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HOLOMORPHIC ORBI-DISCS AND

LAGRANGIAN FLOER COHOMOLOGY

OF SYMPLECTIC TORIC ORBIFOLDS

Cheol-Hyun Cho & Mainak Poddar

Abstract

We develop Floer theory of Lagrangian torus fibers in compact
symplectic toric orbifolds. We first classify holomorphic orbi-discs
with boundary on Lagrangian torus fibers. We show that there ex-
ists a class of basic discs such that we have one-to-one correspon-
dences between a) smooth basic discs and facets of the moment
polytope, and b) between basic orbi-discs and twisted sectors of
the toric orbifold. We show that there is a smooth Lagrangian
Floer theory of these torus fibers, which has a bulk deformation
by fundamental classes of twisted sectors of the toric orbifold. We
show by several examples that such bulk deformation can be used
to illustrate the very rigid Hamiltonian geometry of orbifolds. We
define its potential and bulk-deformed potential, and develop the
notion of leading order potential. We study leading term equations
analogous to the case of toric manifolds by Fukaya, Oh, Ohta, and
Ono.
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1. Introduction

Floer theory of Lagrangian torus fibers of symplectic toric manifolds
has been studied very extensively in the last decade, starting from the
case of CPn in [C1] and the toric Fano case in [CO]. These are based
on the Lagrangian Floer theory ([Fl], [O1],[O2]), whose general con-
struction was developed by Fukaya, Oh, Ohta, and Ono [FOOO]. More
recent works [FOOO2], [FOOO3], [FOOO4] have used the (bulk) de-
formation theory developed in [FOOO], bringing deep understanding
of the theory in toric manifolds, and providing beautiful pictures of
(homological) mirror symmetry and symplectic dynamics.

We develop an analogous theory for compact symplectic toric orb-
ifolds in this paper. Namely, this paper can be regarded as an orbifold
generalization of [C1], [CO], [FOOO2], [FOOO3]. We will see that
the main framework is very similar, but that the characteristics of the
resulting Floer theory for toric orbifolds are somewhat different than
those of toric manifolds.

The main new ingredient is the orbifold J-holomorphic disc (called
orbi-disc). These are J-holomorphic discs with orbifold singularity in the
interior. The study of toric manifolds has illustrated that understand-
ing holomorphic discs is a crucial step in developing Lagrangian Floer
theory. The holomorphic discs can be used to define the potential, corre-
sponding to the Landau-Ginzburg superpotential for the mirror and the
potential essentially computes the Lagrangian Floer cohomology of the
torus fibers. Holomorphic discs (which are non-singular) were classified
in [CO]. We find a classification for holomorphic orbi-discs in section 6.

One of the main observations of this paper is that the orbifold La-
grangian Floer theory should be considered in the following way. Let
us consider a Lagrangian submanifold L which lies in the smooth lo-
cus of a symplectic orbifold X . There is a Lagrangian Floer theory of
L which only considers maps from smooth (non-orbifold) (stable) bor-
dered Riemann surfaces. (Here smooth means that there is no orbifold
singularity, but it could be a nodal Riemann surface.) Namely, there is a
version of Lagrangian Floer cohomology, and A∞-algebra of L, by con-
sidering smooth J-holomorphic discs and strips, which we call smooth
Lagrangian Floer cohomology. We remark that a smooth J-holomorphic
disc can meet orbifold locus if it has correct multiplicity around the orb-
ifold point, as will be seen in the basic discs later.

The new ingredients such as orbifold J-holomorphic strips and discs
enter into the theory in the form of bulk deformation of the smooth
Floer theory. Bulk deformation was introduced in [FOOO] to deform
the given Lagrangian Floer theory by an ambient cycle in the symplectic
manifold. Orbifold J-holomorphic strips and discs can be considered to
give bulk deformations from the fundamental cycles of twisted sectors
of the symplectic orbifold X . In the case of manifolds, bulk deformation
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utilizes the already existing J-holomorphic discs in Floer theory. On the
other hand, for orbifolds the orbifold strips and discs do not exist in the
smooth Floer theory. We observe that the mechanism of bulk deforma-
tion by orbifold maps captures the very rigid Hamiltonian geometry of
symplectic orbifolds.

As noted in [Wo], [WW], [ABM], the dynamics of Hamiltonian vec-
tor fields in symplectic orbifolds are quite restrictive. This is because the
induced Hamiltonian diffeomorphism should preserve the isomorphism
type of the points in the given orbifold. This phenomenon can be easily
seen in the example of a teardrop orbifold, which will be explained later
in this introduction. For example, in [FOOO2] or [FOOO3], Fukaya,
Oh, Ohta, and Ono find locations of non-displaceable Lagrangian torus
fibers in toric manifolds, which turn out to be always codimension one
or higher in the corresponding moment polytopes. For toric orbifolds,
already in the case of the teardrop orbifold, we find codimension 0 locus
of non-displaceable fibers, and we will find in Proposition 15.2 that if
all the points in the toric divisors have orbifold singularity, then in fact
all the Lagrangian torus fibers are non-displaceable. It is quite remark-
able that this phenomenon can be explained as a flexibility to choose
the bulk deformation coefficient in the leading order potential, which
is essentially due to the fact that the orbifold discs and strips do not
appear in the smooth Lagrangian Floer theory.

We remark that the non-displaceability of torus orbits in toric orb-
ifolds such as those discussed in our examples has been recently proved
by Woodward [Wo] and Wilson-Woodward [WW] using gauged Floer
theory, which is somewhat different from our methods. Their work is
roughly based on holomorphic discs in Cm and gauged theory for sym-
plectic reduction. But note that the actual bulk orbi-potentials defined
in this paper cannot be defined using their methods, as orbifold discs
with more than one orbifold marked point do not come from discs in
Cm. Also the formalism of bulk deformation developed in this paper
seems to give more intuitive understanding of these non-displaceability
results in orbifolds, which should generalize to a non-toric setting. We
also remark that Lagrangian Floer theory in a different orbifold setting
has been considered by Seidel [Se] for the global quotient of the genus
two curve (see also [Sh]).

Beyond the symplectic dynamics of the toric orbifolds, the develop-
ment of this theory can be meaningful in the following aspects. First,
it provides basic ingredients to study (homological) mirror symmetry
([Ko]) of toric orbifolds. In [FOOO4], mirror symmetry of toric mani-
folds has been proved using Lagrangian Floer theory of toric manifolds.
It is easy to see that similar formalism may be used to explain mirror
symmetry of toric orbifolds, which we leave for future research.
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Second, the study of orbifold J-holomorphic discs provides a new ap-
proach to study the crepant resolution conjecture, which relates the in-
variants of certain orbifolds and their crepant resolutions. In a joint work
of the first author with K. Chan, S.C. Lau, and H.H. Tseng [CCLT],
we formulate an open version of the crepant resolution conjecture for
toric orbifolds, and we find a geometric explanation for the change of
variable in the Kähler moduli spaces of a toric orbifold and its crepant
resolution. Also, this provides a natural explanation of specialization
to the root of unity in the crepant resolution conjecture, in terms of
associated potential functions.

Now we explain the basic setting and results of the paper in more de-
tail. Compact symplectic toric orbifolds have one-to-one correspondence
with labeled polytopes (P,~c), as explained by Lerman and Tolman [LT].
Here P is a simple rational polytope equipped with positive integer la-
bels ~c for each facet. Also, the underlying complex orbifold may be
obtained from the stacky fan of Borisov, Chen, and Smith [BCS]. The
stacky fan is a simplicial fan in a finitely generated Z-module N with
a choice of lattice vectors in one-dimensional cones. A stacky fan corre-
sponds to a toric orbifold when the module N is freely generated. The
moment map µT exists for the Hamiltonian torus action on a symplectic
toric orbifold, and each Lagrangian T n orbit is given by L(u) = µ−1

T (u)
for an interior point u ∈ P .

We recall that orbifolds are locally given as quotients of Euclidean
space by a finite group action, and the study of Gromov-Witten theory
has been extended to the case of orbifolds in the last decade, starting
from the work of Chen and Ruan in [CR]. In particular, they have
introduced J-holomorphic maps from orbi-curves to an almost complex
orbifold and have shown that a moduli space of such J-holomorphic
maps of a fixed type has a Kuranishi structure and a virtual fundamental
cycle, and hence can be used to define Gromov-Witten invariants.

To find holomorphic orbi-discs with boundary on L(u), we first define
what we call the desingularized Maslov index for J-holomorphic orbi-
discs (Definition 3.1). This is done using the desingularization of the
pull-back orbi-bundle introduced in [CR]. The standard Maslov index
cannot be defined here since the pull-back tangent bundle is not a vec-
tor bundle but an orbi-bundle. (See [CS] for related results.) We then
establish a desingularized Maslov index formula in terms of intersection
numbers with toric divisors (analogous to [C1], [CO]) in Theorem 5.2.
Using the formula, we prove a classification theorem of orbi-discs in toric
orbifolds (Theorem 6.2).

There is a class of holomorphic (orbi-)discs which plays the role of
Maslov index two discs in the smooth cases. We call them basic discs,
and they are either smooth holomorphic discs of Maslov index two, or
holomorphic orbi-discs with one orbifold marked point, of desingularized
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Maslov index zero. These basic discs are relevant for the computation
of Floer cohomology of Lagrangian torus fibers. We find that there exist
holomorphic orbi-discs corresponding to each non-trivial twisted sector
of the toric orbifold, which are basic:

Theorem 1.1 (Corollary 6.3). The holomorphic orbi-discs with one
interior singularity and desingularized Maslov index 0 (modulo T n-action
and automorphisms of the source disc) correspond to the twisted sectors
ν ∈ Box′ of the toric orbifold.

In addition, we find the area formula of the basic orbi-discs in section
7 and prove their Fredholm regularity in section 8.

We can use smooth J-holomorphic discs to set up A∞-algebra for a
Lagrangian torus fiber L, and its potential function PO(b) for bounding
cochains b ∈ H1(L; Λ0) in the same way as in [FOOO2], which we call
smooth potential function.

The leading order smooth potential function PO0(b) of toric orbifold
can be defined combinatorially as

(1.1) PO0(b) :=

m∑

j=1

T ℓj(u)(y1)
bj1 . . . (yn)

bjn ,

the j-th term of which corresponds to stacky vector bj from the classifi-
cation of smooth Maslov index two discs in Corollary 6.4. By introducing
the variables zj as

(1.2) zj = T ℓj(u)(y1)
bj1 . . . (yn)

bjn ,

the leading order potential function can be written as PO0(b) = z1 +
· · · + zm. This leading order potential of PO0(b) is usually called the
Hori-Vafa Landau-Ginzburg superpotential of the mirror [HV].

The full potential PO(b) is given as follows:

Theorem 1.2 (Theorem 11.3). 1) PO(b) can be written as

(1.3) PO(b) =

m∑

i=1

zj +

N∑

k=1

T λkPk(z1, . . . , zm)

for N ∈ Z≥0 ∪ {∞} and λk ∈ R>0. If N = ∞, then limk→∞ λk =
∞. Here Pk(z1, . . . , zm) are monomials of z1, . . . , zm with coeffi-
cients in Λ0.

2) If X is Fano then Pk = 0.
3) The above formula (11.13) is independent of u and depends only

on X .

This potential PO(b) can be used to compute smooth Lagrangian
Floer cohomology for L, by considering its critical points.

Now, as explained above, we can use orbifold J-holomorphic discs and
strips to set up bulk deformation of the above smooth Lagrangian Floer
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theory, following [FOOO3]. The bulk deformed A∞-algebra gives rise
to a bulk potential POb(b), which is a bulk deformation of the potential
PO(b) above. The leading order potential of POb(b), which we denote
by POb

orb,0(b), can be explicitly written down from the classification

results on basic (orbi-)discs.
More precisely, consider the bulk deformation term b = bsm + borb

given by

(1.4)

{
bsm =

∑m
i=1 biDi bi ∈ Λ+

borb =
∑

ν∈Box′ bν1Xν bν ∈ Λ+.

Here, Di are toric divisors, and 1Xν are fundamental classes of twisted
sectors. (One may consider bulk deformation by other cohomology classes
of twisted sectors, but we do not do so here to simplify the exposition.)

Definition 1.1 (Definition 12.7). Leading order bulk potential
POb

orb,0 is explicitly defined as

(1.5) POb
orb,0 = z1 + · · ·+ zm +

∑

ν∈Box′

bνz
ν .

Here ν =
∑m

i=1 cibi ∈ N so that zν is a well-defined Laurent polynomial
of y1, . . . , yn, y

−1, . . . , y−1
n .

It is important to note that the leading order potential PO(b)0, in the
case of toric manifolds, is independent of bulk parameter b, in the sense
that it can be read off from the toric polytope. In the orbifold cases, the
above definition of POb

orb,0 depends on the choice of bν . Later, we will
use this freedom to choose bν so that we can prove non-displaceability
results. Note that different choices of bν (on different energy levels)
change the leading term equation (Definition 13.1) that is obtained from
the leading order equation.

Note that the full bulk potential POb(b) is difficult to compute, but
the leading order potential POb

orb,0(b) given in (1.4) can be used to de-
termine non-displaceable Lagrangian torus fibers, by studying the cor-
responding leading term equation of POb

orb,0(b) as in Theorem 4.5 of

[FOOO3] for toric manifolds:

Theorem 1.3 (Theorem 13.2). The following conditions on u are
equivalent:

1) The leading term equation of POb
orb,0(u) has a solution yl,s ∈ R \

{0} (l = 1, . . . ,K, s = 1, . . . , d(l)).

2) There exists b̃ ∈ H(Λ+) such that b̃orb,0 = borb,0 and POb̃(u) has
a critical point on (Λ0 \ Λ+)

n.

3) There exists b̃ ∈ H(Λ+) such that b̃orb,0 = borb,0 and yl,s ∈ R \{0}
(l = 1, . . . ,K, s = 1, . . . , d(l)) in the item (1) above is a critical

point of POb̃(u).
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The construction of A∞-algebra and its bulk deformation, and those
of A∞-bimodules for a pair of Lagrangian submanifolds, and the related
isomorphism between Floer cohomology of bimodule and of A∞-algebra
are almost the same as that of [FOOO2] and [FOOO3]. To keep the
size of the paper reasonable, we only explain how to adapt their con-
structions in our cases.

To illustrate the results of this paper, we explain the conclusions of the
paper in the case of a teardrop orbifold P(1, 3). The teardrop example
is explained in more detail in section 15.1.

Figure 1. Teardrop

The teardrop orbifold has an orbifold singularity at the north pole
N , with isotropy group Z/3. The moment map µT has an image given
by an interval [−1, 1/3], and we put integer label 3 at the vertex 1/3.
The inverse image µ−1

T ((0, 1/3]) defines an open neighborhood UN of

the north pole N , with a uniformizing cover ŨN
∼= D2 with Z/3-action.

The inverse image of µ−1
T ([−1, 0)) defines a neighborhood US of the

south pole S. The length for µT (UN ) is one third that of US , since
the symplectic area of UN should be considered as one third of that of
the uniformizing cover D2. A Hamiltonian function H is an invariant

function on ŨN near N , and hence N is a critical point of such H.
Thus any Hamiltonian flow fixes N , and a nearby circle fiber cannot be
displaced from itself, as illustrated in the figure. But the fiber µ−1

T (u)
for u < −1/3 can be displaced in the open set P(1, 3) \ {N}. The fibers
µ−1
T (u) for u ∈ [−1/3, 1/3] are non-displaceable as shown in [Wo]. This

is a prototypical example of Hamiltonian rigidity in symplectic orbifolds.
As explained in section 15.1, such non-displaceability can be proved

using our methods. Smooth potential function of P(1, 3) has two terms
corresponding to two smooth discs:

PO(b) = PO(b)0 = T 1−3uy−3 + T 1+uy.
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When u = 0, two areas of smooth holomorphic discs equal (1 − 3u =
1+u = 1) since a smooth disc wraps around UN three times, which then
has the same symplectic area as the smooth disc covering US. One can
check that the critical point equation, when u = 0, becomes y4 = 1/3,
which has non-trivial solutions. Hence, this shows that the (central)
fiber µ−1

T (0) is non-displaceable.
If we introduce bulk deformation by one of the twisted sectors, say ν =

1
3 , then we can show that fibers µ−1

T (u) for u ∈ (−1/3, 1/3) are indeed
non-displaceable. Namely, instead of cancelling smooth discs covering
the upper and lower hemisphere, we can cancel the smooth discs of
smaller area with one of the orbi-discs of N . Their symplectic areas
do not match, but as the orbi-discs appear as bulk deformations, we
can adjust the coefficient bν to match their areas, using our freedom to
choose such coefficients as follows:

In this case, the leading order bulk potential is

POb
orb,0 = T 1−3uy−3 + T 1+uy + bνT

1/3−uy−1.

For −1/3 < u < 0, we have 1/3 − u < 1 + u < 1 − 3u, and we set

bν = T 1+u−(1/3−u) = T 2/3+2u; then the leading term equation becomes
∂
∂y (y

−1 + y) = 0, which has a non-trivial solution in C∗.

Now, for 0 < u < 1/3, we have 1/3− u < 1− 3u < 1 + u, and we set
bν = T 1−3u−(1/3−u) = T 2/3−2u, then the leading term equation becomes
∂
∂y (y

−3 + y−1) = 0 which has a non-trivial solution in C∗. Hence, from

Theorem 13.2, we can prove the non-displaceability results for µ−1
T (u)

for u ∈ (−1/3, 1/3).
Note that this method does not work for the fibers with u ∈ (−1,

−1/3) since the areas of orbi-discs are bigger than that of the smooth
disc of minimal area, and since bν should lie in Λ+.

Notation. Throughout the paper, X is an orbifold and X is the un-
derlying topological space. We denote by IX the inertia orbifold, and
denote by T = {0} ∪ T ′ the index set of inertia components. We denote
by ιν the rational number called age or degree shifting number associated
to each connected component Xν . For toric orbifolds, we will identify T
and denote it as Box in Definition 4.1.

The lattice N ∼= Zn parametrizes the one parameter subgroups of
the group (C∗)n. Let M be its dual lattice. Σ is a rational simplicial
polyhedral fan in NR, and P ⊂MR is a rational convex polytope.

The minimal lattice vectors perpendicular to the facets of P , pointing
toward the interior, are denoted by v1, . . . ,vm. Certain integral multi-
ples bj = cjvj will be called stacky vectors.

For u ∈MR, let

(1.6) ℓj(u) = 〈u, bj〉 − pj .
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Then the moment polytope P and its boundary are given by

P = {u ∈MR | ℓi(u) ≥ 0, i = 1, . . . ,m}, ∂iP = {u ∈MR | ℓi(u) = 0}.
Here ∂iP is the i-th facet of the polytope P .

Let µT : X → P be the moment map. Consider u ∈ Int(P ) and
denote L(u) = µ−1

T (u). We may write L instead of L(u) to simplify
notations.

We will consider the coefficient ring R to be R (as we work in the de
Rham model of A∞-algebra) or C (when finding the critical point of the
potential). To emphasize the choice of coefficient ring R in the Novikov
ring below, we may write ΛR,ΛR

0 instead of Λ,Λ0.
Universal Novikov ring Λ and Λ0 is defined as

Λ = {
∞∑

i=1

aiT
λi | ai ∈ R,λi ∈ R, lim

i→∞
λi = ∞},(1.7)

Λ0 = {
∞∑

i=1

aiT
λi ∈ Λ | λi ∈ R≥0},(1.8)

Λ+ = {
∞∑

i=1

aiT
λi ∈ Λ | λi > 0}.(1.9)

In [FOOO], the universal Novikov ring Λ0,nov is defined as
(1.10)

Λ0,nov =

{
∞∑

i=1

aiT
λieni

∣∣∣∣∣ ai ∈ R,ni ∈ Z, λi ∈ R≥0, lim
i→∞

λi = ∞
}
.

This is a graded ring by defining deg T = 0, deg e = 2. Λnov and Λ+
0,nov

can be similarly defined. By forgetting e from Λ0,nov and working with
Λ0, we can only work in a Z2 graded complex.

We define a valuation vT on Λ by

vT (

∞∑

i=0

aiT
λi) = inf{λi | ai 6= 0}.

It is unfortunate, but due to the convention, three b’s, written as
b, b, b, will be used throughout the paper, each of which has a different
meaning. Here bj is the stacky normal vector to the j-th facet of the
polytope, b =

∑
xiei denotes a bounding cochain in H1(L,Λ0), and b

denotes the bulk bounding cochain.
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2. J-holomorphic discs and moduli space of bordered

stable maps

In this section, we discuss moduli spaces of isomorphism classes of
stable maps from a genus 0 prestable bordered Riemann surface with
Lagrangian boundary condition together with interior orbifold marked
points of a fixed type. Let (X , ω, J) be a symplectic orbifold with a
compatible almost complex structure. Let L ⊂ X be a Lagrangian sub-
manifold (in the smooth part of X ).

An orbifold Riemann surface Σ is a Riemann surface Σ (with complex
structure j) together with the orbifold points z1, . . . , zk ∈ Σ such that
each orbifold point zi ∈ Σ has a disc neighborhood U of zi which is
uniformized by a branched covering map br : z → zmi . We set m = 1
for smooth points z ∈ Σ. If Σ has a non-trivial boundary, we always
assume that ∂Σ is smooth, and that orbifold points lie in the interior of
Σ, and such Σ will be called a bordered orbifold Riemann surface. Hence
Σ can be written as (Σ, ~z, ~m) for short.

Definition 2.1. Let Σ be a (bordered) orbifold Riemann surface.
A continuous map f : Σ → X is called pseudo-holomorphic if for any

z0 ∈ Σ, the following holds:

1) There is a disc neighborhood of z0 with a branched covering br :
z → zm.

2) There is a local chart (Vf(z0), Gf(z0), πf(z0)) of X at f(z0) and a

local lifting f̃z0 of f in the sense that f ◦ br = πf(z0) ◦ f̃z0 .
3) f̃z0 is pseudo-holomorphic.
4) If ∂Σ 6= 0, the map f satisfies the boundary condition f(∂X) ⊂ L.

We need a few technical lemmas following [CR] regarding orbifold
maps, and we refer readers to the Appendix or [CR] for more details.

Definition 2.2. A C∞ map f : Σ → X (see Definition 16.10) is called
regular if the underlying continuous map f has the following property:
f−1(Xreg) is an open dense and connected subset of Σ.



32 C.-H. CHO & M. PODDAR

Lemma 2.1. If Σ is a bordered orbifold Riemann surface and f :
Σ → X is regular and pseudo-holomorphic with Lagrangian boundary
condition, then it is the unique germ of C∞ liftings of f . Moreover, f is
good with a unique isomorphism class of compatible systems.

Lemma 2.1 may be proved using the main idea of Lemma 4.4.11
in [CR] together with the result on the local behavior of a pseudo-
holomorphic map from a Riemann surface near a singularity in the im-
age, given in Lemma 2.1.4 of [CR]. This latter result yields unique
continuity of a local lift of a pseudo-holomorphic map near a singularity
in the target.

Lemma 2.2. Suppose f : Σ → X is a pseudo-holomorphic map
with interior marked points ~z+ = (z+1 , . . . , z

+
k ), such that f(∂Σ) does

not intersect the singular set of X . Then there exist a finite number of
orbifold structures on Σ with singular set contained in ~z+, for which
there are good C∞ maps covering f . Moreover, for each such orbifold
structure there exist a finite number of pairs (f , ξ) where f is a good
map lifting f and ξ is an associated isomorphism class of compatible
systems. The number of such pairs is bounded above by a constant that
depends on X , the genus of Σ and k only.

The proof of the above lemma is very similar to Chen-Ruan’s proof in
the case without boundary; see Proposition 2.2.1 in [CR]. Simply note
that the homomorphisms θξ0,ξ1 and θξ of [CR] are well defined in our
case by an application of Lemma 16.1.

The construction of the moduli space is a combination of the construc-
tion of Fukaya, Oh, Ohta, and Ono [FOOO] regarding the Lagrangian
boundary condition, and that of Chen-Ruan [CR] regarding the interior
orbifold singularities.

We recall the definition of genus 0 prestable bordered Riemann sur-
faces from [FOOO].

Definition 2.3. Σ is called a genus 0 prestable bordered Riemann
surface if Σ is a possibly singular Riemann surface with boundary ∂Σ
such that the double Σ ∪∂Σ Σ is a connected and simply connected
compact singular Riemann surface whose singularities are only nodes.
(Σ, ~z, ~z+) is called a genus 0 prestable bordered Riemann surface with
(k, l) marked points if Σ is a genus 0 prestable bordered Riemann surface
and ~z = (z0, . . . , zk−1) are boundary marked points on ∂Σ away from
the nodes, and ~z+ = (z+1 , . . . , z

+
l ) are interior marked points in Σ \ ∂Σ

away from nodal points.

A genus 0 prestable bordered Riemann surface (Σ, ~z, ~z+) is said to
be stable if each sphere component has three special (nodal or marked)
points and each disc component Σν satisfies 2lν + kν ≥ 3 where lν is
the number of interior special points and kν is the number of boundary
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special points. We denote by Mk,l the space of isomorphism classes of
genus 0 stable bordered Riemann surfaces with (k, l) marked points.
From the cyclic ordering of the boundary marked points, Mk,l has (k−
1)! connected components. The main component Mmain

k,l is defined by
considering a subset of curves in Mk,l whose boundary marked points
are ordered in a cyclic counterclockwise way.

We give the definition of a genus 0 prestable bordered orbi-curve
following [CR] and [FOOO].

Definition 2.4. (Σ, ~z, ~z+) is called a genus 0 prestable bordered orbi-
curve (with interior singularity) with (k, l) marked points if (Σ, ~z, ~z+) is
a genus 0 prestable bordered Riemann surface with (k, l) marked points
with the following properties:

1) Orbifold points are contained in the set of interior marked points
and interior nodal points.

2) A disc neighborhood of an interior orbifold marked point z+i is
uniformized by a branched covering map z 7→ zmi .

3) A neighborhood of an interior nodal point (which is away from
∂Σ) is uniformized by (X(0, rj),Znj).

Recall from [CR] that the local model of the interior orbifold nodal
point, (X(0, rj),Znj ), is defined as follows: For real numbers t ≥ 0, r > 0,

set X(t, r) = {(x, y) ∈ C2| ||x||, ||y|| < r, xy = t}. Fix an action of Zn

on X(t, r) for any n > 1 by e2πi/n · (x, y) = (e2πi/nx, e−2πi/ny). The
(branched) covering map X(t, r) → X(tn, rn) given by (x, y) → (xn, yn)
is Zn-invariant. So (X(t, r),Zn) can be regarded as a uniformizing sys-
tem of X(tn, rn). Here mi, nj are allowed to take the value one, in which
case the corresponding orbifold structure is trivial. Hence, the data of a
genus 0 prestable bordered orbi-curve includes the numbers mi, nj but
we do not write them for simplicity. A notion of isomorphism and the
group of automorphisms of genus 0 prestable bordered orbi-curves with
interior singularity are defined in a standard way, and omitted.

Now we define the notion of an orbifold stable map to be used in this
paper. We write Σ =

⋃
ν Σν where each Σν is an irreducible component.

Definition 2.5. A genus 0 stable map from a bordered orbi-curve
with (k, l) marked points is a pair

(
(Σ, ~z, ~z+), w, ξ

)
satisfying the fol-

lowing properties:

1) (Σ, ~z, ~z+) is a genus 0 prestable bordered orbi-curve.
2) w : (Σ, ∂Σ) → (X , L) is a pseudo-holomorphic map (see Definition

2.1). (Here, we say that w is pseudo-holomorphic (resp. good) if
each wν is pseudo-holomorphic (resp. good) and induces a contin-
uous map w : Σ → X.)

3) w is a C∞ good map with an isomorphism class ξ of compatible
systems (see Definition 16.11).

4) w is representable, i.e. it is injective on local groups.
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5) The set of all φ : Σ → Σ satisfying the following properties is
finite:
a) φ is biholomorphic.
b) φ(zi) = zi, φ(z

+
i ) = z+i .

c) w ◦ φ = w.

Definition 2.6. Two stable maps
(
(Σ1, ~z1, ~z

+
1 ), w1, ξ1

)
and(

(Σ2, ~z2, ~z
+
2 ), w2, ξ2

)
are equivalent if there exists an isomorphism h :

(Σ1, ~z1, ~z
+
1 ) → (Σ2, ~z2, ~z

+
2 ) such that w2 ◦ h = w1 and ξ1 = ξ2 ◦ h, i.e.

the isomorphism class ξ2 pulls back to the class ξ1 via h.

Definition 2.7. An automorphism of a stable map
(
(Σ, ~z, ~z+), w, ξ

)

is a self equivalence. The automorphism group is denoted by
Aut

(
(Σ, ~z, ~z+), w, ξ

)
.

Given a stable map
(
(Σ, ~z, ~z+), w, ξ

)
, we associate a homology class

w∗([Σ]) ∈ H2(X,L). Note that for each interior marked point z+j (on

Σν), ξν determines by the group homomorphism at z+j a conjugacy class

(gj), where gj ∈ Gw(zj).

Let IX be the inertia orbifold of X . Denote by T = {0} ∪ T ′ the
index set of inertia components, and for (g) ∈ T , call the corresponding
component X(g). Here X(0) is X itself, and elements of x ∈ X(g) are
written as (x, g).

We thus have a map ev+i sending each (equivalence class of) stable
map into IX by

ev+i :
(
(Σ, ~z, ~z+), w, ξ

)
→ (w(z+i ), gi).

Denote by l = {1, . . . , l} and consider the map x : l → T describing
the inertia component for each (orbifold) marked point. A stable map(
(Σ, ~z, ~z+), w, ξ

)
is said to be of type x if for i = 1, . . . , l,

ev+i
(
(Σ, ~z, ~z+), w, ξ

)
∈ Xx(i).

Definition 2.8. Given a homology class β ∈ H2(X,L), we denote
by Mk,l(L, J, β,x) the moduli space of isomorphism classes of genus 0
stable maps to X from a bordered orbi-curve with (k, l) marked points
of type x and with w∗([Σ]) = β. We denote by Mmain

k,l (L, J, β,x) the

sub-moduli space with (Σ, ~z, ~z+) ∈ Mmain
k,l .

Remark 2.9. We follow the notations of [FOOO] and denote by M
the compactified moduli space, and by Mreg the moduli space before
compactification.

We can give a topology on the moduli space Mmain
k,l (L, J, β,x) in a

way similar to [FO], [FOOO], and [CR2] (definition 2.3.7). As it is
standard, we omit the details. Following Proposition 2.3.8 and Lemma
2.3.9 of [CR], we have
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Lemma 2.3. The moduli space Mmain
k,l (L, J, β,x) is compact and

metrizable.
The symplectic area of elements in Mmain

k,l (L, J, β,x) only depends
on the homology class β and the symplectic form ω.

The orientation issues can be dealt with exactly in the same way as
in [FOOO].

Theorem 2.4. Let L be relatively spin. Then a choice of relative spin
structure of L ⊂ X canonically induces an orientation of
Mmain

k,l (L, J, β,x).

We will consider the moduli space Mmain
k,l (L, β,x) (with J = J0 the

standard complex structure of the toric orbifolds) in more detail later,
but the virtual dimension of the moduli space is given as follows:

Lemma 2.5. The virtual dimension of the moduli space Mmain
k,l (L,

β,x) is

n+ µde(β,x) + k + 2l − 3 = n+ µCW (β) + k + 2l − 3− 2ι(x).

In the next section, we will explain µde, which is the desingularized
Maslov index of (β,x), and µCW (β), which is the Chern-Weil Maslov
index of [CS]. Let ι(x) =

∑
i ι(x(i)), where ι(x(i)) is the degree shifting

number defined by Chen-Ruan [CR2] (see the next section). We re-
mark that the desingularized Maslov index depends on x as we need to
desingularize the pull-back tangent orbi-bundle, which depends on x.

3. Desingularized Maslov index

Maslov index is related to the (virtual) dimension of moduli spaces
in Lagrangian Floer theory (Lemma 2.5). For orbifolds, the standard
definition of Maslov index does not have natural extension, since the
pull-back tangent bundle under a good map is usually an orbi-bundle
which is not a trivial bundle over the bordered orbi-curve.

In this section, we define what we call the desingularized Maslov in-
dex, and provide computations of several examples of holomorphic orbi-
discs, which will appear in later sections. On the other hand, recently,
the first author and H.-S. Shin [CS] gave the Chern-Weil definition
of Maslov index, which is given by curvature integral of an orthogonal
connection. This Chern-Weil definition naturally extends to the orbifold
setting, and the relation between Chern-Weil and desingularized Maslov
indices has been discussed in [CS]. We give a brief explanation at the
end of this section.

3.1. Definition of the desingularized Maslov index. Chen and
Ruan [CR] have shown that for orbifold holomorphic map u : Σ → X
from a closed orbi-curve without boundary to an orbifold, the Chern



36 C.-H. CHO & M. PODDAR

number c1(TX )([Σ]) (defined via Chern-Weil theory) is in general a
rational number and by suitable subtraction of degree shifting number
for each orbifold point, one obtains the Chern number of a desingularized
bundle which is an honest bundle. Hence the corresponding number is
an integer. It is related to the Fredholm index for the moduli spaces.

A similar phenomenon occurs for orbi-discs (discs with interior orb-
ifold singularities). We will mainly work with a Maslov index of a desin-
gularized orbi-bundle and such an index will be calleda desingularized
Maslov index for short, and this will be an integer.

Let us first recall the standard definition of Maslov index for a smooth
disk with Lagrangian boundary condition. If w : (D2, ∂D2) → (X,L) is
a smooth map of pairs, we can find a unique symplectic trivialization
(up to homotopy) of the pull-back bundle w∗TX ∼= D2 × Cn. This
trivialization defines a map from S1 = ∂D2 to U(n)/O(n), the set of
Lagrangian planes in Cn, and the Maslov index is the rotation number
of the composition of this map with the map det2 : (U(n)/O(n)) →
U(1) (see [Ar]). For bordered Riemann surfaces with several boundary
components, one can define the Maslov index similarly by taking the
sum of Maslov indices along ∂Σ using the fact that a symplectic vector
bundle over a Riemann surface with boundary Σ is always trivial. The
data of a symplectic vector bundle over Σ, and a Lagrangian subbundle
over ∂Σ, is called a bundle pair, and one can define the Maslov index
for any bundle pair in the same way.

Next, we recall the desingularization of an orbi-bundle on an orbifold
Riemann surface by Chen and Ruan ([CR2]), which plays a key role.

Consider a closed (complex) Riemann surface Σ, with distinct points
~z = (z1, . . . , zk) paired with multiplicity ~m = (m1, . . . ,mk). We consider
the orbifold structure at zi which is given by the ramified covering z →
zmi . For simplicity we denote it as Σ = (Σ, ~z, ~m), which is a closed,
reduced, 2-dimensional orbifold.

Consider a complex orbi-bundle E over Σ of rank n. Then, at each
singular point zi, E gives a representation ρi : Zmi → Aut(Cn) so that
over a disc neighborhood Di of zi, E is uniformized by (Di×Cn,Zmi , π)
where the action of Zmi on Di × Cn is defined as

(3.1) e2πi/mi · (z, w) =
(
e2πi/miz, ρi(e

2πi/mi)w
)

for any w ∈ Cn. Note that ρi is uniquely determined by integers
(mi,1, . . . ,mi,n) with 0 ≤ mi,j < mi, as it is given by the matrix

(3.2) ρi(e
2πi/mi) = diag(e2πimi,1/mi , . . . , e2πimi,n/mi

)
.

The sum
∑n

j=1
mi,j

mi
is called the degree shifting number ([CR]).

Over the punctured disc Di \ {zi} at zi, E is given a specific trivi-
alization from (Di × Cn,Zmi , π) as follows: Consider a Zmi-equivariant
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map Ψi : D \ {0} × Cn → D \ {0} × Cn defined by

(3.3) (z, w1, w2, . . . , wn) → (zmi , z−mi,1w1, . . . , z
−mi,nwn),

where the Zmi action on the target D \ {0} × Cn is trivial. Hence Ψi

induces a trivialization Ψi : EDi\{0} → Di \ {0} × Cn. We may extend
the smooth complex vector bundle EΣ\{z1,...,zk} over Σ \ {z1, . . . , zk}
to a smooth complex vector bundle over Σ by using these trivializa-
tions Ψi for each i. The resulting complex vector bundle is called the
desingularization of E and denoted by |E|.

The essential point as observed in [CR2] is that the sheaf of holo-
morphic sections of the desingularized orbi-bundle and the orbi-bundle
itself are the same.

Proposition 3.1 ([CR2], Proposition 4.2.2). Let E be a holomorphic
orbifold bundle of rank n over a compact orbi-curve (Σ,z,m) of genus g.
O(E) equals O(|E|), where O(E) and O(|E|) are sheaves of holomorphic
sections of E and |E|.

As the local group action on the fibers of the desingularized orbi-
bundle |E| is trivial, one can think of it as a smooth vector bundle
on Σ which is analytically the same as Σ (in other words, there exists
a canonically associated vector bundle |E| over the smooth Riemann
surface Σ). Hence, for the bundle |E|, the ordinary index theory can
be applied, which provides the required index theoretic tools for the
orbi-bundle E.

Now we give a definition of the desingularized Maslov index, which
determines the virtual dimension of the moduli space of J-holomorphic
orbi-discs.

Definition 3.1. Let Σ = (Σ, ~z, ~m) be a bordered orbi-curve with
(0, k) marked points. Let u : Σ → X be an orbifold stable map. Then,
u∗TX is a complex orbi-bundle over Σ, with Lagrangian subbundle
u|∗∂ΣTL at ∂Σ. Let |u∗TX| be the desingularized bundle over Σ (or
Σ), which still has the Lagrangian subbundle at the boundary from
u|∗∂ΣTL. The Maslov index of the bundle pair (|u∗TX|, u|∗∂ΣTL) over
(Σ, ∂Σ) is called the desingularized Maslov index of u, and denoted by
µde(u). Note that this index is well-defined as it is independent of the
choice of compatible system for u, within the same isomorphism class,
by Lemma 16.1.

3.2. Examples of computations of the index. Here we give a few
examples of computations of the desingularized Maslov index. Consider
the orbifold disc D with Zp singularity at the origin, and the orbifold
complex plane C with Zp singularity at the origin. Let the unit cir-
cle L = S1 ∈ C be a Lagrangian submanifold. Consider the natural
inclusion u : D → C.

Lemma 3.2. The desingularized Maslov index of u equals 0.
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Proof. Consider the tangent orbi-bundle TD over D, and its uni-
formizing chart D2 × C = {(z, w)|z ∈ D2, w ∈ C} with the Zp action
given by

(3.4) e2πi/p · (z, w) =
(
e2πi/pz, e2πi/pw

)
.

Then, the subbundle TL at z ∈ S1 is given by R · iz ⊂ C. We consider
its image under the desingularization map Ψ : D2×C → D2×C defined
as Ψ(z, w) = (zp, z−1w). The image of TL via Ψ at the point α ∈ D2

with α = zp is given by R · z−1iz = i · R ⊂ C.
The desingularization provides a desingularized vector bundle over

the orbi-disc D, which is a trivial vector bundle, and the loop of La-
grangian subspaces at the boundary is a constant loop. Therefore the
desingularized Maslov index is zero. q.e.d.

We now consider a more general case: Consider the orbifold disc D
with Zm singularity at the origin, and the complex plane C with Zmn

singularity at the origin, and the unit circle L = S1 ∈ C as a Lagrangian
submanifold. Consider the uniformizing cover D2 of D, with coordinate
z ∈ D2. Consider the uniformizing cover C of C, with coordinate y ∈ C.

Lemma 3.3. Consider the map u : D → C, induced from the map
ũ : D2 → C defined by ũ(z) = zk. Here we assume that k and m are
relatively prime to ensure that the group homomorphism is injective.
Then, the desingularized Maslov index of u equals 2[k/m] where [k/m]
is the largest integer ≤ k/m.

Proof. Consider the tangent orbi-bundle TC over C whose uniformiz-
ing chart is given by C × C = {(y,w)|y,w ∈ C} with the Zmn action
given by the diagonal action. Then, the subbundle TL at y ∈ S1 is
given by R · iy ⊂ C. We consider the pull-back orbi-bundle u∗TC whose
uniformizing chart is C × C = {(z, w)|z, w ∈ C} with the Zm action
given by

(3.5) e2πi/m · (z, w) =
(
e2πi/mz, e2πki/mw

)
.

In this chart, the subbundle (u|∂D)∗TL is given by (z,R · zki) for z ∈
∂D2. Now, we consider its image under the desingularization map Ψ :
D2 \ {0} × C → D2 \ {0} × C defined as Ψ(z, w) = (zm, z−k′w), where
k′ = k − [k/m]m. The image of TL via Ψ at the point α ∈ D2 with

α = zm is given by R · z−k′izk = z[k/m]mi · R ⊂ C.
Hence we obtain a trivialized desingularized vector bundle |E| over

D (and hence D2), and from the above computation, the loop of La-

grangian subspaces along the boundary is given by z[k/m]mi ·R. But also
note that the coordinate on D2 is in fact zm, and hence the desingular-
ized Maslov index of u is 2[k/m]. q.e.d.

Remark 3.2. Note that in the case that k and m are not relatively
prime, say d = gcd(k,m), then instead of the map from the above
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orbifold disc, we consider a domain with simpler singularity, say D
with Zm/d singularity at the origin, and the map given by x 7→ xk/d.
The Maslov index of this orbifold holomorphic disc is still 2[k/m] =
2[(k/d)/(m/d)].

The following computations of indices will be used later in the paper.
We compute desingularized Maslow indices for orbi-discs in X = Cn/G.
Consider the orbifold disc D with Zm singularity at the origin, and the
orbifold X defined by the complex vector space Cn with an action of a
finite abelian group G. Consider the uniformizing cover D2 of D, with
coordinate z ∈ D2.

Lemma 3.4. Consider the holomorphic orbi-disc u : (D, ∂D) →
(X , L), induced from an equivariant map ũ : D2 → Cn given by

(3.6) (a1z
d1 , . . . , akz

dk , ak+1, . . . , an),

where ai ∈ U(1), di ≥ 0 for all i. We set dk+1 = · · · = dn = 0 and
L = (S1)n ∈ Cn. Then, the desingularized Maslov index of u equals
2
∑

i[di/m].

Proof. Consider the tangent orbi-bundle TX over X whose uniformiz-
ing chart is given by Cn×Cn = {(~y, ~w)|~y, ~w ∈ Cn} with the group G act-
ing diagonally. Then, the fiber of TL at ~y is given by (R·iy1, . . . ,R·iyn) ∈
Cn. We consider the pull-back orbi-bundle, u∗TX , whose uniformizing
chart is given by Cn×Cn = {(z, ~w)|z, ~w ∈ Cn} with the Zm action given
by

(3.7) e2πi/m · (z, ~w) =
(
e2πi/mz, e2πd1i/mw1, . . . , e

2πdni/mwn

)
.

In this chart, the subbundle (u|∂D)∗TL is given by

(z,R · a1zd1 i, . . . ,R · anzdn i).

Now, we consider its image under the desingularization map Ψ : D2 \
{0}×Cn → D2\{0}×Cn defined by Ψ(z, w) = (zm, x−d′1w1, . . . , x

−d′nwn),
where d′i = di − [di/m]m. We have d′k+1 = · · · , d′n = 0. The image of

TL via Ψ at the point α ∈ D2 with α = zm is given by

(. . . ,
∏

i

R · z−d′iizdi , . . .) = (. . . , z[di/m]mi · R, . . .) ⊂ Cn.

Hence we obtain a trivialized desingularized vector bundle |E| over
D, and the Maslov index of the loop of Lagrangian subspaces over uni-
formizing cover D2 is

∑
2[di/m]m and hence the Maslov index for the

orbi-disc u is
∑

2[di/m]. q.e.d.
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3.3. Relation to the Chern-Weil Maslov index. Now, we explain
the Chern-Weil construction of the Maslov index for orbifold from [CS]
and its relationship with the desingularized Maslov index defined in this
section.

By bundle pair (E ,L) over Σ, we mean a symplectic vector bundle
E → Σ equipped with compatible almost complex structure, together
with Lagrangian subbundle L → ∂Σ over the boundary of Σ. Let ∇ be
a unitary connection of E, which is orthogonal with respect to L: This
means that ∇ preserves L along the boundary ∂Σ. See Definition 2.3 of
[CS] for the precise definition.

Definition 3.3. The Maslov index of the bundle pair (E ,L) is defined
by

µCW (E ,L) =
√
−1

π

∫

Σ
tr(F∇)

where F∇ ∈ Ω2(Σ, End(E)) is the curvature induced by ∇.

It is proved in [CS] that this Chern-Weil definition agrees with the
usual topological definition of the Maslov index. But the above defini-
tion of the Maslov index has an advantage over the topological one in
that it extends more readily to the orbifold case, as observed in [CS].
In the orbifold case, E is assumed to be a symplectic orbi-bundle over
an orbifold Riemann surface Σ and the Maslov index is defined by con-
sidering orthogonal connections which are, in addition, invariant under
local group actions. Thus, the Maslov index of the bundle pair (E ,L)
over orbifold Riemann surface with boundary is defined as the curvature
integral as in Definition 3.3. It is shown in [CS] that the Maslov index
µCW (E ,L) is independent of the choice of orthogonal unitary connection
∇ and also independent of the choice of an almost complex structure.

Finally, we recall Proposition 6.10 of [CS] relating the Maslov index
with the desingularized Maslov index:

Proposition 3.5. Suppose Σ has k interior orbifold marked points
of order m1, . . . ,mk. Then

µCW (E ,L) = µde(E ,L) + 2
k∑

i=1

n∑

j=1

mi,j

mi
,

where mi,j are defined as in (3.2).

4. Toric orbifolds

In this paper, we consider compact toric orbifolds. These are more
general than compact simplicial toric varieties, in that their orbifold
singularities may not be fully captured by the analytic variety structure.
In fact, we are mainly interested in a subclass called symplectic toric
orbifolds. These have been studied by Lerman and Tolman [LT], and
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correspond to polytopes with a positive integer label on each facet. In
algebraic geometry, Borisov, Chen, and Smith [BCS] considered toric
DM stacks that correspond to stacky fans. The vectors of such a stacky
fan take values in a finitely generated abelian group N . A toric DM
stack is a toric orbifold when N is free and in this case the stabilizer of
a generic point is trivial.

4.1. Compact toric orbifolds as complex quotients. Combinato-
rial data called a complete fan of simplicial rational polyhedral cones, Σ,
are used to describe compact toric manifolds (see [Co] or [Au]). For the
definitions of rational simplicial polyhedral cone σ and fan Σ, we refer to
Fulton’s book [Ful]. If the minimal lattice generators of one-dimensional
edges of every top dimensional cone σ ∈ Σ form a Z-basis of N , then
the fan is called smooth and the corresponding toric variety is nonsin-
gular. Otherwise, such a fan defines a simplicial toric variety (which are
orbifolds). The toric orbifolds to be considered here are more general
than simplicial toric varieties. They need additional data of multiplicity
for each 1-dimensional cone, or equivalently, a choice of lattice vectors
in them.

Let N be the lattice Zn, and letM = HomZ(N,Z) be the dual lattice.
Let NR = N ⊗ R and MR =M ⊗ R. The set of all k-dimensional cones
in Σ will be denoted by Σ(k). We label the minimal lattice generators of
cones in Σ(1) as {v1, . . . ,vm} := G(Σ), where vj = (vj1, . . . , vjn) ∈ N .
For vj , consider a lattice vector bj ∈ N with bj = cjvj for some positive

integer cj . We call bj a stacky vector, and denote ~b = (b1, . . . , bm). For

a simplicial rational polyhedral fan Σ, the stacky fan (Σ,~b) defines a
toric orbifold as follows.

We call a subset P = {vi1 , . . . ,vip} ⊂ G(Σ) a primitive collection if P
does not generate a p-dimensional cone in Σ, while for all k (0 ≤ k < p),
each k-element subset of P generates a k-dimensional cone in Σ.

Let P = {vi1 , . . . ,vip} be a primitive collection in G(Σ). Denote

A(P) = {(z1, . . . , zm) | zi1 = · · · = zip = 0}.
Define the closed algebraic subset Z(Σ) in Cm as Z(Σ) = ∪PA(P),
where P runs over all primitive collections in G(Σ) and we put U(Σ) =
Cm \ Z(Σ).

Consider the map π : Zm → Zn sending the basis vectors ei to bi for
i = 1, . . . ,m. Note that the K := Ker(π) is isomorphic to Zm−n and
that π may not be surjective for toric orbifolds. However, by tensoring
with R, we obtain the following exact sequences:

(4.1) 0 → k → Rm π→ Rn → 0,

(4.2) 0 → K → Tm π→ T n → 0,

(4.3) 0 → KC → (C∗)m
π′

→ (C∗)n → 0.
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Here Tm = Rm/Zm and the map π′ is defined as

π′(λ1, . . . , λm) = (
∏

j

λ
bj1
j , . . . ,

∏

j

λ
bjn
j ).

Here, even though K is free, K may have a non-trivial torsion part. For
a complete stacky fan (Σ, b), KC acts effectively on U(Σ) with finite
isotropy groups. The global quotient orbifold

XΣ = U(Σ)/KC

is called the compact toric orbifold associated to the complete stacky
fan (Σ, b). We refer readers to [BCS] for more details.

There exists an open covering of U(Σ) by affine algebraic varieties:
Let σ be a k-dimensional cone in Σ generated by {vi1 , . . . ,vik}. Define
the open subset U(σ) ⊂ Cm as

U(σ) = {(z1, . . . , zm) ∈ Cm | zj 6= 0 for all j /∈ {i1, . . . , ik}}.

Then the open sets U(σ) have the following properties:

1) U(Σ) = ∪σ∈ΣU(σ);
2) if σ ≺ σ′, then U(σ) ⊂ U(σ′);
3) for any two cone σ1, σ2 ∈ Σ, one has U(σ1)∩U(σ2) = U(σ1 ∩ σ2);

in particular,

U(Σ) =
⋃

σ∈Σ(n)

U(σ).

We define the open set Uσ := U(σ)/KC. For toric orbifolds, Uσ may not
be smooth.

The following lemma is elementary (see the case of smooth toric man-
ifold in [B1] together with the considerations of the orbifold case in
[BCS]).

Lemma 4.1. Let σ be a n-dimensional cone in Σ, with a choice
of lattice vectors bσ = (bi1 , . . . , bin) from its one-dimensional cones.
Suppose that bσ spans the sublattice Nbσ of the lattice N . Consider the
dual lattice Mbσ ⊃ M of Nbσ , and the dual Z-basis (ui1 , . . . ,uin) in
Mbσ defined by

〈bik ,uil〉 = δk,l.

Recall that σ with the lattice Nbσ (resp. N) gives rise to a space U ′
σ

(resp. Uσ), and the abelian group Gbσ = N/Nbσ acts on U ′
σ to give

U ′
σ/Gbσ = Uσ.

In terms of the homogeneous coordinates z1, . . . , zm on Cm, the coor-
dinate functions xσ1 , . . . , x

σ
n of the uniformizing open set U ′

σ are given
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by

(4.4)





xσ1 = z
〈b1,ui1

〉
1 · · · z〈bm,ui1

〉
m

...

xσn = z
〈b1,uin 〉
1 · · · z〈bm,uin 〉

m

The Gbσ -action on U ′
σ for g ∈ N/Nbσ is given by

(4.5) g · xσj = e
2πi〈g,uij

〉
xσj .

Now, we discuss C∗-action on U ′
σ and Uσ. In what follows there is a

complication because there exists a C∗-action on the quotient (coming
from the C∗-action on the disc) which does not lift to the C∗-action on
the uniformizing cover.

Lemma 4.2. For any lattice vector w ∈ Nbσ there is an associated
C∗-action on U ′

σ given by

(4.6) λw(z) · xσj = z〈w,uij
〉xσj .

Proof. For any w ∈ Nbσ , there exists an associated C∗ action: Let
z ∈ C∗, and u ∈ Mbσ . Toric structure provides action λw of w on the

function χu on U ′
σ by λw(z) · (χu) = z〈w,u〉χu. The lemma follows by

writing this formula in terms of the coordinates (xσ1 , . . . , x
σ
n). q.e.d.

Lemma 4.3. For a lattice vector v ∈ N , there is an associated C∗-
action on the quotient Uσ as in (4.6). Furthermore, such a C∗-action
induces a morphism C → Uσ, if v lies in the cone σ.

Proof. We write v =
∑

j cjbij where cj ’s are rational numbers. Hence,

(4.6) does not provide a C∗-action of v on U ′
σ. But there exists a C∗-

action of v ∈ N on the quotient U ′
σ/G. We define the action λv(z) by

the formula (4.6). Then possible values of (z〈v,ui1
〉, . . . , z〈v,uin 〉) for dif-

ferent choices of branch cuts differ by multiplication of (e2πia〈v,ui1
〉, . . . ,

e2πia〈v,uin〉) for some integer a ∈ Z. Therefore the difference is exactly
given by the G-action (4.5).

The C∗-action corresponding to v defines a map from C∗ to the prin-
cipal (C∗)n orbit of the toric variety. If v lies in the cone σ, we have
〈v,uij 〉 ≥ 0 for all j. In this case the above map extends to a map
from C to Uσ (see [Ful], chapter 2.3). q.e.d.

Definition 4.1. Let σ be a d-dimensional cone in Σ with a choice
of lattice vectors bσ = (bi1 , . . . , bid). Let Nbσ be the submodule of N
generated by these lattice vectors. Define

Boxbσ = {ν ∈ N | ν =

d∑

k=1

ckbik , ck ∈ [0, 1)}.
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This set has one-to-one correspondence with the group

(4.7) Gbσ = ((Nbσ ⊗Z Q) ∩N)/Nbσ .

This generalizes the definition of Gbσ = N/Nbσ given in Lemma 4.1 for
n-dimensional cones. It is easy to observe that if σ ≺ σ′, then Boxbσ ⊂
Boxbσ′

.
Define

Box◦bσ = Boxbσ −
⋃

τ≺σ

Boxbτ .

Define

(4.8) Box =
⋃

σ∈Σ(n)

Boxbσ =
⊔

σ∈Σ

Box◦bσ .

We set Box = {0} ⊔ Box′. Box is the index set T of the components

of the inertia orbifold of the toric orbifold corresponding to (Σ,~b). To
every ν ∈ Box◦

bσ
∩ Box′, there corresponds a twisted sector Xν which

is isomorphic to the orbit closure Ōσ as an analytic variety. However, it
has a specific orbifold structure that includes the trivial action of Gbσ .
In particular, the fundamental class of Xν is 1

o(Gbσ )
[Ōσ].

Remark 4.2. We would like to point out here that there is a natural
orbifold structure on the variety Ōτ . This comes from considering it as
a toric orbifold with the fan star(τ) as described in section 3.1 of [Ful]:
Let L be the submodule of N generated by τ ∩ N and N(τ) = N/L.
Then star(τ) is the set of cones containing τ , realized as a fan in N(τ).
The projection of stacky lattice vectors bj to N(τ) gives Ōτ the desired
orbifold structure. This structure induces an inclusion of Ōτ into X as
a suborbifold.

This orbifold structure is in general different from the orbifold struc-
ture of Ōτ as an analytic variety. For instance, when dim(τ) = n−1, the
variety Ōτ is a smooth sphere whereas the above structure may involve
orbifold singularities. On the other hand, this structure is also different
from the orbifold structure of Ōτ as a twisted sector. It precisely misses
the trivial action of Gbτ corresponding to the group actions in the nor-
mal bundle of Ōτ in X . The orbifold structure of Ōτ as a twisted sector
induces a different inclusion of it into X as a suborbifold.

4.2. Symplectic toric orbifolds. Recall that a symplectic toric man-
ifold is a symplectic manifold that admits Hamiltonian action of a half
dimensional compact torus. Delzant polytopes, which are rational simple
smooth convex polytopes, classify compact symplectic toric manifolds
up to equivariant symplectomorphism. Here we review the generaliza-
tion to labeled polytope, a polytope together with a positive integer
label attached to each of its facets, by Lerman and Tolman [LT]. La-
beled polytopes classify compact symplectic toric orbifolds. We recall
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briefly the explicit construction of symplectic toric orbifolds from a la-
beled polytope following [LT] (see Audin [Au], for instance, for the
smooth case).

Definition 4.3. A convex polytope P in MR is called simple if there
are exactly n facets meeting at every vertex. A convex polytope P is
called rational if a normal vector to each facet P can be given by a
lattice vector. A simple polytope P is called smooth if for each vertex,
the n normal vectors to the facets meeting at the given vertex form a
Z-basis of N .

Let P be a simple rational convex polytope in Rn with m facets, with
a positive integer assigned to each facet of P .

Definition 4.4. We denote by vj the inward normal vector to the j-
th facet of P , which is primitive and integral, for j = 1, . . . m. Let cj be
a positive integer label to the j-th facet of P for each j. Set bj = cjvj .

The polytope P may be described as follows by choosing suitable
pj ∈ R:

(4.9) P =

m⋂

j=1

{u ∈MR | 〈u, bj〉 ≥ pj}.

If we denote (as in (1.6))

ℓj(u) = 〈u, bj〉 − pj ,

then the polytope P may be defined as

P = {u ∈MR | ℓj(u) ≥ 0, j = 1, . . . ,m}.
From a polytope P , there is a standard procedure to get a simplicial

fan Σ(P ). Then the stacky fan (Σ(P ),~b) defines a toric orbifold in the
sense of complex orbifolds as explained in the last subsection. In this
paper we are only concerned with toric orbifolds derived from labeled
polytopes.

We recall a theorem by Lerman and Tolman.

Theorem 4.4. [LT] Let (M,ω) be a compact symplectic toric orb-
ifold, with moment map µT : M → (Rn)∗. Then P = µT (M) is a
rational simple convex polytope. For each facet Fj of P , there exists a
positive integer cj , the label of Fj , such that the structure group of every

p ∈ µ−1
T (int(Fj)) is Z/cjZ.

Two compact symplectic toric orbifolds are equivariantly symplecto-
morphic if and only if their associated labeled polytopes are isomorphic.
Moreover, every labeled polytope P arises from some compact symplectic
toric orbifold (MP , ωP ).
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Before we recall the explicit construction of symplectic toric orbifolds,
we remark that the isotropy group of each point p ∈ MP can be easily
seen from the polytope (Lemma 6.6 of [LT]): First, the points p with
µT (p) ∈ int(P ) have trivial isotropy group. If µT (p) lies in the interior
of a facet F , which has a label cF , the isotropy group is Z/cFZ. For
the points p with µT (p) lying in the interior of a face F , which is the
intersection of facets, say F1, . . . Fj , the isotropy group at p is isomorphic
to Ap/A

′
p: Here, consider the subtorus Hp ⊂ T n whose Lie algebra hp is

generated by vi ⊗ 1 ∈ NR for i = 1, . . . , j. Let Ap be the lattice of the
circle subgroups of Hp. Let A

′
p be the sublattice generated by {civi}.

We remark that even when c1 = · · · = cm = 1, there can be orbifold
singularities as {v1, . . . ,vj} may not form a Z-basis of N .

Note that the face F corresponds to a j-dimensional cone σ in the
fan Σ(P ) with stacky vectors {civi : i = 1, . . . , j}. Then the group A′

p

is the same as the group Nbσ (see Definition 4.1), and Ap is the same
as Nbσ ⊗Z Q. Therefore the isotropy group Ap/A

′
p is identical to Gbσ .

We briefly recall the construction of the symplectic toric orbifold
(MP , ωP ) from the labeled simple rational polytope P .

Recall from Equation (4.1) that for the standard basis (e1, . . . , em) of
Rm, the map π is defined by

(4.10) π : Rm → Rn by π(ej) = cjvj, j = 1, . . . ,m

producing the following exact sequences:

0 → k
ι→ Rm π→ Rn → 0 and its dual 0 → (Rn)∗

π∗

→ (Rm)∗
ι∗→ k∗ → 0.

Note that k is the Lie algebra of K defined in (4.2).
Consider Cm with its standard symplectic form

ω0 =
i

2

∑
dzk ∧ dzk.

The standard action of Tm on Cm is Hamiltonian whose moment map
is given by

µCm(z1, . . . , zm) =
1

2
(|z1|2, . . . , |zm|2).

Hence K acts on Cm with the moment map

µK = ι∗ ◦ µCm : Cm → k∗.

For the constant vector p = (p1, . . . , pm) defining the polytope (4.9),
define π∗p : (Rn)∗ → (Rm)∗ by π∗p(ξ) = π∗ξ − p. Then,

π∗p(P ) = {ξ ∈ (Rm)∗|ξ ∈ Im(π∗p) and ξi ≥ 0 for all i}(4.11)

= {ξ ∈ (Rm)∗|ξ ∈ (ι∗)−1(ι∗)(−p) and ξi ≥ 0 for all i}.(4.12)

Then, take X = µ−1
K (ι∗(−p))/K to be the symplectic quotient, which

is the desired (Kähler) toric orbifold. Since the action of Tm commutes
with K, there exists an induced Tm action on X and the Tm action
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descends to Tm/K action on X, and provides the moment map µT =
(π∗p)

−1 ◦ µCm on X.

5. Desingularized Maslov index formula for toric orbifolds

We first recall the Maslov index formula for holomorphic discs in toric
manifolds in terms of intersection numbers.

Theorem 5.1 ([C1], [CO]). For a symplectic toric manifold XΣ(P ),
let L be a Lagrangian T n orbit. Then the Maslov index of any holomor-
phic disc with boundary lying on L is twice the sum of the intersection
multiplicities of the image of the disc with the divisors Dj corresponding

to vj ∈ Σ(1), over all j = 1, . . . ,m.

Here the divisor Dj is a complex codimension one submanifold, which

can be defined using the principal bundle (U(Σ)
π→ XΣ(P )) as Dj =

π({zj = 0}) = {zj = 0}/KC. For a toric orbifold X, the divisor Dj can
be defined similarly as a suborbifold of X by Dj = {zj = 0}/KC.

In this section, we find a similar formula for toric orbifolds. Consider
an orbi-disc D with interior marked points z+i with orbifold singularity
Z/diZ where 1 ≤ i ≤ k. (Here di = 1 for smooth marked points.)

Note that intersections of holomorphic orbi-discs with divisors are
discrete and there are only finitely many of them because the map is
holomorphic. The multiplicity of such an intersection is given by the
ordinary intersection number in the uniformizing cover (or in homoge-
neous coordinates of U(Σ)), divided by the order of local group of the
orbi-disc at the intersection point. Here is the desingularized Maslov
index theorem for toric orbifolds.

Theorem 5.2. For the symplectic toric orbifold X corresponding to
(Σ(P ), b), let L be a Lagrangian T n orbit and let (D, (z+1 , . . . , z+k )) be an

orbi-disc with Z/diZ singularity at z+i . Consider a holomorphic orbi-disc
w : (D, ∂D) → (X,L) intersecting the divisor Dj with multiplicity di,j/di
at each marked point z+i , which does not intersect divisors away from
marked points. Then the desingularized Maslov index of w is given as

2
∑

i

∑

j

(⌊di,j/di⌋).

Here ⌊r⌋ denotes the largest integer equal to or less than r.

Proof. Recall that in [C1] and [CO], the Maslov index was computed
as a sum of local contributions near each intersection with divisors. A
similar scheme still works in this setting. The local contribution at each
intersection point has been computed in Lemma 3.4. Hence it remains to
show how to modify the general scheme in the setting of toric orbifolds.

Without loss of generality, we discuss what happens in the neighbor-
hood of z+1 only. The point w(z+1 ) may lie in the intersection of several
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divisors Dj . Suppose that

(5.1) w(z+1 ) ∈ Di1 ∩ · · · ∩Dik ,

with no intersection with any other toric divisor. As Di1 ∩· · ·∩Dik 6= 0,
there are lattice vectors vik+1

, . . . ,vin so that 〈vi1 , . . . ,vin〉 defines an
n-dimensional cone σ in Σ.

We may consider the map w in a uniformizing neighborhood Uǫ(z
+
1 )

of z+1 . We consider its uniformizing cover Dǫ(z
+
1 ) → Uǫ(z

+
1 ), which is

the d1-fold branch cover branched at the origin. By the definition of
an orbifold holomorphic map, we can consider its equivariant lift w̃ :
Dǫ(z

+
1 ) → U ′

σ for the uniformizing chart U ′
σ, as in Lemma 4.1. The

intersection multiplicity d1,j can be defined as the order of zero at z+1
of the coordinate xσj in U ′

σ for 1 ≤ j ≤ k. As w(z+1 ) do not intersect
divisors corresponding to vik+1

, . . . ,vin , the coordinate functions xσj for

w̃ are non-vanishing near z+1 when j ≥ k + 1.
We note that this multiplicity also can be seen in the homogeneous

coordinates of Cm. From Lemma 4.1, for the dual basis {ui1 , . . . ,uin}
of the linearly independent vectors {bi1 , . . . , bin}, the affine coordinate
function xσj of U ′

σ is given as

xσj = z
〈b1,uij

〉

1 · · · z〈bm,uij
〉

m

= C(z) · z〈bij ,uij
〉

ij
= C(z) · zij

where C(z) is a function nonvanishing near w̃(z+1 ). Hence the order of
zero of zij equals that of xσj .

We write the lift w̃ : Dǫ(z
+
1 ) → U ′

σ in affine coordinates as

(a1z
c1 +O(zc1+1), . . . , akz

ck +O(zck+1), ak+1 +O(z), . . . , an +O(z)),

where z = 0 corresponds to the point z+1 .
The lift w̃ is equivariant and hence the dominating term

(5.2) (a1z
c1 , . . . , akz

ck , ak+1, . . . , an)

is also equivariant in Dǫ(z
+
1 ).

Now we are in a similar situation as in the smooth case [C1], [CO] and
analogously we smoothly deform the map w̃ in Dǫ(z

+
1 ) in an equivariant

way, without changing it near the boundary of this disc, so that the
deformed map w̃ satisfies

(5.3) w̃|∂Dǫ/2(z
+
1 ) ⊂ L.

Let |xσi | = ri, 1 ≤ i ≤ n, be the defining equations of L in these coordi-
nates. We can make the deformation so that the map w̃ on Dǫ/2(z

+
1 ) is

given by

(5.4)
( r1a1z

c1

|a1|( ǫ2)c1
, . . . ,

rkakz
ck

|ak|( ǫ2 )ck
,
rk+1ak+1

|ak+1|
, . . . ,

rnan
|an|

)
.
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We perform the same kind of deformations for z+2 , z
+
3 , . . . , z

+
k in-

side the uniformizing neighborhoods Dǫ(z
+
2 ), . . . ,Dǫ(z

+
k ) for sufficiently

small ǫ and write the resulting map as w̃′ and the corresponding map
of orbifolds as w′. Over the punctured disc

S = D \ (Uǫ(z
+
1 ) ∪ · · ·Uǫ(z

+
k )),

the deformed map w′ does not intersect with the toric divisors, and it
intersects the Lagrangian torus L along the boundaries of the punctured
disc.

Lemma 5.3. The desingularized Maslow indices of w and w′ are
equal to each other: µde(w) = µde(w′).

Proof. As the desingularized complex vector bundles of w and w′

will be isomorphic as a bundle pair, they have the same desingularized
Maslov index. q.e.d.

Hence, it is enough to compute µ(w′). Since every intersection with
the toric divisors occurs inside the balls Dǫ/2, w

′|S does not meet the
toric divisors. So it can be considered as a map into the cotangent bundle
of L. Therefore we have

(5.5) µ(w′|S) = 0.

On the other hand, the Maslov index of the map w′|S is given by the
sum of the Maslov indices along the components of ∂S after fixing the
trivialization.

Now consider the map w′ : D → X and the pull-back bundle w′∗TX
and its desingularization (w′∗TX)de. We fix a trivialization Φ
of (w′∗TX)de. When restricted to S, Φ gives a trivialization ΦS of
((w′|S)∗TX)de restricted over S, which does not contain any orbifold
point. In this trivialization, it is easy to see that the Maslov index along
the boundary ∂D in ∂S is the desingularized Maslow index µ(w) =
µ(w′). Along the rest of the boundaries ∂Uǫ/2(zi) of S, which are ori-
ented in the opposite way, the Maslov indices equal the negatives of
the local contributions of desingularized Maslov indices and hence are
−2

∑
[di,j/di] for each i by Lemma 3.4. This proves the theorem. q.e.d.

6. Orbifold holomorphic discs in toric orbifolds

In this section, we classify all holomorphic discs and orbi-discs in toric
orbifolds with boundary on L(u). We find a one-to-one correspondence
between non-trivial twisted sectors in Box′ and orbifold holomorphic
discs with a single interior orbifold singularity (modulo T n-action). We
also find a one-to-one correspondence between the stacky vectors bj of
the fan and smooth holomorphic discs of Maslov index two (modulo
T n-action).
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These two types of discs will be called basic discs for simplicity:
namely, Maslov index two smooth holomorphic discs and holomorphic
orbi-discs having one interior orbifold singularity and desingularized
Maslov index zero. Basic discs will be used to define Landau-Ginzburg
potentials PO0 and PO

b
orb,0, and will be used for computing Lagrangian

Floer cohomology of torus fibers.

6.1. Classification theorem. We first recall the corresponding theo-
rem for holomorphic discs in toric manifolds.

Theorem 6.1 (Classification theorem [C1], [CO]). Let L̃ ⊂ Cm \
Z(Σ) be a fixed orbit of the real m-torus (S1)m. Any holomorphic map
w : (D2, ∂D2) → (XΣ(P ), L) can be lifted to a holomorphic map

w̃ : (D2, ∂D2) → (U(Σ), L̃)

so that each of the homogeneous coordinate functions w̃ = (w̃1, . . . , w̃m)
are given by Blaschke products with constant factors.

i.e. w̃j = aj ·
µj∏

s=1

z − αj,s

1− αj,sz

where aj ∈ C∗, µj is a non-negative integer for each j = 1, . . . ,m, and
αj,s ∈ int(D2). In particular, there is no non-constant holomorphic disc
of non-positive Maslov index.

We start by explaining the new basic factors of holomorphic orbi-discs
(in addition to the factor z−α

1−αz used in the smooth cases above).

Consider an n-dimensional stacky cone (σ, bσ) with bσ = {bi1 , . . . , bin}.
Take an element ν = c1bi1 + · · · + cnbin ∈ N , where 0 ≤ cj < 1 for
j = 1, . . . , n. Write each rational number cj as pj/qj where pj and qj
are relatively prime integers. Let m1 = l.c.m.(q1, . . . , qn) be the least
common multiple of the denominators, which is the order of ν in Gbσ .

Let D be a disc D2 with orbifold marked point z+1 ∈ D with Z/m1

singularity. We find an explicit formula for a holomorphic orbi-disc w
from D such that the generator of Z/m1 maps to ν ∈ Gbσ = Gw(z+1 ).

We denote by φz+1
: Z/m1 → Gbσ the injective group homomorphism

sending the generator 1 to ν.
Consider the open set U ′

σ and its coordinate functions xσ1 , . . . , x
σ
n. In

these coordinates, choose a point (a1, . . . , an) in the Lagrangian fiber L.
We consider the expression

(6.1)
(
a1(

z − z+1
1− z+1 z

)c1 , . . . , an(
z − z+1
1− z+1 z

)cn
)
.

As ci’s are rational numbers, an expression such as zci for z ∈ D2 is
not well-defined, and depends on the choice of a branch cut. But recall
that Gbσ acts on U ′

σ by (4.5), and the difference from the choice of a
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branch cut is given by this action (see the proof of Lemma 4.3). Hence,
the expression (6.1) is well-defined in Uσ = U ′

σ/Gbσ . It is not hard to
check that the image of z = z+1 of (6.1) has ν as a stabilizer. From
(4.4), one can easily lift (6.1) to the homogeneous coordinates of the
toric orbifold. This will be the new basic factor in the classification of
holomorphic (orbi-)discs. This is a holomorphic orbi-disc, which is a
good map.

Now, we state the classification theorem of holomorphic (orbi-)discs
in toric orbifolds.

Theorem 6.2. Let X be a toric orbifold corresponding to (Σ(P ), b),

and L be a Lagrangian torus fiber. Let L̃ ⊂ U(Σ) be the corresponding or-
bit of the real m-torus (S1)m. A holomorphic map w : (D, ∂D) → (X , L)
with orbifold singularity at marked points z+1 , . . . , z

+
k can be described as

follows.

1) For each orbifold marked point z+i , the map w associates to it a
twisted sector Xνi where ν

i =
∑

j cijbij ∈ Box.
2) For analytic coordinate z of D2 = |D|, w can be written as a map

w̃ : (D2, ∂D2) → (U(Σ)/KC, L̃/K)

so that the homogeneous coordinates functions (modulo KC-action)
w̃ = (w̃1, . . . , w̃m) are given as

(6.2) w̃j = aj ·
dj∏

s=1

z − αj,s

1− αj,sz

k∏

i=1

(
z − z+i
1− z+i z

)cij

where aj ∈ C∗, dj is a non-negative integer for each j = 1, . . . ,m,
αj,s ∈ int(D2) and cij ’s are rational numbers as in (1).

3) The desingularized Maslov index of the map w̃, given in (6.2), is∑m
j=1 2dj . The CW Maslov index of w̃ is

∑m
j=1 2dj +2

∑k
i=1 ι(νi).

4) w̃ is holomorphic in the sense of Definition 2.1.

Remark 6.1. KC is defined in (4.3). Note that the expression is not
well-defined as a map to U(Σ), since cij ’s are rational numbers. But it
is well-defined up to KC-action.

Proof. We first claim the above expression (6.2) defines a holomorphic
map in the sense of Definition 2.1. The first factor of (6.2) is obviously
holomorphic, and we may assume that the map w̃ is given by

(6.3) w̃j = aj ·
k∏

t=1

(
z − z+i
1− z+i z

)cij .

Note that (
z−z+i
1−z+i z

)cij is holomorphic in D2 away from z+i in the sense of

Definition 2.1. Thus, it suffices to consider the map (
z−z+i
1−z+i z

)cij near z+i .
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Let r be the order of
∑

j cijbj , which is the least common multiple of
the denominators of the rational numbers ci1, . . . , cim. By the automor-

phism ψz+i
: D2 → D2, ψz+i

=
z−z+i
1−z+i z

, and its inverse ψ−z+i
, we may only

consider the case that z+i = 0. Then consider the branch covering map

at z+i , br : Bǫ(0) → Bǫr(0), which is defined by br(z̃) = (z̃)r. Here, we
denote the coordinate on the cover by z̃ with the relation z = z̃r. Thus,
it is easy to see that the map zcij = z̃rcij is holomorphic. Thus the lift
as a map of z̃ is holomorphic, as required by Definition 2.1.

Now, we prove the classification results. The idea of the proof is sim-
ilar to that of [C1] and [CO]. Namely, given a holomorphic smooth
or orbifold disc, we consider its intersection with toric divisors, and by
dividing by the basic factors, we remove the intersection with toric divi-
sors to obtain a map which does not intersect any toric divisors. Then,
it is easy to see that the resulting smooth disc whose image lies in one
of the uniformizing charts (Cn, (S1)n) of the toric orbifold has vanishing
Maslov index. By classical classification of smooth holomorphic discs, it
is in fact a constant map.

Let w : (D, ∂D) → (X , L) be a holomorphic good orbi-disc. Choose
an interior orbifold marked point z+i with Zmi singularity. Denote by
φz+i

the injective group homomorphism Zmi → Gw(z+i ) associated to the

good map w at z+i . Take a toric open set Uσ containing w(z+i ), and
denote the stacky vectors generating σ (over Q) by bi1, . . . , bin. Then,
the image of the generator under φz+i

can be written as

φz+i
(1) =: νi = ci1bi1 + · · ·+ cinbin ∈ N

with 0 ≤ cij < 1 for j = 1, . . . , n. Write each cij as a rational number
pij/qij with relatively prime pij , qij. Observe that as φz+i

is injective,

we have mi = l.c.m.(qi1, . . . , qin), which is the order of νi in Gbσ . For
simplicity, we assume that z+i = 0 ∈ D2. Consider the branch cover
br : Bǫ(0) → Bǫr(0) defined by br(z̃) = z̃mi . The map w restricted on
Bǫmi (0) has a lift (by definition) w̃ : Bǫ(0) → U ′

σ, which is holomorphic
in z̃. Note that the image of z+i = 0, w̃(0) has νi in its stabilizer. Hence,
in terms of the coordinates (xσ1 , . . . , x

σ
n) on U ′

σ, the j-th coordinate of
w̃(0) vanishes if cij 6= 0. We denote the vanishing order (multiplicity) of
w̃(0) at the j-th coordinate by dij . (Here dij = 0 if it does not vanish.)

We set
dij = d′ijmi + rij , where 0 ≤ rij < mi.

By equivariance of w̃, we have
rij
mi

= cij .

Thus w̃ can be written near 0 in these coordinates as

(z̃di1w̃′
1, . . . , z̃

dinw̃′
n)
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with w̃′
j(0) 6= 0. Or, in the coordinate z = z̃mi , we have

(zd
′

i1+ci1w̃′
1, . . . , z

d′in+cinw̃′
n).

For the general z+i (when z+i 6= 0), similarly we have

(6.4) ((
z − z+i
1− z+i z

)d
′

i1+ci1w̃′
1, . . . , (

z − z+i
1 − z+i z

)d
′

in+cinw̃′
n).

We multiply the reciprocals (
1−z+i z

z−z+i
)d

′

ij+cij to the above to remove

the intersection with toric divisors at z+i . Such a multiplication can be
done via toric action. Namely, from Lemma 4.3, we have a C∗-action,
corresponding to the lattice vector −∑

j(d
′
ij + cij)bj ∈ N on X . More

precisely, this action corresponds to the multiplication in (homogeneous)
coordinates of Cm by the following expression:

(1, . . . , (
1− z+i z

z − z+i
)d

′

i1+ci1 , 1, . . . , (
1− z+i z

z − z+i
)d

′

in+cin , 1, . . . , 1).

We denote the resulting holomorphic orbi-disc by w1 : (D′, ∂D′) →
(X , L), which is obtained after such multiplication where D′ is an orb-
ifold disc obtained from D by removing the orbifold marked point z+i .

It is easy to see that the map w1 still satisfies the Lagrangian bound-
ary condition, and importantly, the intersection with the toric divisor
at z+i has been removed.

The case of w intersecting the toric divisor at smooth point (which is
not a marked point) can be done as in [CO] and the analogous modified
map has less intersection with toric divisors. By repeating this process,
we obtain a map wd which does not meet any toric divisor. This map
is now smooth, and has Maslov index 0 from the Maslov index formula
of Theorem 5.2. It is easy to see that the map wd is indeed a constant
map. Thus the formula of the original map w can be written as in the
statement of the theorem by tracing backwards.

The index formula (part (3)) follows from Theorem 5.2. However,
a more intuitive way to think about it is as follows: Note that µCW is
homotopy invariant and so is µde as long as we do not change the twisted
sector data x. Especially, when the disc splits into several discs, the sum
of µCW remains the same. Hence, given an expression (6.2), we consider
the degeneration of the holomorphic disc by sending each αj,s to the
boundary ∂D2. In this case, a disc bubble appears, and the component
z−αj,s

1−αj,sz
disappears from (6.2). Note that if |α| = 1, then z−α

1−αz = −α. The
bubble is the standard Maslov index two disc, and hence has µCW = 2.
Similarly, we can bubble off each orbifold marked point to obtain an
orbifold disc bubble, and for each z+i , the corresponding Chern Weil
Maslov index is µCW = 2ι(νi). By adding them up, we obtain (3). q.e.d.
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6.2. Classification of basic discs. In this subsection, we discuss the
classification of basic discs.

Now, we find holomorphic orbi-discs of desingularized Maslov index
0 with one interior orbifold marked point and show that they are in
one-to-one correspondence with twisted sectors.

Corollary 6.3. The holomorphic orbi-discs with one interior singu-
larity and desingularized Maslov index 0 (modulo T n-action and auto-
morphisms of the source disc) correspond to the twisted sectors ν ∈ Box′

of the toric orbifold.

Proof. Let w be a holomorphic orbi-disc with one orbifold marked
point z+1 ∈ D with µde = 0. Let ν =

∑
j cjbj be the element of Box

associated to the pair (w, z+1 ) as in part (1) of Theorem 6.2. Injectivity
of the homomorphism φz+1

implies that ν ∈ Box′.

By the classification theorem, w can be written as

(a1z
c1 , a2z

c2 , . . . , amz
cm).

And this representation is unique up to T n-action if we impose the
condition that ai = 1 whenever ci = 0. Conversely, given an element of
Box′, we can easily construct such an orbi-disc as above. q.e.d.

We give another way to understand the above correspondence be-
tween basic orbi-discs and elements of Box′. Such a holomorphic orbi-
disc w : D → X (with orbifold marked point at 0 ∈ D) with desin-
gularized Maslov index 0 has an image in a open set Uσ for some n-
dimensional cone σ. For its uniformizing chart U ′

σ
∼= Cn, w has an

equivariant lift to the uniformizing charts, w̃ : D2 → Cn, which may be
written as

(6.5) w̃(z̃) = (a′1z̃
d1 , . . . , a′nz̃

dn) = (a′1z̃
c1mν , . . . , a′nz̃

cnmν )

where each di is a nonnegative integer. Here D
2 is the uniformizing chart

of D which is a branch cover of degree mν , the order of ν.
From the explicit expression of w̃ in (6.5), note that the image of such

a holomorphic orbi-disc is invariant under S1 action. More precisely, if
one defines C∗ action by

(6.6) t · (z1, . . . , zn) = (td1z1, . . . , t
dnzn), for t ∈ C∗,

the image of (6.5) equals the image of C∗
≤1-action on the point

(a′1, . . . , a
′
n) ∈ L, where C∗

≤1 = {z ∈ C∗||z| ≤ 1}. This exactly corre-
sponds to Lemma 4.3 about C∗-actions on toric orbifolds, which extend
to morphisms C → X .

Summarizing the above discussion, we have seen that the image of
a basic orbi-disc corresponds to the image of a C∗

≤1-action which ex-
tends to a morphism C → X . Such C∗-actions are restricted to those
corresponding to elements of Box′.
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Now, we consider holomorphic discs of Maslov index two without
orbifold marked points. We first note that the images of maps from
smooth discs can intersect fixed loci of the orbifold. The definition of an
orbifold map requires that the map from a smooth disc locally lifts to
a map to the uniformizing chart, and hence can intersect the fixed loci.

We also illustrate another important point by the following example:
Consider an orbifold map w from orbi-disc D with Z/mZ singularity
in the origin to D′ with Z/mnZ singularity in the origin, whose lift
between uniformizing covers is given by w(z) = zk. Then, if m|k, then
w may be considered as a smooth disc w′ : D2 → D′ with the lifted map
w̃′ : D2 → D2 as given by w̃′(z) = zk/m.

Hence, given an orbifold holomorphic map f : D → X , and a local

lift f̃ , the related group homomorphism sometimes cannot be injective,

if f̃ has high multiplicities. In such a case, the orbifold structure of D
has to be (and can be) replaced by less singular or sometimes smooth
ones. The correspondence below is best understood in this sense.

Corollary 6.4. The (smooth) Maslov index two holomorphic discs
(modulo T n-action) are in one-to-one correspondence with the stacky
vectors b1, . . . , bm.

Proof. This follows directly from the classification theorem. Namely,
let w : D2 → X be a smooth holomorphic disc of Maslov index two.
From the classification theorem, up to automorphism of D2, such a
holomorphic disc is given by (a1, . . . , z, . . . , am) in Cm. In the form of
expression (6.5), this corresponds to the case that cj = 1,mν = 1, and
all the other ci = 0 for i 6= j. This implies the corollary. q.e.d.

7. Areas of holomorphic orbi-discs

In this section, we compute the area of holomorphic orbi-discs. The
method to compute them is somewhat different from that of [CO] and
is more elementary.

We first illustrate how the moment map measures the area of a stan-
dard orbifold disc. Let D := D2 ⊂ C be the standard disc with the
standard symplectic structure. Let D be the orbifold disc obtained as
the quotient orbifold [D2/(Zn)] where the generator 1 ∈ Zn acts on
D2 by multiplication of a primitive n-th root of unity. D and D have
the following S1-actions. Let t ∈ S1 and z ∈ D. Let w ∈ D2 be the
coordinate on the uniformizing cover of D. Then the actions are

t · z = tz, t · w = t1/nw.

Note that the S1 action is not well-defined on the uniformizing cover D2,
but well-defined on the quotient orbifold D. If we compute the moment
maps for D and D, the length of the moment map image of D is n-times
the length of the moment map image of D. This is because the vector



56 C.-H. CHO & M. PODDAR

fields generated by S1-actions have such a relation. Also, we point out
that the symplectic area of D is also n-times the symplectic area of
D. In general, the area of a holomorphic orbi-disc w with one interior
singular point can be obtained by taking the symplectic area of the lift
w̃ : D2 → U ′

σ and dividing it by the order of orbifold singularity of D.
Recall that symplectic areas are topological invariants. Hence, it is

enough to find symplectic areas of generators of H2(X,L). From Lemma
9.1, it is enough to find symplectic areas of the basic discs. We denote
the homology class of a disc corresponding to bi (resp. ν ∈ Box′) by βi
(resp. βν). Note that for ν ∈ Box′, if we have ν = c1bi1 + . . . + cnbin ,
then the symplectic area for βν is given as the same linear combination
of the symplectic areas of βij ’s. Thus, it suffices to find symplectic areas
of βij ’s, which are those of smooth holomorphic discs corresponding to
stacky vectors.

Recall that symplectic form on the toric orbifold is obtained from the
standard symplectic form of Cm via symplectic reduction. The strategy
is to find a lift of the holomorphic map to U(Σ) ⊂ Cm and compute the
area there using the standard symplectic form.

As in the classification theorem, the smooth holomorphic discs which
are basic can be easily obtained as follows. For simplicity, we state it
for β1. Let w̃1 : D

2 → Cm be a map given by

w̃1(z) = (a1z, a2, . . . , am),

where (a1, . . . , am) ∈ L̃ as in Theorem 6.2. Then if we compose it with
the projection π : U(Σ) → X, we have w1 = π ◦ w̃1 : (D2, ∂D2) →
(X,L), which defines a smooth holomorphic disc of homology class β1.

Consider u = (u1, . . . , un) ∈ (Rn)∗. If L is defined by µ−1
T (u), then,

considering the map π∗p : (Rn)∗ → (Rm)∗ defined by π∗p(ξ) = π∗ξ − p,

the image of L̃ under the map µCm : Cm → (Rm)∗ corresponds to the
point π∗p(u). In fact, π∗p(u) is given by

(〈u, b1〉 − p1, . . . , 〈u, bm〉 − pm) = (ℓ1(u), . . . , ℓm(u)).

But recall that for the standard moment map, the j-th coordinate of
µCm is given by |zj |2/2. Hence, with the standard symplectic form, the
symplectic area of the lift of w̃j in Cm is just πr2, which is 2π(ℓj(u)).
Hence the area of wj is given by 2πℓj(u).

In fact, due to the difference of complex and symplectic construc-
tion of toric orbifolds, we also need the following argument in the above
computation. Note that the holomorphic disc w̃ does not exactly lie on
the level set µ−1

K (ι∗(−p)) for the symplectic quotient. In fact, when we
say holomorphic disc w̃ in symplectic orbifold, we mean the following
deformed disc which lies in the level set µ−1

K (ι∗(−p)): From a general
argument due to Kirwan [Ki], one can consider negative gradient flow of
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the function ||µK − ι∗(−p)||2 inside U(Σ) = Cm \Z(Σ). Negative gradi-
ent flow will reach critical points, and in this case the only critical point

set is µ−1
K (ι∗(−p)). As the torus L̃ already lies in the level set, points on

L̃ do not move under the homotopy. Thus, given a holomorphic disc in
w̃, it can be flowed into µ−1

K (ι∗(−p)) with boundary image fixed, which
gives precisely the holomorphic disc in the symplectic quotient. Then,
the simple argument using Stoke’s theorem tells us that the symplec-
tic area of the corresponding disc obtained by flowing to the level set
µ−1
K (ι∗(−p)) is the same as that of w̃. This proves the desired result.
By adding up homology classes, we obtain

Lemma 7.1. For a smooth holomorphic disc of homotopy class βj ,
its symplectic area is given by 2πℓj .

For a lattice vector ν = c1bi1 + . . .+ cnbin , define

(7.1) ℓν =
n∑

j=1

ciℓij .

Then the area of the holomorphic orbi-disc corresponding to ν is given
by 2πℓν(u).

8. Fredholm regularity

In this section, we justify the use of the standard complex structure
in the computation of Floer cohomology in this paper.

8.1. The case of smooth holomorphic discs in toric orbifolds.

The first author, with Yong-Geun Oh, has shown the following Fredholm
regularity results for toric manifolds:

Theorem 8.1. [C1], [CO] Non-singular holomorphic discs of a toric
manifold M with boundary on L are Fredholm regular, i.e. linearization
of the ∂ operator at each map is surjective.

This implies that the moduli spaces of holomorphic discs (before com-
pactification) are smooth manifolds of expected dimensions. Since the
standard complex structure is integrable, the linearized operator Dw

for a holomorphic disc w is complex linear and exactly the Dolbeault
derivative ∂.

We briefly recall the main arguments for the proof of regularity in
[CO]. The exact sequence (4.1) induces the exact sequence of complex
vector spaces

(8.1) 0 → Ck → Cm π→ Cn → 0

via tensoring with C where Ck is the m−n dimensional subspace of Cm

spanned by k ⊂ Rm. Note that this exact sequence is equivariant under
the natural actions by the associated complex tori.
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Given a holomorphic disc w : (D2, ∂D2) → (M,L), denote

E = w∗TM, F = (∂w)∗TL.

Using the sheaf of local holomorphic sections of the bundle pair (E,F ),
one can define the sheaf cohomology group Hq(D2, ∂D2;E,F ). Note
that the surjectivity of the linearization of w is equivalent to the van-
ishing result

(8.2) H1(D2, ∂D2;E,F ) = {0}.
Denote by w̃ : (D2, ∂D2) → (Cm, L̃) the lifting of w, whose boundary

lies on
L̃ = (S1)m · (c1, . . . , cm) ⊂ π−1(L) ⊂ Cm.

We denote by

(E,F ) = (w∗TM, (∂w)∗TL)

(Ẽ, F̃ ) = (D2 × Cm, (∂w̃)∗(T L̃))

(Ek, Fk) = ((w̃)∗(TOrbCk), (∂w̃)∗(TOrbk))

and by

(E ,F), (Ẽ , F̃), (Ek,Fk)

the corresponding sheaves of local holomorphic sections.

Lemma 8.2 ([CO], Lemma 6.3). The natural complex of sheaves

(8.3) 0 → (Ek,Fk) → (Ẽ , F̃) → (E ,F) → 0

is exact.

In [CO], Lemma 6.4, the vanishing H1(Ẽ , F̃) = 0 is proved by check-
ing the Fredholm regularity of the trivial bundle pair. The above exact
sequence then proves the desired Fredholm regularity for holomorphic
discs for the case of toric manifolds.

Now, consider the case of smooth holomorphic discs in toric orbifolds.
Note that the exact sequence (8.1) remains true in the case of toric orb-
ifolds. For smooth discs in orbifolds, the pull-back bundle is a smooth
vector bundle. We have shown in section 6 that smooth holomorphic
discs admit holomorphic liftings to Cm. Thus, exactly the same argu-
ment as in the case of manifolds proves the following:

Proposition 8.3. Smooth (non-singular) holomorphic discs of a toric
orbifold with boundary on L are Fredholm regular.

8.2. The case of orbi-discs. We only discuss the case of holomorphic
orbi-discs with one interior orbifold marked point. In the case of several
orbifold marked points, stable map compactifications may contain con-
stant orbi-sphere bubbles, which may not be Fredholm regular; hence
one may expect that the moduli spaces of orbi-discs with several orb-
ifold marked points are in general obstructed. But for the orbi-discs in
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the classification theorem whose domains do not have nodal singularity,
we conjecture that they are Fredholm regular, yet we do not know how
to prove it in this generality. (One can check that at least the dimension
matches with the expected dimension.)

Suppose D is an orbifold disk D2 with Zm orbifold singularity at the
origin, and boundary ∂D. For a good orbifold map w : (D, ∂D) → (X , L)
to a toric orbifold, E = w∗TX defines an orbifold holomorphic vector
bundle with F = (∂w)∗TL a Lagrangian subbundle along the boundary.
Namely, if we let π : D2 → D be its uniformizing chart, then the vector
bundle E may be understood as a holomorphic vector bundle E → D2

with effective Zm action on E, which acts linearly on the fibers. In
addition, F |∂D2 ⊂ E|∂D2 have induced Zm action from E.

Denote by E (resp. (E ,F)) the sheaf of local holomorphic sections of E
over D2 (resp. with values in F on ∂D2). Denote by E inv (resp. (E ,F)inv)
the sheaf of local holomorphic sections of E over D (resp. (E, F ) over
(D, ∂D)), which by definition is the sheaf of local holomorphic invariant
sections of E → D2 (resp. (E,F ) → (D2, ∂D2)) under Zm-action.

Lemma 8.4. Suppose E has a fine resolution

0 → E → H0
h→ H1 → 0,

where Hi (i = 0, 1) are given an effective Zm action so that all arrows
are equivariant maps.

Then, E inv also admits a fine resolution

0 → E inv → Hinv
0

h→ Hinv
1 → 0.

Analogous statements for (E ,F) also hold true.

Proof. This is a standard fact, since taking invariants is an exact
functor up to torsion. But we give a proof of it for the reader’s conve-
nience in the case of E . First we recall that any open cover of an orbifold
consisting of uniformized open subsets admits a partition of unity on X
subordinate to it ([CR], Lemma 4.2.1). Hence, if Hi is a fine sheaf, then
Hinv

i is also a fine sheaf. The resulting complex is exact: The injectivity
of the first arrow is obvious. To prove the surjectivity of the last arrow,
first take a preimage in H0, and its average over Zm action still maps
to the same element due to equivariance of the map. The exactness in
the middle can be proved similarly. q.e.d.

Now, sheaf cohomology of E inv over D, or (E ,F)inv over (D, ∂D), can
be introduced by taking a global section functor as before. Then the
above lemma on taking invariant functor implies the following lemma:

Lemma 8.5. We have

H0(D, E inv) = H0(D2, E)inv,H1(D, E inv) = H1(D2, E)inv,
H0(D, ∂D; (E ,F)inv) = H0(D2, ∂D2; E ,F)inv ,
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H1(D, ∂D; (E ,F)inv) = H1(D2, ∂D2; E ,F)inv .

In particular, if H1(D2, E) = 0, then H1(D, E inv) = 0 also.
Now, this enables us to prove the regularity for basic orbifold discs

with only one singular point in the interior, by using the results of the
first author and Oh on the Fredholm regularity of holomorphic discs.
Namely, given an orbifold holomorphic disc w : (D, ∂D) → (X , L), by
definition, we have a lift w̃ : (D2, ∂D2) → (X , L), which defines a smooth
holomorphic disc to a toric orbifold. From the Fredholm regularity of
smooth holomorphic discs in the previous section, we thus have the
vanishing of H1(D2, ∂D2; E ,F), which implies H1(D, ∂D; (E ,F)inv) =
0. This proves:

Proposition 8.6. Basic holomorphic (orbi-)discs are Fredholm reg-
ular.

9. Moduli spaces of basic holomorphic discs in toric orbifolds

In this section, we find properties of moduli spaces of basic holomor-
phic (orbi-)discs.

9.1. Homology classes in H2(X,L;Z). For a toric manifold Q and a
Lagrangian torus fiber L, recall that we have the exact sequence

0 → Ker(π) → Zm π→ Zn → 0,

where π sends the standard generator ei of Zm to vi. This exact se-
quence is isomorphic to the homotopy (or homology) exact sequence
([FOOO2]) and in particular the lattice N may be identified with
H1(L;Z).

0 → π2(Q) → π2(Q,L) → π1(L) → 0(9.1)

0 → H2(Q;Z) → H2(Q,L;Z) → H1(L;Z) → 0(9.2)

One may make an identification of the lattice N with H1(L;Z).
For a toric orbifoldX, the situation is more complicated. For example,

the natural map π : Zm → Zn sending ei to bi is not surjective in
general but only π⊗ 1Q : Qm → Qn is surjective, and also π2(X,L) has
additional classes corresponding to orbifold discs.

First, we consider the case of a stacky n-dimensional cone. Let (σ, bσ)
be an n-dimensional stacky cone with stacky vectors bσ = {bi1 , . . . , bin}
where bij ’s lie on one-dimensional cones of σ. Denote by Nbσ the sub-
lattice of N generated by stacky vectors bσ. Denote N/Nbσ by Gbσ as
before. Denote by L a non-singular torus fiber.

We compute H2(Xσ,bσ , L;Z) where Xσ,bσ is the underlying quotient
space. Here, L may be replaced by (C∗)n, which is the semi-free orbit
of Xσ,bσ . Since σ is an n-dimensional cone, it is easy to observe that

π1(Xσ,bσ) = π2(Xσ,bσ) = 0, π1(Xσ,bσ , (C
∗)n) = 0.
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Thus in this case,

H1(Xσ,bσ) = H2(Xσ,bσ) = 0, H1(Xσ,bσ , (C
∗)n) = 0.

From the homotopy exact sequence and the Hurewicz theorem, we have

π2(Xσ,bσ , (C
∗)n) ∼= π1((C

∗)n) ∼= Zn ∼= H2(Xσ,bσ , (C
∗)n;Z) ∼= H1(L;Z).

In fact, we can find generators of the above explicitly. Elements of Zn

above correspond to points of the lattice N . Finding generators of Zn

corresponds to finding that of the lattice N .
In the previous sections, we have found holomorphic discs correspond-

ing to the stacky vectors bσ = {bi1 , . . . , bin}. We denote the homology
class of a disc corresponding to bi by βi. Also, we have found holomor-
phic orbi-discs corresponding to elements of Box′, and we denote the
homology class of a disc corresponding to ν ∈ Box′ by βν .

The lattice N is generated by stacky vectors in bσ together with
Boxbσ . Thus H2(Xσ,bσ , L : Z) is generated by βi’s and βν ’s. These
correspond to the basic discs explained earlier.

In the general case of toric orbifolds, by applying the Mayer-Vietoris
sequence of a pair, we obtain the following result.

Lemma 9.1. For a toric orbifold X, and a Lagrangian torus fiber L,
H2(X,L;Z) is generated by the homology classes of basic discs, βi for
i = 1, . . . ,m together with βν for ν ∈ Box′.

We have the following short exact sequence:

0 → π2(XΣ,b) → π2(XΣ,b, L) → π1(L) → 0,

and from the fact that the map H2(L) → H2(X) is trivial, the five
lemma gives

π2(X,L) ∼= H2(X,L;Z).

Thus, π2(XΣ,b, L) is generated by homotopy classes of smooth and orb-
ifold holomorphic discs (or that of basic discs) and elements of π2(XΣ,b)
correspond to homotopy classes of orbi-spheres in toric orbifolds.

The following lemma (based on ideas on page 48 of [Ful]) shows that
for an n-dimensional stacky cone, we can choose exactly n holomorphic
(orbi)discs which generate H2(Xσ,bσ , L;Z).

Lemma 9.2. Let σ be any n-dimensional simplicial rational polyhe-
dral cone in Rn. Then we can find an integral basis of the lattice N = Zn,
all of whose vectors lie in σ.

Proof. Let σ be an n-dimensional simplicial cone with primitive in-
tegral generators v1, . . . , vn of its one-dimensional faces. Let Nσ be the
submodule of N generated by v1, . . . , vn. Let Gσ = N/Nσ . Since σ is
simplicial, Nσ has rank n and Gσ is finite. Let mult(σ) = o(Gσ).

Let B = [v1 . . . vn] be the matrix with the vi’s as columns. Consider
B as a linear operator B : Nσ → N and Gσ as the cokernel of B. Then
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from the Smith normal form of B and the corresponding decomposition
of the finite abelian group Gσ into a direct product of cyclic groups, we
conclude that mult(σ) = |det(B)|.

If mult(σ) = 1, then we are done as v1, . . . , vn form a basis of N in
this case. Assume mult(σ) > 1. Then there exists an integral vector
v ∈ N which does not belong to Nσ. Therefore v =

∑n
i=1 tivi where

not every ti is an integer. By adding suitable integral multiples of the
vi’s to v, we may assume that each ti ∈ [0, 1) and not every ti is zero.
Without loss of generality assume that 1, . . . , k are the values of i for
which ti 6= 0. Then v belongs to the relative interior of the face of σ
generated by v1, . . . , vk. Suppose that v/d is a primitive integral vector,
where d is a positive integer.

We subdivide the cone σ into n-dimensional cones σi, 1 ≤ i ≤ k.
Here σi is generated by {v1, . . . , v̂i, . . . , vn, v/d}. It is easy to check using
determinants that mult(σi) =

ti
dmult(σ). Therefore mult(σi) < mult(σ).

Note that the generators of one-dimensional faces of σi belong to σ∩N .
Iterating the above process (if necessary), we obtain an n-dimensional

cone τ having multiplicity one whose one-dimensional generators belong
to σ ∩N . These generators give the required basis of N . q.e.d.

Here it is important that the basic lattice vectors lie in the cone σ,
since then they correspond to holomorphic (orbi-)discs in Xσ,bσ .

9.2. Moduli spaces of smooth holomorphic discs. In this subsec-
tion, we discuss the moduli spaces of holomorphic discs without interior
orbifold marked points.

Recall from Corollary 6.4 that we have a one-to-one correspondence
between stacky vectors {b1, . . . , bm} and smooth holomorphic discs of
Maslov index two (modulo the T n-action).

We denote by βi ∈ H2(X,L(u);Z) (i = 1, . . . ,m) the homology class
of discs corresponding to bi. Note that we have µ(βi) = 2, and the
intersection number of βi with the j-th toric divisor is 1 if i = j and 0
otherwise. (Here the intersection number may be counted either in the
uniformizing chart or in Cm.)

For each β ∈ H2(X,L;Z), consider the moduli space Mmain
k+1,0(L(u), β)

of stable maps from bordered genus zero Riemann surfaces with k + 1
boundary marked points of homotopy class β. We denote by

Mmain,reg
k+1,0 (L(u), β) its subset whose domain is a single disc. For the

orientation of the moduli spaces, we use the spin structure of L(u),
which is induced from the T n-action; it is the same as the case of toric
manifolds (see [C1], [CO], and [FOOO] for more details).

In the following proposition, we do not consider interior marked points.
Hence only holomorphic discs without orbifold marked points are al-
lowed, and the Maslov index µ is defined as usual. We also emphasize
that the moduli spaces discussed here are not perturbed.
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Proposition 9.3. Let β be a homology class in H2(X,L(u);Z).

1) The moduli space Mmain,reg
k+1,0 (L(u), β) is Fredholm regular for any

β. Moreover, evaluation map

(9.3) ev0 : Mmain,reg
k+1,0 (L(u), β) → L(u)

is submersion.
2) For β with µ(β) < 0, or µ(β) = 0, β 6= 0, Mmain,reg

k+1,0 (L(u), β) is
empty.

3) Mmain,reg
k+1,0 (L(u), β) is empty if µ(β) = 2 and β 6= β1, . . . , βm.

4) If Mmain
k+1,0(L(u), β) is non-empty, then there exist ki ∈ Z≥0 and

αj ∈ H2(X;Z) such that

(9.4) β =
∑

i

kiβi +
∑

j

αj

and αj is the homology class of a holomorphic sphere. If β 6= 0, at
least one ki is non-zero.

5) For each i = 1, . . . ,m, we have

(9.5) Mmain,reg
1,0 (L(u), βi) = Mmain

1,0 (L(u), βi).

Hence, the moduli space Mmain
1,0 (L(u), βi) is Fredholm regular and

the evaluation map ev0 becomes an orientation preserving diffeo-
morphism.

Proof. The proof follows from the classification theorem in section 6,
in the same way as Theorem 11.1 of [FOOO2] follows from the classi-
fication theorem of [CO]. For (1), Fredholm regularity for holomorphic
discs was proved in Proposition 8.3. The evaluation map ev0 is a sub-
mersion since T n acts on L(u) and the moduli spaces in such a way that
ev0 becomes a T n-equivariant map.

For (2), if Mmain,reg
1,0 (L(u), β) is non-empty, then since ev0 is a sub-

mersion, we have

dimMmain,reg
1,0 (L(u), β) = n+ µ(β)− 2 ≥ n

for β 6= 0. This implies that µ(β) ≥ 2.
(3) is a direct consequence of the classification theorem.
For (4), consider a map [h] ∈ Mmain

k+1,0(L(u), β). If the domain of h is a
single disc, then the statement follows from the classification theorem,
in which case αj = 0. In general, the domain of h is decomposed into
irreducible components, which are discs or spheres. As holomorphic discs
are already classified, the claim follows.

For (5), observe that the first statement can be proved as in [FOOO2].
Let [h] ∈ Mmain

1,0 (L(u), βi0). By (4), we can write

(9.6) βi0 =
∑

i

kiβi +
∑

j

αj , ∂βi0 =
∑

i

ki∂βi.
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We need to show that there exists no sphere bubble αj and ki = 0 if
i 6= i0 and ki0 = 1. Since the symplectic area αj ∩ ω > 0, it follows that

βi0 ∩ ω ≥
∑

i

kiβi ∩ ω.

It suffices to show that

βi0 ∩ ω ≤
∑

i

kiβi ∩ ω,

and that equality holds only if ki = 0 if i 6= i0 and ki0 = 1.
From (1.6) and from the second equation of (9.6), we have

ℓi0(u) =

m∑

i=1

kiℓi(u) + c

for some constant c. This is because ∂(βi0 −
∑

i kiβi) = 0, and hence its
symplectic area 2πc is independent of u.

By evaluating at u ∈ ∂i0P , we have c ≤ 0, since ℓi ≥ 0 on P . But since
ℓi(u) = βi∩ω, this implies the desired inequality. Therefore, the equality
ℓi0 =

∑
i kiℓi holds. If there exists i 6= j with ki, kj > 0, then since

u′ ∈ P satisfies u′ ∈ ∂jP if ℓj(u
′) = 0, the above equality implies that

∂i0P ⊂ ∂iP ∩ ∂jP , which is a contradiction since ∂i0P is codimension
one.

The second statement of (5) follows from the torus action and the
orientation analysis of [C1], as in the case of smooth toric manifolds.
But there is a little subtlety, which is different from the manifold case,
which we now explain.

Given a smooth holomorphic disc w : (D2, ∂D2) → (X , L), with
marked point z0 ∈ ∂D2, the equivalence relation (Definition 2.6) implies
that if an automorphism of the disc ρ : D2 → D2 satisfies w◦ρ = w, then
the holomorphic disc ((D2, z0), w) is identified with ((D2, ρ(z0)), w).

We illustrate this phenomenon by an example, which explains what
happens for a basic smooth disc. Consider a map w : (D2, ∂D2) →
Cm/G given by z 7→ (z, 1, . . . , 1), where G is a finite group G = Z/kZ
acting by rotation on the first coordinate of Cm (so that the image of w
is invariant under the G-action). Denote by ρ the multiplication by the
k-th root of unity on D2. Then, w ◦ρ = w as w is a map to the quotient
space. Hence, the marked point z0 and ρ(z0) are identified.

Hence in the moduli space of smooth holomorphic discs containing
the above map w, we may regard that the marked point z0 moves only
along the arc from 1 to e2πi/k of ∂D2. The smooth disc wraps around the
orbifold point with multiplicity k in the above example, but due to the
identification of the boundary marked points as above, the evaluation
image of ev0 of the moduli space of discs only covers the boundary once.
The rest is the same as in [FOOO2], and we leave the details to the
reader. q.e.d.
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9.3. Moduli spaces of holomorphic orbi-discs. In this subsection,
we allow interior marked points, and in particular, interior orbifold
marked points. Let β ∈ H2(X,L;Z) and let Mmain

k+1,l(L(u), β,x) be the
moduli space of good representable stable maps from bordered orbifold
Riemann surfaces of genus zero with k + 1 boundary marked points,
and l interior (orbifold) marked points in the homology class β of type
x where x = (X(g1), . . . ,X(gl)). We denote

Mmain
k+1,l(L(u), β) =

⊔

x

Mmain
k+1,l(L(u), β,x).

The problem of orientation of the moduli spaces is similar to that of the
smooth discs, and we omit the details.

In Corollary 6.3, we found a one-to-one correspondence (modulo the
T n-action) between elements ν ∈ Box′ and holomorphic orbi-discs with
one orbifold marked point that satisfy µde = 0. We have denoted the
homotopy class of such orbi-discs by βv ∈ H2(X,L;Z). In particular,
such ν ∈ Box′ can be written as ν = ci1bi1 + . . . + cinbin ∈ N with
0 ≤ cij < 1. Then it is easy to see that βν satisfies the following:

∂βν = ν ∈ N ∼= Zn, µde(βν ,Xν) = 0, βν ∩ [π−1(∂jP )] = cj .

Proposition 9.4. 1) Suppose µde(β,x) < 0. Then, Mmain,reg
k+1,l

(L(u), β,x) is empty.

2) If µde(β,x) = 0, and if β 6= βν for any ν ∈ Box, then Mmain,reg
k+1,1

(L(u), β,x) is empty.

3) The moduli space Mmain,reg
k+1,1 (L(u), β) is Fredholm regular for any

β. Moreover, the evaluation map ev0 : Mmain,reg
k+1,1 (L(u), β) → L(u)

is a submersion.
4) If Mmain

k+1,l(L(u), β) is non-empty, then there exist kν , ki ∈ N, αj ∈
H2(X;Z) such that

β =
∑

ν∈Box′

kνβν +
∑

i

kiβi +
∑

j

αj

where αj is realized by a holomorphic orbi-sphere, and at least one
kν or ki is non-zero.

If Mmain
1,1 (L(u), β) is not empty and if ∂β /∈ Nb := Z〈b1, . . . , bm〉,

then there exists ν ∈ Box′ such that

β = βν +
∑

i

kiβi +
∑

j

αj .

5) For ν ∈ Box′, we have

Mmain,reg
1,1 (L(u), βν) = Mmain

1,1 (L(u), βν).
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The moduli space Mmain
1,1 (L(u), βν) is Fredholm regular and the

evaluation map ev0 becomes an orientation preserving diffeomor-
phism.

Proof. Part (1) follows from the desingularized Maslov index formula
for holomorphic orbi-discs. And (2) follows from the classification results
in section 6.

For (3), Fredholm regularity is already proved. The complex structure
is invariant under T n-action and L(u) is a T n-orbit. It follows that T n

acts on the moduli space Mmain,reg
k,1 (L(u), β) and ev0 becomes a T n-

equivariant map. Hence ev0 is a submersion.
For (4), the first statement follows from the structure of the stable

map. For the second statement, consider a map h ∈ M1,1(L(u), β). If
the domain of h is a single (orbi-)disc, then the theorem follows from
the classification theorem, in which case αj = 0. Otherwise, the do-
main of h has several irreducible components, which are (orbi-)discs
and (orbi-)spheres. Since ∂β /∈ Nb, one of the disc components has to
be a holomorphic orbi-disc, and as we allow only one interior marked
point, there cannot be any other orbifold disc. Then the claim follows
from the classification theorem.

For (5), let h ∈ Mmain
1 (L(u), βν). By (4), we can write

(9.7) βν = βν′ +
∑

i

kiβi +
∑

j

αj,

for some ν ′ ∈ Box. By considering their boundaries, we have

∂βν = ∂βν′ +
∑

i

ki∂βi

or equivalently,

ν = ν ′ +
∑

kibi.

By the definition of Box, this implies that ν = ν ′ since the coefficients
of ν as a linear combination of bi’s should lie in the interval [0, 1) and
since ki ∈ Z≥0.

Thus, we have
∑

i kiβi +
∑

j αj = 0. As their symplectic areas are
positive unless trivial, we have ki = 0 for all i, and αj = 0 for all j. This
proves the first statement, and the second statement follows as in the
proof of Proposition 9.3. q.e.d.

10. Moduli spaces and their Kuranishi structures

In this section, we discuss the T n-equivariant Kuranishi structures
of moduli spaces Mk+1,l(L(u), β) of holomorphic (orbi-)discs. Recall
that the T n-equivariant Kuranishi structure of the moduli spaces in
smooth toric manifolds has been constructed in [FOOO2]. And also
recall that the Kuranishi structure of the moduli space of stable maps
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from orbi-curves (without boundary) has been established in the work
of Chen and Ruan [CR]. We also recall that the Fredholm setup and
gluing analysis for J-holomorphic discs has been carefully discussed in
the foundational work of [FOOO], and the case with bulk insertion is
discussed in [FOOO3].

For our case of toric orbifolds, the moduli spaces Mk+1,l(L(u), β) of
holomorphic (orbi-)discs also have T n-equivariant Kuranishi structure,
as most of the construction of [FOOO] and [FOOO2] can be easily
extended to these cases in a straightforward way by combining the work
of Chen and Ruan [CR] regarding interior orbifold marked points. But
we give brief explanations on some of the issues for readers who are not
familiar with them.

10.1. Fredholm index. Let us explain the virtual dimension of the
moduli spaces. First, we recall the case of closed J-holomorphic orbi-
curves from Chen-Ruan [CR]. Let Σ be a closed Riemann surface, with
complex vector bundle E on it. The index of the first order elliptic
operator ∂ is given by Riemann-Roch formula

index(∂) = 2c1(E)[Σ] + 2n(1− gΣ),

where 2n is the rank of E, and gΣ the genus of Σ.
Let Σ be a closed orbi-curve with orbifold marked points z1, . . . , zk

(with underlying Riemann surface Σ), and E is orbifold complex vector
bundle, with degree shifting number ιi at i-th marked point. Then the
index of ∂ is given by (Lemma 3.2.4 of [CR])

index(∂) = 2c1(|E|)[Σ]+ 2n(1− gΣ) = 2c1(E)[Σ]+ 2n(1− gΣ)−
k∑

i=1

2ιi.

Here, |E| is the desingularization of E explained in section 3, and the
second identity is from Proposition 4.1.4 of [CR2], which follows from
the curvature computation in Chern-Weil theory. The desingularized
bundle |E| can be used for index computations, as local holomorphic
sections of E and |E| can be identified (see Proposition 4.2.2 of [CR2]),
and hence they have the same indices. Note that the desingularized orbi-
bundle over an orbi-curve has trivial fiber-wise action near the orbifold
point. Hence |E| gives an honest vector bundle over Σ and we can apply
the usual index theorem, and obtain the above equality.

The moduli space of stable maps from genus g orbi-curves with k
marked points mapping to x, of class A ∈ H2(X), is denoted as Mg,k

(X,J,A,x). Applying the above index formula to the pull-back orbi-
bundle, the dimension of Mg,k(X,J,A,x) is given by (Lemma 3.2.4 of
[CR])

2c1(TX)[A] + 2n(1− gΣ)− 6−
k∑

i=1

2ι(x(i)).
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Exactly the same argument applies to our case. Let Σ be a bordered
Riemann surface, with complex vector bundle E → Σ, a Lagrangian
subbundle L → ∂Σ. Recall that (see [KL] for example) the index of ∂
is given by Riemann-Roch formula

index(∂) = µ(E,L) + n · e(Σ),
where 2n is the rank of E, and e(Σ) the Euler characteristic of Σ.

Let Σ be a bordered orbi-curve with interior orbifold marked points
z1, . . . , zk, and E an orbifold complex vector bundle, with degree shifting
number ιi at i-th marked point, with a Lagrangian subbundle L → ∂Σ.
Then we have

index(∂) = µ(|E|,L) + n · e(Σ) = µ(E,L) + n · e(Σ)−
k∑

i=1

2ιi.

The second equality follows from Proposition 3.5 (Proposition 6.10 of
[CS]).

Applying the above index formula to the pull-back orbi-bundle of
holomorphic orbi-discs (note that e(Σ) = 1), we obtain the virtual di-
mension of the moduli space of bordered stable maps Mk,l(L, β,x),
which proves Lemma 2.5:

n+ µde(β,x) + k + 2l − 3 = n+ µCW (β) + k + 2l − 3− 2ι(x).

Here we have subtracted the dimension of Aut(D2) = 3 as we consider
the moduli space, and k, 2l account for the freedom of the boundary,
and the interior marked points.

10.2. Construction of Kuranishi structures. We recall a definition
of a Kuranishi neighborhood (chart) (V,E,Γ, ψ, s) of a moduli space M:
V is a smooth manifold and E is a vector bundle over V , with a group
Γ acting on V and E in a compatible way, and s : V → E is a Γ-
equivariant section such that ψ : s−1(0)/Γ → M is homeomorphic to
an open set of the moduli space M. We refer readers to [FOOO] for
the definition of compatibilities between Kuranishi charts, and for more
details.

The general scheme to construct a Kuranishi structure of a moduli
space is as follows: First, one constructs a Kuranishi neighborhood of
each point in the interior of the moduli space. The proper Fredholm
setting for this construction, and the application of the implicit function
theorem to it, is by now standard. Then, one also constructs a Kuranishi
neighborhood of each point in the boundary of the moduli space or for
the stable map. For this, Taubes’ type gluing argument is needed, and
the gluing construction for interior node [FO] (and orbifold interior node
[CR]), or boundary node [FOOO], has been established. Once local
Kuranishi neighborhoods are constructed, there is a standard procedure
to construct the global Kuranishi charts, for which we refer readers to
[FO] or [FOOO].
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We explain the construction of a local Kuranishi neighborhood of

(10.1) ((Σ, ~z, ~z+), w, ξ) ∈ Mk+1,l(L(u), β,x).

First, we consider the case where the domain Σ = D is an orbi-disc D,
in which case the element (10.1) lies in the interior of the moduli space
Mk+1,l(L(u), β,x). Then, the linearized ∂-operator at w is given as

Dw∂ : W 1,p(D, w∗TX , L) → Lp(D, w∗TX ⊗ Λ0,1).

The obstruction space E can be chosen so that elements of E are smooth,
and supported away from marked points and from ∂D, and also that

Image(Dw∂) + E = Lp(D, w∗TX ⊗ Λ0,1).

Then the kernel of Dw∂ :W 1,p(D, w∗TX , L) → Lp(D, w∗TX ⊗ Λ0,1)/E
is denoted as V map, and the section s = Dw∂. One takes V = V map ×
V dom where V dom parametrizes the deformation of the domain (D, ~z, ~z+).
In this case the automorphism Γ is trivial since the boundary of the disc
maps to L, and the disc only intersects toric divisors at finitely many
points. Non-trivial Γ appears if Σ has a sphere component.

In fact, to consider Dw∂ properly, instead of D, one identifies D with
a bordered Riemann surface Σ′ of genus 0, with strip-like end (near
boundary marked points) and with cylindrical end (near interior marked
points). Then, over this domain Σ′, we have a Fredholm problem by
considering the Dw∂ problem with suitable exponential weights as in
[FO], [CR] (for a cylindrical end) and [FOOO] (for a strip-like end).
In the case of orbifold marked points, we follow Chen-Ruan’s construc-
tion that such a Riemann surface Σ′ still has “orbifold” data near orb-
ifold marked points. Namely, consider an interior marked point z1 ∈ Σ
which has Z/mZ singularity. Let ρ be the generator of Z/mZ. Suppose
the equivariancy data ξ of the map w in (10.1) gives a homomorphism
φ : Z/mZ → Gw(z1) where Gw(z1) is the local group of w(z1). Then a
cylindrical end (for z1) is considered to have a covering cylinder with
Z/mZ action, and the pull-back bundle over it is considered as an orb-
ifold bundle on it. Hence the change is only for analytical purposes and
orbifold data is not lost during the process. Then in setting up the
Fredholm problem, one adds the description of the points pi to which
these infinite ends are exponentially converging. For orbifold marked
point z1 as above, Chen-Ruan required that the end of the holomor-
phic cylinder limit to a point pi ∈ χφ(ρ) in the twisted sector. We refer
readers to Lemma 3.2.3 of [CR] for more details. The construction of
ψ : s−1(0) → Mk+1,l(L(u), β,x) involves implicit function theorem fol-
lowing [FOOO] (and [CR] regarding interior orbifold marked points).
It is standard and omitted.

Now, we consider the construction when κ := ((Σ, ~z, ~z+), w, ξ) is in
the boundary (or corner) of the moduli space Mk+1,l(L(u), β,x). We
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first write the domain Σ = ∪ηπη(Ση) as the union of irreducible compo-
nents, which are (orbi-)discs and (orbi-)spheres. We recall an important
ingredient of Chen-Ruan’s construction of Kuranishi structure when the
image of some irreducible component of a domain maps entirely into the
(orbifold) singular locus of X .

Note that if Ση is a disc, it cannot map entirely into the singular locus
of X , due to the Lagrangian boundary condition. So, let us suppose that
the component Ση is an (orbifold) sphere which maps entirely into the
singular locus of X via w. We denote by Gη the group whose elements
are stabilizers of all but finitely many points of the image of Ση. Namely,
after deleting finitely many points ~z ′ ⊃ ~z+ ∩ Ση of Ση, for any points
p ∈ w(Ση \~z ′), local group Gp is isomorphic to a fixed group Gη. Such a
Gη exists due to the properties of orbifold J-holomorphic maps. Define

Gκ = {(gη) ∈
∏

η

Gη | gη(zη) = gω(zω) if πη(zη) = πω(zω)}.

This Gκ will be added to the Γ of the Kuranishi structure in the
following way. The automorphism group Aut(κ) of κ acts on Gκ by
pull-backs. Hence we get a short exact sequence

1 → Gκ → Γκ → Aut(κ) → 1.

Γκ is the finite group Γ of the local Kuranishi neighborhood and the
action of Γκ on V and E is defined from that of Aut(κ) by setting Gκ

to act trivially on them. The rest of the construction is carried out in a
Γκ-equivariant way.

We remark that the general discussion in Chen-Ruan [CR] is more
complicated as the groups may not be abelian. In the general case of
[CR], among Gη , one should take the elements which form a global
section on Ση \ ~z ′, so that Gη do not change the local group at w(z+i )’s
by conjugation. (Then such elements of Gη commute with local groups
at w(z+).) In our case, the local groups are abelian, and we can take
Gη as above.

So, in the case of κ ∈ Mk+1,l(L(u), β,x) \ Mreg
k+1,l(L(u), β,x), we

need Taubes’ type gluing construction. Namely, one first replaces Ση

(equipped with marked points) with the associated Riemann surface
with cylindrical and strip-like ends, and apply the construction of the
above for each Ση. Then, as in section 7.1.3 of [FOOO], one can ap-
ply gluing construction (of constructing an approximate solution and
applying Newton-type iteration arguments to find actual holomorphic
curves), where the gluing near a boundary nodal point is carried out
in [FOOO] and gluing near an interior nodal point is carried out in
[FO] (and the orbifold nodal points in [CR]). We omit the details, and
refer readers to the above references. We remark that the construction
of Kuranishi structures is a non-trivial task and these have been exten-
sively and very carefully studied recently by McDuff-Wehrheim [McW]
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and Fukaya-Oh-Ohta-Ono [FOOO6]. Our construction follows that of
[FOOO2] and [FOOO6]. In particular, we can construct global Kuran-
ishi structure from local Kuranishi charts as explained in Parts 3 and 4
of [FOOO6].

10.3. T n-equivariant perturbations. We briefly recall T n-equivariant
Kuranishi structure of the moduli spaces in [FOOO2], and show that
the moduli space of stable orbi-discs Mk+1,l(L(u), β) in this paper also
has an analogous structure.

Consider the following family A of compatible Kuranishi charts of the
moduli space M:

{(Vα, Eα,Γα, ψα, sα)|α ∈ A}.
Here π : Eα → Vα is a vector bundle with equivariant Γα-action, sα
is a Γα equivariant section of Eα, and ψα is a homeomorphism ψ :
s−1(0)/Γα → M.

Recall from [FOOO2] Appendix 2, Definition 15.4, that such a Ku-
ranishi structure is said to be T n-equivariant in the strong sense, if

1) Vα has T n-action and it commutes with Γα-action.
2) Eα is a T n-equivariant vector bundle.
3) The maps sα, ψα are T n-equivariant.
4) Coordinate change maps for embeddings of Kuranishi charts are

T n-equivariant.

Recall that a strongly continuous smooth map ev : M → L is a family
of Γα-invariant smooth maps evα : Vα → L (inducing evα : Vα/Γα → L)
which are compatible with coordinate changes. The map ev is said to
be weakly submersive if each evα is a submersion.

Proposition 10.1 (c.f. Prop. 15.7 of [FOOO2]). The moduli space
Mk+1,l(L(u), β) has a T

n-equivariant Kuranishi structure such that ev0 :
Mk+1,l(L(u), β) → L is a T n-equivariant, strongly continuous, and
weakly submersive map.

Proof. The same line of proof as in that of [FOOO2], Proposition
15.7 can be used to prove the existence of T n-equivariant Kuranishi
structure in our case too: The standard complex structure J of X is
T n-invariant, and the Lagrangian submanifold L(u) is a free T n-orbit.
Note that as the torus action on ambient toric variety carries over to
the tangent bundles and Cauchy-Riemann equations in a natural way,
the main new ingredient is how to choose an obstruction bundle in a
T n-equivariant way.

We have a free T n action on the Kuranishi neighborhood since the T n

action on the Lagrangian submanifold L(u) is free and the evaluation
maps ev are T n-equivariant as explained in [FOOO2]. We can take a
multivalued perturbation of the Kuranishi structure that is T n equivari-
ant. Such a multisection, which is also transversal to 0, is constructed
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by taking the quotient of the Kuranishi neighborhood, obstruction bun-
dles, and so on by T n action to obtain a space with Kuranishi structure.
Then take a transversal multisection of the quotient Kuranishi structure
and lift it to a multisection of the Kuranishi neighborhood. The evalu-
ation map becomes a submersion because of the T n-equivariance. (The
existence of T n-action simplifies the general construction of [FOOO]
because the fiber products appearing in the inductive construction are
automatically transversal.) q.e.d.

Now, we focus attention on the moduli space of holomorphic discs
without (orbifold) interior marked points. (The case of orbi-discs will be
considered in section 12.) Consider the following map which forgets the
(1, . . . , k)-th marked points

forget0 : Mmain
k+1,0(L(u), β) → Mmain

1,0 (L(u), β).

As in [FOOO2] we can construct our Kuranishi structure so that it is
compatible with forget0.

Lemma 10.2 (c.f. Lemma 11.2 in [FOOO2]). For each given E > 0,
we can take a system of multisections sβ,k+1 on Mmain

k+1,0(L(u), β) for

ω(β) < E satisfying the following properties:

1) They are transversal at zero section, and invariant under T n-
action.

2) The multisection sβ,k+1 is obtained as the pull-back of the multi-
section sβ,1 by the forgetful map.

3) The restriction of the multisection sβ,1 to the boundary of Mmain
1,0

(L(u), β) is given as the fiber product of the multisection sβ′,k′ from
the following:

∂Mmain
1,0 (L(u), β) =

⋃

β1+β2=β

Mmain
1,0 (L(u), β1) ev0 ×ev1 Mmain

2,0 (L(u), β2).

4) Mmain
1,0 (L(u), βi) for i = 1, . . . ,m are not perturbed.

The proof of the lemma is the same as in [FOOO] and is omitted.
We obtain the following corollary from dimension arguments:

Corollary 10.3. The moduli space Mmain
1,0 (L(u), β)sβ is empty if the

Maslov index µ(β) < 0 or β 6= 0 and µ(β) = 0.

These T n-equivariant perturbations define the following open Gromov-
Witten invariants for toric orbifolds, as in Lemma 11.7 of [FOOO2].
This is because the virtual fundamental chain of Mmain

1,0 (L(u), β) is now

a cycle due to Corollary 10.3. A homology class cβ [L(u)] ∈ Hn(L(u);Q)
can be defined by the pushforward

(10.2) cβ[L(u)] = ev∗([Mmain
1,0 (L(u), β)sβ ]).
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Lemma 10.4 (Lemma 11.7 of [FOOO2]). The number cβ is well-
defined, independent of the choice sβ,k+1 in Lemma 10.2.

From the classification results (Proposition 9.3), we have cβi
= 1 for

i = 1, . . . ,m, where the sign can be computed from [C1]. If X is Fano,
then we also have cβ = 0 for β 6= βi.

11. Filtered A∞-algebra and its potential function

11.1. Filtered A∞-algebra and its deformation theory. We pro-
vide a quick summary of the deformation and obstruction theory of
[FOOO] just to set the notations. We refer readers to [FOOO], [FOOO2]
for details.

For a graded R-module C, its suspension C[1] is defined as C[1]k =
Ck+1. For x ∈ C, we denote by deg(x) and deg′(x) the original and the
shifted degree of x respectively. The bar complex B(C[1]), which is a
graded coalgebra, is defined as B(C[1]) =

⊕∞
k=0Bk(C[1]) with

(11.1) Bk(C[1]) = C[1]⊗ · · · ⊗C[1]︸ ︷︷ ︸
k

.

We have B0(C[1]) = R by definition.

Definition 11.1. An A∞-algebra structure on C is given by a se-
quence of degree one R-module homomorphisms mk : Bk(C[1]) → C[1]
for k = 1, 2, . . . such that the equations
(11.2)
n−1∑

k=1

k−i+1∑

i=1

(−1)ǫmn−k+1(x1 ⊗ · · · ⊗mk(xi, . . . , xi+k−1)⊗ · · · ⊗ xn) = 0,

which are called the A∞-equations, are satisfied. Here ǫ = deg′ x1+ · · ·+
deg′ xi−1.

This can be written using coderivations as follows. The map mk can
be extended to a coderivation m̂k : B(C[1]) → B(C[1]) by
(11.3)

m̂k(x1 ⊗ · · · ⊗xn) =

k−i+1∑

i=1

(−1)ǫx1 ⊗ · · · ⊗mk(xi, . . . , xi+k−1)⊗ · · · ⊗ xn.

If we set d̂ =
∑∞

k=1 m̂k, then the A∞-equation is equivalent to d̂ ◦ d̂ = 0.
Since m1 ◦m1 = 0, the complex (C,m1) defines the homology of A∞-

algebra. In a filtered case, A∞-algebra is similarly defined but has an
m0 : R→ C[1] term and we have m1 ◦m1 6= 0 in general filtered case.

Definition 11.2. An element e ∈ C0 is called a unit if it satisfies

1) mk+1(x1, . . . ,e, . . . , xk) = 0 for k ≥ 2 or k = 0.
2) m2(e, x) = (−1)deg xm2(x,e) = x for all x.
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If m0(1) is a constant multiple of a unit (i.e. m0(1) = ce for some
c ∈ R), then m1 ◦m1 = 0. Therefore, one can consider the homology of
m1.

To consider filtered A∞-algebra, let
⊕

m∈Z C
m be a free graded Λ0,nov-

module. Let F λCm be the submodule of elements with coefficients hav-
ing T -exponents ≥ λ; then these modules give a natural energy filtra-
tion. We define C as the completion with respect to this filtration. Sim-
ilarly, BkC and BC are defined as completions. A structure of filtered
A∞-algebra on C is given by a sequence of Λ0,nov-homomorphisms {mk}
satisfying A∞-equation (11.2) with k ≥ 0, and additionally satisfying
the following properties:

1) m0(1) ∈ F λC1 with λ > 0,
2) mk respects the energy filtration,
3) mk is induced frommk : BkC[1] → C which is an R-module homo-

morphism, where C is the free R-module with the same generating
set as C.

In this paper, we follow [FOOO2] to work with Λ0 rather than Λ0,nov

by forgetting e, and we work with the Z2-graded complex (see (1.7) for
Novikov rings).

For b ∈ F λC1 with λ > 0, consider the following exponential:

eb = 1 + b+ b⊗ b+ · · · ∈ BC.
Then, deformed A∞-algebra (C, {mb

k}) is defined by setting mb
k as

(11.4) mk
b (x1, . . . , xk) = m(eb, x1, e

b, x2, e
b, x3, . . . , xk, e

b).

If m(eb) = mb
0 is a multiple of unit e, then mb

1 defines a complex.

Definition 11.3. An element b ∈ F λC1 with λ > 0 is called a weak
bounding cochain if m(eb) is a multiple of unit e. A filtered A∞-algebra
is called weakly unobstructed if a weak bounding cochain b exists.

We denote by M̂weak(L) the set of weak bounding cochains of L.
The moduli space Mweak(L) is then defined to be the quotient space of

M̂weak(L) by suitable gauge equivalence (see section 4.3 of [FOOO]).
In fact, when C = H(L,Λ0), one can also consider b in F 0C[1] by
introducing a non-unitary flat complex line bundle over the Lagrangian
submanifold (see [C3], [FOOO2] for more details).

11.2. Construction of a filtered A∞-algebra of Lagrangian sub-

manifold. We construct a filtered A∞-algebra on H(L(u); ΛR
0 ) using

the (perturbed) moduli space of holomorphic discs as in [FOOO2]. We
emphasize that we do not use orbi-discs to construst the filtered A∞-
algebra. Orbi-discs will be used for bulk deformations in later sections.

For a T n-invariant metric on L(u), a differential form x on L(u)
becomes harmonic if and only if x is T n-equivariant, and we identify
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H(L(u),R) with the set of T n-equivariant forms, on which we construct
the A∞-structure.

Consider evaluation maps

(11.5) ev = (ev1, . . . , evk, ev0) : Mmain
k+1,0(L(u), β)

sβ → L(u)k+1.

For ω1, . . . , ωk ∈ H(L(u),R), we define

(11.6) mk,β(ω1, . . . , ωk) = (ev0)!(ev1, . . . , evk)
∗(ω1 ∧ · · · ∧ ωk).

Here (ev0)! is an integration along the fiber and it is well-defined as ev0
is a submersion. (See appendix C of [FOOO2] for details on smooth
correspondences.)

The resulting differential form is again T n-equivariant since sβ and
all other maps are T n-equivariant. As in [FOOO2] (and using Lemma
10.2), we obtain the A∞-formula:

(11.7)

∑

β1+β2=β

∑

k1+k2=k+1

k1∑

l=1

(−1)ǫmk1,β1(ω1, . . . ,mk2,β2(ωl, . . . , ), . . . , ωk) = 0.

Here ǫ =
∑l−1

i=1(deg
′ωi). We put mk =

∑
β T

ω(β)/2πmk,β. We extend

the above to ω with coefficients in ΛR
0 multi-linearly. This defines an

A∞-structure on H(L(u),ΛR
0 ). The constructed filtered A∞-algebra is

unital with the unit e being the constant 1 ∈ H0(L,R), which is the
Poincaré dual PD([L(u)]) of the fundamental class, and this follows from
the definition (11.6). Note that the constructed A∞-algebra is already a
canonical model, since we define it on harmonic forms H(L; Λ0) in this
case of a toric fiber L = L(u).

As in [FOOO2], for r ∈ H1(L,R), the A∞-structure can be explicitly
computed:

Lemma 11.1 (c.f. Lemma 11.8 of [FOOO2]). For r ∈ H1(L(u),ΛR
0 )

and β ∈ π2(X,L) with µ(β) = 2, and for cβ defined in Lemma 10.4, we
have

mk,β(r, . . . , r) =
cβ
k!
(r(∂β))k · PD([L(u)]).

The proof in Lemma 11.8 of [FOOO2] in the manifold case is based
on two facts. The first is that the intersection number of r and ∂β is
determined by the cap product ∂β ∩ r = r(∂β), and the second is that
ev0 is a diffeomorphism with µ(β) = 2 condition. For toric orbifolds, we
have shown in Proposition 9.3 and Proposition 9.4 that ev0 is again a
diffeomorphism. Hence the same proof extends to the orbifold case.

From this computation, we have

Proposition 11.2 (c.f. [FOOO2], Prop. 4.3). We have an inclusion

(11.8) H1(L(u); Λ+) →֒ Mweak(L(u)).
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Hence, toric fiber L(u) is weakly unobstructed for any u ∈ Int(P ).
Moreover, one can take b ∈ H1(L(u); Λ0), and it is contained in

Mweak(L(u); Λ0).

Proof. First, take b+ ∈ H1(L(u),Λ+). We have
∞∑

k=0

mk(b+, . . . , b+) =
∑

β

∞∑

k=0

cβ
k!

(b+(∂β))
kTω(β)/2π · PD([L(u)]).

By the degree reason, the sum is over β with µ(β) = 2. Hence b+ ∈
M̂weak(L(u)) and the gauge equivalence relation is trivial on H1(L(u);
Λ0) and this proves the inclusion.

One can take b ∈ H1(L(u); Λ0) in the definition of weak Maurer-
Cartan elements as in [FOOO2] as follows: For b = b0 + b+, with b0 ∈
H1(L(u),C) and b+ ∈ H1(L(u),Λ+), we introduce a representation ρ :
π1(L) → C∗ such that ρ(γ) = exp(

∫
γ b0). We define a non-unitary flat

line bundle Lρ on L with holonomy given by ρ, and modify the A∞-
structure by

mρ
k =

∑

β∈π2(M,L)

ρ(∂β)mk,β ⊗ Tω(β)/2π .

If the resulting A∞-structure {mρ
k} is weakly unobstructed with weak

bounding cochain b+, then the set of such b’s are denoted by Mweak

(L(u); Λ0), and again called weak bounding cochains. We refer readers
to [C3], [FOOO2] for more details. q.e.d.

For b ∈ M̂weak(L), we have mb
0 = m(eb) = ce and the A∞-equation

tells us that mb
1 is a differential. Hence, for b ∈ M̂weak(L), we define the

Bott-Morse Floer cohomology of L as

(11.9) HF ((L; b), (L; b)) =
Ker mb

1

Im mb
1

,

We call it smooth Floer cohomology of L to emphasize that it does not
use the data of bulk deformation by twisted sectors of toric orbifolds.

Recall that for weakly unobstructed L, the potential function PO, as

a function from M̂weak(L) to Λ+, is defined by the equation

(11.10) m(eb) = PO(b) · PD([L]).

11.3. Smooth potential for toric orbifolds. Given a toric orbifold,
the above construction gives filtered A∞-algebra for L(u), which uses
only smooth holomorphic (stable) discs. The potential PO above may
be called smooth potential for L(u) since it does not use information on
orbi-discs. (The bulk deformed potential will be defined using orbi-discs
in later sections.)

In this subsection, we discuss the properties of a smooth potential and
define leading order smooth potential, which can be explicitly computed.
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As in the manifold case, if X is not Fano, for smooth potential PO, we
also need to consider stable disc contributions which are not readily
computable.

We choose an integral basis ei ∈ H1(L(u);Z), which can be done by
the identification L(u) = T n = (S1)n = (R/Z)n. (Here we may use dti
in de Rham cohomology, where ti is the coordinate of the i-th factor of
(R/Z)n.)

We choose a weak bounding cochain b as

b =
∑

xiei ∈ H1(L(u); Λ0).

Then, PO(b) depends on (x1, . . . , xn) ∈ (Λ0)
n and (u1, . . . , un) ∈ Int(P ),

and hence to emphasize its dependence on u, we may write PO(b) as
PO(x;u) := PO(x1, . . . , xn;u1, . . . , un). But for simplicity, most of the
time we omit u, and write PO and PO(b). (POu is used in [FOOO3].)

As in [FOOO2], it is convenient to introduce y1, . . . , yn as follows
(also because holonomy is defined up to 2π

√
−1Z): We define

yi = exi = exi,0

∞∑

k=0

xki,+/k!,

where we write xi = xi,0 + xi,+ with xi,0 ∈ C and xi,+ ∈ Λ+.
Consider a toric orbifold X with moment polytope P and stacky

vectors ~b. From (1.6) (Lemma 7.1), the following affine function mea-
sures the area of smooth discs corresponding to stacky vectors bj =
(bj1, . . . , bjn) ∈ Zn for j = 1, . . . ,m:

ℓj(u) = 〈u, bj〉 − pj .

We define the leading order smooth potential function PO0(b) of toric
orbifold:

(11.11) PO0(b) :=
m∑

j=1

T ℓj(u)(y1)
bj1 . . . (yn)

bjn ,

the j-th term of which corresponds to stacky vector bj (Corollary 6.4).
Remaining terms PO(b) − PO0(b) correspond to the contributions of
stable discs.

We introduce variables zj as follows (which simplifies PO0(b) = z1 +
· · ·+ zm):

(11.12) zj = T ℓj(u)(y1)
bj1 . . . (yn)

bjn .

Theorem 11.3 (c.f. Theorem 5.2 of [FOOO5]). 1) PO(b) can be
written as

(11.13) PO(b) =

m∑

i=1

zj +

N∑

k=1

T λkPk(z1, . . . , zm)
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for N ∈ Z≥0 ∪ {∞} and λk ∈ R>0. If N = ∞, then limk→∞ λk =
∞. Here Pk(z1, . . . , zm) are monomials of z1, . . . , zm with coeffi-
cients in Λ0.

2) If X is Fano, then Pk = 0.
3) The above formula (11.13) is independent of u and depends only

on X .

Proof. If X is Fano, then the usual dimension counting shows that
only Maslov index two discs of the classes βi’s for i = 1, . . . ,m contribute
to mk,β(b, . . . , b). Hence, to show (2), it is enough to show that the
contribution of βi to the sum

∑
kmk,βi

(b, . . . , b) is given by zi.
Denote b =

∑n
i=1 xiei with b = b0 + b+ as before and consider flat

line bundle L on L whose holonomy ρ along e∗i is exp(bi,0). Then, we
have

∞∑

k=0

mρ
k(b+, . . . , b+) =

m∑

i=1

∞∑

k=0

Tω(βi)/2πρ(∂βi)mk,βi
(b+, . . . , b+)

=
m∑

i=1

∞∑

k=0

e〈bi,b0〉
1

k!
(b+(∂βi))

kT ℓi(u) · PD([L])

=
m∑

i=1

e〈bi,b〉T ℓi(u) · PD([L])(11.14)

where the third inequality follows by writing b+(∂βi) =< bi, b+ >. Since

yi = exi , we obtain e〈bi,b〉 = ybi11 · · · ybinn and thus, in the Fano case, we
have

PO(x;u) = PO0(b) =

m∑

i=1

ybi11 · · · ybinn T ℓi(u).

Hence, to prove (1), let us assume that X is not Fano, and find a
general expression for stable map contributions. If X is not Fano, and
β 6= βj , then β is the homotopy class of stable discs (still with µ(β) = 2)
and from Proposition 9.3 (4), we have that

∂β =
∑

ki∂βi, β =
∑

i

kiβi +
∑

j

αj.

Thus, by computing
∑

k

Tω(β)/2πmρ
k,β(b+, . . . , b+)

we note that it is a constant multiple of the expression T (
∑

j ω(αj)/2π)

∏
i z

ki
i , which proves the theorem. The proof of (3) is similar to [FOOO5]

and omitted. q.e.d.

The rest of the procedure to compute smooth Floer cohomology from
the smooth potential function is analogous to [FOOO2] or [FOOO5] of
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the manifold case. Hence, we only summarize the main results and refer
readers to the above references for full details. The following criterion
reduces the computation of smooth Floer cohomology to the critical
point theory of the potential function.

Theorem 11.4 (c.f. Theorem 5.5 of [FOOO5]). Let b =
∑
xiei.

The following are equivalent:

1) For each of i = 1, . . . , n, we have

∂PO

∂xi

∣∣∣∣
b

= 0.

2) We have an isomorphism of modules

HF
(
(L(u), b), (L(u), b); Λ0

) ∼= H(T n; Λ0).

3)

HF
(
(L(u), b), (L(u), b); Λ) 6= 0.

Proof. This is obtained by taking a derivative: note that ∂b/∂xi = ei,
and hence

∂PO

∂xi

∣∣∣∣
b

PD([L]) =
∞∑

k1=0

∞∑

k2=0

mk1+k2+1(b, . . . , b︸ ︷︷ ︸
k1

, ei, b, . . . , b︸ ︷︷ ︸
k2

) = mb
1(ei).

This shows that (1) is equivalent to the condition mb
1(ei) = 0 for all

i = 1, . . . , n. For the equivalence between the latter condition and (2),
we refer readers to section 4.1 of [C3] or Lemma 13.1 of [FOOO], where
one uses the product structure of Floer cohomology classes to show that
ei’s are non-trivial classes. The rest is left as an exercise. q.e.d.

In practice, we use derivatives with respect to yi, and
∂
∂xi

is the same

as yi
∂
∂yi

. In fact, the variable y depends on u and written as yu in

[FOOO5], but potential function given as (11.13) is independent of u.
Thus, we may take u = 0, and write y for y0 as in [FOOO5] and write
zj = T ℓj(0)(y1)

bj1 . . . (yn)
bjn . In [FOOO5], they introduce (η1, · · · ηn) ∈

(Λ \ {0})n as a possible domain for (y1, . . . , yn) and consider

A(Int(P )) = {(η1, · · · ηn) ∈ (Λ \{0})n | (vT (η1), . . . , vT (ηn)) ∈ Int(P )}.
Then, the relevant information of u from a y variable can be read off
from the valuation vT of y variables, and PO can be considered as a
function on A(Int(P )).

Theorem 11.5 (c.f. Theorem 5.9 of [FOOO5]). For u ∈ Int(P ),
the following two conditions are equivalent.

1) There exists b ∈ H1(L(u); Λ0) such that we have an isomorphism
as modules

HF
(
(L(u), b), (L(u), b); Λ0

) ∼= H(T n; Λ0).
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2) There exists η = (η1, · · · ηn) ∈ A(Int(P )) such that

ηi
∂PO

∂yi
(η) = 0

for i = 1, . . . , n and that

(vT (η1), . . . , vT (ηn)) = u.

Once the potential PO is defined, the proof of Theorem 5.9 of
[FOOO5] is rather algebraic (or combinatorial), and the proof eas-
ily extends to the orbifold case. We discuss examples of the smooth
Floer cohomology of Lagrangian torus fibers for teardrop orbifolds and
weighted projective spaces in section 15.

12. Bulk deformations of Floer cohomology and bulk

orbi-potential

Bulk deformations were introduced in [FOOO] as a way to deform
A∞-algebra of a Lagrangian submanifold by an ambient cycle of the
symplectic manifold. It gives further ways to deform Floer theory, which
was found to be a very effective way of locating non-displaceable torus
fibers in toric manifolds ([FOOO3]).

For an orbifold X and a smooth Lagrangian submanifold L, bulk
deformations from inertia components of X play a much more important
role, because J-holomorphic orbi-discs come into Floer theory only via
bulk deformations. This is because the domain of holomorphic orbi-discs
has an interior orbifold singularity, and we have used an interior orbifold
marked point to record the orbifold structure of such a domain.

We will see in examples in section 15 that these bulk deformations are
very important to understand symplectic geometry of orbifolds, because
the very rigid features of Hamiltonian dynamics of orbifolds are detected
by bulk deformations via twisted sectors.

In this section, we first explain our setting of bulk deformations for
toric orbifolds, set up bulk deformed A∞-algebras, and analyze their
bulk potentials.

12.1. Bulk deformation. We follow [FOOO] and [FOOO3] to set up
bulk deformations of A∞-algebras as follows. The new feature is that
for toric orbifold X , we consider bulk deformation via the fundamental
class of twisted sectors.

Definition 12.1. For each ν ∈ Box′, consider fundamental cycles
1Xν ∈ H0(Xν ;R) of inertia component Xν , and regard it as an element
with degree 2ι(ν) (i.e. deg(1Xν ) = 2ι(ν)) as in [CR]. Also, consider the
toric divisor Di of X . We take a finite dimensional graded R-vector
space H generated by these 1Xν ’s and Di’s:

(12.1) H = ⊕ν∈Box′R < 1Xν > ⊕m
i=1R < Di > .
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Note that we do not consider more general bulk deformations by
H∗

orb(X ) in this paper. To simplify notation, we label elements of Box′

as

(12.2) Box′ = {νm+1, . . . , νB}.
We define

(12.3) Ha =

{
Da for 1 ≤ a ≤ m

1Xνa
for m+ 1 ≤ a ≤ B.

These Ha’s for a = 1, . . . , B form a basis of H.
For ba ∈ Λ+ for each a, we consider an element

(12.4) b =
∑

a

baHa ∈ H ⊗ Λ+.

Bulk deformations use the following family of operators:

(12.5) qβ;ℓ,k : Eℓ(H[2]) ⊗Bk(H
∗(L;R)[1]) → H∗(L;R)[1].

Here, degree shiftings H[2] and H∗(L;R)[1] are introduced so that the
degree of the map qβ;ℓ,k is 1 − µ(β), where 2 and 1 correspond to the
degrees of freedom of interior and boundary marked points in D2 re-
spectively.

The symmetrization EℓC of BℓC can be defined as invariant elements
of BℓC under symmetric group action. Consider the standard coproduct
∆ : BC → BC and ∆n−1 : BC → (BC)⊗n or EC → (EC)⊗n, which is
defined by

(12.6) ∆n−1 = (∆⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n−2

) ◦ (∆⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n−3

) ◦ · · · ◦∆.

The image of an element x ∈ BC under ∆n−1 can be written as

(12.7) ∆n−1(x) =
∑

c

xn;1
c ⊗ · · · ⊗ xn;n

c ,

for c running over some index set for each x. Shifted degree of the
element x = x1 ⊗ · · · ⊗ xk is given by deg′ x =

∑
deg′ xi.

Theorem 12.1 (c.f. Theorem 3.8.32 of [FOOO]). For toric orbifold
X and Lagrangian torus fiber L, the operators qβ;l,k can be constructed
to have the following properties.

1) For β and x ∈ Bk(H(L;R)[1]), y ∈ El(H[2]), we have

(12.8) 0 =
∑

β1+β2=β

∑

c1,c2

(−1)ǫqβ1(y
2;1
c1 ;x

3;1
c2 ⊗ qβ2(y

2;2
c1 ;x

3;2
c2 )⊗ x3;3

c2 )

where

(12.9) ǫ = deg′ x3;1
c2 (1 + degy2;2

c1 ) + deg y2;1
c1 .

Here, we write qβ(y;x) for qβ;l,k(y;x).



82 C.-H. CHO & M. PODDAR

2) For 1 ∈ E0(H[2]) and x ∈ Bk(H(L;R)[1]), we have

(12.10) qβ;0,k(1;x) = mk,β(x),

where mk,β is the filtered A∞ structure on H(L;R) constructed in
(11.6).

3) Consider x = x1 ⊗ e⊗ x2 ∈ B(H(L;R)[1]). Then

(12.11) qβ(y;x) = 0

except

(12.12) qβ0(1; e⊗ x) = (−1)deg xqβ0(1;x⊗ e) = x,

where we have β0 = 0 ∈ H2(X,L;Z) and x ∈ H(L;R)[1].

We explain the construction of q in the next subsection 12.2 using
the moduli space of J-holomorphic orbi-discs. After the construction of
moduli spaces and their T n-equivariant Kuranishi perturbations satisfy-
ing suitable compatibility conditions, the rest of the proof of the above
theorem is analogous to the manifold case given in Theorem 3.8.32 of
[FOOO] and Theorem 2.1 of [FOOO3], and we omit further details.

Using the notation in (12.4), we define

(12.13) mb
k(x1, . . . , xk) =

∑

β

∞∑

l=0

Tω(β)/2πqβ;l,k(b
⊗l;x1, . . . , xk).

The above theorem implies that

Lemma 12.2 (Lemma 2.2 of [FOOO3]). The operations {mb
k}∞k=0

define a structure of filtered A∞-algebra on H(L; Λ0).

The element b ∈ H1(L; Λ+) is called a weak bounding cochain of the
filtered A∞ algebra (H(L; Λ0), {mb

k}) if

(12.14) mb
k(e

b) =
∞∑

k=0

mb
k(b, . . . , b) = cPD([L]),

for some constant c ∈ Λ+. In fact, one can extend it for b ∈ H1(L; Λ0)
exactly the same way as in Proposition 11.2, and we omit the details.
We define the potential PO(b, b) by the equation (12.14):

(12.15) PO(b, b) = c ∈ Λ+.

Definition 12.2. The set of the pairs (b, b) such that b is a weak

bounding cochain of (H(L; Λ0), {mb
k}) is denoted as M̂weak,def(L; Λ0).

PO(b, b) defines the potential function PO : M̂weak,def (L; Λ0) → Λ+.

We also use the notation POb(b), and POb(b, u) sometimes for
PO(b, b).
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For (b, b) ∈ M̂weak,def(L; Λ0), we have the differential satisfyingm
b,b
1 ◦

mb,b
1 = 0:

(12.16) mb,b
1 =

∞∑

k=0

∞∑

ℓ=0

mb
k+ℓ+1(b

⊗k, x, b⊗ℓ).

Definition 12.3 ([FOOO], Definition 3.8.61). For (b, b) ∈ M̂weak,def ,
we define Floer cohomology with deformation (b, b) by

(12.17) HF ((L, b, b), (L, b, b); Λ0) =
Ker(mb,b

1 )

Im(mb,b
1 )

.

12.2. Construction of q for toric orbifolds. In this section, we con-
struct the operator q using the moduli space of holomorphic (orbi-)discs
to prove Theorem 12.1. Recall from Definition 12.1 that we consider bulk
deformation by elements ofH, whereH is generated by the fundamental
classes [1Xν ]’s for ν ∈ Box′ and by the divisors Di’s (for i = 1, . . . ,m).

First, we consider the relevant moduli spaces. Recall that we write
l = {1, . . . , l} and consider the map x : l → Box, where a stable map(
(Σ, ~z, ~z+), w, ξ

)
is said to be of type x if for i = 1, . . . , l,

ev+i
(
(Σ, ~z, ~z+), w, ξ

)
∈ Xx(i).

To include the interior intersection condition with toric divisors, we
introduce the following notations. We use a function

p : l → {1, . . . , B}
to describe bulk intersection, and write |p| = l. The set of all such p

are denoted as Map(l, B). From p, we define x : l → Box as follows.

x(j) =

{
νj if m+ 1 ≤ j ≤ B

0 if p(j) ∈ {1, . . . ,m}
We enumerate the set of all j ∈ l with x(j) = 0 as {j1, . . . , jl1}.

We define a fiber product
(12.18)

Mmain
k+1,l(L(u), β;p) = Mmain

k+1,l(L(u), β,x)(ev+j1 ,...,ev
+
jl1

) ×Xl1

l1∏

i=1

Dp(ji).

The virtual dimension of the above fiber product is (see section 10.1)

(12.19) n+ µ(β) + k + 2l + 1− 3−
l∑

j=1

2ι(x(j)).

We also remark that we take the fiber product only at smooth interior
marked points, and hence the above fiber product is the usual fiber
product, not the orbifold one.

The following lemma follows from Proposition 10.1, as in Lemma 6.3
of [FOOO3].
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Lemma 12.3. Moduli space Mmain
k+1,l(L(u), β;p) has a T

n-equivariant
Kuranishi structure, and the evaluation map

(12.20) ev = (ev0, ev1, . . . , evk) : Mmain
k+1,l(L(u), β;p) → L(u)k+1

is weakly submersive and T n-equivariant. It is oriented and has a tan-
gent bundle.

The consideration of the boundary of a moduli space is by now stan-
dard, and can be done as in [FOOO3] of Lemma 6.4. (We skip the
details and refer readers to [FOOO3].)

Lemma 6.5 of [FOOO3] also generalizes to our situation. Let

(12.21) forget0 : Mmain
k+1,l(L(u), β;p) → Mmain

1,l (L(u), β;p)

be the forgetful map which forgets all the boundary marked points ex-
cept the 0-th one. We may choose our Kuranishi structures so that
(12.21) is compatible with forget0 of Lemma 10.2.

Lemma 12.4 (c.f. Lemma 6.5 of [FOOO3]). Fix E > 0. Then
there exists a system of multisections sβ,k+1,l,p on Mmain

k+1,l(L(u), β;p)

for ω(β) < E, p ∈Map(l, B), satisfying the following properties.

1) They are transversal to zero section and invariant under T n-action.
2) The multisection sβ,k+1,l,p is given by the pull-back of the multi-

section sβ,1,l,p via the forgetful map (12.21).
3) The multisection at the boundary is compatible with those from its

fiber product structures as in Lemma 6.5 of [FOOO3].
4) For l = 0, the multisection sβ,k+1,0,∅ is the same as the one defined

in Lemma 10.2.
5) The multisection sβ,k+1,l,p is invariant under permutation of the

interior marked points.

Proof. This is proved by induction over the symplectic area ω(β). As
we have T n-equivariant perturbations, the transversalities are much eas-
ier to achieve, which was used in the proof of Lemma 6.5 in [FOOO3],
regarding the manifold cases, and this continues to hold in the orbifold
cases. q.e.d.

We use the above moduli spaces to define the operators qβ;k,l as fol-
lows. We put

H(p) = Hp(1) ⊗ · · · ⊗Hp(l) ∈ H⊗l.

Then, q is defined as in (11.6) by pulling back differential forms and
pushing forward:

(12.22) qβ;l,k(H(p);h1, . . . , hk) =
1

l!
(ev0)!(ev1, . . . , evk)

∗(h1 ∧ · · · ∧hk).

We define qβ;l,k for (β, l, k) 6= (0, 0, 0), (0, 0, 1) by the above and put
(12.23)

q0;0,1(h) = (−1)n+deg h+1dh, q0;0,2(h1, h2) = (−1)deg h1(deg h2+1)h1∧h2.
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Remark 12.4. One needs to fix E0 and construct qβ;k,l for β∩ω < E0

and take the inductive limit, due to Kuranishi perturbation (see sections
7.2 and 7.4 of [FOOO]). As in [FOOO3], we can use An,K structure in
place of A∞ structure, and we omit the details.

We put ql,k =
∑

β T
ω∩β/2πqβ;l,k, and by extending linearly to H⊗ΛR

+,

we obtain an operator ql,k for Theorem 12.1. The proof of (12.8) is the
same as that of Theorem 2.1 of [FOOO3] and is omitted. By taking
T n-invariant differential forms on L, we in fact obtain a canonical model

(H(L(u); Λ0(R)), {mb,can
k }∞k=0) as before.

12.3. Bulk orbi-potential of toric orbifolds. Recall that in section
11.3, we have discussed smooth potential PO for toric orbifolds. In this
subsection, we discuss the bulk (orbi-)potential POb (Definition 12.2)
of toric orbifolds, which should be considered as a bulk deformation of
the smooth potential PO.

Even for Fano orbifolds, it is very difficult to compute the bulk poten-
tial when we take b from inertia components. The reason is related to the
fact that constant orbi-spheres with several orbifold marked points are
in general obstructed, and Chen and Ruan [CR2] introduced the Chen-
Ruan cohomology ring of an orbifold from it. We have found holomor-
phic orbi-discs with one orbifold marked point, and proved its Fredholm
regularity. But to consider bulk deformations b, we need to consider sev-
eral insertions of b’s, and in general, even the constant orbi-spheres will
make the relevant compactified moduli spaces obstructed. Hence, it is
hard to compute them directly. We remark that in [CCLT], some of
these bulk orbi-potentials are computed, which are then used to give
geometric understanding of the (open) Crepant resolution conjecture
and change of variable formulas.

We will define a notion of leading order potential for toric orbifold,
which we can compute explicitly using the classification of basic orbi-
discs. This will be enough to determine Floer cohomology deformed by
(b, b).

First we consider the dimension restrictions. From (12.19), the moduli
space Mmain

1,l (L(u), β;p) contributes to the bulk potential if the follow-
ing equality holds:
(12.24)

n+ µ(β) + 1+ 2l− 3−
l∑

j=1

2ι(x(j)) = n, or µ(β) = 2+

l∑

j=1

(2ι(x(j)) − 2)

and β 6= 0. In such a case, note that the moduli space defined in Lemma
12.4,

Mmain
1,l (L(u), β;p)sβ,1,l,p ,

has a virtual fundamental cycle, because boundary strata involve moduli
spaces of lower dimension, but due to T n-equivariant condition, such
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boundary contribution vanishes as the expected dimension is less than
n as in Lemma 10.4. Hence we can define the following orbifold open
Gromov-Witten invariants.

Definition 12.5. The number c(β;p) ∈ Q is defined by

c(β;p)[L(u)] = ev0∗([Mmain
1,l (L(u), β;p)sβ,1,l,p ]).

Lemma 12.5. The number c(β;p) is well-defined and independent
of the choice of sβ,k+1 in Lemma 12.4.

The lemma essentially follows from T n-equivariance and a dimen-
sion formula as in the proof of Lemma 11.7 of [FOOO2]. Namely, the
codimension one stratum should have an evaluation image of dimension
n− 1, but this should be zero because T n-equivariance implies that any
evaluation image is of dimension n.

From the classification results, Proposition 9.4 (5), we know the one-
point orbifold disc invariants.

Lemma 12.6. For |p| = 1, we have

c(βa;p) =

{
0 if p(1) 6= a,

1 if p(1) = a.

Lemma 12.7. For r ∈ H1(L(u); Λ+), β ∈ H2(X,L;Z), and p ∈
Map(l, B) satisfying the dimension condition (12.24), we have

qβ;l,k(H(p); r, . . . , r) =
c(β;p)

l!k!
(r(∂β))k · PD([L(u)]).

Note that (12.24) is needed to have non-zero value by dimension
counting. Once we have defined c(βa;p) in Definition 12.5, this lemma
can be proved as Lemma 11.1, and we omit its proof.

From this calculation, as in Proposition 11.2, we have the following.

Proposition 12.8. There is a canonical inclusion

(H ⊗ Λ+)×H1(L(u); Λ0) →֒ M̂weak,def(L(u)).

Remark 12.6. We do not know how to extend the above to H ⊗
Λ0. Namely, it is desirable in several cases to have a bulk insertion
with energy zero, but it is hard to make it rigorously defined in the
orbifold case. On the contrary, for toric manifolds, bulk deformation
can be extended over Λ0 for degree 2 classes of ambient symplectic
manifold, because the related open Gromov-Witten invariants can be
readily computed using a divisor equation.

We choose b ∈ H ⊗ Λ+ and b ∈ H1(L(u); Λ0). Thus, we have a weak
bounding cochain (b, b), and Definition 12.2 defines the bulk potential
PO(b, b). If we set b = 0, we get PO(0, b) = PO(b), the smooth potential
discussed in section 11.3.
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Next, we describe the leading order bulk potential for toric orbifolds.
Leading order bulk potential is a part of the full potential, and can
be explicitly computed by the classification of basic (orbi-)discs. Fur-
thermore, we show in the next section that non-displaceability of a
Lagrangian torus fiber can be obtained by studying the leading term
equation, which will be derived from leading order bulk potential.

Let us write

b = bsm + borb

where {
bsm =

∑m
i=1 biDi bi ∈ Λ+

borb =
∑

ν∈Box′ bν1Xν bν ∈ Λ+

Recall that for each νa ∈ Box′, we denoted the corresponding lattice
vector as ba.

Definition 12.7. We define the leading order potential POb
orb,0(b)

as

POb
orb,0(b) =

m∑

j=1

T ℓj(u)(y1)
bj1 . . . (yn)

bjn

+
∑

νa∈Box′

bνaT
ℓa(u)(y1)

ba1 · · · (yn)ban .(12.25)

Note that the first summations are the leading order terms PO0(b)
of the smooth potential PO(b) and the second summations are contri-
butions from Box′. More precisely, in the classification of holomorphic
orbi-discs (Corollary 6.3), we have found one-to-one correspondence be-
tween the basic holomorphic orbi-disc (modulo T n-action) and twisted
sectors Box′ of the toric orbifold. These basic orbi-disc contributions are
the new terms in POb

orb,0(b) − PO0(b), since PO0(b) are contributions
from basic smooth holomorphic discs.

We remark that for the case of toric manifolds in [FOOO3], leading
order bulk potential POb

0(b) is the same as the leading order potential for
the potential PO0(b) (without bulk), since all bulk contributions come
from holomorphic discs (by adding interior marked points). But in our
case of toric orbifolds, addition of bν allows holomorphic orbi-discs into
the theory, and provides new terms in the leading order potential as
well. Hence it is quite different from the case of manifolds.

It is important to note that the smooth potential PO0 is independent
of b, but POb

orb,0(b) depends on the choice of bν . In particular, we will
see that the freedom to choose this coefficient bν allows us to find much
more non-displaceable Lagrangian torus fibers in toric orbifolds.

In our applications (in the next section and in examples), we will
choose simpler types of bulk deformations such as bν = cνT

λν for some
cν ∈ C and λν > 0, but in general, one can work with more general
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cases. In fact, we may define leading order potential by just taking the
term of bν with the smallest T -exponent for each ν, as it will give rise
to the same leading term equation later on.

To discuss the general form of the bulk potential, we need a notion
of G-gappedness for a discrete monoid G, for which we refer readers to
Definition 3.3 of [FOOO3]. The discrete monoid G in this setting is
defined as in [FOOO3].
(12.26)
G(X) = 〈{ω(β)/2π | β ∈ π2(X) is realized by a holomorphic sphere}〉.
The actual discrete monoid to be used, Gbulk, will be defined in Defini-
tion 13.2, and G(X) is a subset of Gbulk.

We discuss the general form of the bulk potential for toric orbifolds,
roughly given by the leading order bulk potential with additional higher
order terms.

Theorem 12.9 (c.f. [FOOO3], Theorem 3.5). Let X be a compact
symplectic toric orbifold and let b ∈ H(Λ+) be a Gbulk-gapped element.
Then the difference of the bulk orbi-potential and its leading order po-
tential can be written as follows:

(12.27) PO(b; b)− POb
orb,0(b) =

∞∑

ζ=1

cζy
v′ζ,1
1 · · · yv

′

ζ,n
n T ℓ′ζ+ρζ ,

for some cζ ∈ Q, eiζ ∈ Z≥0, ρζ ∈ Gbulk, and ρζ > 0, such that
∑B

i=1 e
i
ζ >

0. Here

(12.28) v′ζ,k =

B∑

a=1

eaζba,k, ℓ′ζ =

B∑

a=1

eaζℓa.

If we have infinitely many non-zero cζ ’s, we have

(12.29) lim
ζ→∞

ρζ = ∞.

Proof. The proof is along the same lines as that of [FOOO3], Theo-

rem 3.5. Let b =
∑B

a=1 baHa with ba ∈ Λ+, where ba is Gbulk-gapped.
Note that c(β : p) determines qβ;|p|,k(H(p); b, . . . , b) from Lemma (12.7).
Hence, proceeding as in (11.14), we obtain that

PO(b; b) =
∑

β,p,k

bpTω(β)/2π c(β;p)

k!|p|! (b(∂β))
k

=
∑

β,p

1

|p|!b
pTω(β)/2πc(β;p) exp(b(∂β)).(12.30)

Now, we consider the cases of |p| = 0, 1 or |p| ≥ 2. If |p| = 0,
there is no interior marked point, and hence there is no orbifold disc
contributions. The statement in this case follows from (11.13).
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When |p| = 1, the case where the interior marked point is smooth is
similar to the case of a smooth manifold, and it is enough to consider
the case where the interior marked point is an orbifold marked point. In
this case, additional orbi-disc contributions for basic orbi-disc classes are
computed from Lemma 12.6. For other homology classes, the statement
follows from Proposition 9.4.

We next study terms for |p| ≥ 2. We first consider the case β = βa
for a = 1, . . . , B. In this case we obtain the following term:

(12.31) cT ℓa(u)+ρyba ,

where c ∈ Q and ρ is obtained by summing over the exponents of bp(j)
for various j. As l 6= 0 and bp(j) ∈ Λ+, this is non-zero. Hence ρ ∈
Gbulk \ {0}. Therefore the form of (12.31) equals the right hand side of
(12.27).

Now, we consider β 6= βa (a = 1, . . . , B). We may assume that
c(β;p) 6= 0. Then by Proposition 9.4 (4), we have ei and ρ′ satisfy-
ing

ω(β)

2π
=

B∑

a=1

eaℓa(u) + ρ′.

Here ea ∈ Z≥0,
∑
ea > 0, and ρ′ corresponds to a sum of symplectic

areas of holomorphic spheres (divided by 2π). Hence these give rise to
an expression

cT
∑

a eaℓa(u)+ρ+ρ′y
∑

eaba ,

where c ∈ Q and ρ is obtained by summing over the exponents of bp(j)
for various j. This form agrees with the right hand side of (12.27).

The proof of (12.29) is based on the idea that to have infinitely many
terms, either infinitely many bulk insertions contribute to the potential,
or the contribution of energy from the sphere component should go to
infinity. The proof is similar to that of [FOOO3], and omitted. q.e.d.

Theorem 11.4 and Theorem 11.5 can be easily generalized to the bulk
setting.

Theorem 12.10. Let b =
∑
xiei, and b ∈ H(Λ+). Theorem 11.4

and Theorem 11.5 hold in the bulk case too by replacing PO, (L(u), b)
with POb, (L(u), (b, b)) respectively.

Once the bulk orbi-potential is set up, the proofs of the theorems in
[FOOO3] are rather algebraic, and hence can be easily adapted to the
case of orbifolds. This applies to the proof of Theorem 12.10 and we
omit the details. We also remark that the above can be extended to the
following general form as in [FOOO3]: If (b, b) satisfies

(12.32) yi
∂POu

∂yi
(b, y) ≡ 0 mod TN ,
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then we have

(12.33) HF ((L(u0), b, b), (L(u0), b, b); Λ0/T
N ) ∼= H(T n; Λ0/T

N ).

13. Leading term equation and bulk deformation

From Theorem 12.10, if the (bulk) potential function is known, then
Floer cohomology is determined by considering the critical points of
the potential function. But for toric orbifolds, the full bulk potential is
very difficult to compute even for Fano orbifolds. For toric manifolds,
the notion of leading term equations was introduced in section 4 of
[FOOO3], so that one can determine the Floer cohomology only from
the knowledge of leading order potential, which is explicitly calculable.
Namely, given the solutions of leading term equations, they show that
there exists a bulk deformation b such that potential PO(b, b) has an
actual critical point. The bulk-balanced Lagrangian fibers can be located
by this method.

In this section, we define a leading term equation for toric orbifolds.
The construction is similar to that of section 4 of [FOOO3]. Instead
of repeating their construction, we make our construction in the same
form as that of [FOOO3], so that once we prove Proposition 13.1 in
this paper, which plays the role of Proposition 4.14 of [FOOO3], the
rest of the construction, which is rather long, becomes the same and can
be omitted.

Note that leading term equations are determined from the leading or-
der equation (defined in Definition 12.7), and for toric orbifolds, they de-
pend on bν . Thus, the crucial difference from [FOOO3] is that [FOOO3]
deals with the leading term equation of PO0(b) (which is independent
of b), whereas we deal with that of POb

orb,0 which depends on the choice
of borb.

We first set up some notations. Recall from (1.4) that bulk deforma-
tion terms corresponding to twisted sectors are

borb =
∑

ν∈Box′

bν1Xν ,

and we denote

(13.1) bν = bν,0 + bν,+

where bν,0 = cνT
λν for some cν ∈ C, λν > 0, and bν,+ satisfies vT (bν,+) >

λν .
To define the leading term equation in our case, we fix u ∈ P and

bulk deformation b as above. We start with relabeling the indices a =
1, . . . , B. Recall that for 1 ≤ a ≤ m, ba ∈ N is the stacky vector
corresponding to the a-th facet of the polytope, and ℓa is the symplectic
area of the corresponding basic disc (intersecting that facet). Form+1 ≤
a ≤ B, a labels elements of Box′, corresponding to the lattice vector ba
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in N , and the area of the corresponding basic orbi-disc is ℓa (see (7.1)
for ℓa in this case).

We compare the areas ℓa for a = 1, . . . ,m and ℓa + λνa for a = m+
1, . . . , B, because the orbi-disc for νj has an additional energy coming

from bνj ,0 = cνT
λνj . We enumerate energy levels as

{Sl | l = 1, 2, . . . ,L}
= {ℓi(u), ℓj(u) + λνj | i = 1, 2, . . . ,m, j = m+ 1, . . . , B},(13.2)

so that Si < Si+1 and Si ∈ R+. Note that these are the exponents of T
in the terms in POb

orb,0. The indices of bk’s can be re-enumerated: We

write {bl,1, . . . , bl,a(l)} for all bk’s satisfying

ℓk(u) = Sl, k ≤ m or ℓk(u) + λνk = Sl, k ≥ m.

By the following procedure, we determine an optimal energy level,
so that ba’s with smaller or equal T -exponent span NR. Let A

⊥
l ⊂ NR

be the R-vector space generated by bl′,r for l′ ≤ l, r = 1, . . . , a(l′). The

smallest integer l such that A⊥
l = NR is denoted by K. Let d(l) be the

difference in the dimension of A⊥
l and A⊥

l−1, and d(1) the dimension of

A⊥
1 . Then,

∑K
l=1 d(l) = n. In the notation bl,r, we always have l ≤ K.

To relate to the original indices, integer i(l, r) ∈ {1, . . . , B} is defined
by bl,r = bi(l,r). We renumber the set of bi’s for i = 1, . . . , B as

{bl,r | l = 1, . . . ,K, r = 1, . . . , a(l)} ∪ {bi | i = K + 1, . . . , B}

where K is given by K =
∑K

l=1 a(l).
The rest of the procedure to define the leading term equation is simi-

lar to that of [FOOO2], section 4, and hence we only briefly sketch the
construction. Now, at each energy level Sl, the vectors bl,1, . . . , bl,a(l)
may not be linearly dependent (if a(l) 6= d(l)), and the next procedure
chooses a suitable basis of the subspace spanned by these vectors. We
denote the dual basis of {ei} of H1(L(u);Z) ∼= M by {e∗i }, which be-
comes the basis of NR. Then, basis e∗l,s of NR can be chosen so that

e∗1,1, . . . , e
∗
l,d(l) becomes a Q-basis of A⊥

l and also that any lattice vector

of A⊥
l is given as an integer linear combination of e∗l,s’s. In particular e∗i

can be written as an integer linear combination of e∗l,s’s.
By considering e∗i and e∗l,s as functions on MR, we may write them

as xi and xl,s, and define yl,s as exl,s . Then, yi is given as a monomial

of yl,s’s and hence so is ybl,r (see Lemma 13.1 of [FOOO3]).

In this way, we can define the T Sl part of the potential POb
orb,0:

(13.3)

(POb
orb,0)l =

a(l)∑

r=1,i(l,r)≤m

ybl,r +

a(l)∑

r=1,i(l,r)>m

cνi(l,r)y
bl,r , for l = 1, . . . ,K,
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where cνi(l,r) is given in (13.1). Then, (POb
orb,0)l can be written as a

Laurent polynomial of yl′,s with s ≤ d(l′) and l′ ≤ l.

Definition 13.1. The leading term equation of POb
orb,0 (or that of

POb(b)) is the system of equations

(13.4)
∂(POb

orb,0)l

∂yl,s
= 0, for l = 1, . . . ,K; s = 1, . . . , d(l)

with yl,s ∈ R \ {0}.

Note that we only take derivatives of (POb
orb,0)l with respect to the

variables yl,s for s = 1, . . . , d(l), but not with respect to the variables
yl′,s′ for l

′ < l.
In view of Theorem 12.10, we need critical points of the actual bulk

potential POb(b), but the solutions of the leading term equation (13.4)
equal those of POb(b) from Lemma 4.4 of [FOOO3]. (The solutions of

the equation yk
∂POb(b)

∂yk
= 0 correspond to the solutions of the equation

yl,s
∂POb(b)
∂yl,s

= 0 by Lemma 4.2 of [FOOO].)

The following Proposition 13.1 on the shape of bulk orbi-potential, is
analogous to Proposition 4.14 of [FOOO3]. We first define the monoid
Gbulk. Recall the definition of G(X) from (12.26). We define

G(L(u)) = 〈{ω(β)/2π | β ∈ H2(X,L(u))

corresponds to a holomorphic orbi-disc}〉.(13.5)

Definition 13.2. Gbulk is a discrete submonoid of R which is gener-
ated by G(X) and the subset

{λ− Sl | λ > Sl, λ ∈ G(L(u)), l = 1, . . . ,K, } ⊂ R+.

Note that G(L(u)) ⊂ Gbulk.

Condition 13.3. Bulk deformation b is of the form

(13.6) b =

K∑

l=1

a(l)∑

r=1

bi(l,r)Hi(l,r) ∈ H(Λ+)

such that each bi(l,r) is Gbulk-gapped. Here bi(l,r) means bνi(l,r) in case

i(l, r) > m.

The main proposition to prove in our orbifold case is the following.

Proposition 13.1 (c.f. Proposition 4.14 [FOOO3]). Assume that b
satisfies Condition (13.3) and consider

(13.7) b′ = b+ cT λHi(l,r),

for c ∈ R, λ ∈ Gbulk + bνi(l,r),0, l ≤ K.
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Then the difference of the corresponding bulk orbipotentials is given
by

POb′(b)− POb(b) = cT λ+ℓi(l,r)(u)ybi(l,r) +

∞∑

h=2

chT
hλ+ℓi(l,r)(u)ybi(l,r)

+

∞∑

h=1

∑

ζ

ch,ζT
hλ+ℓ′ζ(u)+ρζybζ .(13.8)

Here ch, ch,ζ ∈ R, ρζ ∈ Gbulk, and there exist eiζ ∈ Z≥0 such that bζ =∑
eiζbi, ℓ

′
ζ =

∑
eiζℓi, and

∑
i e

i
ζ > 0. Also, in the third summand of the

right hand side of (13.8), in the case that h = 1 and ρζ = 0, we have
ch,ζ = 0.

Remark 13.4. In Proposition 4.14 of [FOOO], the last assertion is
not written, but is shown in their proof and it is needed in the induction
for the theorem.

Proof. We first remark that the proof in the toric orbifold case is
somewhat different than that of toric manifolds. For toric manifolds, the
bulk deformation contribution when b is from toric divisors is explicitly
computable for the basic disc classes by homology arguments similar to
the divisor equation (see for example Proposition 4.7 of [FOOO3]). But,
for toric orbifolds, such arguments do not work for basic disc classes, as
there is no divisor type equation for orbifold marked points. As we will
see, the proposition does not require this explicit computation.

Note that the dimension condition (12.24) needs to be satisfied for a
possible contribution to the potential. We will divide the contribution
of

(13.9) POb′(b)− POb(b)

into several cases and subcases. First, consider the terms correspond-
ing to the case with no interior marked points. As they do not have
insertions from b, they give no contribution to (13.9).

Next, consider the case of one interior marked point. Recall that a
one-point open orbifold Gromov-Witten invariant is computed in Lemma
12.6, and it is non-zero only if the disc class is of βi(l,r), in which case
we get the first term of (13.8).

Thus, from now on, we consider the case with two or more interior
marked points. We remark that if the bulk insertion b is used in all of
the interior insertions, then obviously such terms contribute 0 to (13.9).
So we assume that at least one of the interior marked points is used for
the insertion of T λHi(l,r). We divide it into three cases as follows:

1) β = βi(l,r).
We consider the following two subcases:
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a) All bulk inputs are T λHi(l,r): In this case, it is easy to see that
the contribution is equal to the second term of the RHS of
(13.8).

b) Both bulk inputs T λHi(l,r) and b are used at least once: In this
case, it contributes to the 3rd term of the RHS of (13.8), with
h ≥ 1, ℓ′ζ(u) = ℓi(l,r), and ρζ > 0 since it receives non-trivial
contribution from b.

2) β equals the basic disc class βa for a = 1, . . . , B, and a 6= i(l, r).
a) All bulk inputs are T λHi(l,r): The possible contribution is to

the third term of RHS of (13.8), with h ≥ 2, ℓ′ζ(u) = ℓa, and
ρζ = 0.

b) Both bulk inputs T λHi(l,r), and b are used at least once: In
this case, it contributes to the 3rd term of RHS of (13.8), with
h ≥ 1, ℓ′ζ(u) = ℓa, and ρζ > 0 since it receives non-trivial
contribution from b.

3) β 6= βa for a = 1, . . . , B.
We may write

β =
B∑

i=1

eiββi +
∑

j

αβ,j.

Then we have

ω(β)

2π
=

B∑

i=1

eiβℓi(u) +
∑

j

ω(αβ,j)

2π

exp(b(∂β)) = y
∑B

i=1 e
i
βbi .

We have ei ≥ 0 and
∑

i e
i
β > 0. Thus the contributions belong

to the third term of (13.8) with ℓ′ζ(u) =
∑

i e
i
βℓi(u) and ρζ is the

sum of the contribution from the sphere class ω(αβ,j) together with
contributions from b. Now we consider the following subcases:
a) All bulk inputs are T λHi(l,r): The possible contribution is to

the third term of the RHS of (13.8), with h ≥ 2, ℓ′ζ(u), and ρζ
as described above.

b) Both bulk inputs T λHi(l,r), and b are used at least once: in
this case, it contributes to the 3rd term of RHS of (13.8), with
h ≥ 1, ℓ′ζ(u) and ρζ as described above, and we have ρζ > 0
since it receives non-trivial contribution from b.

This proves the proposition. q.e.d.

For convenience, given b as in (1.4), (13.1), we denote (by taking the
least exponent terms)

borb,0 =
∑

ν∈Box′

bν,01Xν .
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The leading order equation and the leading term equation of POb
orb,0

(see Definition 13.1) only depend on borb,0, not the entire borb.

Theorem 13.2 (c.f. Theorem 4.5 of [FOOO3]). The following con-
ditions on u are equivalent:

1) The leading term equation of POb
orb,0(u) has a solution yl,s ∈ R \

{0} (l = 1, . . . ,K, s = 1, . . . , d(l)).

2) There exists b̃ ∈ H(Λ+) such that b̃orb,0 = borb,0 and POb̃(u) has
a critical point on (Λ0 \ Λ+)

n.

3) There exists b̃ ∈ H(Λ+) such that b̃orb,0 = borb,0 and yl,s ∈ R \{0}
(l = 1, . . . ,K, s = 1, . . . , d(l)) in the item (1) above is a critical

point of POb̃(u).

Proof. We have set up our case in a form similar to that of [FOOO3]
so that the same proof of Theorem 4.5 in [FOOO3] works in our case
too, as we have proved Proposition 13.1, which plays the role of Propo-
sition 4.14 of [FOOO3]. We refer readers to [FOOO3] for the full proof
and briefly explain the rest of the procedure to prove Theorem 13.2. The
argument is exactly the same, except the point regarding borb,0.

Given a solution ηl,s of the leading term equation, we need to find b

such that ηl,s satisfies the actual critical point equation:

(13.10) ηl,s
∂POb̃

∂yl,s
(η) = 0.

We first enumerate elements of Gbulk so that

Gbulk = {λbj | j = 0, 1, 2 . . .}

where 0 = λb0 < λb1 < · · · .
Then we define b̃ inductively by choosing b̃(k) for each k for the

terms with energy Sl + λbk, and also for 1 ≤ l ≤ K (see Definition 4.15
of [FOOO3]).

First, we take

b̃(0) = borb,0.

If the critical point equation (13.10) is satisfied up to the level k, then

we introduce the bulk deformation b̃(k) to make the equation (13.10)
satisfied up to level k + 1 (see [FOOO, Proposition 4.18]).

In this process, the equation (13.10) is satisfied up to Sl + λbk hence

we need to kill the error terms with T -exponent Sl + λbk+1. This can be

done by choosing appropriate b̃(k + 1), and using Proposition 13.1 to
cancel the error term with the first term of the RHS of (13.8). As two
other terms of the RHS of (13.8) have higher T -exponent, it does not
introduce any other error terms on the level k+1. Note that we need to
choose λ of Proposition 13.1 so that λ + ℓi(l,r)(u) equals Sl + λbk+1. As
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Sl equals ℓi(l,r)(u)+ λνi(l,r), we choose λ here to be λbk+1+ λνi(l,r). Thus,

the leading term b̃orb,0 is not changed and equals borb,0.

Then one takes the limit as k → ∞ to define b̃ such that the equation
(13.10) is satisfied. We refer readers to section 4 of [FOOO3] for details.

q.e.d.

14. Floer homology of Lagrangian intersections in toric

orbifolds

So far, we have discussed the Bott-Morse version of Floer cohomology
of Lagrangian submanifolds. In this section, we discuss the Lagrangian
Floer cohomology between two Lagrangian submanifolds L and ψ1(L),
for a Hamiltonian isotopy ψ1, and its relationship to A∞-algebra and
bulk deformed A∞-algebra, which are constructed in the previous sec-
tions. We note that the Lagrangian submanifold L lies in the smooth
part of the orbifold X .

There are two versions of Floer cohomology of Lagrangian intersec-
tions, as we have two versions of A∞-algebras. Namely, there is a smooth
Lagrangian Floer cohomology where we consider J-holomorphic strips
and discs from a smooth domain. By a smooth domain, we mean that
the domain does not have orbifold singularities (but could have nodal
singularity). We emphasize that the maps from the smooth domain can
intersect orbifold points, as we have seen in the case of smooth holo-
morphic discs corresponding to stacky vectors bi for i = 1, . . . ,m.

And there is a version thatincludes orbifold J-holomorphic strips and
discs, which are maps from an orbifold domain. To denote the orbifold
structure of the domain, we have introduced orbifold marked points in
the interior of the Riemann surface, and their deformation theory is
entirely analogous to that of a Riemann surface with interior marked
points. Namely, orbifold marked points cannot disappear, be created,
or be combined when we consider sequences of orbifold J-holomorphic
maps of a given type.

Thus, when we consider only maps from smooth domains (into an
orbifold), a degeneration which appears in the compactification of the
moduli space of such maps is still from a smooth domain. Hence, we
have a smooth Floer theory for orbifolds. Such theory still is non-trivial.
Namely, we show in subsection 15.2 that smooth Floer theory finds a
central fiber to be non-displaceable in weighted projective spaces.

But Lagrangian Floer theory involving orbifold strips and discs pro-
vides much more information, as we will see in several examples (actually
the example of a teardrop already shows such phenomena). Yet to have
an orbifold structure in the domain strip or disc, we need an orbifold
marked point to record the orbifold structure of the domain. Hence this
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always requires interior marked points, and hence they appear as a bulk
deformation theory of the smooth theory.

14.1. Smooth Lagrangian Floer homology. First, we consider
Hamiltonian vector fields in an effective orbifold X . By definition, a
smooth function H : X → R is a function H : X → R, which locally has
its lifting H̃V := H ◦π in any uniformizing chart (V,G, π) such that H̃V

is smooth. Note that H̃V is invariant underG-action: H̃V (g·x) = H̃V (x).

Hamiltonian vector field XH can be defined by iXH̃
ω = dH̃, and XH̃ is

preserved by G-action because the symplectic form ω (on the chart V )
is also invariant.

Hamiltonian isotopy ψH
t of the flow XH is well-defined without much

difficulty as we consider effective orbifolds: It is well-known that effective
orbifolds can be always considered as a global quotient of a manifold,
sayM , by a compact Lie group action, and one can use this presentation
to define the flow of a vector field, by integrating the flow after pull-back
to the manifold M .

One can also consider time-dependent Hamiltonian functions (we still
denote it by H for simplicity), and define time-dependent Hamiltonian
isotopy. The resulting Hamiltonian isotopies are regular (in the sense
of Definition 2.2), and hence, are good maps and the related group
homomorphisms are isomorphisms, as the inverses are also good. This
implies the following simple lemma.

Lemma 14.1. For any Hamiltonian isotopy ψH
t , the isotropy group

of the point x and φHt (x) are isomorphic. This in particular implies that
by a Hamiltonian isotopy, smooth points always move to smooth points
of an orbifold.

In particular, for our Lagrangian torus fiber, which lies away from
the singular set ΣX of toric orbifold X , ψH

t (L) also does not intersect
ΣX .

For smooth Lagrangian Floer theory, we only consider J-holomorphic
strips and discs (not orbifold ones). We may additionally consider smooth
interior marked points to consider smooth bulk deformations, but we
will not consider interior marked points here.

Lagrangian intersection Floer cohomology between L and ψH
1 (L), is

constructed from the A∞-bimodule.

Theorem 14.2 (c.f. Theorem 3.7.21 of [FOOO], Theorem 15.1 of
[FOOO2]). Let (L,L′) be an arbitrary relatively spin pair of compact
Lagrangian smooth submanifolds. Then the family {nk1,k2} of operators

Bk1(C(L)[1]) ⊗̂Λ0 C(L,L′) ⊗̂Λ0 Bk1(C(L′)[1]) → C(L,L′)

for k1, k2 ≥ 0 define a left (C(L),m) and right (C(L′),m′) filtered A∞-
bimodule structure on C(L,L′).
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The construction of such an A∞-bimodule is standard, by considering
the compactified moduli space of J-holomorphic strips. Note that here
we are only considering J-holomorphic maps from stable strips without
any orbifold marked point insertions, and also the Lagrangian subman-
ifolds are away from the orbifold loci. Hence the construction for the
theorem would be a direct adaptation of the proofs of [FOOO] and
[FOOO2].

The above includes the case of clean intersection also, and in the case
of L = L′ the maps nk1,k2 are defined as nk1,k2 = mk1+k2+1.

Now, let L, L′ be weakly unobstructed. We define δb,b′ : C(L,L′) →
C(L,L′) by

δb,b′(x) =
∑

k1,k2

nk1,k2(b
⊗k1 ⊗ x⊗ b′⊗k2) = n̂(eb, x, eb

′

).

One can check that the equation δb,b′ ◦ δb,b′ = 0 holds if the potential
functions PO(b) and PO(b′) agree. In such a case, Floer cohomology is
defined by

HF ((L, b), (L′, b′); Λ0) = Ker δb,b′/Im δb,b′ .

Proposition 14.3 (c.f. Lemma 12.9 of [FOOO2], section 5.3 of
[FOOO]). For the case of L′ = ψ(L) and b′ = ψ∗b we have

HF ((L, b), (L′, b′); Λ) ∼= HF ((L, b), (L, b); Λ)

In particular, we have

#(ψ(L) ∩ L) ≥ rankΛHF ((L, b), (L, b); Λ).

This proposition explains the Hamiltonian invariance of Lagrangian
Floer homology, by considering an isomorphism to the Bott-Morse model.
Construction of such an isomorphism is by now standard, and our case
is also analogous since we are not considering orbifold marked points.
We can use this proposition to obtain non-displaceability results, but we
will see that the consideration of bulk deformation by twisted sectors as
in the next section provides much stronger non-displaceability results.

14.2. Bulk deformed Lagrangian Floer cohomology. Now, we
consider J-holomorphic orbifold discs and strips, whose information
gives rise to the bulk deformation of the smooth Lagrangian Floer the-
ory for toric orbifolds. This is similar to the construction in section
12, where we constructed bulk deformed A∞-algebra from smooth A∞-
algebra by considering holomorphic orbi-discs. As explained before, the
bulk deformation here is a bit different from that of [FOOO3] in that we
considered bulk deformation by fundamental classes of twisted sectors.
But the general formalism and algebraic structures are the same.

In fact, the construction of the A∞-bimodule for the bulk deformed
Floer theory in our case is entirely analogous to that of [FOOO3] except
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the following issue of time dependent {Jt}-holomorphic maps, which we
first explain.

Consider a transversal pair of Lagrangian submanifolds L and ψ1(L),
for a Hamiltonian isotopy ψt with ψ0 = id. To define Lagrangian Floer
cohomology between them, and to show invariance under other Hamil-
tonian isotopies, one considers J-holomorphic strips of several kinds
with Lagrangian boundary conditions. In general, one takes a family of
J ’s parametrized by the domain of the strip. For example, to define the
differential of the Floer complex C(L,ψ1(L)), one takes a one-parameter
family of compatible almost complex structures J := {Jt}t∈[0,1] such
that J0 is the (almost) complex structure J of X , and J1 = ψ∗(J), and
consider {Jt}-holomorphic strips

∂u

∂τ
+ Jt(

∂u

∂t
) = 0.

Now, if the domain is an orbifold strip, namely it is R × [0, 1] with
interior orbifold marked points z+1 , . . . , z

+
l , then it is not obvious what

it means to have a J -holomorphic strip. Namely, for an orbifold J-
holomorphic strip, by definition, local lifts near orbifold marked points
are J-holomorphic. For orbifold discs, we use a fixed almost complex
structure J which is invariant under local group action, and hence this
does not cause any problem. But when we consider a family of almost
complex structures which are t-dependent, the coordinate t of the do-
main strip becomes complicated when we consider the branch covering
near a given marked point.

We find that this issue actually does not cause much trouble since
the lift satisfies the J ′-holomorphic equation where J ′ is a family of
compatible almost complex structures of X parametrized by a domain.
We explain it in more detail as follows. Consider an orbifold point z+ =
(τ0, t0) ∈ R × I with Z/k orbifold structure. Holomorphic structure
near z+ is given by the coordinate τ + it (normalized so that at z+,
τ = t = 0), and we consider a local neighborhood U of z+, and a branch

covering br : Ũ → U . Denote the coordinate of Ũ as τ̃ + it̃ and the
branch covering map is given by

br(τ̃ + it̃) = (τ̃ + it̃)k.

Then, the t-coordinate of br(τ̃ + it̃) is its imaginary part, Im(br(τ̃ +
it̃)), which is a polynomial function of τ̃ and t̃. We define u : (R ×
[0, 1],R×{0},R×{1}) → (X , L, L′) with interior orbifold marked points
~z+ to be an orbifold J -holomorphic strip if it is J -holomorphic away
from orbifold marked points and at each orbifold marked point, with
coordinate parametrized as above, the local lift ũ satisfies

∂ũ

∂τ̃
+ JIm(br(τ̃+it̃))

∂ũ

∂t̃
= 0.
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We denote by J ′ = {JIm(br(τ̃+it̃))} a family of compatible almost com-

plex structures, parametrized by the domain Ũ . The way to deal with
domain dependent almost complex structure J ′ is also standard in Floer
theory, and adds no additional difficulty in the construction of Kuran-
ishi structures and moduli spaces. For example, already in [FO], authors
used such a domain dependent case to prove the Arnold conjecture. Note
that the dependence is smooth since Im(br(τ̃+it̃)) is a polynomial func-
tion.

The rest of the details to construct the bulk deformed A∞-bimodule
are a direct adaptation of the manifold case, following section 8 of
[FOOO3], where they describe the de Rham version of bulk deformed
Lagrangian Floer cohomology of a pair (L,L′) of Lagrangian submani-
folds.

From this construction, we obtain the following proposition for toric
orbifolds. Let L(u) be a Lagrangian torus fiber, and let L′ = ψ(L(u)).
Consider the bounding cochain (b, b), and (b, ψ∗b).

Proposition 14.4 (c.f. [FOOO3], Proposition 8.24). Lagrangian
Floer cohomology between (L(u), (b, b)) and (ψ(L(u)), (b, ψ∗b)) can be
defined as in [FOOO3], and satisfies

HF ((L(u), b, b), (ψ(L(u)), b, ψ∗b); Λ) ∼= HF ((L(u), b, b), (L(u), b, b); Λ).

Here the latter has been defined in Definition 12.3.
The notion of balanced and bulk-balanced fibers can be defined in

exactly the same way as in Definition 4.11 of [FOOO2] and Definition
3.17 of [FOOO3], and we omit the details.

The above proposition implies the following non-displaceability re-
sults for torus fibers with non-vanishing Lagrangian Floer homology.

Corollary 14.5 (Proposition 3.19 of [FOOO3]). If L(u) ⊂ X is
bulk-balanced, then L(u) is non-displaceable. Given a Hamiltonian dif-
feomorphism ψ : X → X such that ψ(L(u)) is transversal to L(u), then,
we have

(14.1) #(L(u) ∩ ψ(L(u))) ≥ 2n.

15. Examples

15.1. Teardrop orbifold. We first consider a teardrop orbifold P(1, a)
for some positive integer a ≥ 2 (see Figure 1). The labelled polytope,
corresponding to P(1, a), is given by the interval

P = [−1,
1

a
]

with label a on the vertex 1
a .

To find an associated fan and stacky vectors, recall that the polytope
P is defined by 〈x, bj〉 ≥ pj for j = 1, 2. In this case we have the lattice
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N = Z, and

b0 = −a, b1 = 1, p0 = p1 = −1.

The stacky vectors b0 and b1 generate two 1-dimensional cones σ0 =
R≤0, σ1 = R≥0 of the fan Σ.

P(1, a) is given as the quotient orbifold (C2\{0})/C∗ where C∗ acts by
t · (z1, z2) = (tz1, t

az2). The unique orbifold point is [0, 1] with isotropy
group Za. Thus inertia components are labelled by Za.

Box′ = {νi | νi = i ∈ Z/a for i = 1, . . . , a− 1}.
We take u ∈ (−1, 1a), and consider the Lagrangian circle fiber L(u).
The classification theorem (Corollary 6.4) tells us that there are two

smooth holomorphic discs with Maslov index two of class β0 and β1,
corresponding to the stacky vectors b0, b1. Explicitly, the holomorphic
disc w0 : (D2, ∂D2) → (P(1, a), L(u)) of class β0 is given by w0(z) =
[cz, 1] for some constant c to make w0(∂D

2) ⊂ L(u) (up to Aut(D2)).
The image of w0 is an a-fold uniformizing cover of a neighborhood of the
orbifold point [0, 1]. Holomorphic discs of β1 classes are w1(z) = [c, z].

The smooth potential function of P(1, a) thus has two terms corre-
sponding to these two smooth discs:

PO(b) = PO(b)0 = T 1−auy−a + T 1+uy.

To find a fiber L(u) with holonomy whose smooth Floer cohomology
is non-vanishing, we find critical points of PO(b). If the T -exponents
of the two terms of PO(b) are not equal, then PO(b) does not have
non-trivial critical points. (Since y = ex, the exponent cannot be zero.)

The areas of two smooth discs are the same, or, 1−au = 1+u, exactly
when u = 0. Notice that u = 0 is not at the center of the polytope P ,
since the smooth disc of class β1 wraps around the orbifold point a
times.

In this case, the critical point equation becomes ya+1 = 1/a, which
has solutions

y =
1

a+1
√
a
exp(

2πki

a+ 1
) for k = 0, . . . , a.

Thus the fiber L(0) with flat line bundle of (non-unitary) holonomy, as
one of the above, has non-trivial Floer cohomology (see Figure 1).

Now, we consider bulk deformations by orbi-discs. From the classifica-
tion theorem, we have a−1 holomorphic orbi-discs corresponding to the
elements of Box′ (see Corollary 6.3). These correspond to holomorphic
orbi-discs, wrapping around the orbifold points 1, . . . , a− 1 times.

The leading order bulk potential POb
orb,0 can be explicitly written as

POb
orb,0 = T 1−auy−a + T 1+uy +

∑

k

T k(1/a−u)bνky
−k.
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In this example, we can set bνk = 0 for k = 2, 3, . . . , a − 1 as bν1 is
enough in this case.

For −1
2(1− 1

a) < u < 0, we have 1
a −u < 1+u < 1−au. Here, we will

use bν1 to make bν1T
1
a
−u and T 1+u of the same energy level. Namely,

we take
bν1 = T (1+u)−( 1

a
−u).

Then, the leading term equation (with S1 = 1 + u) is

∂

∂y
(y + y−1) = 0.

This equation has solutions y = ±1 ∈ C∗.
For 0 < u < 1

a , we have 1
a −u < 1− au < 1+u. Here, we will use bν1

to make bν1T
1
a
−u and T 1−au of the same energy level. Namely, we take

bν1 = T (1−au)−( 1
a
−u).

Then, the leading term equation (with S1 = 1− au) is

∂

∂y
(y−a + y−1) = 0.

This equation becomes ya−1 = −a, which has non-trivial solutions in C∗.
Therefore, the fiber L(u) with −1

2(1− 1
a) < u < 1

a is non-displaceable
by any Hamiltonian isotopy of P(1, a) from Theorem 13.2. The result
holds even for u = 1

2(−1+ 1
a) by the standard limit argument, and thus,

exactly half of the interval [−1, 1a ] containing the image of the orbifold
point corresponds to non-displaceable circles in P(1, a) (see Figure 1 for
the region of non-displaceability).

15.2. Weighted projective spaces. We consider the smooth Floer
homology of weighted projective space P(1, a1, . . . , an) for positive inte-
gers ai ∈ N, i = 1, . . . , n. The bulk deformed theories are much more
complicated, and we will discuss several examples in more detail in later
subsections.

The polytope P for P(1, a1, . . . , an) is defined by
(15.1)

P = {(x1, . . . , xn) | xj + 1 ≥ 0, j = 1, . . . , n, −(

n∑

j=1

ajxj) + 1 ≥ 0}.

Here N = Zn and we take b0 = (−a1, . . . ,−an) and bi = ei for i =
1, . . . , n. Then P(1, a1, . . . , an) is obtained as a quotient orbifold of Cn+1\
{0}/S1 where the circle acts with weight (1, a1, . . . , an).

There are n + 1 smooth holomorphic discs corresponding to stacky
vectors b0, . . . , bn whose homology classes are denoted as β0, . . . , βn.

Thus the smooth potential PO(b) = PO(b)0 is

PO(b) = T 1−〈~a,u〉 1

ya11 · · · yann
+ T u1+1y1 + · · ·+ T un+1yn.
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The only non-trivial critical points can occur only when all the ex-
ponents of T are the same, and hence u = 0, i.e. the central fiber u = 0
admits n + 1 smooth holomorphic discs of Maslov index two with the
same area

ℓ0(u) = · · · = ℓn(u) = 1.

This is an analog of the Clifford torus in projective spaces.
In this case the critical point equations, ∂

∂yi
PO(b)u=0 = 0 for all

i, have a solution: 1
y
a1
1 ···yann

= yi
ai

or yi = aiλ with λ given as λ =

(aa11 · · · aann )1/(1−a1−···−an).

Proposition 15.1. The central fiber L(0) in the above weighted pro-
jective space P(1, a1, . . . , an) with holonomy aiλ as above, has non-trivial
smooth Floer cohomology. Thus L(0) is non-displaceable by any Hamil-
tonian isotopy.

15.3. Bulk Floer homology for P(1, a, a). Consider the space P(1, a, a)
for a positive integer a ≥ 2. We explain how to use bulk deformation to
detect non-displaceable torus fibers.

The labelled polytope is the same as that given in (15.1), where the
facet corresponding to b0 (to which b0 is normal) has a label a on it.
The whole divisor corresponding to b0 has an isotropy group Za. It is
not hard to check that

Box′ = {νk :=
k

a
b0 | k = 1, . . . , a− 1}.

The smooth potential PO(b) is given by

PO(b) = T 1−au1−au2
1

ya1y
a
2

+ T u1+1y1 + T u2+1y2.

We may take

bν1 = Tα, bνk = 0 for k 6= 1,

for some α > 0. Then, the leading order bulk potential (with the above
choice of bulk deformation) becomes

POb
orb,0 = PO(b) + TαT

1
a
−u1−u2

1

y1y2
.

Now, we try to find α such that the leading term equation of POb
orb,0

(which depends on α) has a non-trivial solution. The idea is that on a
given energy level, say Sl, if the vectors b corresponding to energy Sl
span d(l) dimensional space, then we need at least d(l) + 1 vectors b to
have a non-trivial solution of the leading term equation of level Sl. In
our case, we need at least three b vectors to correspond to the minimal
energy level S1.

As the area of the basic disc corresponding to b0 is a times bigger
than that of ν1, and as POb

orb,0 has only four terms, the three terms
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excluding that of b0 should have the same T -exponent in order to have
a non-trivial solution of the leading term equation.

Thus basic discs corresponding to b1 and b2 should have the same
area, which then is equal to the sum of α and the area of the ν1 orbi-
disc:

ℓ1 = ℓ2 = α+ ℓν1 .

This implies that we have

1 + u1 = 1 + u2 =
1

a
− u1 − u2 + α,

which gives

(15.2) u1 = u2, u1 =
1

3
(α+

1

a
− 1).

Also, we need to require that the area of b0 is bigger than that of b1 or
b2. Thus, we have

1− au1 − au2 > 1 + u1.

With the condition that u1 = u2, we have u1 < 0, u2 < 0. Since α > 0,

u1 = u2 >
1− a

3a
.

Thus, (u1, u2) lies on the line segment connecting (0, 0) and (1−a
3a ,

1−a
3a ).

Figure 2. Orbifold P(1, 2, 2)

Indeed for a fixed (u1, u2) in the line segment above, we choose α to
satisfy (15.2), then the leading term equation (with the minimal energy
S1 = 1 + u1) is nothing but

1

y1y2
+ y1 + y2 = 0.
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It is easy to check that this equation has a non-trivial critical point,
which describes the (non-unitary) holonomies to be put on the La-
grangian torus fiber at (u1, u2) so that the resulting Floer cohomology
is non-trivial and isomorphic to the singular cohomology of the torus
from Theorem 13.2 and Theorem 12.10.

15.4. Bulk Floer homology for P(1, 1, a). Now, we discuss the case
of P(1, 1, a) for a positive integer a ≥ 3. The corresponding moment
polytope is shown in Figure 3. The elements of Box′ are

Box′ = {νk :=
k

a
b0 +

k

a
b1 = (0,−k) | k = 1, . . . , a− 1}.

Figure 3. Orbifold P(1, 1, a)

The smooth potential PO(b) is given by

PO(b) = T 1−u1−au2
1

y1y
a
2

+ T u1+1y1 + T u2+1y2.

We take
bν1 = Tα, bνk = 0 for k 6= 1,

for some α > 0. Since

ℓν1 =
1

a
ℓ0 +

1

a
ℓ1 =

2

a
− u2,

the leading order potential with the above choice of bulk deformations
becomes:

POb
orb,0 = PO(b) + TαT

2
a
−u2

1

y2
.

We try to find α, which makes POb
orb,0 have a solution in its leading

term equation. Note that ν1 and b2 are in the opposite direction.
As in the previous example, we need three terms of POb

orb,0 to have
the same T -exponent. In the case ℓ0 = ℓ1 = ℓ2, we get a solution by
Proposition 15.1. One can check that the remaining case with non-trivial
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solution of a leading term equation is ℓ0 = ℓ1 = ℓν1 + α. (Other cases
contain both ν1 and b2, and the corresponding leading term equations
do not have a solution, as ν1 and b2 are linearly dependent.)

This implies that

1 + u1 = 1− u1 − au2 =
2

a
− u2 + α,

which gives

(15.3) u2 = −2

a
u1, u1 = −1 + α

a

a− 2
.

Also, we need to require that ℓ1 ≤ ℓ2. Thus, u1 ≤ u2. This implies that
u1 ≤ 0 and u2 ≥ 0. Thus, (u1, u2) lies in the interior of the line segment
connecting (−1, 2/a) and (0, 0), as drawn in Figure 3. It is not hard to
check that the corresponding leading term equation has a solution in
such a case.

Remark 15.1. It is shown in [WW], Example 4.9, that in the case of
a = 2, the analogous line segment is also the location of non-displaceable
torus fibers. But unfortunately, we do not know how to prove it using
our methods. In these computations, we need bν , which lies in Λ0 \ Λ+

for the case a = 2, which is not possible since we cannot make sense
of infinite sums in the definition of bulk deformation with such bν . We
leave it for future research.

15.5. Bulk Floer homology for P(1, 3, 5). The example P(1, 3, 5) has
been found to be very interesting recently; see [M], and also [WW] and
[ABM]. We show that the torus fibers which are inverse images of points
in the shaded region in the polytope (in Figure 4) are non-displaceable
by Hamiltonian isotopy using our methods.

As the shape indicates, we need a little detailed analysis on comparing
the sizes of the areas of holomorphic discs and orbi-discs.

First we identify elements of Box′. We denote the sectors involving
b0 and b1 by

ν1 = 1
5b0 +

3
5b1 = (0,−1),

ν2 = 2
5b0 +

1
5b1 = (−1,−2),

ν3 = 3
5b0 +

4
5b1 = (−1,−3),

ν4 = 4
5b0 +

2
5b1 = (−2,−4).

The sectors involving b0 and b2 are

ν5 = 1
3b0 +

2
3b2 = (−1,−1),

ν6 = 2
3b0 +

1
3b2 = (−2,−3).

The areas of holomorphic discs and orbi-discs are

ℓ0 = 1− 3u1 − 5u2, ℓ1 = 1 + u1, ℓ2 = 1 + u2
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Figure 4. Orbifold P(1, 3, 5)

ℓν1 =
1

5
ℓ0 +

3

5
ℓ1 =

4

5
− u2, ℓν2 =

3

5
− u1 − 2u2

The areas ℓν3 , . . . , ℓν6 can be computed similarly.
Near the vertex (−1, 4/5) of the moment triangle in Figure 4, the

areas of the following (orbi-)discs (depending on the position u ∈ P ),

ℓ0, ℓ1, ℓν1 , ℓν2 , ℓν3 , ℓν4 ,

are smaller than others, and could give relevant terms in the leading
term equation.

As it is two-dimensional, we would like to have a triple of them to have
the same energy S1. Although the symplectic areas ℓ0, ℓ1 are already
fixed, we could add the bulk deformation term bνi to ℓνi suitably to
increase the energy level. Thus if ℓ0 is not equal to ℓ1, we need two
other orbi-discs to make the triple, and for this we need them to have
smaller symplectic areas.

More precisely, we proceed as follows. First, we consider the region
where ℓ0 and ℓ1 are smaller than ℓ2. This implies that

ℓ0 < ℓ2 ⇒ u2 > −u1/2, ℓ1 < ℓ2 ⇒ u2 > u1.

We divide it further into three cases:

1) ℓ0 < ℓ1, or u1 > −4u2/5: To have at least three terms of least
energy, we need

(15.4) ℓν1 < ℓ0 and ℓν2 < ℓ0.

The first inequality gives 3u1 + 4u2 < 1/5 and the second in-
equality gives 2u1 + 3u2 < 2/5. If this happens, we can add bulk
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deformation

bν1 = T ℓ0−ℓν1 , bν2 = T ℓ0−ℓν2 ,

which will make b0, bν1 , bν2 to contribute to the leading term equa-
tion of POb

orb,0 of the same energy S1. We note that the first in-
equality implies the second inequality for the points in P ; hence,
for the region bounded by

u1 > −4u2
5
, 3u1 + 4u2 <

1

5
, u2 > −u1

2
,

we can choose bulk deformation as above, so that the correspond-
ing leading term equation has a solution.

2) ℓ0 > ℓ1 or u1 < −4u2/5: To have at least three terms of least
energy, we need

(15.5) ℓν1 < ℓ1 and ℓν2 < ℓ1.

Both equations translate to the inequality u1 + u2 > −1/5. Thus,
in the region

u1 < −4u2
5
, u1 + u2 > −1

5
, u2 > u1,

we can choose bulk deformation as

bν1 = T ℓ1−ℓν1 , bν2 = T ℓ1−ℓν2 ,

so that the corresponding leading term equation has a solution.
3) ℓ0 = ℓ1: We similarly obtain that the line segment u1 = −4u2

5 , u1 <
0 supports bulk deformation whose leading term equation has a
solution. We leave this as an exercise.

The above do not cover the whole shaded region of Figure 4. The rest of
the region that is not covered is the triangle ∆ formed by three points

(−1/10,−1/10), (0, 0), (1/5,−1/10).

For this region, the leading term equation involves two equations of
energy levels S1 and S2. Note that the vectors b2 = (0, 1) and bν1 =
(0,−1) are opposite to each other. So in ∆, ℓ2 is smaller than ℓ1 and ℓ0,
and hence we take

bν1 = T ℓ2−ℓν1 = T 2u2+
1
5 .

This makes the terms corresponding to b2 and bν1 contribute to the
leading term equation of energy level S1 = ℓ2. Now, for the next level
S2, we have terms from b1 and bν2 . We again have a solution for the S2
energy level leading term equation. We leave the details to readers.

We remark that the line segment from (1/5,−1/10) to (2,−1) is
known to be non-displaceable by [WW], but our methods cannot prove
it yet (cf. Remark 15.1).
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15.6. Polytope with nontrivial integer labels.

Proposition 15.2. If P is a compact rational simple polytope with
m facets, and if the integer labels c1, . . . , cm for facets satisfy

ci ≥ 2 for all i = 1, . . . ,m,

then for any u ∈ Int(P ), L(u) is non-displaceable.

Proof. The first proof is due to Kaoru Ono, who provided this alter-
native proof after the first author gave a talk on this paper and this
proposition.

Here is the first proof. As all facets have non-trivial integer labels,
points in any toric divisors are not smooth points. Take a torus fiber
L(u) for any interior point u ∈ Int(P ). If L(u) is displaceable by Hamil-
tonian isotopy ψH

1 , i.e. L(u) ∩ ψH
1 (L(u)) = ∅, then we can modify H

so that its support lies in Int(P ), and still satisfy the above displacing
property as Hamiltonian isotopy sends smooth points to smooth points.
But this is a contradiction since Lagrangian torus fibers in (C∗)n are
not displaceable by any compactly supported Hamiltonian isotopy. As
a symplectic manifold, the inverse image L of Int(P ) is symplectically
embedded in T ∗T n. Then a T n-orbit is considered as the graph of a
T n-invariant 1-form η on T n, which is closed, embedded in T ∗T n. By
a symplectomorphism, which comes from the fiberwise addition of −η,
we may assume that the T n-orbit is the zero section of T ∗T n. The non-
displaceability of the zero section in the cotangent bundle is well-known.

The second proof is by using bulk deformation. Let bi be a stacky
vector corresponding to the i-th facet. We take νi to be the minimal
integral vector in the direction of bi such that bi = ciνi. We consider
bulk deformations bνi = −ciT ℓi−ℓνi for each i = 1, . . . ,m. Then corre-
sponding leading term potential POb

orb,0 becomes

(15.6)
m∑

i=1

T ℓi(ybi − ciy
bνi ),

since each contribution of bνi is chosen to match with the term of the
potential corresponding to bi. For generic u, we may assume that all
the areas ℓi are distinct. Then, the leading term equation is the critical
point equation of each summand of (15.6) up to the dimension of P .
By denoting yl = ybνi , the summand equals ycil − ciyl, and clearly has a
non-trivial critical point yl = 1. This shows that generic u ∈ Int(P ) is
non-displaceable. But by the standard limit argument, this implies that
L(u) is non-displaceable for all u ∈ Int(P ). q.e.d.
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16. Appendix: Preliminaries on orbifold maps

In this appendix, we recall definitions regarding maps between orb-
ifolds following [CR], [CR2], with the added condition that the domain
orbifold may have a nontrivial smooth boundary.

Let X be a differentiable (C∞) orbifold with boundary and let X be
its underlying topological space. In applications we will often deal with
the case when X is an orbifold Riemann surface with smooth boundary
(i.e. orbifold singularity lies in the interior).

An uniformizing system for an open connected set U ⊂ X is a triple
(V,G, π) where V is a smooth connected manifold with boundary ∂V
(which may be empty), G is a finite group acting smoothly on V (pre-
serving ∂V ), and π : V → U is a continuous map that induces a home-
omorphism between V/G and U . The orbifold analogue of inclusion of
open sets in manifolds is the notion of injection of uniformizing charts.

Definition 16.1. Let i : U →֒ U ′ be an inclusion of open sets uni-
formized by (V,G, π) and (V ′, G′, π′) respectively. An injection (φ, ρ) :
(V,G, π) → (V ′, G′, π′) consists of an injective group homomorphism
ρ : G→ G′ and a ρ-equivariant open embedding φ : V → V ′ such that

1) i ◦ π = π′ ◦ φ,
2) ρ induces an isomorphism kerG→ kerG′ where kerG := {g ∈ G :

g · x = x for all x ∈ V }.
If kerG is trivial for every uniformizing system, the orbifold is called

effective or reduced.
An injection (φ, ρ) is an isomorphism of uniformizing systems if an

inverse injection exists. An important fact is that, given an automor-
phism (φ, ρ) of an uniformizing system (V,G, π) of an open set U ⊂ X
in a C∞ orbifold X (with boundary), there exists an element g ∈ G
such that φ(x) = gx and ρ(h) = ghg−1 (see Lemma 2.11 of [MM]).
This correspondence is one-to-one if kerG is trivial.

Definition 16.2. A compatible cover of an open set Y in an orbifold
X is an open cover U of Y together with a uniformizing system (V,G, π)
for each U ∈ U and a collection of injections such that:

1) If U ⊂ U ′, then there exists an injection (V,G, π) → (V ′, G′, π′).
2) For every p ∈ U1

⋂
U2, where U1, U2 ∈ U , there exists a U ∈ U

such that p ∈ U ⊂ U1
⋂
U2.

Definition 16.3. Let X and X ′ be orbifolds, possibly with boundary.
Suppose U ⊂ X, U ′ ⊂ X ′ are open sets uniformized by (V,G, π) and
(V ′, G′, π′) respectively. Given a continuous map f : U → U ′, a C l lift

of f is a C l map f̃ : V → V ′ satisfying

1) π′ ◦ f̃ = f ◦ π.
2) Given any g ∈ G, there exists a g′ ∈ G′ such that f̃(gx) = g′f̃(x)

for all x ∈ V .
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Note that the correspondence g → g′ is not required to be a group
homomorphism.

Definition 16.4. Two lifts f̃i : (Vi, Gi, πi) → (V ′
i , G

′
i, π

′
i), i = 1, 2, are

isomorphic if there are isomorphisms (φ, ρ) : (V1, G1, π1) → (V2, G2, π2)

and (φ′, ρ′) : (V ′
1 , G

′
1, π

′
1) → (V ′

2 , G
′
2, π

′
2) such that φ′ ◦ f̃1 = f̃2 ◦ φ.

Let f̃ : (V,G, π) → (V ′, G′, π′) be a C l lift of f : U → U ′. Let W, W ′

be open sets such that W ⊂ U and f(W ) ⊂W ′ ⊂ U ′. Then f̃ naturally
induces a unique isomorphism class of lift for f :W →W ′.

Definition 16.5. Two lifts f̃i : (Vi, Gi, πi) → (V ′
i , G

′
i, π

′
i), i = 1, 2,

of f : X → X ′ over open sets U1 and U2, are said to be equivalent at
p ∈ U1

⋂
U2 if they induce isomorphic lifts of f : U → U ′ for some open

sets U containing p and U ′ containing f(p).

Definition 16.6. A local C l lift of f : X → X ′ at a point p ∈ X is
a C l lift f̃p : Vp → V ′

f(p), for some uniformizing systems (Vp, Gp, πp) and

(V ′
f(p), G

′
f(p), π

′
f(p)) on open sets containing p and f(p) respectively.

Definition 16.7. Let X and X ′ be orbifolds, possibly with boundary.
Given a continuous map f : X → X ′, a C l lift f̃ : X → X ′ of f is a
choice of a local C l lift f̃p : Vp → V ′

f(p) for each point p, such that f̃p is

equivalent to f̃q for each q ∈ Up.

Example 16.8. Consider the orbifold C/Z2 where Z2 acts by reflec-
tion about the origin. Consider the holomorphic coordinates z on C and
w = z2 on C/Z2. Regard S

1 as R/2πZ. Take the map f : S1 → C/Z2

defined by w ◦ f(θ) = eiθ. Consider the covering of S1 by the open sets

U1 = (0, 2π) and U2 = (−π, π). The lifts f̃j : Uj → C given by

(16.1) z ◦ f̃j(θ) = eiθ/2 for j = 1, 2,

define a C∞ lift of f .
Note that not every continuous map of underlying spaces admits a

lift. As an example, the map h : C → C/Z2 defined by w ◦h(t) = t does
not admit even a C0 lift near the origin.

Definition 16.9. Two lifts {f̃p,i : (Vp,i, Gp,i, πp,i) → (V ′
f(p),i, G

′
p,i,

π′f(p),i)}, i = 1, 2, of f are said to be equivalent if for each p ∈ X, f̃p,1

and f̃p,2 are equivalent at p.

Definition 16.10. A C l map of orbifolds f : X → X ′ is a continuous
map f : X → X ′ of underlying spaces together with the equivalence
class of a C l lift f̃ of f .

Now we recall the crucial notion of a good map in [CR]. Chen and
Ruan used the notion of compatible system to describe a good map. A
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compatible system roughly consists of compatible covers of the domain
and range of the map by uniformizing charts, choice of lifts on each
chart, and some algebraic data for injections of charts that encode how
the lifts fit together. This enables one to define the pull-back of an
orbifold vector bundle with respect to a good map. The notion of a
good map is very closely related to the notions of a strong map [MP]
and an orbifold morphism [ALR].

Definition 16.11. Let f : X → X ′ be a C l map between orbifolds
with boundary whose underlying continuous map is denoted by f . Sup-
pose U and U ′ are compatible covers of X and an open set containing
f(X) respectively, satisfying the following conditions:

1) There is a bijection between U and U ′, given by U ↔ U ′, such
that f(U) ⊂ U ′ and U2 ⊂ U1 implies U ′

2 ⊂ U ′
1.

2) There exists a collection of local C l lifts {f̃UU ′ : (V,G, π) →
(V ′, G′, π′)} of f , and an assignment of an injection λ(i) : (V ′

2 , G
′
2,

π′2) → (V ′
1 , G

′
1, π

′
1) to every injection i : (V2, G2, π2) → (V1, G1, π1),

such that
a) f̃U1U ′

1
◦ i = λ(i) ◦ f̃U2U ′

2
, and

b) λ(j ◦ i) = λ(j) ◦ λ(i) for each composition j ◦ i of injections.
3) The C l lift of f defined by the collection {f̃UU ′} is in the equiva-

lence class corresponding to f .

Then we say that {f̃UU ′ , λ} is a compatible system of f .

Note that if X ′ is reduced, each automorphism g ∈ G of (V,G, π) is
assigned an automorphism λ(g) ∈ G′ giving rise, by condition (2)(b), to

a group homomorphism λUU ′ : G → G′ with respect to which f̃UU ′ is
equivariant.

Definition 16.12. A C l map f : X → X ′ is called a good C l map if
it admits a compatible system.

When an orbifold is reduced, it may be represented as the quotient
of a manifold by the effective action of a compact Lie group by the so-
called frame bundle trick. However, a good map between X =M/G and
X ′ = N/H may not be represented by an equivariant map from M to
N . This has to do with the fineness of the compatible cover of X used
to define the good map. Indeed, a similar problem occurs for a good
map from a manifold to an orbifold. For instance, consider the C∞ map
S1 → C/Zp given by the lift t 7→ t1/p. We need to use a suitable cover
of S1 to make sense of continuity of the lift.

A good C∞ map is what Chen and Ruan [CR] call a good map.
Not all orbifold maps admit a compatible system. See example 4.4.2a of
[CR].

Chen and Ruan prove (cf. Lemma 4.4.6 and Remark 4.4.7 of [CR])

that, given two compatible systems ξ1 = {f̃1,UU ′ , α1 : U ∈ U , U ′ ∈ U ′}
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and ξ2 = {f̃2,RR′ , α2 : R ∈ R, R′ ∈ R′} for a C∞ map f : X → X ′, there
exist

1) common refinements W of U and R, and W ′ of U ′ and R′, that
satisfy condition (1) of Definition 16.11;

2) compatible systems {f̃1,WW ′, λ1} and {f̃2,WW ′, λ2}, whereW ∈ W
and W ′ ∈ W ′, for f induced by ξ1 and ξ2 respectively.

Chen-Ruan’s proof actually works for any C l map where l ≥ 0. An
important consequence of Lemma 4.4.6 of [CR] is that the compatible

systems {f̃i,WW ′, λi} can be assumed to be geodesic compatible systems
(see Definition 4.4.5 of [CR]). In particular, the open sets of W and W ′

are images of the exponential map from some subset of the tangent
space at some point in their interiors. This property is crucial to re-
late compatible systems with pull-back of vector bundles, especially the
tangent bundle. This will continue to hold if X is an orbifold Riemann
surface with smooth boundary, for an appropriate choice of Riemannian
metric on X . (The idea is to choose a Riemannian metric on the double
Y of X that agrees with a metric on the manifold Y away from a small
neighborhood of the singular set. Then use the positivity of the injective
radius of the metric on Y .)

The following definition is equivalent to, but different from, the one
in [CR].

Definition 16.13. Two compatible systems ξ1 and ξ2 of a good C l

map f are said to be isomorphic if there exist induced compatible sys-
tems {f̃1,WW ′, λ1} and {f̃2,WW ′, λ2} corresponding to ξ1 and ξ2 respec-
tively, and an automorphism δV ′ of the uniformizing system (V ′, G′, π′)
for each W ′ ∈ W ′, such that

1) δV ′ ◦ f̃1,WW ′ = f̃2,WW ′ and
2) for each injection i : (W2, G2, π2) → (W1, G1, π1), the relation

λ2(i) = δV ′

1
◦ λ1(i) ◦ (δV ′

2
)−1 holds.

The proof of the following lemma is similar to Proposition 4.4.8 of
[CR].

Lemma 16.1. Suppose f : X → X ′ is a good C∞ map where X is an
orbifold with smooth boundary. Then two compatible systems ξ1 and ξ2
are isomorphic if and only if the pull-backs of any orbifold vector bundle
on X ′ by ξ1 and ξ2 are isomorphic.
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