.

Assume that:

(i) the map b: dDx R/Z x [0, 1] -► C is Ck'"-smooth with k > 2 and

ae(0, 1);

(ii) db/ds t¿ 0 everywhere;

(iii) M°(Q = {M = R}, Ml(C) = {\w\ = r}, for every f G dD, where

r, R are fixed numbers such that 0 < r < R ; and

(iv) if 0 < r, < t2 < I  and Ç G dD, then Mh(Q  is contained in the

bounded connected component of C\M1{(Ç).

Furthermore, we use the following notations: Ml := \JiedD{Q x M'(Q ; h(M')

is the polynomial hull of M' ; S' :- the relative topological boundary of h(Af')

in DxC; and V1 := the relative interior of h(Af') in DxC.

Theorem 2.3 [3]. If tori Ml, 0 < t < 1, satisfy Notations and Assumptions 2.2

above, then there is a map

(s,t,z)-*f(s,t,z): R/Z x[0,l]x5-»C,

of class Ck~l'a, such that

(i) for every (t, Q g[0, i]x dD, the map s —► f(s, t, Ç) is a homeomor-

phism of RxZ onto M'(Q, and dfi/ds ^ 0 ;
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(ii) far every t G [0, 1], the map (s, z) —> (z, f(s, t, z)) is a homeomor-

phism of R/Z x D onto S' = ¿%xC/z(Af') ;

(iii) t —> S', t G [0, 1], is a continuous correspondence with respect to the

Hausdorff distano topology;

(iv) for tG[0, 1], M' cS', S'öV' = h(Ml), S'nV' = 0;

(y) if 0 < tx < t2 < I, then S'2 c V'1 ;   in particular,  S'>  and Sh  are

disjoint;

(vi) (j0^^xS' = Dx{wgC: r< \w\ <R};  and

(vii) whenever í e [0, 1] and g G A(D) are such that g(z) ^ 0 for all

z g D, and g(Q G M'(Q for every Ç G dD, then there is s G R/Z

such that g(z) — f(s, t, z), for z G D.

Comments. Properties (i)-(iv) and (vii) are stated in Forstneric [3, Theorems

1, 3, 4], and (v) follows from those formulated in [3, p. 886, bottom lines];

only property (vi) may require some explanation. Let Z = \J0<t<xS' an(*

Z(z) - {w : (z, w) G Z} ; then (vi) is equivalent to the relation Z(z) = {w G

C: r < \w\ < R}. By Notations and Assumptions 2.2(iii) and the definition of

the polynomial hull,

h(M°) = DxD(0,R);    h(Ml) - D x D(0, r) ;

S° = DxdD(0,r);    S1 = D x dD(0, r).

By properties (ii) and (iv) of Theorem 2.3, the map

(s,t)^f(s,t,z):R/Zx[0, l)->Z(z)

is one-to-one and, therefore, a homeomorphism of two annuli. In view of (2.1),

this homeomorphism maps the boundary of R/Z x [0, 1] onto the boundary

of{ioeC:r<|io|<.R}, and so the latter set equals Z(z), which proves (vi).

Proof of Lemma 2.1. Applying holomorphic coordinate change (z, w) —>

(z, w - f0(z)), we can assume without loss of generality that f0 = 0. We

first prove the following assertions.

Assertion 1. Lemma 2.1 holds when f0 = 0 and fx, f2, ... , fn are Ck+l-

smooth on D ; k > 2 .

Choose r > 0, R > 0, such that

r <min{\ fj(z)\: z gD , j = l,...,n};

R>max{\fj(z)\:zGD, j= 1,...,«}.

Assertion 2. For the chosen values of r, R, there is a family of Jordan curves

Ml(Q , 0 < t < 1, Ç G dD, satisfying all the Notations and Assumptions 2.2,

and such that, for some value t0 G (0, 1 ),

(2.2) {/,(0,/2(C),...,/„(£)} CM'°(C),       CGdD.
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We prove Assertion 2 first. Applying (for example) the Whitney extension
k

theorem [9, Theorem 1.5.6], we can construct a C -smooth complex-valued

function X(p, 6, w) defined on [0. 1]xäxC, such that

(2.3) X(p,6 + 2n,w) = X(p,6,w),

(2.4) X(p,6,w) = 0   if \w\<r or \w\>R; and

(2.5)

X(p,d,f](Pe'e)) = f-pfj(pe16),    0<p<\,  6GR, j=l, ...,n.

(Function X can easily be constructed directly by the use of the partition-of-

unity argument.)

Since X is bounded and uniformly Lipschitz (by conditions (2.3), (2.4), and

smoothness), the well-known ODE results [5, Chapter II, Theorem 1.1] imply

that the initial-value problem

jj = X(p,6,y(p,6)),    0<p<l, 6gR,

y(0,6) = w0

has a unique solution p —> y(p, 6, w0): [0, 1] —► C . Furthermore [5, Chapter

V], the function y(p, 6, wQ) is Cfc-smooth on [0, 1] x R x C. Let Oz(io) =

y(p, 6, w), where z = pe   , z G D. Then

(2.6) <Pz: C -* C is a C -diffeomorphism,     z gD,

(2.7) <J>0(w) = w,        wgC,

and, by (2.5) and the uniqueness of the solution y,

(2.8) *,(/}(<>)) = /}(*),    j = 0,l,2,...,n,  zgD.

We leave without the proof the following assertion:

Assertion 3. There is a C°°-diffeomorphism

{tts)-*V(t,s): [0, l]x/l/Z->{r< \w\ < R},

such that

(2.9) <¥$,2nij/n) = fj(0),       ; = 1, 2,.,., n,

(2.10) ¥(0, s) = Reis,    *¥(\,s) = rei*,       sgR/Z.

We can now define the tori Ml required in Assertion 2 as follows:

Mt(Q = {<Srç(V(t,s)):s€R/Z},        0<r<l,  (GdD.

The preceding construction implies that the family of Jordan curves M'(Q >

equipped with parametrizations b(s, t, Q = Of(4*(i, s)), satisfies all the No-

tations and Assumptions 2.2. Furthermore, /"(Ç) G M'°(Ç), tQ — \, because
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f.(Q = q>c(fj(0)) = Oc«P(^, 2nij/n), by (2.8) and (2.9), which completes the
proof of Assertion 2.

To prove Assertion 1, we apply Forstneric's Theorem 2.3 to the family M'(Ç)

defined above; the symbols M , S , and f(t, s, z) have the same meaning as

in this theorem. Since f.(z) ¿ 0, z g D, and fiß) G M'°(Ç), C G dD,
conditions (vii) and (ii) of Theorem 2.3 imply that

(2.11) graph(fj) G S'\        7 = 1,2,...,«.

Consider now an arbitrary a G C\{0, /,(0), ... , /„(0)} . If 0 < \a\ < r or

\a\ > R, let g(z) = a, z G D. By (2.11) and (vi) of Theorem 2.3, we get

g(z)^fj(z), .7=0,1,...,», zgD.
If r < \a\ < R, then by Theorem 2.3(iv) and (vi), there is a unique t G [0, 1],

such that (0, a) G S'. By condition (ii) of the same theorem, there is a unique

s G R/Z , such that f(s, t, 0) = a, and so, if we let g(z) := f(s, t,z), then

g G A(D), and

(2.12) graphics',     g(0) = a,    g(z)¿0,        zgD.

If t^t0, then S' nS'° = 0 by Theorem 2.3(iv) and, using (2.11), we get

g(z)¿fx(z),f2(z),...,fn(z),        ZGD.

Clearly, g(z) ^ 0 = f0(z) by Theorem 2.3(vi). If t - t0, the graphs of

g, fx, ... , fn are analytic discs contained in S'°, which are mutually disjoint

by conditions (ii) and (vii) of Theorem 2.3. This completes the proof of Asser-

tion 1 and the general case will be reduced to it.

We continue to assume that f0(z) = 0, but fx, ... , f„ are no longer bound-

ed. By applying the additional coordinate change (z, w) —► (z, w/fx(z)), we

can assume without loss of generality that fi0(z) = 0, fx(z) = 1, and

f.:D^W = C\{0,I},        7 = 2,...,«.

Fix a (£ {f0(0), /, (0), ... , f„(0)} ; in particular aGW. We can apply Asser-

tion 1 to every closed disc D - {\z\ < p} and obtain, for every 0 < p < 1, an

analytic function gp : Dp -* C such that

gp(z) ¿ f0(z),..., fn(z),        zGDp; gp(0) = a.

Since, in particular, gp(Dp) C W, p G (0, 1), we can apply now the well-

known fact that W = C\{0, 1} is completely hyperbolic [7, Chapter I, §3].

Consider an arbitrary p0 G (0, 1), and fix px G (p0, 1). It follows from

the complete hyperbolicity of W that there is a compact subset K c W such

that K d gp(D ), p > px. K can be taken to be the closed hyperbolic ball

in W with center at a, of sufficiently large radius [7, Chapter I, Proposition

3.1]. Hence {gp\D   }        is a Montel family whenever p0 < px < 1, and so

there is a sequence p(n) < 1 such that gp{n) converges uniformly on compact

subsets of D to some g G H(D). Clearly, ^(0) = a. Since gp(n)(z) ¿ f.(z)
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for \z\ < px< p(n) and g(0) ^ fi(0), Hurwitz's theorem implies that g(z) =¿

f0(z),...,fn(z).   Q.E.D.

3. APPLICATIONS OF THE HOLOMORPHIC AXIOM OF CHOICE

We first show how the finite case of the holomorphic axiom of choice implies

the general case (Theorem 1.4) and the extendability of holomorphic notions

(Theorem 1.3). Since these derivations have already been indicated by Sullivan

and Thurston [13, §1], we give only a brief sketch, for the convenience of the

reader. Afterward we discuss further relations between polynomial hulls and

holomorphic motions.

Proof of Theorem 1.4 (sketch). Choose in E a dense sequence {en}n=0 of

mutually distinct points (E is assumed to be infinite). By replacing motion

f(z,w) by

(z, w) — (f(z,w)-f(z,e0))/(f(z, ex)-f(z, e0)),

we can assume, without loss of generality, that

f(z,e0) = 0, f(z,ex)=I, zgD.

Let a <fc E. Applying Lemma 2.1 to functions f0, fx, ... , fn , « > 2, where

fn(z) = fn(z, en), and in particular /0 = 0, /, = 1, we obtain gn g H(D),

suchthat g(0) = a and gn(a) £ {0, 1, f2(z), ..., fn(z)}. Since gn(D) c

W = C\{0, 1}, the same application of the complete hyperbolicity of W as

made at the end of §2 yields that {gn} is a normal family and, since g„(0) = a,

« > 1, functions gn converge uniformly on compact subsets of D to some

g G H(D). Clearly, g(0) = a. Suppose that g(z0) = f(z0, w0), for some

w0 G E. For some subsequence en , lim en — w0 and the nowhere-vanishing

functions f„ - g converge uniformly on compact subsets of D to a function

vanishing at zQ, but not at 0, which contradicts Hurwitz's theorem. Hence

g(z) $ fz(E).    Q.E.D.

Proof of Theorem 1.3 (sketch). The argument is essentially the same and was also

indicated by Sullivan and Thurston [ 13, § 1 ]. Choose a countable dense sequence

{an}™=x in C\£' with mutually distinct terms an . By Theorem 1.4, there is a

function gx G H(D) such that gx(0) = ax and gx(z) ^ fz(E). We will con-

struct inductively a sequence of functions g2, ... , gn, ... G H(D) such that

gn(0) = an , and gn(z), « = 1,2,... are mutually distinct points of C\fz(E).

If gx, g2, ... , gn are already constructed, then f(z ,w), gx(z), ... , gn(z) de-

fine together a holomorphic motion over D, of the set E\J{ax, a2, ... , an} .

Applying the holomorphic principle of choice (Theorem 1.4) to this new motion

and letting a := an+x , we obtain gn+x G H(D) such that g„+1(0) = an+x and

gn+l(z) tf2(E)U{gl(z),...,gn(z)}, zgD.

If we let E* = E u {an: n = 1,2,...}, define /*: D x E* -> C by

f*(z, w) = f(z, w) when z G E, and let f*(z, en) — gn(z), then we ob-

tain a holomorphic motion over D of the nonclosed, dense set E* which, by

the "lambda lemma" (Lemma 1.1) has unique extension to an analytic motion

F: D x C —> C. This is the required extension of /.   Q.E.D.
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Using extensions of holomorphic motions, we can slightly improve Theorem

1.2 as follows:

Corollary 3.1. Let X - \J/.€dD{QxX(Q G C be a compact set with all the fibers

X(Q connected. Assume that the polynomial hull h(X) intersects D x C, and

denote by E the fiber over 0; E = {w: (0, w) G h(X)}. Then there exists a

holomorphic motion f: DxE —► C of the nonempty set E such that h(X)(~)DxC

is equal to the trace of E ; i.e., h(X)nDx C = {(z, f(z, w)): z G D, w G E} .

Proof. Let S = dh(X)f)DxC; V = Int h(X) nflxC, Since 5 is covered by

mutually disjoint analytic discs [12, Theorem 1.1], for very w G S(0), there

is a unique analytic disc passing through w , which is the graph of a function

gw G H(D), such that gw(0) = w. Clearly, the function g(z, w) = gw(z),

(z, w) G D x S(0), defines a holomorphic motion which, by Theorem 1.3, has

an extension to a holomorphic motion of C; i.e., G: .D x C —► C. We claim

that G(D xE) = h(X) n(DxC).
Denote by E(z), S(z), V(z) the fibers, over z G D, of h(X), S, V,

respectively. By [12, Theorem 1.1(b), (c)], E(z) = S(z) U V(z) and S(z) =

dcE(z). Since (by Lemma 1.1) every Gz(-) = G(z, •) is a homeomorphism

of C onto itself, and since GZ(S(0)) = S(z), we conclude that Gz(E) = E(z)

(note that E = E(0) ); that is, G(D x E) = h(X) n D x C. We complete the

proof by letting / = G\D x E.   Q.E.D.

It is a natural question whether the converse of Corollary 3.1 holds. Namely,

if /: DxE -* C isa bounded holomorphic motion of (say, connected) compact

set E, can we represent its trace as follows?

(3.1) {(z,f(z,w)): zgD, wGE} = h(X)D(DxC),

where X is some compact subset of dD x C. It turns out that this can fail

even when E is a single point.

Example 3.2. Choose a Blaschke product B(z) such that each point of dD is

a singular point of B(-). Let E = {B(0)} , and define f:DxE—>C by
f(z, 5(0)) = B(z). Clearly, if (3.1) holds for some X, it must be true with

X = {(C, to): Id = 1, w G Cl(H, C)} , where Ci(B, Q denotes the cluster set
of B at C • By [4, Chapter II, Theorem 6.7], Cl(B, Ç) = D ; thus X = dDxD
and h(X) = D x D, so (3.1) fails.

In this example, failure of representation (3.1) was caused by bad boundary

properties of f(z,w)as\z\/\. Mild boundary regularity assumptions likely

should suffice for (3.1) to hold; the following fact is a first step in this direction.

Proposition 3.3. Let f:DxE—>C be a bounded holomorphic motion; i.e.,

sup{|/(z, w)\ : z g D, w G E} < -foo of the compact, simply connected set E.

Then, for every p < 1,

(3.2) {(z, f(z ,w)):\z\<p, wgE} = h(Xp),

where Xp = {(pew, f(pew,w)):6gR, wgE}.
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Proof. Let F: DxC -> C be a holomorphic motion, extending /, as in Theo-

rem 1.3. Suppose that (3.2) fails, and denote the left-hand side of (3.2) by Z .

Thus, there is a (zQ, w0) G Dx (C\E) such that (z0, F(z0, w0)) G h(X )\Z .

Let w(t), 0 < t < 1, be a continuous arc contained in (C\£')u{oo} and joining

wQ to co. Then Nt = {(z, F(z, w(t))): z G D }, t G [0, 1], are relatively

closed analytic discs in D  x C such that for every tQ > 0, the sets (J(>( dNt

and X are closed and disjoint, while -/V0 intersects h(X ), N( n h(X ) = 0

for t close to 1 , and the correspondence t —► Nt is continuous in Haus-

dorff topology. This would imply that the set D x C\h(X ) does not have

the Kontinuitatsatz property, and so is not pseudoconvex, contrary to what was

established in [10, Theorem 2.1]. Namely the complement in C2 of a set sat-

isfying the local maximum principle is locally pseudoconvex, which applies to

the polynomial hull h(X ) by Rossi's local maximum modulus principle. (See

also Kumagai [6, §1, Theorems 2, 3] for a similar argument.)    Q.E.D.
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