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HOLOMORPHIC PRINCIPAL BUNDLES OVER
ELLIPTIC CURVES II:

THE PARABOLIC CONSTRUCTION

ROBERT FRIEDMAN & JOHN W. MORGAN

Abstract
This paper continues the study of holomorphic semistable principal G-
bundles over an elliptic curve. In this paper, the moduli space of all such
bundles is constructed by considering deformations of a minimally unstable
G-bundle. The set of all such deformations can be described as the C∗-
quotient of the cohomology group of a sheaf of unipotent groups, and we
show that this quotient has the structure of a weighted projective space. We
identify this weighted projective space with the moduli space of semistable
G-bundles, giving a new proof of a theorem of Looijenga.

Introduction

Let E be a smooth elliptic curve and let G be a simple complex alge-
braic group of rank r. We shall always assume that π1(G) is cyclic and
that c is a generator. We shall freely identify c with the corresponding
element in the center of the universal cover G̃ of G. A C∞ G-bundle ξ0

over E has a characteristic class c1(ξ0) ∈ H2(E; π1(G)) ∼= π1(G) which
determines ξ0 up to C∞ isomorphism. The goal of this paper is to con-
tinue the study, begun in [10], of the moduli spaceM(G, c) of semistable
holomorphic G-bundles ξ with c1(ξ) = c. In [10], this space was studied
from the transcendental viewpoint of (0, 1)-connections using the results
of Narasimhan-Seshadri and Ramanathan that in every S-equivalence
class there is a unique representative whose holomorphic structure is
given by a flat connection. This viewpoint, however, is not suitable for
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many questions, such as finding universal bundles, studying singular el-
liptic curves, or generalizing to families of elliptic curves. In this paper,
which is largely independent of [10], we describeM(G, c) from an alge-
braic point of view. As we shall show in later papers, this construction
is much better adapted for dealing with the questions described above.

Our motivation comes from the theory of deformations of singular-
ities with a C∗-action. In this theory, the deformations corresponding
to nonnegative weights are topologically equisingular. Thus, from the
point of view of smoothings, it is the negative weight deformation space
which is interesting. This space can be studied infinitesimally, by look-
ing at the C∗-action on the Zariski tangent space to the deformation
functor. There is also a globalization of this local description. For
example, in the case of hypersurface simple elliptic singularities which
are given as weighted cones over an elliptic curve E, the global mod-
uli space, modulo the action of C∗, can (essentially) be identified with
pairs (X, D), where X is a smooth del Pezzo surface or a del Pezzo
surface with rational double points, and D is a hyperplane section of X
isomorphic to E.

By analogy, our method is to describe M(G, c) as a certain set of
deformations of a “singular” bundle ξu, where in this context singular
means unstable. Of course, it is natural to require that ξu be mini-
mally unstable, in the sense that all small deformations which are not
roughly speaking topologically equivalent to ξu should be semistable.
As we showed in [11], such minimally unstable bundles always exist,
and, in most cases, are unique once we fix the determinant. There is a
distinguished subgroup C∗ in the automorphism group of ξu, and (with
our conventions) it acts with nonnegative weights. The positive weight
deformations of ξu correspond to semistable bundles.

More precisely, to every unstable bundle ξu there is associated a
conjugacy class of parabolic subgroups of G. The parabolic subgroup
corresponding to a minimally unstable ξu is a maximal parabolic sub-
group. The conjugacy classes of maximal parabolic subgroups are in-
dexed by the simple roots of G. Let P be such a maximal parabolic
subgroup, with unipotent radical U and Levi factor L. Then L has
a one-dimensional center, and hence there is a natural inclusion of C∗

in L. Correspondingly there is a unique primitive dominant character
χ0 of L. We consider semistable L-bundles η whose degree is −1 with
respect to χ0. In particular, this implies that P−, the parabolic sub-
group opposite to P , is a Harder-Narasimhan parabolic subgroup for
the unstable G-bundle ξu = η ×L G. The central subgroup C∗ of L
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acts on the deformation space of η ×L G, and we shall be interested in
the positive weight deformations. As in the singularities case, there is
a global interpretation of this infinitesimal picture: it is the space of
isomorphisms classes of pairs (ξ, ϕ) consisting of a P -bundle ξ and an
isomorphism ϕ : ξ/U → η. The isomorphism classes of such pairs (ξ, ϕ)
are classified by the cohomology group H1(E; U(η)), where U(η) is the
sheaf of unipotent groups η ×L U . In general, U(η) is not a sheaf of
abelian groups, and so H1(E; U(η)) is a priori simply a set. However,
the fact that U(η) has a filtration whose successive quotients are vector
groups implies, in our situation, that H1(E; U(η)) carries in a functorial
sense the structure of an affine space. The group C∗ acts on this space,
fixing the origin and such that the differential of the action has posi-
tive weights at the origin. We show that this action can be linearized.
From this point of view, it is the nonabelian nature of U which allows
there to be different weights for the C∗-action, so that the quotient
(H1(E; U(η))−{0})/C∗ is a weighted projective space WP(η), typically
with distinct weights. In fact, choosing η to be minimally unstable, the
weights are given as follows in case G is simply connected. Let ∆̃ be
the extended set of simple roots for G, and for each α ∈ ∆̃, let α∨ be
the corresponding dual coroot. Then there is a unique linear relation∑

α∈∆̃

gαα∨ = 0,

provided that we require that the coefficient of the coroot dual to the
negative of the highest root is 1. Up to multiplying by a common
factor, the weights of WP(η) are then the integers gα, counted with
multiplicity. In particular, the dimension of WP(η) is equal to the rank
of G, which we know to be the dimension ofM(G, 1). When G is non-
simply connected and we consider G-bundles whose first Chern class
is a generator c ∈ π1(G), there is a similar result where, again up to
a common factor, the weights are given by the coroot integers gβ on
the quotient of the extended Dynkin diagram of G by the action of the
central element c in the universal covering group G̃ of G as described in
[7].

Assuming that the bundle η ×L G described above is minimally un-
stable, all points of WP(η) correspond to semistable bundles. Thus,
there is an induced morphism Ψ: WP(η) →M(G, c). Now every mor-
phism whose domain is a weighted projective space is either constant
or finite, and in our case it is easy to see that the morphism is noncon-
stant. This already yields some information about L and η: assuming
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that the action of AutL η on WP(η) is essentially effective, since Ψ is
constant on the AutL η/C∗-orbits, it follows that C∗ is the identity com-
ponent of AutL η. To go further, we need to use the fact that E is an
elliptic curve, which implies that the map Ψ: WP(η) → M(G, c) is
dominant, and more generally that the rational map from WP(η) to
M(G, c) is dominant for every maximal parabolic. This implies that
dim WP(η) ≥ dimM(G, c), with equality for the minimally unstable
case. By contrast, for curves of genus at least 2, even for the case of
SL2(C), the map WP(η) → M(G, c) is typically not dominant, but
rather maps WP(η) to a proper subvariety ofM(G, c).

To sum up, then, in the minimally unstable case, we have a weighted
projective space WP(η) and a finite morphism Ψ: WP(η) → M(G, c).
In fact, we show the following theorem:

Theorem. Suppose that the L-bundle η is minimally unstable.
Then the map Ψ: WP(η)→M(G, c) is an isomorphism.

Corollary. The moduli space M(G, c) is a weighted projective
space, with weights gβ/n0, where n0 is the gcd of the gβ. In partic-
ular, if G is simply connected, M(G, c) is a weighted projective space,
with weights gα, α ∈ ∆̃.

In the simply connected case, the corollary is due to Looijenga [17]
(see also [5]). Note however that the theorem goes beyond an abstract
description of M(G, c) as a weighted projective space: it identifies an
algebraically defined moduli space, WP(η), with a transcendentally de-
fined moduli space which in some sense is obtained by taking the periods
of a flat connection. We view this as a theorem of Torelli type in a non-
linear context.

The bundles produced by the parabolic construction, in addition
to being semistable, are regular in the sense that their automorphism
groups have minimal possible dimension. This is reminiscent of the
Steinberg cross-section of regular elements for the map of G to its adjoint
quotient and of the Kostant section of regular elements for the adjoint
quotient of the Lie algebra g of G. In fact, as we shall show in a future
paper, the parabolic construction extends to the case of nodal curves
of genus one and to cuspidal curves of genus one when G �= E8. For
nodal curves, the parabolic construction produces a weighted projective
space and an open subset which is identified with a Steinberg-like cross-
section of regular elements in each conjugacy class. For cuspidal curves
(and G �= E8) the weighted projective space contains an open subset
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producing a Kostant-like section of the adjoint quotient of g. Thus, in
both cases, the parabolic construction yields a new approach to the proof
of the existence of a section of regular elements for the adjoint quotient,
and produces a natural compactification of the adjoint quotient which
is a weighted projective space.

In case G = E8, E7, E6 (as well as D5 and A4), the relationship be-
tween deformations of minimally unstable G-bundles and deformations
of simple elliptic singularities goes far beyond a formal analogy. Indeed,
this observation, which is connected to what is called in the physics
literature F-theory, was a major motivation for us to study G-bundles
over elliptic curves. This connection will be described elsewhere.

This paper is related to [11], where we enumerate the minimally
unstable strata in the space of (0, 1)-connections on a G-bundle. While
we make no use of these results, at least in the simply connected case,
that paper helps explain the characterizing properties that a minimally
unstable bundle ξu has to satisfy: it predicts, for example, that its
Harder-Narasimhan parabolic is the maximal parabolic associated with
what we call a special root and that the L-bundle has degree −1 with
respect to the dominant character. But even without knowing that these
bundles lie in minimally unstable strata in the Atiyah-Bott formalism,
one can establish the isomorphism given in the main theorem above.

The contents of this paper are as follows. In Section 1, we collect
together preliminary technical results. Many of these results concern
numerical facts related to irreducible representations of the Levi factor
of a maximal parabolic on the unipotent radical of that parabolic. These
are used in Section 2 to compute the dimensions of various cohomology
groups related to bundles over maximal parabolic subgroups of G, as
well as to understand the weights of the C∗-action. These dimensions
and weights could be computed by case-by-case checking of the root
tables. We have tried instead to find classification-free arguments wher-
ever possible. In calculating the C∗-weights, we make use of a property
we call circular symmetry. This property was introduced by Witten
and established for the coroot integers in [7]. Its name derives from the
relation of this property to a symmetry statement for points placed on
a circle according to these numbers, as described in [7, §3.8]. Here, we
do not need this geometric interpretation. Rather we need to know only
that (as was proved in [7]) the coroot integers and the coroot integers
on the quotient diagram by the action of the center satisfy circular sym-
metry, and that numbers satisfying circular symmetry are completely
determined by three pieces of information, which in our context are the
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dimension of the weighted projective space, the highest weight appear-
ing in the C∗-action and the dual Coxeter number of the group. In the
minimally unstable case, we are able to show that these invariants agree
with the corresponding ones for the coroot integers and this agreement
is what allows us to identify the C∗-weights with the coroot integers.
We emphasize, however, that circular symmetry holds for all maximal
parabolic subgroups, not just those which correspond to minimally un-
stable bundles. Unfortunately, our proof of this resorts in the end to
case-by-case checking. It would be extremely illuminating to have a
more conceptual understanding of the meaning of circular symmetry.
In §1.5, we discuss the volume of the moduli space of flat connections
on E and again relate it to the coroot integers. These two pieces of
numerical information, the C∗-weights for WP(η) and the volume of the
space of flat connections, will turn out to be crucial in Section 5 for the
proof that deg Ψ = 1.

In Section 2, we give a general description, for every maximal parabo-
lic subgroup P , of the bundles η over the Levi factor L. We then com-
pute the dimensions of the nonabelian cohomology space (or rather its
tangent space at the origin) and the C∗-weights in terms of the numbers
introduced in Section 1. In Section 3, we study the minimally unstable
case in detail. As we have mentioned above, we expect from general
principles that dim AutL η = 1 and that the cohomology dimension
must be dimM(G, c)+1. We identify the simple roots in the minimally
unstable case, verifying the above facts in a classification-free way in
the simply connected case, and identify the C∗-weights with the coroot
integers via circular symmetry. The description of the minimally unsta-
ble case is also given in [11], although the discussion here in the simply
connected case is independent of that paper. In §3.4, we consider the
non-simply connected case. Here we use the results of [11] as well as a
case-by-case analysis to identify the minimally unstable bundles and to
identify the cohomology dimension, the dimension of the automorphism
group of the bundle, and the C∗-weights.

Section 4 is concerned with the nonabelian cohomology space, i.e.,
the affine space H1(E; U(η)). We show that the C∗-action can be lin-
earized and discuss the obstructions to the existence of a universal
bundle. In §4.4, we show that, in the minimally unstable case, the
points of H1(E; U(η)) − {0} correspond to regular semistable bun-
dles. This means that the algebraic families provided by the parabolic
construction are different from the families provided by the space of
flat connections. Every S-equivalence class of bundles has two extreme
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representatives which are unique up to isomorphism, the flat represen-
tative and the regular representative. On an open dense set ofM(G, c)
these representatives agree and, when they do, all bundles of the given
S-equivalence class are isomorphic. But, along a codimension one sub-
variety ofM(G, c), the regular representative does not have a flat con-
nection. It turns out that, because the dimension of the automorphism
group of regular representatives is constant, the regular representatives
behave better in families.

Finally, in Section 5, we prove the main theorem by calculating the
degree of Ψ. The crux of the argument is to study the determinant line
bundle on M(G, c), which pulls back via Ψ∗ to the determinant line
bundle on WP(η). Thus, once we show that both determinant line bun-
dles have the same top self-intersection, then it follows that the degree
of Ψ is one. Some of the technical results concerning the nonabelian
cohomology space and its interpretation are deferred to the appendix.
We prove that the cohomology space naturally has the structure of an
affine space and represents an appropriate functor.

The parabolic construction of semistable G-bundles was originally
introduced and explained, for the simply connected case, in [12], in a
paper written for an audience of physicists, as well as in the announce-
ment [13]. It is a pleasure to thank Ed Witten for originally raising the
questions which led to this work and for the insights he shared with us
during the course of our joint work on these subjects. We would also
like to thank A. Borel, P. Deligne, and W. Schmid for various helpful
conversations and correspondence. Finally, during the preparation of
this paper, S. Helmke and P. Slodowy sent us their preprint [16], which
has a considerable overlap with the first part of this paper and which
also analyzes the case where the automorphism group of η ×L G is just
slightly larger than in the minimally unstable case.

1. Preliminaries

1.1 Notation

Throughout this paper, R denotes a reduced and irreducible root
system of rank r in a real vector space V , with Weyl group W = W (R),
and ∆ is a set of simple roots for R. Let R+ be the set of positive
roots corresponding to the choice of ∆. There exists a W -invariant
positive definite inner product 〈·, ·〉 on V and it is unique up to scalars.
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Given a root α, there is an associated coroot α∨ ∈ V ∗. Using the inner
product to identify V with V ∗, we have α∨ = 2α/〈α, α〉. As usual,
we denote the Cartan integer α(β∨) by n(α, β). The coroot lattice Λ
is the lattice inside V ∗ spanned by the coroots. Given α ∈ ∆, we
have the fundamental weight �α ∈ V , which satisfies �α(β∨) = δαβ

for all α, β ∈ ∆. The fundamental coweights �∨
α ∈ V ∗ are defined

similarly. As usual, let ρ be the sum of the fundamental weights, so
that ρ =

∑
α∈∆ �α = 1

2

∑
β∈R+ β.

Let α̃ be the highest root of R+. We have α̃ =
∑

β∈∆ hββ, with
hβ > 0. We set α0 = −α̃, ∆̃ = ∆ ∪ {α0}, and hα0 = 1 so that∑

β∈∆̃
hββ = 0. The number h = 1 +

∑
β∈∆ hβ is the Coxeter number

of R. Similarly, we have α̃∨ =
∑

β∈∆ gββ∨ with gβ > 0. We set gα0 = 1
so that

∑
β∈∆̃

gββ∨ = 0. We call g = 1 +
∑

β∈∆ gβ =
∑

β∈∆̃
gβ the dual

Coxeter number of R. An easy calculation then shows:
Lemma 1.1.1. In the above notation, we have

gα =
hα〈α, α〉
〈α̃, α̃〉 .

Thus gα|hα, and gα = hα if and only if α is a long root of R. �
Let Q ∈ Sym2 Λ∗ be the quadratic form defined by

Q =
∑
α∈R

〈α, ·〉〈α, ·〉.

This form was first introduced by Looijenga in [17], where he showed:

Lemma 1.1.2. Let g be the dual Coxeter number. Then

Q = (2g)I0,

where I0 is the unique W -invariant quadratic form on Λ such that
I0(α̃∨) = 2. For example, if R is simply laced, then I0 is the usual
intersection form on Λ. �

Throughout this paper, we use the inner product on V ∗ defined by
I0 and the corresponding dual inner product on V . It has the property
that all long roots have length 2.

Lemma 1.1.3. Let {α∗}α∈∆ be the dual basis to {α∨}α∈∆ with
respect to I0. Then α∗ = gα�∨

α/hα.

Proof. This is just the statement that

〈α∨, �∨
β 〉 =

2
〈α, α〉α(�∨

β ) =
hα

gα
δαβ . �
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1.2 Structure of maximal parabolic subgroups

Let H ⊆ G be a Cartan subgroup, and let R ⊆ h∗ be the set of
roots for the pair (G, H). We denote by g the Lie algebra of G and by
h ⊆ g the Cartan subalgebra of g corresponding to H. Let R+ be a
set of positive roots, and let ∆ denote the corresponding set of simple
roots. We shall also view the roots α ∈ R as characters α : H → C∗ on
H. There is a unique dual coroot α∨ ∈ h. We can view α∨ as defining
a linear map C→ h. Exponentiating this map gives us a cocharacter of
H, i.e., a one-parameter subgroup �α : C∗ → H.

If P is a parabolic subgroup of G, then the unipotent radical U of
P is a normal subgroup, and there is a semidirect product P = U · L,
where L is a reductive subgroup of P , unique up to conjugation, called
the Levi factor of P . If G̃ is the universal cover of G, then there is a
one-to-one correspondence between parabolic subgroups of G and those
of G̃, which associates to the subgroup P of G its preimage P̃ ⊆ G̃.
Since a unipotent group is torsion-free, the unipotent radicals of P and
P̃ are isomorphic, and the Levi factor L̃ of P̃ is the preimage of the
Levi factor L of P . For the remainder of §1.2, unless otherwise
stated, we assume that G is simply connected.

For α ∈ ∆, let Pα be the connected subgroup of G whose Lie algebra
is spanned by h and the root spaces gβ, where either β ∈ R+ or β lies
in the span of ∆ − {α}. Then Pα is a maximal parabolic subgroup of
G, and every maximal parabolic subgroup P is conjugate to exactly one
Pα, α ∈ ∆. Thus there are exactly r maximal parabolic subgroups of
G up to conjugation. We denote the unipotent radical of Pα by Uα

and its Levi factor by Lα. The torus H is a maximal torus of Lα. The
semisimple part Sα of Lα (or equivalently the derived subgroup of Lα)
has Lie algebra spanned by h′ and by the root spaces corresponding
to the set of roots in the linear span of ∆ − {α}, where h′ ⊆ h is
the subspace spanned by the coroots β∨ ∈ h dual to the simple roots
β ∈ ∆ − {α}. A maximal torus H ′ of Sα is given by the subtorus
which is the image under exponentiation of h′ ⊆ h, and H ′ = H ∩ Sα.
The Dynkin diagram of Sα is the subdiagram of the Dynkin diagram
of G obtained by deleting the vertex corresponding to α and the edges
incident to this vertex. Since {α∨}α∈∆ is a basis for the coroot lattice
Λ of G, the intersection of the coroot lattice Λ for G with h′ is exactly
the coroot lattice for Sα. Since G is simply connected, Sα is also simply
connected. Note that Sα is a semisimple group of rank r − 1. Clearly
we have:
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Lemma 1.2.1. Let ∆ − {α} =
∐t

i=1 ∆i, where each ∆i defines a
connected component of the Dynkin diagram of ∆ − {α}. Then Sα =∏t

i=1 Si, where Si is the simple and simply connected group correspond-
ing to ∆i. �

Definition 1.2.2. Let K(α) =
⋂

β∈∆−{α} Ker β ⊆ Λ. Then K(α)
is an infinite cyclic group. Let ζα =

∑
β∈∆ mββ∨ be the generator of

K(α) such that mα > 0. It then follows that mβ > 0 for all β ∈ ∆.
Define nα = α(ζα), so that ζα = nα�∨

α . Note that mα = �α(ζα).

Lemma 1.2.3. Define the map ϕα : C∗ → H by

ϕα(λ) =
∏
β∈∆

�β (λmβ ) .

Then ϕα is an isomorphism from C∗ to the identity component of the
center of Lα. Moreover,

Lα = Sα ×Z/mαZ C∗,

where 1 ∈ Z/mαZ maps to e2πi/mα ∈ C∗ and to the central element∏t
i=1 γ

−n(βi,α)
i ∈ Sα =

∏t
i=1 Si, where βi ∈ ∆i is the unique element for

which n(βi, α) �= 0 and γi = exp(2π
√−1�∨

βi
).

Proof. With ϕα defined as above, ϕα(C∗) is in the kernel of all
simple roots β distinct from α, and thus, since ζα is primitive, ϕα is
an embedding of C∗ into the center of Lα. Also, since Sα ∩H = H ′, if
λ = e2πit, then ϕα(λ) ∈ Sα if and only if

∑
β∈∆ tmββ∨ ≡ 0 mod h′ + Λ,

if and only if mαt ∈ Z. Thus ϕα(C∗)∩Sα is the cyclic subgroup of order
mα in C∗, and so

Lα = Sα ×Z/mαZ C∗,

where the image of 1 ∈ Z/mαZ in the first factor lies in the center of
Sα, and corresponds to the element c = ζα/mα − α∨. To describe this
central element, let β ∈ ∆ be a root of Si. Then β(c) = 0 if β �= βi

and βi(c) = −n(βi, α). Thus c is the central element of Si given by
exp(−2n(βi, α)π

√−1�∨
βi

). �

The next lemma gives a more precise description of the center of Lα.

Lemma 1.2.4. The center of Lα is generated by ϕα (C∗) and the
center of G. The intersection of ϕα (C∗) with the center of G is a cyclic
group of order nα.
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Proof. We have

Z(Lα) = Z(Sα)×Z/mαZ C∗.

Then Z(G) is the subgroup of Z(Lα) which is in the kernel of the char-
acter α. The restriction of α to C∗ ⊆ Z(Lα) is nontrivial, and hence
surjective, and for an element of Z(Sα)×Z/mαZ C∗, written as [z, ζ], we
clearly have α([z, ζ]) = α(z)α(ζ). Thus, for each z ∈ Z(Sα) there is an
element u ∈ Ker(α) of the form u = [z, ζ] ∈ Z(Sα) ×Z/mαZ C∗. This
element u is in the center of G, since it is in the kernel of β for all β �= α,
as well as in Ker α. It follows that an arbitrary [z, λ] ∈ Z(Lα) is of the
form u · µ, where µ ∈ C∗, as claimed.

To see the second statement, note that α◦ϕα(λ) = λnα . Since ϕα(λ)
is in the kernel of all of the remaining roots, ϕα(λ) lies in the center of
G if and only if λnα = 1. �

Remark 1.2.5. Along similar lines, one can show that there is an
exact sequence

{1} → Z/nαZ→ Z(G)→ Z(Sα)/(Z/mαZ)→ {1}.

In particular, mα/nα = #Z(Sα)/#Z(G).

To state the next result, recall that a character χ : H → C∗ is dom-
inant if the corresponding linear function h→ C is nonnegative on the
positive coroots. A character of any subgroup containing H will be
called dominant if its restriction to H is dominant.

Lemma 1.2.6. The group of characters of Lα is isomorphic to
Z. There is a unique primitive dominant character χ0 : Lα → C∗, and
χ0 ◦ ϕα(λ) = λmα.

Proof. Let �α be the fundamental weight corresponding to the
simple root α. The unique primitive dominant character of Lα is �α,
viewed as a character on H, and �α ◦ ϕα(λ) = λmα . �

If G is not simply connected, we continue to denote the parabolic
subgroup associated to the simple root α by Pα, the unipotent radical
of Pα by Uα, and the Levi factor of Pα by Lα. The map ϕα : C∗ →
Lα is defined to be embedding of C∗ into to the center of Lα so that
the composition of ϕα followed by the primitive dominant character of
Lα is a positive character on C∗. Let ϕ̃α : C∗ → L̃α be as given in
Definition 1.2.2 for the simply connected group G̃ and α ∈ ∆. Clearly,
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ϕα(C∗) is the quotient of ϕ̃α(C∗) by the finite subgroup ϕ̃α(C∗) ∩ 〈c〉.
It is still the case, of course, that the center of Lα is generated by the
center of G and ϕα(C∗). The following lemma is then clear:

Lemma 1.2.7. Let nc,α be the order of ϕα(C∗) ∩ Z(G). Then the
order of ϕ̃α(C∗)∩〈c〉 is nα/nc,α, and the induced map from ϕ̃α(C∗) ∼= C∗

to ϕα(C∗) ∼= C∗ is given by raising to the power nα/nc,α. �

1.3 The unipotent radical of a maximal parabolic subal-
gebra

In §1.3, we assume that G is simply connected. Fix the simple
root α and consider the maximal parabolic subgroup Pα. Here we will
describe the Lie algebra u = u(α) of Uα. It is spanned by the root spaces
gδ such that, if δ =

∑
β∈∆ xββ, then the coefficient of α in the sum is

positive. The action of ϕα(C∗) on u is given as follows. Let gδ be a root
space and let X ∈ gδ. Then ϕα(λ)(X) = λδ(ζα) · X. Of course, since
ζα is in the kernel of all the simple roots except α, δ(ζα) = δ(�∨

α)α(ζα)
where δ(�∨

α) is the coefficient of α in the expression for δ as a sum of
simple roots. In particular, using Lemma 1.4.5 below, the weights of
the action of C∗ on u are nα, 2nα, . . . , hα · nα where nα = α(ζα).

Let uk be the sum of all such root spaces gβ where the coefficient of
α in β is exactly k. The Lie algebra u is a direct sum of the spaces uk

for k > 0. Each space uk is an Lα-module, and as we shall see below it
is in fact irreducible.

The top exterior power
∧top u is a one-dimensional Lα-module, and

as such it is given by a character χ+ of L. The next lemma identifies
this character:

Lemma 1.3.1. Let d1(α) = 2ρ(ζα)/mα = 2ρ(�∨
α)/�α(�∨

α). In
the above notation, χ+ = χ

d1(α)
0 where χ0 is the primitive dominant

character.

Proof. Since χ0 is primitive χ+ = χ
N+

0 for some integer N+. Since
the character χ0 ◦ϕα of C∗ is given by λ �→ λmα , the character χ+ ◦ϕα

of C∗ is given by λ �→ λmα·N+ . The action of ϕα(C∗) is diagonal with
respect to the decomposition of u as a sum of root spaces, and the
character on the one-dimensional subspace spanned by a root δ is simply
the restriction of δ to ϕα(C∗). The space u is the subspace of g spanned
by the set of all roots δ =

∑
β∈∆ xββ with the property that xα > 0.

Recall that ϕα(C∗) is in the kernel of all the simple roots except α. Thus,
to compute the character of C∗ given by the product of ϕδ

α over all δ such
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that the coefficient of α in δ is positive, we may as well take the product
over all of the positive roots δ. In other words, the character of C∗

which gives the degree of the top exterior power is simply the character
ϕ
∑

δ∈R+ δ
α . We can rewrite this expression as ϕ2ρ

α . Thus, the character
that we are computing is ϕ

2
∑

β∈∆ �β
α . Recalling that the embedding of

ϕα : C∗ → H is given by
∏

β∈∆ �
mβ

β , we see that the character χ+ ◦ϕα is
given by raising to the power 2ρ(ζα). Thus N+ = 2ρ(ζα)/mα = d1(α).

�

Remark 1.3.2. The proof above also shows that the integer d1(α)
is the degree of divisibility of the canonical bundle of the homogeneous
space G/Pα.

Now we give a purely root theoretic formula for d1(α).

Lemma 1.3.3. d1(α) =
∑

β(�∨
α)>0 n(β, α), where the β in the sum

range over R.

Proof. By definition, χ+ =
∑

β(�∨
α)>0 β as additive characters on

h. By the previous lemma, χ+(ζα/mα) = d1(α)χ0(ζα/mα) = d1(α). On
the other hand, ζα/mα = α∨ + ν, where ν lies in the Q-span of the
simple coroots β∨, β �= α, and hence in the Lie algebra of the derived
group Sα. Thus

χ+(ζα/mα) = χ+(α∨) =
∑
β∈R

β(�∨
α)>0

β(α∨),

and so d1(α) =
∑

β(�∨
α)>0 n(β, α). �

Similarly, we compute the character χk of Lα corresponding to∧top uk:

Lemma 1.3.4. For k > 0, let c(α, k) be the dimension of uk, in
other words the number of roots β such that the coefficient of α in β is k.
Let i(α, k) = kc(α, k)/�α(�∨

α) = knαc(α, k)/mα. Then the character
χk of Lα corresponding to

∧top uk is given by

χk = χ
i(α,k)
0 .

Proof. As before, χk = χNk
0 for some integer Nk. To compute

Nk, note that, if gβ ⊆ uk, then ϕα acts on gβ via raising to the power
β(ζα) = knα. Since χ0 ◦ ϕα(λ) = λmα , we must have

mαNk = knα dim uk.
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Hence, Nk = knαc(α, k)/mα = i(α, k). �

Remark 1.3.5. An argument very similar to the proof of Lem-
ma 1.3.3 shows that

i(α, k) =
∑

β(�∨
α)=k

n(β, α).

1.4 Some lemmas on root systems

Fix α ∈ ∆. Our goal now is to analyze the Lα-representations uk,
and in particular the numbers d1(α) and i(α, k) introduced above.

Definition 1.4.1. Fix a positive integer k, and consider the set

S(α, k) = {β ∈ R : β(�∨
α) = k}.

For k = 0, we define similarly

S+(α, 0) = {β ∈ R+ : β(�∨
α) = 0}.

The latter is a set of positive roots for the root system R′ = ∆−{α}, i.e.,
for Sα. We define S−(α, 0) similarly. A lowest root σk(α) for S(α, k)
is a root σk(α) ∈ S(α, k) such that, for every β ∈ S(α, k), β − σk(α)
is a sum (possibly empty) of simple roots. For example, σ1(α) = α.
A lowest root in S(α, k) is clearly unique, if it exists. A highest root
λk(α) ∈ S(α, k) is defined similarly, and is also clearly unique if it exists.

The following is related to results of Borel-Tits (unpublished) as well
as Azad-Barry-Seitz [3].

Proposition 1.4.2. In the above notation, if S(α, k) �= ∅, then
lowest roots and highest roots always exist and are unique.

Proof. Let R(α, k) be the subset of R consisting of roots β such
that k divides β(�∨

α). Clearly R(α, k) is again a root system. Let V
be the real span of R and let V ′ be the subspace of V spanned by
∆−{α}. Then clearly V ′ ∩R = V ′ ∩R(α, k) = R′ is the set of all roots
which are linear combinations of elements of ∆−{α}. Thus R′ is a root
system with simple roots ∆− {α}. By [8, VI §1, Proposition 24], since
R′ ⊆ R(α, k), there exists a set of simple roots for R(α, k) containing
∆ − {α}. In fact, the proof of this proposition shows that there are at
least two different sets of simple roots, each of the form (∆−{α})∪{β}.
Then k|β(�∨

α), and since S(α, k) �= ∅, in fact β(�∨
α) = ±k. Suppose for
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example that β(�∨
α) = k. If γ ∈ S(α, k), then γ =

∑
δ �=α mδδ +mβ and

γ(�∨
α) = β(�∨

α) = k. Thus m = 1 and mδ ≥ 0 for all δ ∈ ∆ − {α}, so
that β is a lowest root for S(α, k). Suppose now that (∆− {α}) ∪ {β′}
is also a set of simple roots for R(α, k), where β′ �= β. It follows that
�∨

α(β′) = −k. In this case, it is easy to check that −β′ is a highest root
for S(α, k). �

Corollary 1.4.3. The Lα-modules uk are irreducible. �

Remark 1.4.4. Using the Borel-de Siebenthal theorem [8, p. 229,
ex. 4], the Dynkin diagram of R(α, k) is given abstractly as follows.
Begin with the extended Dynkin diagram of R. There exists a root
β such that hβ = k, and such that the Dynkin diagram for ∆̃ − {β}
contains a root γ such that the diagram for ∆̃−{β, γ} is the same as the
diagram for ∆− {α}. In practice, these properties uniquely determine
β and γ. The Dynkin diagram for R(α, k) is then the Dynkin diagram
of ∆̃− {β}, and γ corresponds to λk(α).

Lemma 1.4.5. Let k be a positive integer. Then S(α, k) �= ∅ if
and only if 1 ≤ k ≤ hα.

Proof. Since α ∈ S(α, 1), S(α, 1) �= ∅. Suppose inductively we have
shown that S(α, k) �= ∅ for all k, 1 ≤ k ≤ �. If β ∈ ∆−α, then λ�(α)+β
is not a root. If λ�(α) + α is not a root, then λ�(α) is the highest root
and � = hα. Otherwise, λ�(α) + α ∈ S(α, � + 1). �

For future reference, we record the following properties of σk(α) and
λk(α):

Lemma 1.4.6. In the above notation, let R′ ⊆ R be the subroot
system with simple roots ∆ − {α}. Suppose that S(α, k) �= ∅, and let
w′

0 ∈ W (R′) ⊆ W (R) be the unique element such that w′
0(∆ − {α}) =

−(∆− {α}). Suppose that τ is the permutation of ∆− {α} induced by
−w′

0, which we can also view as a permutation of ∆ fixing α. Let τ act
on V and V ∗ in the natural way. Then:

(i) w′
0σk(α) = λk(α).

(ii) λ1(α∨) = (λ1(α))∨.

(iii) σk(α) = kλ1(α) − τ(λk(α)) + kα. Likewise σk(α)∨ = k′λ1(α∨)
− τ(λk(α)∨) + k′α∨, where k′ is the coefficient of α∨ in λk(α)∨.
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Proof. Clearly w′
0σk(α) ∈ S(α, k) has the property that

(∆− {α}) ∪ {−w′
0σk(α)}

is a set of simple roots for R(α, k). By the proof of Proposition 1.4.2,
w′

0σk(α) = λk(α), proving (i). To see (ii), note that α∨ = σ1(α∨), and
thus λ1(α∨) = w′

0σ1(α∨) = w′
0(α

∨) = (w′
0α)∨ = (λ1(α))∨. To see (iii),

write λk(α) = kα + λ′, where λ′ ∈ V ′. Then

σk(α) = w′
0λk(α) = kw′

0α− τ(λ′) = kλ1(α)− τ(λ′).

On the other hand, −τ(λ′) = kα− τ(λk(α)), and plugging this back in
gives the first part of (iii). The second part is proved in a very similar
way. �

Recall that, for k > 0, c(α, k) is the cardinality of S(α, k), in other
words the number of β ∈ R such that β(�∨

α) = k, and that i(α, k) =
kc(α, k)/�α(�∨

α).

Definition 1.4.7. Define

dk(α) =
∑
k|x

i(α, x) =
∑
�>0

i(α, �k).

In particular d1(α) agrees with the previous definition. Of course, the
dk(α) determine i(α, k) via Moebius inversion. Since the i(α, k) are all
positive integers, the dk(α) are positive integers as well.

Lemma 1.4.8. With notation as above,

i(α, k) =
hαgkc(α, k)

gα
∑

β∈R+(β(�∨
α))2

;

d1(α) = 2ρ(�∨
α)/�α(�∨

α) =
hαg
∑

β∈R+ β(�∨
α)

gα
∑

β∈R+(β(�∨
α))2

.

Moreover
∑

k>0 ϕ(k)dk(α) = hαg/gα.

Proof. The first equality follows since, by Lemma 1.1.2 and Lem-
ma 1.1.3,

2g

(
hα

gα

)
�α(�∨

α) = 2g〈�∨
α , �∨

α〉 = 2gI0(�∨
α) = 2

∑
β∈R+

(β(�∨
α))2.
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The second follows since∑
k>0

kc(α, k) =
∑

β∈R+

β(�∨
α).

The third is an easy consequence of the fact that
∑

k|x ϕ(k) = x, using∑
k>0

k2c(α, k) =
∑

β∈R+

(β(�∨
α))2. �

Proposition 1.4.9. We have d1(α) = ρ(λ1(α∨))+1, where λ1(α∨)
is the highest coroot such that the coefficient of α∨ in λ1(α∨) is 1.

Proof. By Lemma 1.3.3, it suffices to prove that

ρ(λ1(α∨)) + 1 =
∑

β(�∨
α)>0

n(β, α).

By Lemma 1.4.6, since σ1(α∨) = α∨, w′
0(α

∨) = λ1(α∨). Since w′
0

exchanges positive and negative roots in R′, it follows that −w′
0 is a

permutation of S+(α, 0). Clearly, given β ∈ S+(α, 0),

β(λ1(α∨)) = −(−w′
0(β)(α∨)).

Thus, since −w′
0 permutes S+(α, 0), we have∑

β∈S+(α,0)
β(λ1(α∨))>0

β(λ1(α∨)) +
∑

β∈S+(α,0)
β(α∨)<0

β(α∨) = 0.

Next we claim:

Lemma 1.4.10.

−
∑

β∈S+(α,0)
β(α∨)<0

β(α∨) + 2 =
∑

β(�∨
α)>0

β(α∨) =
∑

β(�∨
α)>0

n(β, α).

Proof. Suppose that β �= ±α ∈ R, and consider the α-string defined
by β, say β − qα, . . . , β + pα. Since p− q + 1 = −n(β, α) + 1, it is easy
to see that

∑p
i=−q(β + iα)(α∨) = 0. If β is a negative root, then every

root in the α-string is negative and thus none of them appears in the
right hand side of the above equality. After reindexing, we can assume
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that β is the origin of the α-string. If β(α∨) > 0, then (β + iα)(α∨) > 0
for all i > 0, and so the total contribution to the right hand side from
the sum over the α-string is zero. If β ∈ S+(α, 0), then the contribution
to the sum on the right hand side is

∑
i≥1(β + iα)(α∨) = −β(α∨). The

remaining possibility for the right hand side is β = α, and in this case
β(α∨) = 2. Thus we see that the right hand side in Lemma 1.4.10 is
equal to the left hand side. �

Lemma 1.4.11.∑
β∈S+(α,0)

β(λ1(α∨))>0

β(λ1(α∨)) = ρ(λ1(α∨))− 1.

Proof. First note that

2ρ(λ1(α∨)) =
∑

β∈R+

β(λ1(α∨)).

We consider as before the λ1(α)-strings defined by a root β �= λ1(α)
which lie in R+. If the origin of such a string lies in R+, then so does
every γ lying in the string, and the sum over all such γ of n(γ, λ1(α))
is zero. Next we claim:

Claim 1.4.12. If a λ1(α)-string meets R+ but is not contained in
R+, then either:

(i) The origin of the string lies in S−(α, 0) and all other elements of
the string lie in R+.

(ii) The extremity of the string lies in S+(α, 0), and all other elements
lie in R−.

Moreover, there is a length-preserving bijection between strings of types
(i) and (ii) above.

Proof. First note that, if β ∈ S(α, 1), then β − 2λ1(α) cannot be
a root. For then β − λ1(α) would also be a root, necessarily negative,
and then 2λ1(α)− β would be an element of S(α, 1) higher than λ1(α).
Thus, every λ1(α)-string meeting R+ but not contained in it must either
begin or terminate in S+(α, 0)∪S−(α, 0). Clearly, the only possibilities
are (i) and (ii) above, and the bijection is given by sending the origin
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of a string of type (i) to its negative, which is the extremity of a string
of type (ii). �

Returning to the proof of Lemma 1.4.11, the only nonzero contribu-
tions to the sum

∑
β∈R+ β(λ1(α∨)) come from

(i) λ1(α)-strings whose origin is γ = −β ∈ S−(α, 0), and these con-
tribute −γ(λ1(α∨)) = β(λ1(α∨));

(ii) λ1(α)-strings whose extremity is β ∈ S+(α, 0), and these con-
tribute β(λ1(α∨));

(iii) the root λ1(α) and this contributes λ1(α)(λ1(α∨)) = 2.

Summing these up, we see that

2ρ(λ1(α∨)) =
∑

β∈R+

β(λ1(α∨)) = 2
∑

β∈S+(α,0)
β(λ1(α∨))>0

β(λ1(α∨)) + 2.

Dividing by 2 gives the final formula of Lemma 1.4.11. �
To complete the proof of Proposition 1.4.9, we have∑

β(�∨
α)>0

n(β, α) = −
∑

β∈S+(α,0)
β(α∨)<0

β(α∨) + 2

=
∑

β∈S+(α,0)
β(λ1(α∨))>0

β(λ1(α∨)) + 2

= ρ(λ1(α∨)) + 1,

as claimed. �
There is a generalization of the previous proposition to the compu-

tation of dk(α) for every k > 0:

Proposition 1.4.13. Let

k′ = k〈α, α〉/〈λk(α), λk(α)〉

be the coefficient of α∨ in λk(α)∨. Then

d1(α) + dk(α) =
2
k′ (ρ(λk(α)∨) + 1).
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Proof. In the notation of Proposition 1.4.2, set αk = −λk(α) and
let Rk = R(α, k), with simple roots (∆−{α})∪{αk}. Although Rk need
not be irreducible, we can still define the integer dRk

1 (αk) with respect
to the root system Rk as in Lemma 1.3.1. By Proposition 1.4.9, which
holds even if Rk is reducible, dRk

1 (αk) = ρk(λ1((αk)∨)) + 1, where ρk is
the sum of the fundamental weights of the root system Rk. Applying
Lemma 1.4.6, and using the notation introduced in its statement, we
have

λ1((αk)∨) = λ1(αk)∨ = w′
0(αk)∨ = (w′

0αk)∨ = −(σk(α))∨

= −k′λ1(α∨) + τ(λk(α))∨)− k′α∨,

where k′ = k〈α, α〉/〈λk(α), λk(α)〉 is the coefficient of α∨ in λk(α)∨.
Next we compute ρk. Write

(αk)∨ =
∑

β∈∆−{α}
cββ∨ − k′α∨ =

∑
β∈∆

cββ∨,

where cα = −k′. Denote the fundamental weights of Rk by �k
β, β �= α,

and �αk
. Then it is easy to check that

�αk
= − 1

k′�α;

�k
β = �β +

cβ

k′ �α for β �= α.

Thus

ρk =
∑
β �=α

�k
β + �αk

=
∑
β �=α

�β +
1
k′

∑
β �=α

cβ − 1

�α

=
∑

β

�β +
1
k′

∑
β

cβ − 1

�α

= ρ− 1
k′
(
ρ(λk(α)∨) + 1

)
�α.

Since
�α(−k′λ1(α∨) + τ(λk(α))∨)− k′α∨) = −k′

and ρ(τ(γ)) = ρ(γ) for all γ, we see that

dRk
1 (αk) = −k′(ρ(λ1(α∨) + 1) + ρ(λk(α)∨)) + 1 + ρ(λk(α)∨)) + 1

= −k′d1(α) + 2(ρ(λk(α)∨)) + 1).
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Now an argument similar to the calculation of ρk above shows that �∨
αk

,
the fundamental coweight for Rk dual to αk, is given by −(1/k)�∨

α .
Also, c(α, nk) = c(αk, n) for all n. Thus i(αk, n) = k′i(α, nk) for all
positive integers n. It follows that dRk

1 (αk) = k′dk(α). Putting this
together with the above gives k′d1(α) + k′dk(α) = 2(ρ(λk(α)∨)) + 1),
which is the statement of the proposition. �

Corollary 1.4.14. d1(α) + dhα(α) =
2g

gα
.

Proof. For k = hα, we have λk(α) = α̃ and k′ = kgα/hα = gα, and
the corollary is clear. �

To put the corollary in a more general context, we have the following
definition which is taken from [7]:

Definition 1.4.15. For a sequence d1, . . . , dN of positive integers,
let M =

∑
k>0 ϕ(k)dk. Let the Farey sequence

FN = {0/1, 1/N, 1/(N − 1), . . . }
be the sequence of rational numbers between 0 and 1, written in lowest
terms, whose denominator is at most N , written in increasing order.
We say that the sequence {dk} has the circular symmetry property with
respect to N and M if, for all consecutive terms r/x and s/y in FN ,

dx + dy =
2M

xy
.

The geometric meaning of this property is explained in [7].

Since every integer x, 1 ≤ k ≤ N , appears as a denominator of some
element of FN , the following is clear:

Lemma 1.4.16. Suppose that d1, . . . , dN and d′1, . . . , d′N are two
sequences of positive integers which both satisfy the circular symmetry
property with respect to N and M . If d1 = d′1, then dx = d′x for all x,
1 ≤ k ≤ N . �

For the sequence {dk(α)}, the largest integer N such that dN (α) �= 0
is hα, and

∑
k>0 ϕ(k)dk(α) = ghα/gα, by Lemma 1.4.8. Moreover d1(α)

is given by Proposition 1.4.9. Then Corollary 1.4.14 is the first case
x = 1, y = hα of the following:

Proposition 1.4.17. With notation as above, the sequence {dk(α)}
has the circular symmetry property with respect to hα and ghα/gα.
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Proof. If hα ≤ 3, it is easy to check that the above conditions follow
from Corollary 1.4.14 and the fact that

∑
k>0 ϕ(k)dk(α) = ghα/gα. The

remaining cases are: F4 with α the root such that hα = 4, E7 with α
the root such that hα = 4, or E8 with α a root such that hα = 4, 5, 6.
These cases may be checked by hand. �

It would be very interesting to find a more conceptual proof of Propo-
sition 1.4.17.

1.5 The moduli space of semistable G-bundles

If ξ0 is a C∞ principal G-bundle over E, then there is a characteristic
class c1(ξ0) ∈ H2(E; π1(G)) ∼= π1(G) = 〈c〉. LetM(G, c) be the set of S-
equivalence classes of holomorphic semistable G-bundles ξ over E with
c1(ξ) = c. Suppose that K is the compact form of G. Then 〈c〉 =
π1(K). Let K̃ be the universal covering group of K. By the theorem
of Narasimhan-Seshadri and Ramanathan and [10, 5.8(i)], M(G, c) is
homeomorphic to the the space

{(x, y) ∈ K̃ × K̃ : xyx−1y−1 = c}/K̃,

where the action of K̃ is by simultaneous conjugation. By [7, 3.2],
corresponding to c ∈ Z(G̃) there is an element wc ∈ W and an affine
isomorphism ϕc of V ∗ which permutes the set ∆̃ and thus acts on the
fundamental alcove A corresponding to the Weyl chamber defined by
∆.

Definition 1.5.1. The Weyl element wc induces a permutation
of the set ∆̃ which induces an automorphism of the extended Dynkin
diagram of G. Thus gwc(α) = gα for all α ∈ ∆̃. Let α denote the wc-
orbit of α and let nα be the cardinality of α. Set gα = nαgα, for any
choice of α ∈ α. Let n0 be the gcd of the integers gα. Let Λ̃ be the free
abelian group with basis ∆̃. Then wc acts on Λ̃, preserving the relation∑

β∈∆̃
gββ∨ = 0, and so wc acts on the quotient which is Λ. Define rc

by: rc + 1 is the cardinality of ∆̃/wc.

Let Ac be the fixed subspace of ϕc, acting on A. With V ∗ = Λ⊗R,
let T = V ∗/Λ, so that T is a real torus of dimension r. Then W and
wc act on T . Let T0 = (Twc)0 be the identity component of the group
Twc . Thus rc = dimT0.

For an abelian group A and an automorphism σ of A, we denote
as usual by Aσ the subgroup of invariants of σ and by Aσ the group
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A/ Im(Id−σ) of coinvariants of σ. The automorphism wc acts on T =
V ∗/Λ, and we can define Twc and Twc as before. Let T0 = (Twc)0 be
the identity component of the group T . There is an induced map from
T0 to Twc and it is finite. We then have:

Theorem 1.5.2. Fix x0 ∈ Ac and y0 an element in the normalizer
NT (K̃) of T in K̃ which projects to wc in W = NT (K̃)/T . Then for
s, t ∈ T0 the pair x = sx0, y = ty0 satisfies [x, y] = c. We define a
map T0 × T0 →M(G, c) by (s, t) �→ [(sx0, ty0)]. This map is finite and
surjective. Its degree is

(rc)!
det(I0|Λwc)

n0

∏
α

gα,

where the product is over the wc-orbits of ∆̃.

Proof. By [7, Lemma 6.1.7], with K̃ and c as above, every pair
(x, y) such that xyx−1y−1 = c is conjugate to such a pair with x ∈ Ac

and y ∈ T0 · wc. This proves that the map is surjective. Clearly, it is
finite-to-one. If x is in the interior of Ac, then it is regular, and the only
further possible conjugation is via an element t ∈ T , which acts on y via
t−wc(t). Thus, a fundamental domain for the map T0×T0 →M(G, c)
is given by Ac × S, where S is a fundamental domain for the quotient
map T0 → Twc . It follows that the degree of the map T0×T0 →M(G, c)
is the product of the degree of the map from T0 to Twc with the ratio
vol(T0)/ vol(Ac), where volume is computed with respect to any Weyl
invariant metric. We consider these two integers separately.

Lemma 1.5.3. Let α∨ =
∑

α∈α α∨. Then

Λwc ∼=
⊕

α

Z · α∨
/∑

α

gαα∨.

Moreover, the set {α∨ : α �= α0} is an integral basis for Λwc. Finally,
for each orbit α, choose α ∈ α and let eα be the image of α in Λwc.
Then

Λwc
∼=
⊕

α

Z · eα

/∑
α

gαeα.

Proof. There is an exact sequence

0→ Z→ Λ̃→ Λ→ 0,
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where 1 ∈ Z �→∑
β∈∆̃

gββ∨. The homomorphisms in this sequence are

equivariant with respect to the action of wc. Moreover, wc acts on Λ̃ by
a permutation of the basis. The proof of the lemma follows easily by
considering the associated long exact sequence

0→ Zwc → (Λ̃)wc → Λwc → Zwc → (Λ̃)wc → Λwc → 0. �

Corollary 1.5.4. The torsion subgroup Tor Λwc
∼= Z/n0Z, and

Λwc/ Tor Λwc
∼=
⊕

α

Z · eα

/∑
α

gα

n0
eα. �

Lemma 1.5.5. The order of Twc/T0 is n0. The natural map T0 →
Twc is finite and surjective of degree

∏
α nα

/
n0.

Proof. Beginning with the short exact sequence of wc-modules

0→ Λ→ V → T → 0,

we get a long exact sequence

0→ Λwc → V wc → Twc → Λwc → Vwc → Twc → 0.

The quotient V wc/Λwc = T0. Since Twc/T0 is a finite group and Vwc is
torsion free, the induced map Twc/T0 → Λwc is an isomorphism from
Twc/T0 to Tor Λwc , and hence Twc/T0

∼= Z/n0Z. Moreover, it is clear
that the degree of the map from T0 to Twc is the index of the image of
Λwc in Λwc/ Tor Λwc . By Lemma 1.5.3 and Corollary 1.5.4, it suffices
to compute the order of the quotient of

⊕
α Z · eα by the relations nαeα

and
∑

α gαeα. Since gα0 = 1, it is clear that the quotient has order∏
α nα

/
n0. �

Now we compute vol(T0)/ vol(Ac) using the volume determined by
the inner product I0. The alcove A has vertices equal to 0 and �∨

α/hα,
α ∈ ∆. By Lemma 1.1.3, the vertices are 0 and α∗/gα, where the α∗

are the dual basis with respect to I0 to the basis α∨ of Λ. Now we have
the following elementary lemma, whose proof is left to the reader:

Lemma 1.5.6. Let A be a simplex in Rn with vertices
0 = e0, e1, . . . , en. Let ϕ be an affine linear transformation of Rn which
acts via a permutation of the vertices of A. Suppose that the orbits of
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w on the vertices are o0, . . . ,os, with 0 ∈ o0. If no is the order of the
orbit o, set

vo =
1
no

∑
ei∈o

ei.

Then the fixed set of Aϕ for the action of ϕ on A is a simplex with
vertices

vo0 , vo1 + vo0 , . . . , vos + vo0 . �

Applying the lemma to Ac, we see that Ac is a translate of the
simplex in (V ∗)wc spanned by 0 and 1/gαvα, where vα = 1/nα

∑
α∈α α∗

and α is any representative for α. It follows by Lemma 1.5.3 that
{α∨; α �= α0} is an integral basis for Λwc , where α∨ =

∑
α∈α α∨. Since

I0(vα, β
∨) =

{
0, if α �= β;
1, if α = β,

we see that {α∨} and {vα} are dual bases for the restriction of I0 to
(V ∗)wc . Now

vol(Ac) =
vol(C1)

(rc)!
∏

α gα
,

where C1 is the parallelepiped spanned by the basis {vα} and as usual
α is any representative for α. On the other hand, vol(T0) = vol(C2),
where C2 is the parallelepiped spanned by the dual basis {α∨}. Thus

vol(T0)
vol(Ac)

= (rc)!

(∏
α

gα

)
vol(C2)
vol(C1)

= (rc)!

(∏
α

gα

)
det(I0|Λwc).

To complete the proof of Theorem 1.5.2, the degree in question is the
product

(rc)!

(∏
α

gα

)
det(I0|Λwc) ·

(∏
α nα

n0

)
= (rc)!

det(I0|Λwc)
n0

∏
α

gα,

as claimed. �
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2. Bundles over maximal parabolic subgroups

2.1 Description of bundles and their automorphisms

Fix α ∈ ∆. We consider Lα-bundles η over E such that c1(η×LαG) =
c, and will refer to such a bundle as an unliftable bundle of type c. The
primitive dominant character χ0 of Pα lifts to a character on P̃α which
is a positive power of the primitive dominant character �α of P̃α. We
denote this power by oc,α. Note that �α(c) is well-defined as an element
of Q/Z and oc,α is its order. In fact, we have:

Lemma 2.1.1. Let β be a root such that c ≡ �∨
β (mod Λ). Then

oc,α, the order of �α(c), is the order of �α(�∨
β ) mod Z. �

In the notation of [7, §3.4], oc,α = 1 if and only if α /∈ ∆(c). The
Dynkin diagram for ∆(c) is a union of diagrams of A-type and is de-
scribed in the tables at the end of [7].

If η is an Lα-bundle, then the character χ0 defines an associated line
bundle η ×Lα C. This line bundle is the determinant of η, which we
write as det η. Its degree is called the degree of η and is denoted deg η.

Let η → E be a principal Lα-bundle whose degree d is negative.
We shall study the corresponding bundles η ×Lα Pα and ξ = η ×Lα G.
Associated to η and the action of Lα on the Lie algebra g there is the
vector bundle η×Lα g = ad ξ. The Lie algebra g decomposes under Lα as
u⊕l⊕u− where l is the Lie algebra of Lα, u is the subspace of g on which
ϕα(C∗) ⊆ Lα acts with positive weights, and u− is the subspace of g on
which ϕα(C∗) ⊆ Lα acts with negative weights. Since the coefficients
of ζα are nonnegative, u is the Lie algebra of Uα, p = l ⊕ u is the Lie
algebra of Pα, and u− is the orthogonal space to u under the Killing
form. Clearly:

Lemma 2.1.2. There is a direct sum decomposition

ad ξ = η ×Lα g = adLα η ⊕ u(η)⊕ u−(η).

The action of the C∗ ⊆ Lα is trivial on adLα η and has positive (resp. neg-
ative) weights on u(η) (resp. u−(η)). �

We now have:

Lemma 2.1.3. For every negative integer d, there exists a semi-
stable Lα-bundle η over E of degree d. There is an unliftable semistable
Lα-bundle η of type c if and only if deg η/oc,α ≡ �α(c) mod Z. In
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particular, if η is unliftable of type c and degree −1, then −1/oc,α ≡
�α(c) mod Z. For a semistable Lα-bundle η of degree d < 0, we have:

(i) The bundle η ×Lα G is unstable.

(ii) The parabolic Pα− opposite to Pα is a Harder-Narasimhan parabolic
of ξ.

(iii) u(η) is a direct sum of semistable vector bundles of strictly negative
degrees.

(iv) The Atiyah-Bott point of η as defined in [2, 10, 11] is given by

µ(η) =
dζα

oc,αmα
=

dnα

oc,αmα
�∨

α .

Proof. The dominant character χ0 lifts to the character �
oc,α
α on

L̃α. By [11, Definition 2.1.1], µ(η) is the unique point µ in the center
of l such that oc,α�α(µ) = d. Thus µ = dζα/oc,αmα, showing (iv).
The congruence condition deg η/oc,α ≡ �α(c) mod Z follows from [11,
Lemma 2.1.2 (ii)]. Statement (iii) follows from the fact that the uk are
irreducible L-modules, by Corollary 1.4.3, and from [11, Lemma 2.2.1].
The remaining statements are clear. �

Our goal now is to study the spaces H1(E; ad ξ) and H0(E; ad ξ).
We shall primarily be interested in the case where η is semistable. It is
enough to study the spaces H i(E; adLα η), H i(E; u(η)), and
H i(E; u−(η)). Since Lα has a one-dimensional center, regardless of the
choice of η we must always have dim H0(adLα η) ≥ 1, and thus, since
deg adLα η = 0, dimH1(adLα η) ≥ 1 as well by Riemann-Roch on E.
More precisely, we have:

Lemma 2.1.4. Let Ŝα be the quotient of Lα by its center. Let η
be a semistable Lα-bundle and let η̂ be the induced Ŝα-bundle. Let r(η̂)
be the dimension of Aut

Ŝα(η̂). Then

dim H0(E; adLα η) = dimH1(E; adLα η) = 1 + r(η̂).

Proof. On the level of Lie algebras, there is a direct sum decompo-
sition l = C⊕Lie(Ŝα), where C = Lie(Z(Lα)), and the proof follows. �

We turn next to the groups H i(E; u(η)) and H i(E; u−(η)):
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Lemma 2.1.5. Let η be a principal Lα-bundle of negative degree.
Then

dim H1(E; u(η)) ≥ −deg (u(η)) ,

with equality holding if and only if H0(E; u(η)) = 0. Likewise,

dim H0(E; u−(η)) ≥ deg (u−(η)) ,

with equality holding if and only if H1(E; u−(η)) = 0. Finally, if η is
semistable, then H0(E; u(η)) = H1(E; u−(η)) = 0.

Proof. The first two statements are immediate from Riemann-Roch
on E. The final one follows from Statement (iii) of Lemma 2.1.3. �

From the decomposition p = l ⊕ u, it follows that H0(E; u(η)) = 0
if and only if

dim AutLα η = dim AutP α(η ×Lα Pα).

The vanishing of H1(E; u−(η)) says on the other hand that the map

H1(E; adP α(η ×Lα Pα))→ H1(E; adG(η ×Lα G))

is an isomorphism. In particular, every small deformation of the G-
bundle η ×Lα G arises from a small Pα-deformation of η ×Lα Pα.

To complete the determination of H1(E; u(η)), we must compute
the degree of u(η).

Proposition 2.1.6. We have deg u(η) = (deg η)d1(α)/oc,α, where
d1(α) is the integer defined in Lemma 1.3.1 for G̃. Likewise, deg u−(η) =
−(deg η)d1(α)/oc,α.

Proof. We compute the degree of the line bundle
∧top u(η). Let

χ̃0 be the dominant character for P̃α. The line bundle
∧top u(η) is

associated to η by the character χ+ : Lα → C∗. By Lemma 1.3.1, χ+

lifts to the character χ̃+ = χ̃
d1(α)
0 of L̃α. Since χ0 lifts to χ̃

oc,α

0 on L̃α

and since the line bundle associated to η by the character χ0 has degree
deg η, the degree of u(η) is (deg η) · d1(α)/oc,α. A similar argument (or
duality) handles the case of u−(η). �

Corollary 2.1.7. If η is semistable of negative degree, then

dim H1(E; u(η)) = dimH0(E; u−(η)) = −(deg η)d1(α)/oc,α.
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Thus

dim H0(E; ad(η ×Lα G)) = dimH1(E; ad(η ×Lα G))
= 1 + r(η̂)− (deg η)d1(α)/oc,α.

Proof. By (iii) of Lemma 2.1.3, u(η) is a direct sum of semistable
vector bundles of negative degrees, so that H0(E; u(η)) = 0. The
proof now follows by combining Lemmas 2.1.4 and 2.1.5 with Propo-
sition 2.1.6. �

2.2 The C∗-action in cohomology

The Lie algebra u is a direct sum of the subspaces uk, k > 0, where
uk is the sum of all the root spaces gβ where the coefficient of β is
exactly k. By Proposition 1.4.2, uk is an irreducible Lα-module. Thus
u(η) is the direct sum of vector bundles uk(η) associated to irreducible
representations of Lα. By [21], uk(η) is semistable. Our goal now is to
study the action of C∗ = ϕα(C∗) on u(η) and on H1(E; u(η)). As we
saw in Section 1.3, ϕ̃α(C∗) ⊆ L̃α acts on uk with weight knα. Thus, by
Lemma 1.2.7, ϕα(C∗) acts on uk with weight knc,α.

Lemma 2.2.1. The degree deg uk(η) is equal to (deg η)·i(α, k)/oc,α,
where

i(α, k) = kc(α, k)/�α(�∨
α) = knαc(α, k)/mα.

The slope of uk(η) is k�α(µ(η))/�α(�∨
α), where µ(η) is the Atiyah-Bott

point of η. Thus, if η is semistable of negative degree, then

dim H1(E; uk(η)) = −(deg η) · i(α, k)/oc,α.

Proof. By Lemma 1.3.4 applied to G̃, the character of Lα defined
by the determinant on uk lifts to the character χ

i(α,k)
0 on L̃α. The degree

of uk(η) is thus (deg η) · i(α, k)/oc,α. It follows that the slope of uk(η)
is knα deg η/oc,αmα = k�α(µ)/�α(�∨

α). �

3. Special roots and the associated bundles

In §3.1–3.3, we assume that G is simply connected. We will defer
the discussion of the non-simply connected case until §3.4.
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3.1 Definition of special roots

Definition 3.1.1. A simple root α is special if

(i) The Dynkin diagram associated to ∆−{α} is a union of diagrams
of A-type.

(ii) The simple root α meets each component of the Dynkin diagram
associated to ∆− {α} at an end of the component.

(iii) The root α is a long root.

If R is of type An, then every simple root is special. All other irreducible
root systems have a unique special simple root. It corresponds to the
unique trivalent vertex if the Dynkin diagram is of type Dn, n ≥ 4 or
En, n = 6, 7, 8. For R = Cn, n ≥ 2 and G2, it is the long simple root.
For R = Bn, n ≥ 2, and F4 it is the unique long simple root which is
not orthogonal to a short simple root.

We shall investigate the structure of the group Lα and the space
H1(E; u(η)) more closely in case α is special.

Let α be special and let η be a semistable bundle over Pα of degree
−1. By the results of [11], the unstable bundles η ×Lα G are minimally
unstable bundles, in the sense that every small deformation of such a
bundle is either of the same type or semistable. Moreover, if G is not of
A-type, then for every unstable G-bundle ξ, there is a small deformation
of ξ to a bundle of the form η×Lα G. Now for every unstable G-bundle ξ,
there is the Harder-Narasimhan reduction to a parabolic subgroup, not
necessarily maximal, and in fact ξ reduces to a bundle η the Levi factor
L. Let P be the opposite parabolic to the Harder-Narasimhan parabolic
and let u be the Lie algebra of the unipotent radical of P . It is easy to
see that the function ξ �→ dim H1(E; u(η)) is strictly decreasing for the
Atiyah-Bott ordering, and hence attains its minimum in the case where
P is a maximal parabolic corresponding to a special root and −deg η is
minimal. We shall see this directly below.

3.2 Bundles associated to special roots

Our first lemma determines the structure of Sα and Lα in case α is
special:

Lemma 3.2.1. Suppose that α is special, and let t be the number
of components in the Dynkin diagram of Sα. Then there exist integers
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ni ≥ 2 such that Sα ∼=∏t
i=1 SLni(C) and mα = lcm(ni). Moreover,

Lα ∼=
{

(A1, . . . , At) ∈
t∏

i=1

GLni(C) : detA1 = · · · = det At

}
,

in such a way that the primitive dominant character of Lα corresponds
to the common value of the determinant.

Proof. It follows from the definition of a special root that Sα ∼=∏t
i=1 SLni(C). By Lemma 1.2.3, there is an isomorphism

Lα ∼= Sα ×Z/mαZ C∗,

where the image of 1 ∈ Z/mαZ is mapped to e2πi/mα ∈ C∗ and to
e−2πi/ni Id ∈ SLni(C). From this, we must have mα = lcm(ni). The
map from Sα × C∗ to

∏t
i=1 GLni(C) which is the natural inclusion

t∏
i=1

SLni(C) ⊆
t∏

i=1

GLni(C)

and which maps λ ∈ C∗ to

(λmα/n1 Id, . . . , λmα/nt Id)

then factors to give an induced homomorphism

Sα ×Z/mαZ C∗ →
t∏

i=1

GLni(C).

It is clear from the construction that this induced homomorphism is
injective and that its image is the subgroup of matrices of equal deter-
minant. Let det Lα → C∗ denote the value of any of these determinants
under the inverse isomorphism. For λ ∈ C∗, we see that det ◦ϕα = λmα ,
and hence det = χ0. �

Lemma 3.2.2. If α is special, the positive integers nα are equal to
1 except in the following cases:

(a) If G = SLn(C) and α corresponds to the kth vertex in the usual
ordering of the simple roots, then nα = n/ gcd(k, n).

(b) If G is of type Bn and n is even, then nα = 2.
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(c) If G is of type Cn, then nα = 2.

(d) If G is of type Dn and n is odd, then nα = 2.

Proof. If the center of G is trivial, then �∨
α is a primitive element of

Λ, and hence nα = 1. This handles the cases E8, F4, G2. Next suppose
that R is simply laced and not of type An, so that the Dynkin diagram of
R is a Tp,q,r diagram, with (p, q, r) = (2, 2, n) or (2, 3, s) with s = 3, 4, 5.
Let N = (1/p+1/q+1/r−1)−1, so that N = n, 6, 12, 30 in the respective
cases above. In particular N ∈ Z. There exists a labeling of the roots
as {α, β1, . . . , βp−1, γ1, . . . , γq−1, δ1, . . . , δr−1}, where β1, γ1, δ1 are ends
of the diagram, 〈βi, βi+1〉 = −1, 1 ≤ i ≤ p − 2 and similarly for the γj

and δk, and βp−1, γq−1, δr−1 meet α, such that

�∨
α =

N

p

p−1∑
i=1

iβ∨
i +

N

q

q−1∑
j=1

jγ∨
j +

N

r

r−1∑
k=1

kδ∨k + Nα.

It follows that �∨
α is integral, and hence nα = 1, unless (p, q, r) =

(2, 2, n) and n is odd, in which case nα = 2. A similar argument handles
the case of An. In case Bn, if we number the roots as in [8] beginning
at the long end of the Dynkin diagram, then α = αn−1 and

�∨
αn−1

=
n−1∑
i=1

iα∨
i +

n− 1
2

α∨
n .

Thus nα = 1 if n is odd and 2 if n is even. Finally, for the case of Cn,
again numbering the roots in order as in [8] beginning at a short root,
so that α = αn, we have

�∨
αn

=
1
2

n∑
i=1

iα∨
i .

Thus nα = 2. �

We turn now to the existence of special bundles over Lα.

Proposition 3.2.3. Suppose that α is special. Then there is a
unique principal Lα-bundle η0 over E with the following properties:

(i) det η0 = OE(−p0).
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(ii) For 1 ≤ i ≤ t, if Vi is the vector bundle associated to the principal
GLni(C)-bundle obtained from the composition of the inclusion
Lα ⊆ ∏t

i=1 GLni(C) followed by projection onto the ith factor,
then each Vi is a stable vector bundle.

The automorphism group of η0, as an Lα-bundle, is identified with the
center of Lα which is of the form Z(Sα)×Z/mαZ ϕα(C∗), acting by mul-
tiplication.

Proof. Recall that, for every d ≥ 1, there is a unique stable vector
bundle Wd of rank d over E such that detWd = OE(p0). Given the
structure of Lα as in Lemma 3.2.1, it is clear that there is a unique
principal Lα-bundle, up to isomorphism, satisfying (i) and (ii) above,
with Vi = W ∗

ni
for every i. Since the vector bundles Vi in (i) are sim-

ple, the automorphism group of each of these is isomorphic to the cen-
ter of GLni(C) acting by multiplication. It then follows that the Lα-
automorphisms of η0 are given by the action of the center of Lα acting
by multiplication. �

Definition 3.2.4. If η is an Lα-bundle which satisfies (ii) of the
Proposition, together with the condition that deg η = −1, then η is the
pullback of η0 under a translation map E → E. We call η a translate
of η0.

Let us describe the unstable bundle η0×Lα G for the classical groups.
First, we need the following notation. As above, let Wd be the unique
stable vector bundle over E of rank d and such that detWd = OE(p0).
Let θi, i = 1, 2, 3 be the three nontrivial line bundles of order two on E.
Let

Q3 = θ1 ⊕ θ2 ⊕ θ3

be the corresponding rank three vector bundle. Fix isomorphisms θi ⊗
θi → OE and give Q3 the corresponding diagonal symmetric bilinear
form. Define similarly

Q4 = OE ⊕ θ1 ⊕ θ2 ⊕ θ3,

together with a similar choice of a diagonal symmetric bilinear form.
We then have:

Proposition 3.2.5. With notation as above, and supposing that
α is special, let η0 be the principal Lα-bundle constructed in Proposi-
tion 3.2.3. Then the vector bundle associated to η0 ×Lα G under the
standard representation of G is:
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(i) W ∗
k ⊕Wn−k, if G = SLn(C) and α is the root corresponding to

the kth vertex in the Dynkin diagram, ordered in the usual way.

(ii) W ∗
n ⊕Wn, if G = Sp(2n), where each factor is isotropic and we

choose an isomorphism W ∗
n →W ∗

n , unique up to a scalar, to define
the alternating form on the direct sum.

(iii) W ∗
n−2 ⊕ Q4 ⊕ Wn−2, if G = Spin(2n), where Q4 is given the

form described above, W ∗
n−2 and Wn−2 are isotropic, we choose

an isomorphism W ∗
n−2 → W ∗

n−2, unique up to a scalar, to define
the symmetric form on the direct sum W ∗

n−2 ⊕Wn−2, and Q4 is
orthogonal to this direct sum.

(iv) W ∗
n−1 ⊕ Q3 ⊕Wn−1, if G = Spin(2n + 1), where Q3 is given the

form described above, W ∗
n−1 and Wn−1 are isotropic, we choose

an isomorphism W ∗
n−1 → W ∗

n−1, unique up to a scalar, to define
the symmetric form on the direct sum W ∗

n−1 ⊕Wn−1, and Q3 is
orthogonal to this direct sum.

Proof. The cases G = SLn(C) and G = Sp(2n) follow easily from
the explicit descriptions of the maximal parabolic subgroups and are
left to the reader. In case G = Spin(2n), the corresponding maximal
parabolic of SO(2n) is the set of g ∈ SO(2n) preserving an isotropic
subspace of C2n of dimension n− 2. The corresponding Levi factor L is
the subgroup of matrices in GLn−2(C)×GL2(C)×GL2(C) with equal
determinant. If ρ1 is the representation of L induced by the standard
representation of GLn−2(C) on Cn−2 and ρ2, ρ3 are the two representa-
tions of L induced by the standard representations of the second and
third factors of L on C2, then it is easy to check that the representation
of L on C2n which is the restriction of the standard representation of
Spin(2n) is just

ρ1 ⊕ ρ∗1 ⊕ (ρ2 ⊗ ρ∗3).

The vector bundle associated to η0 is thus

W ∗
n−2 ⊕Wn−2 ⊕ (W2 ⊗W ∗

2 ).

Moreover this is an orthogonal direct sum with respect to the induced
form and W ∗

n−2 and Wn−2 are isotropic subspaces. Furthermore, by a
result of Atiyah [1], W2 ⊗ W ∗

2
∼= Q4, and since the each line bundle

summand of Q4 is not isomorphic to the dual of any other summand,
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the direct sum decomposition of Q4 must be orthogonal with respect to
the quadratic form and thus as described above.

The case of Spin(2n + 1) is similar. �

3.3 Cohomology dimensions and weight spaces

We have seen that the bundles η0 are minimally unstable in the sense
of deformation theory. Here we begin by showing that their deformation
spaces have minimal dimension among all unstable bundles.

Theorem 3.3.1. Let η0 be the bundle described in Proposition 3.2.3.
Then

dim H0(E; ad(η0 ×Lα G)) = dimH1(E; ad(η0 ×Lα G)) = r + 2.

If ξ is any unstable G-bundle, then dim H1(E; ad ξ) ≥ r+2, with equality
if and only if ξ is isomorphic to η ×Lα G, where η is a translate of η0.
Finally, if U is the unipotent radical of a parabolic subgroup P of G with
Levi factor L and η is a semistable L-bundle of negative degree, then

dim H1(E; u(η)) ≥ r + 1,

with equality if and only if P is conjugate to Pα, where α is special, and
η is a translate of η0.

Proof. First, by Corollary 2.1.7,

dim H0(E; ad(η0 ×Lα G)) = dimH1(E; ad(η0 ×Lα G))
= 1 + r(η̂0) + d1(α) = 1 + d1(α),

since dim Aut
Ŝα η̂0 = 0.

Next we show that d1(α) has the following minimality property:

Lemma 3.3.2. If α is special, then d1(α) = r + 1. If β is not
special, then d1(β) > r + 1.

Proof. To see that d1(α) = r + 1, it suffices by Proposition 1.4.9
to show that λ1(α∨) =

∑
β∈∆ β∨. First, by [8, cor. 3, p. 160], λ =∑

β∈∆ β∨ is always a coroot. Clearly, n(λ∨, β∨) ≥ 0 for all β ∈ ∆−{α},
n(λ∨, β∨) > 0 if β �= α is an end of the Dynkin diagram and λ − β∨

can only be a coroot if β �= α is an end of the Dynkin diagram. These
properties say that, if β �= α, then λ + β∨ is not a coroot. Thus λ =
λ1(α∨).
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Now suppose that R is not of A-type, and hence that R∨ is not
of A-type. Then λ1(α∨) is not the highest coroot of R∨. Thus there
exists a simple root β such that λ1(α∨)+β∨ is again a coroot. By what
we have just seen, we must have β = α. It follows that, for α �= β,
λ1(β∨) is equal to λ1(α∨) + α∨ plus a sum of simple coroots. Hence
d1(β) = ρ(λ1(β∨)) + 1 ≥ ρ(λ1(α∨)) + 2 = r + 2. �

Thus, we have proved the first statement in the theorem. To see the
second, first assume that the Harder-Narasimhan parabolic subgroup for
ξ is maximal. In this case, we can assume that the Harder-Narasimhan
parabolic for ξ is P β

− for some β. Thus ξ is isomorphic to η×Lβ G, where
η is a semistable bundle of negative degree −n on Lβ. Now

dim H1(E; ad(η ×Lβ G)) = 1 + r(η̂) + nd1(β) ≥ r + 2,

with equality holding if and only if r(η̂) = 0, n = 1, and β is special. In
this last case, it follows from Definition 3.2.4 that η is a translate of η0.

Now suppose that the Harder-Narasimhan parabolic for ξ is not
maximal. There exists a maximal parabolic subgroup P β such that
ξ has a reduction to an Lβ-bundle η, where η has degree −n < 0.
By Lemma 2.1.3, η is unstable, for otherwise the Harder-Narasimhan
parabolic for ξ would be P β

−, which is maximal. Hence, the associated
Ŝβ-bundle η̂ is also unstable. Thus the vector bundle ad

Ŝβ η̂ is unstable
of degree zero, and hence contains a semistable summand of negative
degree. It follows that dimH1(E; ad

Ŝβ η̂) ≥ 1. Applying Lemmas 2.1.4
and 2.1.5 and Proposition 2.1.6, we see that

h1(E; ad ξ) = 1 + h1(E; ad
Ŝβ η̂) + h1(E; u(η)) + h1(E; u−(η))

≥ 2 + nd1(β) ≥ r + 3.

This completes the proof of the second statement in case the Harder-
Narasimhan parabolic for ξ is not maximal. The proof of the final
statement of the theorem is implicit in the above discussion. �

We turn now to the C∗-weights for the action of C∗ on u(η0).

Proposition 3.3.3. Suppose that α is special. Then the C∗-
weights for the action of the center of Lα on H1(E; u(η0)), with multi-
plicity, are the integers nαgβ, β ∈ ∆̃.

Proof. The group C∗ acts on H1(E; uk(η)) with weight knα. By
Lemma 2.2.1,

dim H1(E; uk(η)) = −(deg η0) · i(α, k) = i(α, k).
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Thus, it suffices to show that i(α, k) = #{β ∈ ∆̃ : gβ = k}. If we define

i(k) = #{β ∈ ∆̃ : gβ = k};
d(k) =

∑
k|x

i(x) =
∑
�≥1

i(�k),

then it clearly suffices to show that, for all k, d(k) = dk(α), in the
notation of Definition 1.4.7. By Proposition 1.4.17, the integers dk(α)
have the circular symmetry property with respect to gα and g, since
α is a long root, and by Lemma 3.3.2, d1(α) = r + 1. By the proof
of Theorem 3.8.7 in [7], the integers d(k) have the circular symmetry
property with respect to N and g, where N = max{gβ : β ∈ ∆}. By
Corollary 6.2.5 of [11], N = gα. (We will give another proof of this fact
in Part III.) Clearly d(1) = #∆̃ = r+1. By Lemma 1.4.16, d(k) = dk(α)
for all k. �

3.4 The non-simply connected case

We now establish the analogues in the non-simply connected case of
the previous results. While we believe there should be classification-free
arguments for these results, we argue here in a case-by-case analysis.

Definition 3.4.1. Let o(c) denote the order of c ∈ π1(G). A root
α ∈ ∆ is c-special if there exists an integer d < 0 such that:

(i) d/oc,α ≡ �α(c) mod Z.

(ii) The Weyl orbit of the point µc,α = dζα/oc,αmα is minimal in the
Atiyah-Bott ordering [11] among all Weyl orbits of nonzero points
of Atiyah-Bott type for c.

Remark 3.4.2. a) The first condition means that that there is a
holomorphic semistable Lα-bundle η with c1(η ×Lα G) = c and Atiyah-
Bott point equal to µc,α, and the topological type of the Lα-bundle η
is uniquely determined by µc,α. This topological type is specified by
an element c1(η) = γ ∈ π1(Lα). The second condition means that
the point µc,α, or the corresponding stratum of (0, 1)-connections, is
minimally unstable in the sense of [11, Definition 6.1.1].

b) It is not always true that there is a unique c-special root. Unique-
ness fails exactly when G = SLn(C)/〈c〉 and c does not generate the
center, where there are n/o(c) special roots, and for G = SO(2n), where
there are two special roots.
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c) As defined here, c-special roots are certain simple roots. In [11] we
used the simple roots to index strata of the space of (0, 1)-connections,
by associating to α the stratum lying in the Lie algebra of the center of
Lα and having the smallest possible positive value under the dominant
character. The convention here differs by a sign from the one of [11].
This means that the image under the automorphism of the Dynkin
diagram induced by −w0 of the roots which are c-special as defined
here correspond to the roots indexing the minimally unstable strata in
[11]. This automorphism sends c to c−1 and thus fixes the set of c-special
roots if and only if c is of order 1 or 2. Otherwise, the c-special roots
correspond to the roots indexing the minimally unstable strata for c−1

in [11].

Theorem 3.4.3. Let α be a c-special root for G, and let γ ∈ π1(Lα)
be the first Chern class of the Lα-bundle η corresponding to µc,α. Then:

(i) The integer d = −1 and oc,α = o(c).

(ii) The adjoint quotient ad(Lα) = Lα/Z(Lα) is a product
∏k

i=1 Ŝi,
where the Ŝi are simple groups of A-type.

(iii) Let γ̂ be the image of γ ∈ π1(Lα) under the projection π1(Lα) →
π1(
∏k

i=1 Ŝi) =
∏k

i=1 π1(Ŝi). For i = 1, . . . , k, the image of γ̂ in
π1(Ŝi) generates the cyclic group π1(Ŝi).

(iv) d1(α)/oc,α = rc + 1.

Proof. The minimally unstable points µc,α are listed in §6.3 of [11].
From this list, it is easy to check that d = −1 and oc,α = o(c). To prove
the remaining statements, we make a case-by-case analysis.

G̃ = SLn(C):
We choose an identification of Λ with{

(x1, . . . , xn) ∈ Zn
∣∣∣ n∑

i=1

xi = 0
}

in such a way that ∆ = {α1, . . . , αn−1} with αi = ei−ei+1 with ei being
the standard unit vector in the ith-coordinate direction. We write c as
the image of an element of the form

(m/n)(α∨
1 + 2α∨

2 + · · ·+ (n− 1)α∨
n−1)
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for some 1 ≤ m < n. We factor m = m0 · � where (m0, n) = 1 and �|n.
Then c is an element of order f = n/�. By [11, §6.3], the c-special roots
are those α for which �α(c) ≡ −1/f (mod Z). There are exactly n/f
such roots. Suppose α = αk. Then

−k ·m/n ≡ −1/f (mod Z).

In particular, (k, f) = 1. Since α is a special root for SLn(C), d1(α) = n,
and hence d1(α)/f = n/f = �. On the other hand, since 〈c〉 acts freely
on the Dynkin diagram for G we see that rc + 1 = �. Let us consider
the group Lα. By Lemma 3.2.1, L̃α is isomorphic to the subgroup of
GLk(C)×GLn−k(C) matrices of equal determinant. Hence

ad(Lα) = ad(L̃α) = PGLk(C)× PGLn−k(C).

The map det : L̃α → C∗ induces an identification π1(L̃α) = Z and the
projection L̃α → ad(Lα) sends 1 ∈ Z to the element

(ak, an−k) ∈ π1(PGLk(C))× π1(PGLn−k(C))

where ak, resp. an−k generates π1(PGLk(C)), resp. π1(PGLn−k(C)).
Direct computation shows that π1(Lα) = Z and that the natural map
π1(L̃α)→ π1(Lα) is multiplication by f . Thus, we have an identification
π1(Lα) = Z[1/f ]. Under this identification the element γ ∈ π1(Lα) is
−1/f . π1(Lα) and projects to

γ̂ = (f−1ak, f
−1an−k) ∈ π1(PGLk(C))× π1(PGLn−k(C)).

Since (k, f) = 1, the projection of this element to either factor generates
that factor.

G = SO(2n + 1), n ≥ 3.
The c-special root is the unique short root α in the Dynkin diagram.

Direct inspection shows that Lα = GLn(C), and that γ ∈ π1(Lα) is a
generator of the fundamental group. Thus, ad(Lα) = PGLn(C) and γ̂
generates π1(PGLn(C)). Furthermore, d1(α) = 2n so that d1(α)/o(c) =
n. Since c acts on the extended Dynkin diagram for G with one free
orbit and n− 1 fixed points, we see that rc + 1 = n = d1(α)/o(c).

G = Sp(2n)/〈c〉, n ≥ 2:
Suppose first that n is odd. Then there is a unique c-special root, the

unique long root α. In this case, Lα = GLn(C)/(Z/2Z) and γ generates
the fundamental group of Lα. Hence, ad(Lα) = PGLn(C) and γ̂ is the
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square of a generator for this group. Since n is odd, γ̂ is a generator of
π1(PGLn(C)). Since α is special for the simply connected form of the
group, d1(α) = n+1. In this case the element c acts freely on the nodes
of the extended Dynkin diagram so that rc+1 = (n+1)/2 = d1(α)/o(c).

Now suppose that n is even. Then there is a unique c-special root,
the unique short simple root α which is not orthogonal to the unique
long simple root. Direct computation shows that L̃α is isomorphic to
GLn−1(C)×SL2(C) and that c is the diagonal element (−1,−1). Thus,
π1(Lα) = Z and γ is a generator of this group. Furthermore, ad(Lα) =
PGLn−1(C) × PGL2(C) and the map π1(Lα) → π1(ad(Lα)) is onto.
Thus, the image γ̂ of γ generates π1(ad(Lα)), and hence its projection
to each factor generates the fundamental group of that factor. Lastly,
direct computation shows that d1(α) = n + 2. Since c acts on the
extended Dynkin diagram for G with one fixed point and n/2 free orbits,
we see that rc + 1 = (n + 2)/2 = d1(α)/o(c).

G = SO(2n), n ≥ 4:
For G̃ = Spin(2n) we identify Λ with the even integral lattice inside

Rn. Let ei be the standard unit vector in the ith-coordinate direction.
Then ∆ = {α1, · · · , αn−1, αn} where αi = ei − ei+1 for 1 ≤ i < n and
αn = en−1 + en.

There are two c-special roots αn−1 = en−1− en and αn = en−1 + en.
(Of course, these elements are interchanged by an outer automorphism
of SO(2n).) Let α be one of the c-special roots. Then Lα = GLn(C) and
γ is a generator of π1(Lα) ∼= Z. Thus, ad(Lα) = PGLn(C) and γ̂ is a
generator of this group. Direct computation shows that d1(α) = 2(n−1).
Since c acts on the Dynkin diagram for G with two free orbits and n−1
fixed points, we see that rc + 1 = n− 1 = d1(α)/o(c).

G̃ = Spin(4n + 2), n ≥ 2 and c is an element of order 4:
There is one c-special root. It is the simple root α corresponding

to the “ear” of the Dynkin diagram (i.e., either αn−1 or αn) with the
property that �α(c) = −1/4 (mod Z). In this case

Lα = GL2n+1(C)/(Z/2Z).

Hence π1(Lα) = Z and γ is a generator. Under the projection to
ad(Lα) = PGL2n+1(C) the image γ̂ of γ is the square of the usual
generator. This is clearly still a generator. Lastly, as above d1(α) =
2((2n + 1)− 1) = 4n whereas rc + 1 = n. Thus, d1(α)/o(c) = rc + 1.

G̃ = Spin(4n), n ≥ 2 and c is an element of order two not contained
in π1(SO(4n)):
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There is one c-special root. It is the simple root αn−3 corresponding
to the node of the “long” arm of the Dynkin diagram next to the triva-
lent node. Thus, L̃α is isomorphic to (SL2n−3(C)×SL4(C))×(Z/(4n−6)Z)

C∗ where the cyclic group is embedded in the standard way in C∗ and
the usual generator maps to the standard generator of Z(SL2n−3(C))
and to the element of order 2 in Z(SL4(C)). Thus, we can identify L̃α

with GL2n−3(C)×(Z/2Z) SL4(C). The element c is the image of the ele-
ment (a, b) where a and b are central elements of order 4 in GL2n−3(C)
and SL4(C) under the inclusion of L̃α ⊂ G̃. Thus, Lα is isomorphic
GL2n−3(C)×(Z/4Z) SL4(C). Hence γ is a generator of π1(Lα) = Z, the
image γ̂ of γ is a generator for π1(PGL2n−3(C)) × π1(PGL4(C)), and
hence the projection of γ̂ into either factor generates the fundamental
group of that factor. Direct computation shows that d1(α) = 2(n + 1).
Since the action of c on the extended Dynkin diagram for G has one
fixed point and n free orbits, we see that rc + 1 = n + 1 = d1(α)/o(c).

G = ad(E6):
There is one c-special root. It is a simple root α corresponding

to the node next to the trivalent node on one of the arms of length
3 with the property �α(c) = −1/3. In this case L̃α is isomorphic
to (SL5(C) × SL2(C)) ×(Z/10Z) C∗ where the element in Z/10Z that
maps to exp(2πi/10) maps to the generator in Z(SL2(C)) and to the
square of the usual generator in Z(SL5(C)). Hence, Lα is isomorphic
to (SL5(C) × SL2(C)) ×(Z/10Z) C∗ where the element in Z/10Z that
maps to exp(2πi/10) maps to the generator in Z(SL2(C)) and to the
usual generator in Z(SL5(C)). Thus, ad(Lα) = PGL2(C)× PGL5(C),
π1(Lα) is cyclic and γ is a generator of this group. It follows that
γ̂ ∈ π1(PGL5(C) × PGL2(C)) generates and hence the image of γ̂ un-
der projection to either factor is a generator of the fundamental group
of that factor. Direct computation shows that d1(α) = 9. Since the
action of 〈c〉 on the extended Dynkin diagram of E6 has two free orbits
and one fixed point, we see that rc + 1 = 3 = d1(α)/o(c).

G = ad(E7):
There is one c-special root. It corresponds to the node of the Dynkin

diagram next to the trivalent node on the arm of length 4. In this case
L̃α is isomorphic to (SL3(C)× SL5(C))×(Z/15Z) C∗, where the element
in Z/15Z that maps to exp(2πi/15) ∈ C∗ maps to the usual generator of
Z(SL3(C)) and the square of the usual generator of Z(SL5(C)). Thus,
Lα = (SL3(C)× SL5(C))×(Z/15Z) C∗ where the element in Z/15Z that
maps to exp(2πi/15) ∈ C∗ maps to the inverse of the usual generator of
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Z(SL3(C)) and the inverse of the usual generator of Z(SL5(C)). Thus,
ad(Lα) = PGL3(C) × PGL5(C), π1(Lα) is isomorphic to Z and γ is a
generator. Consequently, γ̂ is a generator of π1(ad(Lα)).

Direct computation shows that d1(α) = 10. The action of c on the
extended Dynkin diagram of E7 has two fixed points and 3 free orbits
so that rc + 1 = 5 = d1(α)/o(c). �

Next we compute the integer nc,α defined in Lemma 1.2.7:

Lemma 3.4.4. If α is c-special and c is nontrivial, then nc,α = 1
except in the following cases:

(i) If G̃ = SLn(C), α corresponds to the kth vertex in the usual or-
dering, and o(c) = d, then nc,α = n/d · gcd(k, n).

(ii) If G̃ = Spin(2n) and c is of order 2, then nc,α = 2.

Proof. If Z(G̃) is cyclic and c is a generator, then nc,α = 1. The
remaining cases are G̃ = SLn(C) and G̃ = Spin(2n), and these can be
checked directly. �

As in the simply connected case, we have:

Lemma 3.4.5. There is a unique semistable Lα-bundle η0 with
the following properties:

(i) c1(η0 ×Lα G) = c.

(ii) The Atiyah-Bott point of η0 is µc,α.

(iii) det η0 = OE(−p0). �

As before, a bundle η satisfying (i) and (ii) above is the pullback of
η0 via a translation of E, and we will call such an η a translate of η0.
The following is then proved via arguments similar to those used in the
proof of Theorem 3.3.1.

Theorem 3.4.6. Let η0 be the bundle described in Lemma 3.4.5.
Then

dim H0(E; ad(η0 ×Lα G)) = dimH1(E; ad(η0 ×Lα G)) = rc + 2.

If ξ is any unstable G-bundle which is C∞ isomorphic to η0×Lα G, then
dim H1(E; ad ξ) ≥ rc + 2, with equality if and only if ξ is isomorphic to
η ×Lα G for some translate η of η0. �
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Finally, we must determine the weights for the action of C∗ on
H1(E; u(η0)):

Proposition 3.4.7. Suppose that α is c-special. Then the C∗

weights for the action of ϕα(C∗) on H1(E; u(η0)), with multiplicity, are
the integers nc,αgβ/n0, β ∈ ∆̃/wc.

Proof. The weight for the action of C∗ on H1(E; uk(η0)) is knc,α.
By Lemma 2.2.1, the dimension of H1(E; uk(η0)) is

i(α, k)/oc,α = i(α, k)/o(c).

By Proposition 1.4.17, the integers dk(α)/o(c) have the circular sym-
metry property with respect to hα and ghα/gαo(c). By Theorem 3.4.3,
d1(α)/o(c) = rc + 1. If we define

ic(k) = #{β ∈ ∆̃ : gβ = kn0}
dc(k) =

∑
k|x

ic(x) =
∑
�≥1

ic(�k),

then the integers dc(k) satisfy: dc(1) = rc + 1, and the dc(k) have
the circular symmetry property with respect to N/n0 and g/n0, where
N is the maximum value of the gβ. It follows by inspection or from
[7, Proposition 10.1.8] that n0 = o(c)gα/hα, i.e., hα/gαo(c) = 1/n0.
By inspection, hα = N/n0. Thus i(α, k)/o(c) = ic(k), and the proof
follows. �

4. The nonabelian cohomology space

4.1 The affine space and the universal bundle

Let α be an arbitrary simple root. We abbreviate Pα = P , Lα = L,
and Uα = U . Let η be an unliftable semistable principal L-bundle of
type c. There is the associated sheaf of (not necessarily abelian) groups
U(η). The cohomology set H1(E; U(η)) classifies pairs (ξ, ϕ), where ξ
is a P -bundle and ϕ is an isomorphism from the induced bundle ξ/U
on L to η. There is a marked point 0 ∈ H1(E; U(η)), corresponding to
the pair (η×L P, I), where I is the canonical identification of the bundle
(η ×L P )/U with η. There is a corresponding functor F from schemes
to sets defined as follows: for a scheme of finite type over C, F(S) is the
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set of isomorphism classes of pairs (Ξ, Φ), where Ξ is a P -bundle over
E × S and Φ is an isomorphism from Ξ/U to π∗

1η.

Lemma 4.1.1. The functor F is represented by an affine space.

Proof. Let Ui be the closed subgroup of U whose Lie algebra is⊕
k≥i u

k. Then the filtration {Ui} is a decreasing filtration of U by nor-
mal, L-invariant subgroups such that Ui/Ui+1 is in the center of U/Ui+1

for every i, and Ui/Ui+1
∼= ui. By Theorem A.2.2 of the appendix, it

suffices to check that H0(E; (Ui/Ui+1)(η)) = H2(E; (Ui/Ui+1)(η)) = 0.
The second statement is clear since dim E = 1, and the first follows from
Lemma 2.1.5, which implies that H0(E; uk(η)) = 0 for every k > 0. �

Thus, there is a structure of an affine space on H1(E; U(η)) and a
universal pair (Ξ0, Φ0) over the scheme E × H1(E; U(η)) which repre-
sents the functor F. We will somewhat carelessly identify Ξ0 with the
associated G-bundle Ξ0 ×P G.

We now identify ϕα(C∗) with C∗. Thus we have fixed the embed-
ding of C∗ in L. Since L acts on U , there are induced actions of C∗ on
U(η) and u(η), and hence on H1(E; U(η)) and on H1(E; u(η)). View-
ing H1(E; U(η)) as the set of pairs (ξ, ϕ) as above, the action of C∗ is
via the action of AutL on the isomorphism ϕ, and this action fixes the
origin in H1(E; U(η)), i.e., the bundle η ×L P . By Theorem A.2.2, the
action of C∗ lifts to an action on the universal principal bundle Ξ0 over
E ×H1(E; U(η)). The first goal of this section is to prove that the ac-
tion of ϕα(C∗) on H1(E; U(η)) is linearizable, and in fact there is a C∗-
equivariant isomorphism from H1(E; U(η)) to H1(E; u(η)). Thus the
quotient (H1(E; U(η))−{0})/C∗ is a weighted projective space WP(η).
In §4.3, we give a sufficient condition for the existence of universal bun-
dles over E×WP(η). Next we show that, in the case where α is c-special
and η0 is the bundle of Proposition 3.2.3 or Lemma 3.4.5, the points of
WP(η0) correspond to semistable bundles whose automorphism groups
have minimal possible dimensions. In §4.5, we analyze the Kodaira-
Spencer homomorphism. The results of §4.5 will not however be used
in this paper. Finally, we discuss the singular locus of the weighted pro-
jective space and relate it to moduli spaces of bundles with a non-simply
connected structure group.

4.2 Linearization of the action

We analyze the C∗-action on the affine space H1(E; U(η)) more
closely. Our goal will be to show that this action can be linearized
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and to calculate the C∗-weights.
Lemma 4.2.1. Every C∗-orbit in H1(E; U(η)) contains the origin

in its closure.

Proof. Let x ∈ H1(E; U(η)) be represented by the 1-cocycle {uij},
where {Ωi} is an open cover of E and uij : Ωi ∩Ωj → U is a morphism.
Then λ ∈ C∗ ⊆ L acts on the cocycle {uij}. Define morphisms

ũij(e, λ) : (Ωi ∩ Ωj)× C→ U

as follows:

ũij(e, λ) =

{
λ · uij(e), if λ �= 0;
1, if λ = 0.

There is a C∗-equivariant morphism from the unipotent subgroup U to
the affine space u (see for example [6, Remark, p. 183]). Using this C∗-
equivariant isomorphism, and the fact that all of the C∗-weights on u

are positive, it is easy to check that the ũij are morphisms and so define
a 1-cocycle for the sheaf U(π∗

1η) over E×C. Thus, they define a bundle
Ξ over E×C, reducing to π∗

1η mod U and such that Ξ|E×{0} = η×LP .
By the functorial property of H1(E; U(η)), there is a morphism from C

to H1(E; U(η)) corresponding to Ξ. Clearly, the image of 0 ∈ C is the
origin of H1(E; U(η)), and the image of C∗ is exactly the C∗-orbit of
the cocycle {uij}. This proves Lemma 4.2.1. �

Lemma 4.2.2. Let T be the tangent space of H1(E; U(η)) at the
fixed point 0, with the natural C∗-action. Then the Kodaira-Spencer
homomorphism from T to H1(E; ad(η×L G)) induced by the bundle Ξ0

is given by a C∗-equivariant isomorphism T → H1(E; u(η)) followed by
the inclusion of H1(E; u(η)) as a direct summand in

H1(E; ad(η ×L G)) ∼= H1(E; adL η)⊕H1(E; u−(η))⊕H1(E; u(η)).

Proof. Let C[ε] denote the dual numbers. The space T is the set
of maps from Spec C[ε] to H1(E; U(η)) such that the closed point is
mapped to the origin. By the functorial interpretation of H1(E; U(η)),
such a morphism corresponds to a P -bundle Ξ over E×Spec C[ε], which
is the pullback of Ξ0, together with an isomorphism from Ξ/U to π∗

1η,
and such that Ξ restricts to η ×L P over the closed point. The second
condition says that Ξ is a first order deformation of the P -bundle η×LP .
Such deformations are classified by

H1(E; adP (η ×L P )) = H1(E; adL η)⊕H1(E; u(η)).
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The first condition says that the corresponding first order deformation
of the L-bundle η is trivial, or equivalently that the projection of the
Kodaira-Spencer class of Ξ to H1(E; adL η) is zero. Thus we have de-
fined a canonical map from T to H1(E; u(η)). Conversely, by reversing
this construction, every element of H1(E; u(η)) defines a first order de-
formation of η ×L P which reduces to π∗

1η mod U , so that in fact the
map from T to H1(E; u(η)) is an isomorphism. Since this isomorphism
is canonical, it is easily seen to be C∗-equivariant. The last statement
is clear by construction. �

Using the previous two lemmas, we show that the C∗-action on
H1(E; U(η)) can be linearized. There is the following general result
about C∗-actions on an affine space.

Lemma 4.2.3. Let An be an affine space with a C∗-action, and
suppose that 0 ∈ An is a fixed point for the action. Let T be the tangent
space of An at the origin, together with the induced linear C∗-action on
T . Further suppose that:

(i) Every C∗-orbit in An contains 0 in its closure.

(ii) All of the weights in the C∗-action on T are strictly positive.

Then there is a C∗-equivariant isomorphism from An to T . Hence, the
C∗-action on An is linearizable, and the C∗-weights for this action are
those for the action on T .

Proof. Let A = C[z1, . . . , zn] be the affine coordinate ring of An,
where 0 is defined by z1 = · · · = zn = 0, and let x1, . . . , xn be a basis for
the linear functions on T . The finite-dimensional subspace of A spanned
by the zi is contained in a finite-dimensional C∗-invariant subspace V
of A, by the Cartier lemma [20, p. 25] (or by using the grading on A
induced by the C∗-action). The map p ∈ A �→ (dp)0 is a C∗-equivariant
map from A to T ∗, and hence restricts to a C∗-equivariant map from V
to T ∗. Choosing a C∗-equivariant splitting of the map V → T ∗ defines a
C∗-equivariant map T ∗ → A and thus a C∗-equivariant homomorphism
C[x1, . . . , xn] → A. Let f : An → T be the corresponding morphism.
By construction, f has an invertible differential at the origin and is
C∗-equivariant. Thus, f is injective in a neighborhood Ω of the origin,
and the image of f contains an open set Ω′ about the origin. Since
the weights on T are positive, every point of T lies in the C∗-orbit
of some point of Ω′. Thus f is surjective. Likewise, f is injective:



the parabolic construction 347

if f(x1) = f(x2), then since the closures of the C∗-orbits of x1 and x2

contain the origin, and the weights of the action on the tangent space at
0 are all positive, it follows that there is a λ ∈ C∗ such that λ·x1 and λ·x2

both lie in Ω. By assumption f(λ ·x1) = λ ·f(x1) = λ ·f(x2) = f(λ ·x2).
But since f is injective on Ω, λ · x1 = λ · x2, and hence x1 = x2. It
follows that f is a C∗-equivariant bijection from An to T and thus it is
an isomorphism. �

Corollary 4.2.4. The C∗-equivariant morphism from H1(E; U(η))
to H1(E; u(η)) defined in Lemma 4.2.2 is an isomorphism. Hence,
the C∗-action on H1(E; U(η)) can be linearized, and (H1(E; U(η)) −
{0})/C∗ is a weighted projective space WP(η). �

In case α is c-special and η = η0, we have calculated the correspond-
ing weights of the weighted projective space in Proposition 3.3.3 and
Proposition 3.4.7.

4.3 Existence of universal bundles on the weighted pro-
jective space

Next we discuss the existence of universal bundles over the C∗-
quotient. It is easy to see that such bundles cannot exist at the orb-
ifold singular points of the weighted projective space, essentially because
there are no local sections from the weighted projective space back to
the affine space at such points. We shall show that, away from such
points, we can almost find a universal bundle. In particular, there is a
universal adjoint bundle away from the orbifold singular points of the
weighted projective space.

Recall that Z(G) ∩ ϕα(C∗) is a finite cyclic group which we have
denoted Z/nc,αZ.

Lemma 4.3.1. The subgroup Z/nc,αZ of C∗ acts trivially on
H1(E; U(η)), and the quotient group C∗/(Z/nc,αZ) acts faithfully on
H1(E; U(η)).

Proof. The C∗-weights are of the form knc,α for 1 ≤ k ≤ hα, and so
the lemma is clear. �

The fact that Z/nc,αZ acts trivially on H1(E; U(η)) also follows from
the fact that it is contained in Z(G). Note however that, if nc,α > 1,
then the associated action of Z/nc,αZ on Ξ0 is not in general trivial,
and in fact is just multiplication by the corresponding subgroup of the
center of G.
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Proposition 4.3.2. Let WP(η) be the weighted projective space
(H1(E; U(η)) − {0})/C∗, and let WPreg(η) denote the open subset of
WP(η) which is the C∗-quotient of the set of points of H1(E; U(η)) where
C∗/(Z/nc,αZ) acts freely. Let Ĝ be the quotient of G by the subgroup
Z/nc,αZ. Then the universal bundle Ξ0 over E ×H1(E; U(η)) induces
a principal Ĝ-bundle over E ×WPreg(η).

Proof. Let H1(E; U(η))reg be the set of points of H1(E; U(η)) where
C∗/(Z/nc,αZ) acts freely and effectively. We have seen that there is a
lifted action of C∗ on Ξ0|E ×H1(E; U(η))reg, which in fact is free. The
action of the isotropy group Z/nc,αZ of a point in the base on the fiber
is via multiplication by elements of the center of G, and thus there is an
induced Ĝ-bundle on the C∗-quotient of H1(E; U(η))reg with the desired
properties. �

It is easy to see that we could replace Ĝ-bundles with bundles over
an appropriate conformal form G×Z/nc,αZ C∗ of the group.

If nc,α = 1, then there is an induced G-bundle over E ×WPreg(η).
If nc,α > 1, then it is easy to see that the corresponding Ĝ-bundle does
not lift to a G-bundle. For example, in case G = SLn(C), the vector
bundle over E×Pn−1 constructed by taking the kth vertex of the Dynkin
diagram is given as an extension

0→ π∗
1W

∗
k ⊗ π∗

2OPn−1(1)→ U→ π∗
1Wn−k → 0,

and no twist of this bundle by a line bundle will have trivial determinant.
In a future paper, we shall discuss methods for constructing universal
bundles in case nc,α > 1 via spectral covers.

4.4 The case of a c-special root

Definition 4.4.1. Let ζ be a semistable G-bundle with c1(ζ) = c.
Then ζ is regular if dim Aut ζ = rc. By [10, Corollary 6.3], every ζ is
S-equivalent to a regular semistable G-bundle, which is unique up to
isomorphism. Moreover, by [10, Corollary 6.3], if ζ is not regular, then
dim Aut ζ ≥ rc + 2.

Let η0 be the distinguished bundle defined in Proposition 3.2.3 and
Lemma 3.4.5. We next show that the nonzero elements of H1(E; U(η0))
correspond to regular semistable G-bundles.

Proposition 4.4.2. With η0 as above, for every x ∈ H1(E; U(η0))−
{0}, let ξx denote the principal P -bundle Ξ|E × {x} induced by the re-
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striction of Ξ to the slice over x. Then ξx ×G P is a regular semistable
G-bundle.

Proof. By Theorem 3.3.1 and Theorem 3.4.6, if ζ is unstable and
c1(ζ) = c, then dim Aut ζ ≥ rc + 2. As we have noted above, the same
holds for a semistable G-bundle ζ which is not regular. Thus, a G-bundle
ζ is semistable and regular if and only if dim Aut ζ ≤ rc + 1. To prove
Proposition 4.4.2, we shall show that, for all x �= 0, dim AutG(ξx×P G) ≤
rc + 1.

Let ξ = ξx. We have the inclusion of the Lie algebra p in g. Clearly,
viewing g as a representation of P , the vector bundle g(ξ) is the same
as g(ξ ×P G) = adG(ξ ×P G). Moreover p(ξ) = adP ξ. Thus there is an
exact sequence of vector bundles

0→ adP ξ → adG(ξ ×P G)→ (g/p)(ξ)→ 0.

Now replacing ξ by η0 ×L P gives the corresponding exact sequence

0→ adP (η0 ×L P )→ adG(η0 ×L G)→ u−(η0)→ 0,

since (g/p)(η0 ×L P ) = u−(η0). Furthermore, by Corollary 2.1.7 and
Lemma 3.3.2 in the simply connected case and Theorem 3.4.3 in the non-
simply connected case, H0(E; u−(η0)) has dimension rc + 1. By semi-
continuity, there is a neighborhood Ω of the origin in H1(E; U(η0)) such
that, if ξ = ξx corresponds to an x ∈ Ω, then dimH0(E; (g/p)(ξ)) ≤
rc + 1 as well. As every point of H1(E; U(η0)) is C∗-equivalent to such
an x, we must have dim H0(E; (g/p)(ξ)) ≤ rc + 1 for all possible ξ.

Next consider the exact sequence of Lie algebras

0→ u→ p→ l→ 0.

There is the associated bundle sequence

0→ u(ξ)→ adP ξ → adL η0 → 0.

Since u(η0) is a direct sum of semistable bundles of negative degrees,
H0(E; u(η0)) = 0. It follows as before from semicontinuity and C∗-
equivariance that H0(E; u(ξ)) = 0 for all ξ. So

H0(E; adP ξ) ⊆ H0(E; adL η0) ∼= C.

Thus

h0(E; adG(ξ ×P G)) ≤ h0(E; (g/p)(ξ)) + h0(E; adP ξ) ≤ rc + 2,
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with equality holding if and only if the map

H0(E; adP ξ)→ H0(E; adL η0)

is surjective. This can only happen if the natural homomorphism
AutP ξ → AutL η0 is surjective on the connected component of the
identity, which would say that every λ ∈ C∗ in AutL η0 lifts to an ele-
ment of AutP ξ. But then x must be a fixed point for the C∗-action, and
hence x is the origin. Conversely, if x �= 0, then H0(E; adP ξ) = 0 and
dim AutG(ξ ×P G) ≤ rc + 1, and as we have seen above, this statement
implies Proposition 4.4.2. �

4.5 The Kodaira-Spencer homomorphism

For the moment, we return to the case of an arbitrary root α. Let
x ∈ H1(E; U(η)), and let ξ be the corresponding P -bundle. The bundle
Ξ0 induces a Kodaira-Spencer homomorphism from the tangent space
Tx of H1(E; U(η)) at x to H1(E; ad(ξ×P G)), and we wish to find some
general circumstances where this map is surjective.

Theorem 4.5.1. Suppose that the differential of the action of
AutL η on H1(E; U(η)) at 1 ∈ AutL η and x ∈ H1(E; U(η)) is an in-
jective homomorphism H0(E; adL η) → Tx. Then the Kodaira-Spencer
homomorphism Tx → H1(E; ad(ξ ×P G)) is surjective.

Proof. As in the proof of Lemma 4.2.2, the tangent space Tx can
be identified with bundles ξε over E×Spec C[ε] which restrict to ξ over
the closed fiber and reduce mod U to π∗

1η. If η is given by the 1-cocycle
{�ij}, where the �ij take values in L, and ξ by the 1-cocycle {�ijuij},
where the uij take values in U , then it is easy to see that ξε is given by
a 1-cocycle {�ij(uij + εvij)}, where the vij are also U -valued. Moreover
wij = u−1

ij vij defines an element of H1(E; u(ξ)). In this way, we identify
Tx with H1(E; u(ξ)).

There is a long exact sequence

0→ u(ξ)→ adP ξ → adL η → 0.

The natural map H1(E; u(ξ)) → H1(E; adP ξ) is the Kodaira-Spencer
map for deformations of the P -bundle ξ, and its kernel is the image
of the coboundary map δ : H0(E; adL η) → H1(E; u(ξ)). This kernel
also contains the image of the differential of the action of AutL η on
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H1(E; U(η)) at x, which has dimension equal to dimH0(E; adL η). Thus
it follows by hypothesis that δ is injective.

The Killing form identifies the vector bundle (g/p)(ξ) with the dual
of u(ξ). In particular, (g/p)(ξ) has a filtration whose successive quotients
are stable bundles of positive degrees. Hence H1(E; (g/p)(ξ)) = 0 and
the natural map H1(E; adP ξ)→ H1(E; adG(ξ×P G)) is surjective. Now
consider the commutative diagram

H1(E; u(ξ)) −−−−→ H1(E; adG(ξ ×P G))� ∥∥∥
H0(E; (g/p)(ξ)) −−−−→ H1(E; adP ξ) −−−−→ H1(E; adG(ξ ×P G)) −−−−→ 0� �
H1(E; adL η) H1(E; adL η)�

0

where the middle row and column are exact. A diagram chase shows
that, if the map H0(E; (g/p)(ξ)) → H1(E; adL η) is surjective, then so
is the map

H1(E; u(ξ))→ H1(E; adG(ξ ×P G)),

which is the statement of the theorem. The map H0(E; (g/p)(ξ)) →
H1(E; adL η) is given by the composition

H0(E; (g/p)(ξ))→ H1(E; adP ξ)→ H1(E; adL η),

and the above sequence is Serre dual to the sequence

H1(E; u(ξ))← H0(E; (g/u)(ξ))← H0(E; adL η).

By the naturality of the connecting homomorphisms associated to the
following commutative diagram of short exact sequences

0 −−−→ u(ξ) −−−→ adP ξ −−−→ adL ξ −−−→ 0∥∥∥ � �
0 −−−→ u(ξ) −−−→ adG(ξ ×P G) −−−→ (g/u)(ξ) −−−→ 0,

the composition H0(E; adL η)→ H1(E; u(ξ)) is just the homomorphism
δ, which is injective by hypothesis. Hence by duality H0(E; (g/p)(ξ))→
H1(E; adL η) is surjective, which completes the proof. �
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Corollary 4.5.2. If dim AutL η = 1, and x is not the origin of
H1(E; U(η)), then the Kodaira-Spencer homomorphism

Tx → H1(E; ad(ξ ×P G))

is surjective. If α is c-special, η = η0, and x is not the origin, then
the Kodaira-Spencer homomorphism induces an isomorphism from Tx

modulo the tangent space to C∗ · x to H1(E; ad(ξ ×P G)).

Proof. Since the C∗-action is via strictly positive weights, the dif-
ferential of the action is injective at every nonzero point H1(E; U(η)),
so the hypothesis of the previous theorem is satisfied. This proves the
first statement. To see the second statement, the induced map from Tx

modulo the tangent space to C∗ · x to H1(E; ad(ξ ×P G)) is surjective.
The dimension of Tx modulo the tangent space to C∗ · x is rc. Since,
for every ξ, dimH1(E; ad(ξ ×P G)) ≥ rc, equality must hold, giving a
new proof of Proposition 4.4.2, and the induced map from Tx modulo
the tangent space to C∗ · x to H1(E; ad(ξ×P G)) is an isomorphism. �

This shows that the map Ψ: WP(η0) → M(G, c) is a local dif-
feomorphism over the smooth points of M(G, c). Moreover, giving
M(G, c) and WP(η0) their natural orbifold structures, it follows from
Corollary 4.5.2 that Ψ is an orbifold covering. Let dk(WP(η0)) and
dk(M(G, c)) be the dimensions of the subspaces of WP(η0) andM(G, c)
where k divides the order of the orbifold isotropy. The orbifold covering
property implies that

dk(WP(η0)) ≤ dk(M(G, c)) for all k ≥ 1.

The results in [7] and [10] imply that dk(M(G, c)) = d(k) in the notation
of Proposition 3.3.3 in the simply connected case.

In Section 5 we shall prove that Ψ is an isomorphism. In proving
this result we do not appeal to Corollary 4.5.2, but rather use the fact
that both dk(WP(η0)) and dk(M(G, c)) satisfy circular symmetry. One
can in fact turn this argument around. Using the above inequality and
the fact that the sums of the weights for WP(η0) and M(G, c) add up
to g, one can prove directly that dk(WP(η0)) = dk(M(G, c)) for all
k ≥ 1, and hence apply the results of [7] to show that the dk(WP(η0))
satisfy circular symmetry. In the simply connected case, this gives a
classification-free proof of circular symmetry for the numbers dk(α),
where α is a special root.
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4.6 The singular locus of the weighted projective space

The weighted projective space WP(η) is naturally an orbifold. Its
singular locus (as an orbifold) corresponds to the set of points in the
affine space H1(E; U(η)) whose isotropy group is larger than that of the
generic point, i.e., is larger than Z/nc,αZ. This will be the singular locus
of WP(η) as a variety provided that its codimension is at least two. If
we choose a linear structure and a diagonal basis of H1(E; U(η)), then
the orbifold singular locus of WP(η) is a union of weighted projective
subspaces WP(η)k for k > 1, where WP(η)k is the subvariety of WP(η)
where all of the coordinates are equal to zero except for those for which
the weights are divisible by knc,α. Our goal is to show that, when G is
simply connected and α is special, each such subspace can be naturally
identified the moduli space for a non-simply connected subgroup of G.

Given α ∈ ∆, fix an integer k > 1 such that k = β(�∨
α) for some

root β. Recall from the proof of Proposition 1.4.2 that the set of all
β ∈ R such that k|β(�∨

α) is a root system R(α, k). Moreover, ∆(α, k) =
(∆ − {α}) ∪ {−λk(α)} is a set of simple roots for R(α, k). There is a
semisimple subalgebra

g(α, k) = h⊕
⊕

β∈R(α,k)

gβ ⊆ g.

Let G(α, k) be the corresponding closed connected subgroup of G. Of
course, g(α, k) will not be simple in general. Let

∆(α, k) =
∐
i≥1

∆(α, k)i,

where each subset ∆(α, k)i corresponds to a connected component of
the Dynkin diagram of R(α, k), and where −λk(α) ∈ ∆(α, k)1. Since
G(α, k) is semisimple, we can write

G(α, k) =

(∏
i

Gi

)/
F,

where each Gi is simple and simply connected and corresponds to the
subset ∆(α, k)i of ∆(α, k), and where F is finite. If G is simply con-
nected, then F is cyclic of order k, generated by an element ck.

Viewing −λk(α) as an element of ∆(α, k), i.e., a simple root for
G(α, k), −λk(α) defines a maximal parabolic subgroup P (α, k) of
G(α, k) contained in the maximal parabolic subgroup
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Pα = P of G determined by α. The parabolic subgroup P (α, k) is
of the form (P1 ×

∏
i≥2 Gi)/F , where P1 is the maximal parabolic

subgroup in G1 corresponding to −λk(α). Clearly, the Levi factor
L(α, k) of P (α, k) is just Lα = L = (L1 ×

∏
i≥2 Gi)/F , where L1 is

the Levi factor of P1. The unipotent radical U(α, k) of P (α, k) has
Lie algebra

⊕
k|j uj . Let η be a semistable L-bundle of negative de-

gree. The degree of η is of course independent of whether we view
L as the Levi factor of P or of P (α, k), and we can define the coho-
mology set H1(E; U(α, k)(η)). The inclusion of U(α, k) in U defines
an Aut(L)-equivariant function H1(E; U(α, k)(η)) → H1(E; U(η)) on
the level of cohomology sets, as well as a morphism between the cor-
responding functors. Since the two associated functors are both repre-
sented by affine spaces, the function H1(E; U(α, k)(η))→ H1(E; U(η))
corresponds to an Aut(L)-equivariant morphism of affine spaces. The
geometric meaning of this morphism is as follows: let Fi be the pro-
jection of F to the factor Gi, so that there is a homomorphism from
(L1 ×

∏
i≥2 Gi)/F to (L1/F1) ×

∏
i≥2(Gi/Fi) for i ≥ 2. The bundle η

thus induces an (L1/F1) ×
∏

i≥2(Gi/Fi)-bundle
∏

i ηi, where η1 is an
(L1/F1)-bundle and the ηi are (Gi/Fi)-bundles for i ≥ 2, Moreover η
defines a canonical lifting of the (L1/F1) ×

∏
i≥2(Gi/Fi)-bundle

∏
i ηi

to an (L1 ×
∏

i≥2 Gi)/F -bundle. A class x in H1(E; U(α, k)(η)) defines
a lifting of η1 to a (P1/F1)-bundle ξ1. The lift η then defines a lift of
the (P1/F1) ×

∏
i≥2(Gi/Fi)-bundle defined by ξ1 and the ηi, i ≥ 2, to

a (P1 ×
∏

i≥2 Gi)/F -bundle ξ′. Since P (α, k) = (P1 ×
∏

i≥2 Gi)/F is a
subgroup of P , we can form the associated bundle ξ = ξ′×P (α,k) P , and
this bundle is clearly the lift of η corresponding to the image of x in
H1(E; U(η)).

Proposition 4.6.1. Let η be a semistable L-bundle of negative
degree −d. There are compatible linear structures on H1(E; U(α, k)(η))
and on H1(E; U(η)) so that the morphism

H1(E; U(α, k)(η))→ H1(E; U(η))

is a C∗-equivariant embedding of H1(E; U(α, k)(η)) onto the linear sub-
space of H1(E; U(η)) defined by the span of all of the eigenvectors of
the C∗-action on H1(E; U(η)) whose weights are divisible by knc,αd.

Proof. It is an elementary exercise to check that, if C∗ acts lin-
early and with positive weights on two affine spaces A1 and A2 and
if f : A1 → A2 is a C∗-equivariant morphism whose differential at the
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origin is injective, then there exist coordinates on A2 for which C∗ acts
linearly and such that f is a linear embedding, and the C∗-weights for
the image of f can be determined from the differential of f at the origin.
The differential of the morphism H1(E; U(α, k)(η)) → H1(E; U(η)) is
given by the inclusion⊕

k|j
H1(E; uj(η))→

⊕
j>0

H1(E; uj(η)).

Hence the image of the differential of f at the origin is the span of the
eigenvectors of the C∗-action on H1(E; u(η)) whose weights are divisible
by knc,αd. Thus, the same is true for the morphism f . �

We turn now to the case of a special root α. For simplicity, we as-
sume that G is simply connected, so that the finite group
F = π1(G(α, k)) is generated by an element ck of order k.

Proposition 4.6.2. Suppose that G is simply connected and that α
is special. Let η0 be the L-bundle of Proposition 3.2.3. Then:

(i) For i > 1, ∆(α, k)i is of type A and ck projects to a generator of
the corresponding fundamental group.

(ii) The (L1/F1)-bundle η1 induced by η0 has the property that
η1 ×L1/F1

(G1/F1) is a minimally unstable (G1/F1)-bundle, and
the root −λk(α) is a ck-special simple root in ∆(α, k)1.

Proof. Part (i) follows easily from the explicit description of the
special root. To see Part (ii), it follows from Proposition 4.6.1 that, if
x is a nonzero element of H1(E; U(α, k)(η0)), then the image of x in
H1(E; U(η0)) is also nonzero. In particular, if ξ is the corresponding
P -bundle, then ξ ×P G is semistable. It is easy to check that, in this
case, the (P1/F1)-bundle corresponding to x is again semistable. Thus,
η1 ×(P1/F1) (G1/F1) is a minimally unstable (G1/F1)-bundle, and so
−λk(α) is a ck-special simple root for G1/F1. �

Of course, we could also check the above proposition by a case-by-
case analysis. This also shows that the projection F → G1 is always an
embedding of F into the center of G1. For i ≥ 2, the factor Gi is of
type A and Fi is the full center, and hence the bundle ηi is always rigid.
On the other hand, the image F1 need not be the full center of G1. For
example, if G is of type E8 and k = 4, then G1 is of type A7, and thus
its center is isomorphic to Z/8Z, whereas F1 has order 4.
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There is thus an induced morphism of weighted projective spaces. In
terms of moduli spaces, if we grant Looijenga’s theorem (Theorem 5.1.1)
in both the simply connected and the non-simply connected cases, this
morphism identifies the sub-projective space WP(η0)k of WP(η0) corre-
sponding to setting all the coordinates in the weight spaces with weights
not divisible by knα equal to zero with the weighted projective space
which is the moduli space of unliftable semistable (G1/F1)-bundles. Of
course, on the level of G-bundles, this shows that up to S-equivalence a
bundle corresponding to a point of the moduli space lying in this sub-
projective space has a reduction of structure to a semistable unliftable
(
∏

i Gi)/F -bundle, and conversely such a bundle defines a semistable
G-bundle whose moduli point lies in this sub-projective space. In terms
of the C∗-weights, the number of such weights divisible by knα can be
related to the weights appearing for the appropriate non-simply con-
nected form of a subgroup. For example, if G is of type E8, the root
system R(α, 2) is of type E7 ×A1 and the C∗-weights divisible by 2 for
G, in other words the gα such that 2|gα, are the weights occurring in the
weighted projective space for the adjoint form of E7. These are exactly
the weights appearing in the quotient diagram for Ẽ7 modulo the action
of the nontrivial element of the center, namely twice the weights for the
group of type F4: 2, 2, 4, 4, 6. In [7, §9], these quotient root systems
appear in a different context, unrelated to the special roots, as certain
root systems Φ(t(k)) constructed on certain subtori of H. It would be
nice to understand this somewhat mysterious connection more directly.

5. A new proof of Looijenga’s theorem

5.1 Statement of the theorem

Fix a c-special root α. We denote the corresponding parabolic sub-
group simply by P , and similarly for L. We have defined the bundle η0

in Proposition 3.2.3 and Lemma 3.4.5. As in Section 1, letM(G, c) de-
note the coarse moduli space of semistable G-bundles ξ with c1(ξ) = c,
modulo S-equivalence. We have seen that there is a universal family of
regular semistable G-bundles Ξ0 over E × (H1(E; U(η0))− {0}). Thus
there is an induced morphism

Ψ̃: H1(E; U(η0))− {0} →M(G, c).

The morphism Ψ̃ is constant on C∗-orbits. Let WP(η0) be the weighted
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projective space which is the C∗-quotient of H1(E; U(η0))−{0} and let

Ψ: WP(η0)→M(G, c)

be the morphism induced by Ψ̃. We can then state our version of Looi-
jenga’s theorem as follows:

Theorem 5.1.1. Let E be an elliptic curve, let G be a simple group
and let c ∈ π1(G) be a generator. The morphism Ψ: WP(η0)→M(G, c)
defined above is an isomorphism.

Corollary 5.1.2. The moduli space M(G, c) is isomorphic to a
weighted projective space with weights gβ/n0, β ∈ ∆̃/wc as defined in
Definition 1.5.1.

In particular, if G is simply connected, then we obtain a new proof
of Looijenga’s theorem [17].

5.2 The classical cases

Let us first sketch the proof of the theorem above for the case of
the classical groups, bearing in mind the description of the bundle η0

given in Proposition 3.2.5. In case G = SLn(C), the theorem asserts
that every regular semistable vector bundle V of rank n and trivial
determinant is S-equivalent to a unique extension

0→W ∗
k → V →Wn−k → 0.

In this form, the theorem is proved in [14], Theorem 3.2(iv).
Let us next consider the case of the symplectic group. We shall

show that the morphism Ψ has degree one in this case (as we shall
see below, this implies that Ψ is an isomorphism). Let V be a generic
regular semistable symplectic vector bundle, in other words a regular
semistable vector bundle of rank 2n with a nondegenerate symplectic
form A. Here generic will mean that V is a direct sum

n⊕
i=1

(λi ⊕ λ−1
i ),

where the λi are line bundles of degree zero, not of order 2, and such
that, for i �= j, λi �= λ±1

j . In this case, the symplectic form on V is
an orthogonal sum of symplectic forms Ai on λi ⊕ λ−1

i . The space of
such forms which are nondegenerate corresponds to the choice of an



358 robert friedman & john w. morgan

isomorphism from λ−1
i to itself, in other words to a nonzero multiple of

Ai, and the group of symplectic automorphisms of Ai is also isomorphic
to C∗. For each i, the space of surjections ϕi : W ∗

n → λ±1
i is a C∗. Thus,

the space of morphisms W ∗
n → λi⊕λ−1

i is a C∗×C∗. It is clear that the
pullback of Ai to Wn under such a morphism is a nonzero symplectic
form, which we denote by Bi. Moreover, by varying the morphism from
W ∗

n → λi ⊕ λ−1
i , we exactly get all symplectic forms on W ∗

n of the form
tiBi, where ti ∈ C∗.

Now suppose we have found, for every i, a morphism fi : W ∗
n →

λi ⊕ λ−1
i such that, if tiBi is the pulled back morphism, then ti �= 0 for

every i and such that
∑n

i=1 tiBi = 0. It follows that the morphism
W ∗

n → λ±1
i is nonzero for every i. By Proposition 3.6 of [14], the

morphism W ∗
n → V embeds W ∗

n as an isotropic subbundle of V , and the
quotient V/W ∗

n is isomorphic to Wn. This implies that we have reduced
the structure group of V to a maximal parabolic subgroup P of Sp(2n)
corresponding to the special root, and the corresponding L-bundle is
η0. Hence (V, A) is in the image of Ψ, and the statement that Ψ has
degree 1 is the statement that the ti above are uniquely determined up
to multiplying by a fixed nonzero scalar.

Thus, we must find ti such that
∑n

i=1 tiBi = 0 and show that the ti
are unique up to a scalar. To see this, note that the space of alternating
forms on W ∗

n is H0(E;
∧2 Wn). One easily computes that deg

∧2 Wn =
n − 1. Since Wn is stable,

∧2 Wn is a semistable vector bundle of
positive degree. Thus, h1(E;

∧2 Wn) = 0, and so by Riemann-Roch,
h0(E;

∧2 Wn) = n− 1. It follows that every collection of n forms Bi is
linearly dependent, and so some linear combination of the Bi is zero.
To prove uniqueness, and also to prove that the quotient is a Wn, it
will suffice to show that no smaller linear combination is zero. Suppose,
say, that

∑k
i=1 tiBi = 0, with k < n and ti �= 0 for all i ≤ k. Consider

the induced morphism from W ∗
n to
⊕k

i=1(λi ⊕ λ−1
i ). If k > n/2, then

by Proposition 3.6 of [14] there would exist an embedding of W ∗
n as an

isotropic subbundle of a vector bundle of rank < 2n, which is impossible
since the symplectic form on

⊕k
i=1(λi ⊕ λ−1

i ) is nondegenerate. If k ≤
n/2, then in fact the argument of Proposition 3.6 of [14] shows that the
image of W ∗

n would be a subbundle of rank equal to 2k, and hence that
the symplectic form on

⊕k
i=1(λi⊕λ−1

i ) is identically zero, which is again
a contradiction. Thus no smaller linear combination of the Bi is zero,
proving that Ψ has degree one. A similar argument shows that, even
for a regular symplectic bundle (V, A) which is not generic in the above
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sense, there still exists an embedding of W ∗
n in V as a maximal isotropic

subbundle, and this embedding is unique up to the automorphism group
of (V, A). Thus, we can also show directly that Ψ is a bijection instead
of merely having degree one in this case.

The case of Spin(n) is similar. By a generic Spin(2n)-bundle, we
mean one whose associated SO(2n)-bundle V is of the form

⊕n
i=1(λi⊕

λ−1
i ), where the λi are line bundles of degree zero, not of order 2, and

such that, for i �= j, λi �= λ±1
j , and the quadratic form is the orthogonal

sum of quadratic forms Ai on λi ⊕ λ−1
i . We consider maps W ∗

n−2 → V
whose image is isotropic. Arguments as in the symplectic case show that
there is an embedding ι of W ∗

n−2 as an isotropic subbundle of V , and
such that the projection to each summand λ±1

i is nonzero, and such an
embedding is unique up to orthogonal isomorphisms of V . Dually, we
have a map V ∗ ∼= V → Wn−2. Thus there is a complex W ∗

n−2
ι−→ V

ι∗−→
Wn−2. The symmetric form identifies V/(W ∗

n−2)
⊥ with Wn−2. It is easy

to check that the bundle Ker(ι∗)/ Im(ι) is a semistable SO(4)-bundle
which does not lift to Spin(4), and hence is of the form W2⊗W ∗

2
∼= Q4.

The filtration on V then reduces the structure group to the appropriate
maximal parabolic subgroup as before. A very similar argument handles
the case of SO(2n+1), using instead an isotropic subbundle isomorphic
to W ∗

n−1, and showing that (W ∗
n−1)

⊥/W ∗
n−1 is isomorphic to adW2.

Similar statements can also handle the case of unliftable bundles.

5.3 Proof of the main theorem: determinant line bundles

We turn to the proof of Theorem 5.1.1.
First, it is an elementary result that a morphism from a weighted

projective space to a quasiprojective variety is either constant or finite.
Indeed, since every weighted projective space has a finite ramified cover
which is an ordinary projective space, this follows from the analogous
and well-known result for Pn. Thus, since WP(η0) and M(G, c) are
normal, if we can show that Ψ has degree one, then it follows from
Zariski’s main theorem that Ψ is an isomorphism.

To calculate the degree of Ψ we shall compare determinant line
bundles on the two sides. The idea will be to find line bundles D1,
D2 on WP(η0) and M(G, c) respectively, such that [D1] = Ψ∗[D2] in
H2(WP(η0); Q) and such that

∫
WP(η0) c1(D1)rc =

∫
M(G,c) c1(D2)rc �= 0.

Since on the other hand we have c1(D1)rc = deg Ψ ·c1(D2)rc , it will then
follow that deg Ψ = 1.

To define the line bundles Di (which in fact will be a priori only Q-
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Cartier divisors), we recall the definition of the determinant line bundle
on the moduli functor. First recall the definition of the moduli functor
M itself: for a scheme S over C, M(S) is the set of isomorphism classes
of principal G-bundles Ξ over E×S such that Ξ|E×{x} is semistable for
every x ∈ S. The moduli functor is coarsely represented by M(G, c).
Given an element of M(S), corresponding to a principal G-bundle Ξ
over E × S, we have the associated vector bundle ad Ξ over E × S, and
thus we can form the determinant line bundle detRπ2∗ ad Ξ over S (see
for example Chapter 5, Section 3 of [9]). Since π2 has relative dimension
one, H i(ad Ξ|E × {s}) = 0 and likewise Riπ2∗ ad Ξ = 0 for i > 1. The
fiber of detRπ2∗ ad Ξ over s ∈ S is then the complex line

top∧
H0(ad Ξ|E × {s})⊗

(
top∧

H1(ad Ξ|E × {s})
)−1

.

Here are some of the basic properties of this line bundle:
1. If R0π2∗ ad Ξ and R1π2∗ ad Ξ are locally free, for example if

Ξ|E × {x} is regular for every x ∈ S, then

det Rπ2∗ ad Ξ =

(
top∧

R0π2∗ ad Ξ

)
⊗
(

top∧
R1π2∗ ad Ξ

)−1

.

2. Suppose that S is smooth, that λ is a line bundle of degree zero
on E, and that

Dλ = {x ∈ S : h0(E; (ad Ξ|E × {x})⊗ λ) �= 0}
is a hypersurface in S. Let Zi be the irreducible components of
Dλ, and let ni be the length of the torsion sheaf R1π2∗(ad Ξ ⊗
π∗

1λ) at a generic point of Zi. Then (see e.g., [9], Chapter 5,
Corollary 1.2 and Proposition 3.9) there is a canonical section div
of
(
det Rπ2∗(ad Ξ ⊗ π∗

1λ)
)−1 whose divisor of zeroes is

∑
i niZi,

and hence

c1(det Rπ2∗ ad Ξ) = c1(det Rπ2∗(ad Ξ⊗ π∗
1λ)) = −

∑
i

ni[Zi].

By general results, there is an associated Q-divisor on M(G, c)
(i.e., an element in Pic(M(G, c)) ⊗ Q, which we shall denote by D2.
As we shall see, D2 is in fact Cartier, in other words, a line bundle.
We will find an analogous divisor D1 over WP(η0) and show that (1)∫

WP(η0) c1(D1)rc =
∫
M(G,c) c1(D2)rc and (2) [D1] = Ψ∗[D2]. This will

prove Theorem 5.1.1.
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5.4 The divisor on the weighted projective space

Consider the universal G-bundle Ξ0 over E × H1(E; U(η0)). The
action of C∗ on Ξ0 gives a linearization of the action on C∗ on the asso-
ciated vector bundle ad Ξ0 and thus on the line bundle detRπ2∗ ad Ξ0.
Since H1(E; U(η0)) is an affine space, det Rπ2∗ ad Ξ0 is the trivial line
bundle. Every linearization of the C∗-action on the trivial bundle is
given by a character χ : C∗ → C∗ of the form χ(z) = za for a unique
a ∈ Z. There is the corresponding coherent sheaf OWP(η0)(a), which
is given by viewing WP(η0) as Proj C[z0, . . . , zrc ] with the appropriate
grading. By a general result on weighted projective spaces [19], the co-
herent sheaf OWP(η0)(a) is a line bundle if and only if the C∗-weights all
divide a. Note that, on the open set WPreg(η0) of free C∗-orbits, the
vector bundle ad Ξ0 is defined, and in fact R0π2∗ ad Ξ0 and R1π2∗ ad Ξ0

are both locally free of rank rc. Thus there is a well-defined line bundle(∧rc R0π2∗ ad Ξ0

) ⊗ (∧rc R1π2∗ ad Ξ0

)−1, and this line bundle clearly
agrees with the restriction of OWP(η0)(a) to WPreg(η0). We next iden-
tify the integer a:

Lemma 5.4.1. The natural C∗-linearization on det Rπ2∗ ad Ξ0

corresponds to the line bundle OWP(η0)(−2gnc,α/n0).

Proof. We must show that the C∗-linearization on detRπ2∗ ad Ξ0

is given by the character which is raising to the power −2gnc,α/n0. To
compute the C∗-linearization, it suffices to compute the action of C∗ on
the fiber of detRπ2∗ ad Ξ0 over the origin, which is a fixed point for the
C∗-action on H1(E; U(η0)). The fiber over 0 is canonically

top∧
H0(E; adG(η0 ×L G))⊗

(
top∧

H1(E; adG(η0 ×L G))

)−1

.

Now, by Lemma 2.1.2 and Lemma 2.1.5,

H0(E; adG(η0 ×L G)) = H0(E; u−(η0))⊕H0(E; adL η0).

Since C∗ is contained in the center of L, the action of C∗ on
H0(E; adL η0) is trivial. By Proposition 3.3.3 and Proposition 3.4.7,
C∗ acts on H0(E; u−(η0)) with weights −nc,αgβ/n0. Thus the action on∧top H0(E; adG(η0×L G)) is via −∑β nc,αgβ/n0 = −gnc,α/n0. A simi-
lar argument (or duality) handles the case of the C∗-action on∧top H1(E; adG(η0 ×L G)). Putting these together, we get the power
−2gnc,α/n0. �
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Remark 5.4.2. In case WP(η0) is the weighted projective space
arising from the moduli space of G-bundles, where G is simply con-
nected, one can use the Kodaira-Spencer map to check that D1 =
K⊗2

WP(η0). Now, by a standard fact about weighted projective spaces,

KWP(η0) = OWP(η0)(−g), and thus K⊗2
WP(η0) = OWP(η0)(−2g).

Define D1 = OWP(η0)(−2gnc,α/n0). We now compute the top self-
intersection of c1(D1):

Lemma 5.4.3. Let WPr be the weighted projective space which
is the quotient of Cr+1 − {0} by the action of C∗ acting with positive
weights w0, . . . , wr, and let a be an integer such that wi|a for every i.
Then ∫

WPr
c1(OWPr(a))r = ard/(w0 · · ·wr),

where d = gcd{w0, . . . , wr}.

Proof. The morphism Cr+1 → Cr+1 defined by

(z0, . . . , zr) �→ (zw0
0 , . . . , zwr

r )

is C∗-equivariant, where C∗ acts with all weights equal to 1 on the
domain and with weights wi on the range. Thus there is an induced
cover f : Pr →WPr, and it is easy to check that the degree of this cover
is w0 · · ·wr/d. There is always a natural inclusion f∗OWPr(a)→ OPr(a),
and one checks that this inclusion is an isomorphism if wi|a for every a.
In this case,∫

WPr
c1(OWPr(a))r =

∫
Pr

c1(OPr(a))r/ deg f = ard/(w0 · · ·wr).

This proves the formula of Lemma 5.4.3. �

Corollary 5.4.4. c1(D1)rc = (−2g)rcn0/
∏

β gβ.

Proof. This is immediate from Lemma 5.4.1 and Lemma 5.4.3, with
wi = nc,αgβ/n0, a = −2gnc,α/n0, and d = nc,α. �

5.5 The divisor on the moduli space: the simply con-
nected case

We turn now to the calculation of c1(D2)r. In order to make the
argument easier to follow, we begin by working out the simply connected
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case. Recall that we have the finite morphism E ⊗Z Λ→M(G, c). Let
D3 be the pullback of D2 to a divisor on E ⊗Z Λ. Clearly, c1(D2)r =
c1(D3)r/#(W ). Thus, we shall begin by computing c1(D3)r. For a point
ρ ∈ E⊗Z Λ, there is an associated flat G-bundle ξ0, and as we have seen
in Lemma 3.1 of [10],

ad ξ0
∼= Or

E ⊕
⊕
α∈R

λα(ρ),

where λα(ρ) is the line bundle of degree zero corresponding to the point
α(ρ) ∈ E ∼= Pic0 E, or equivalently is the line bundle associated to the
flat U(1)-bundle whose holonomy is given by α(ρ). In particular, we see
that for λ = OE , the set Dλ defined in the discussion on determinant
line bundles is all of E ⊗Z Λ, whereas for a nontrivial line bundle λ of
degree zero, Dλ is a hypersurface in E ⊗Z Λ. In fact, Dλ is a union of
distinct hypersurfaces Dλ,α, where if λ corresponds to the point e ∈ E,
then

Dλ,α = { ρ ∈ E ⊗Z Λ : α(ρ) = −e }.
Each Dλ,α is a union of translates of abelian subvarieties of E ⊗Z Λ. In
particular, the hypersurface Dλ,α is smooth. The next lemma says that
every component of Dλ,α counts with multiplicity one in the expression
for −c1(D3).

Lemma 5.5.1. For λ a nontrivial line bundle of degree zero,

c1(D3) = −
∑
α∈R

[Dλ,α].

Proof. There is a universal G-bundle Ξ1 over E × (E ⊗Z Λ), which
in fact arises from a universal H-bundle, which we shall also denote by
Ξ1. One can describe Ξ1 as follows. An H-bundle over E × (E ⊗Z Λ) is
the same thing as an element of Pic(E × (E ⊗Z Λ))⊗ Λ. The inclusion

Pic(E × E)⊗ Λ∗ → Pic(E × (E ⊗Z Λ))

induces an inclusion

Pic(E×E)⊗Λ∗⊗Λ = Pic(E×E)⊗Hom(Λ, Λ)→ Pic(E×(E⊗ZΛ))⊗Λ,

and we take the image of the element P ⊗ Id. As vector bundles over
E × (E ⊗Z Λ),

ad Ξ1 = Or
E×(E⊗ZΛ) ⊕

⊕
α∈R

Pα,
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where Pα is the pullback to E× (E⊗Z Λ) of the Poincaré bundle P over
E × E, via the morphism induced from α from E ⊗Z Λ to E. Thus,
by functorial properties of determinant line bundles (cf. [9, Chapter 5,
Proposition 3.8]), it will suffice to show that, over E × E,

det Rπ2∗(P ⊗ π∗
1λ) = OE(−e),

where as before λ = OE(e− p0). It is clear in any case that the inverse
of detRπ2∗(P ⊗π∗

1λ) is represented by an effective divisor supported at
e, and the only question is the length of R1π2∗(P ⊗ π∗

1λ). A standard
calculation using the Grothendieck-Riemann-Roch theorem shows that
this length is one (cf. [9, Chapter 7, Lemma 1.6] for the case of the
trivial line bundle). �

Next we identify the divisor
∑

α∈R Dλ,α. Using the identifications

H2(E ⊗Z Λ; Z) =
2∧

H1(E ⊗Z Λ; Z) =
2∧(

H1(E; Z)⊗ Λ∗)
there is an inclusion

2∧
H1(E; Z)⊗ Sym2 Λ∗ ⊆

2∧(
H1(E; Z)⊗ Λ∗) ,

and hence, since there is a canonical identification
∧2 H1(E; Z) ∼= Z

there is a natural inclusion of Sym2 Λ∗ in H2(E ⊗Z Λ; Z). Let
Q ∈ Sym2 Λ∗ be the quadratic form described in Section 1 defined by

Q =
∑
α∈R

〈α, ·〉〈α, ·〉,

and let Q̂ be the corresponding element of H2(E ⊗Z Λ; Z). By Lem-
ma 1.1.2, Q = (2g)I0, where I0 is the unique W -invariant quadratic
form on Λ such that I0(α̃∨, α̃∨) = 2.

Lemma 5.5.2. −c1(D3) = Q̂.

Proof. By Lemma 5.5.1, it clearly suffices to show that, for every
α ∈ R, we have an equality (under the obvious identifications)

[Dλ,α] = 〈α, ·〉〈α, ·〉.

As such, this equality is a general fact about lattices Λ: suppose that Λ
is a lattice and α : Λ → Z is a homomorphism. There is an associated
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morphism E ⊗Z Λ → E which we shall denote by eα. We can define
the divisor Dα = e∗α(p) for p ∈ E, as well as the cohomology class
〈α, ·〉〈α, ·〉 ∈ Sym2 Λ∗ ⊂ H2(E; Z). To prove Lemma 5.5.2, it is enough
to prove:

Claim 5.5.3. The class of the divisor Dα = e∗α(p) is equal to
〈α, ·〉〈α, ·〉.

Proof of Claim 5.5.3. First assume that α is primitive. Then after
a suitable choice of a basis of Λ we can assume that Λ ∼= Zr and that
α is projection onto the last factor. In this case, Dα = Er−1 × {p} and
〈α, ·〉〈α, ·〉 = π∗

r (e∧f), where e∧f is a positive generator of H2(E; Z) ∼=
Z. Clearly, equality holds in this case. If α is not primitive, we can
write α = nα0, where n is a nonnegative integer and α0 is primitive. In
this case, eα factors as the morphism α0 followed by multiplication by
n on E, and so Dα is cohomologous to n2 copies of Dα0 . Likewise

〈α, ·〉〈α, ·〉 = n2〈α0, ·〉〈α0, ·〉,

and so the claim follows from the case where α is primitive. �

5.6 The divisor on the moduli space: the non-simply con-
nected case

We now redo the above calculations to handle the non-simply con-
nected case. We have the moduli spaceM(G, c) and the corresponding
determinant line bundle as before, and we use the notation of §1.5. To
make the calculation, we can pull the determinant line bundle up to the
space E ⊗ Λwc = T0 × T0, where there is a universal flat bundle. Let
D3 be the class of the determinant line bundle pulled back to E ⊗ Λwc .
As before, we have an inclusion Sym2(Λwc)∗ → H2(E ⊗ Λwc ; Z). Let
Q0 be the element (2g)(I0|Λwc) ∈ Sym2(Λwc)∗ and let Q̂0 be the corre-
sponding element of H2(E ⊗ Λwc ; Z). We have the following analogue
of Lemma 5.5.2:

Lemma 5.6.1. −c1(D3) = Q̂0.

Proof. The proof is similar to that in the simply connected case
for Lemmas 5.5.1 and 5.5.2, and we shall be a little sketchy. Suppose
that ξ is a flat K-bundle corresponding to the c-pair (x, y). Let λ be a
fixed, general line bundle of degree zero on E. We compute when ξ is
in the support of (R det π2∗(ad Ξ⊗ π∗

1λ))−1 = −D3. As we have seen in
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Lemma 4.5 of [10],

ad ξ ∼= (hwc ⊗OE)⊕ V ′
0 ⊕
⊕
o

(Vy,o ⊗ Lx,o),

where the o are the orbits for the action of wc on R. Here V ′
0 is a sum

of certain torsion line bundles, Lx,o is a line bundle with holonomy α(x)
for any fixed choice of α ∈ o, and Vy,o is the sum of the root spaces
gα, α ∈ o, with the action defined by y. It follows that Vy,o ⊗ Lx,o is a
direct sum of distinct line bundles of degree zero. Given a wc-orbit o,
let αo be a choice of α ∈ o. Next we construct a universal bundle Ξ1 as
in the simply connected case, along the lines of [10, Lemma 5.21]. The
construction outlined there shows that

ad Ξ1 = (hwc ⊗OE×(E⊗Λwc ))⊕ π∗
1V

′
0 ⊕
⊕
o

(Vy0,o ⊗ Lx0,o ⊗ Po),

where π1 : E × (E ⊗ Λwc) → E is the projection onto the first factor,
(x0, y0) is a fixed c-pair and, as in the simply connected case, Po is the
pullback to E × (E ⊗ Λwc) of the Poincaré bundle P on E × E via the
morphism E⊗Λwc → E induced by αo. The proof of Lemma 5.5.1 then
shows that the divisor D3 is reduced.

For a general choice of λ, there exist cx and cy depending only on
λ such that ξ is in the support of −D3 if and only if there exists an o
such that

αo(x) = cx;∑
α∈o

α(y) = cy.

Thus, in cohomology, c1(D3) corresponds to the element

∑
o

(
αo ⊗
∑
α∈o

α

)
∈ (Λwc)∗ ⊗ (Λwc)∗.

Now every α ∈ o has the same restriction to Λwc as αo. Thus the above
sum become ∑

o

do(αo ⊗ αo),

where do is the order of o. On the other hand, we have
(2g)I0 =

∑
α∈R(α ⊗ α). Clearly, the restriction of this form to Λwc

is
∑

o do(αo ⊗ αo), and this completes the proof of Lemma 5.6.1. �
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5.7 Completion of the proof of Theorem 5.1.1

We have identified a divisor D1 on WP(η0) and computed its top
intersection. We have identified a divisor D2 on M(G, c), or rather its
pullback to a divisor D3 on a finite cover of M(G, c). To find the top
power of D3, we use the next lemma:

Lemma 5.7.1. Let J be a quadratic form on Λ∗, and view J as
an element of H2(E ⊗Z Λ; Z) via the inclusion Sym2 Λ∗ ⊂ H2(E; Z). If
the rank of Λ is r, then the top power of J is (r!) detJ .

Proof. Let Ω be the 2-form corresponding to J . First suppose that
J is diagonalizable with respect to some Z-basis for Λ, corresponding to
a given isomorphism Λ ∼= Zr. Then Ω is of the form

r∑
i=1

ai[(e ∧ f)⊗ (πi)2,

where J =
∑r

i=1 ai(πi)2, say, πi : Λ ∼= Zr → Z is projection onto the ith

factor, and e∧ f is the positive generator for H2(E; Z). In this case, we
can write Ω =

∑r
i=1 ai(ei ∧ fi), where ei ∧ fi is the generator on the ith

factor of E ⊗Z Λ ∼= Er. Clearly

Ωr = (r!)a1 · · · ar = (r!) detJ.

In general, the statement makes sense for Q-coefficients. Note that

dimQ

2r∧(
H1(E; Q)⊗ (Λ∗ ⊗Q)

)
= 1,

and a basis element b is given by choosing the standard positive gener-
ator for H2(E ⊗Z Λ; Z), together with a Z-basis for Λ. Changing the
Z-basis for Λ to some new Q-basis changes the element b by (detX)2,
where X is the change of basis matrix. In particular, if X has deter-
minant 1, then b is unchanged. Now every quadratic form on Λ can be
diagonalized via a Q-basis such that the change of basis matrix relating
the new Q-basis to a Z-basis has determinant 1. Thus we may reduce
to the case where J is diagonalizable, where we have already checked
the result. �

Corollary 5.7.2.
∫
M(G,c) c1(D2)rc = (−2g)rcn0

/∏
β gβ.
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Proof. Let e be the degree of the covering T0 × T0 →M(G, c). We
see by Lemma 5.5.2 and Lemma 5.6.1 that it suffices to prove that

(2g)rcn0

/∏
β

gβ = (2g)rc(rc)! det(I0|Λwc)/e,

which we can rewrite as

e =
(rc)!
n0

det(I0|Λwc)
∏
β

gβ.

This is exactly the statement of Theorem 1.5.2. �
To complete the proof of Theorem 5.1.1, it suffices to show that

Ψ∗[D2] = [D1] in H2(WP(η0), Q). There is a Zariski open and dense
subsetM0 ofM(G, c) consisting of semistable G-bundles for which the
regular representative also carries a flat connection [10, Corollary 6.2].
Let M̃0 be the preimage of this subset in E ⊗ Λwc = M̃.

Lemma 5.7.3. Let x ∈ M̃0, and let ξx be the corresponding G-
bundle. Then the tautological bundle Ξ1 constructed above identifies an
analytic neighborhood of x ∈ M̃0 with the local semi-universal deforma-
tion space of ξx, which is locally universal.

Proof. By the definition of M̃0, there is a unique representative
up to isomorphism for the S-equivalence class of ξx and it is both flat
and regular. Hence the map H1(E; hwc ⊗ OE) → H1(E; ad ξx) is an
isomorphism. Then the tautological bundle Ξ1 constructed above iden-
tifies an analytic neighborhood of x ∈ M̃0 with the local semi-universal
deformation space of ξx. Since Lie Aut ξx = hwc , it acts trivially on
H1(E; ad ξx) and thus the local semi-universal deformation of ξx is in
fact locally universal. �

(See [10, Theorem 6.12] for a more general result along these lines.)
We now claim:

Lemma 5.7.4. Let X be irreducible, and let Ξ → E × X be
an adG-bundle which lifts to a G-bundle on every slice E × {x}. Let
f : X → M(G, c) be the corresponding morphism, and suppose that
f(X) ∩ M0 �= ∅. Let DX = det Rπ2∗ ad Ξ. Then [DX ] = f∗[D2] in
H2(X; Q).

Proof. Choose a component X̃ of the fiber product X ×M(G,c)

M̃, and let f̃ : X̃ → M̃ be the induced map. It suffices to show that
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f̃∗[D3] = [D
X̃

] in the obvious notation. Since both sides are algebraic,
it suffices to show the following: let Σ ⊆ X̃ be an irreducible curve such
that f̃(Σ) ∩ M̃0 �= ∅. Then f̃∗[Σ] · D3 = Σ · D

X̃
. Now choose a line

bundle λ of degree zero on E such that, if div is the canonical section of
det Rπ2∗(ad Ξ1⊗ π∗

1λ)−1, then div∩f̃(Σ) ⊆ M̃0 is a finite set of points.
Let p ∈ Σ be a point such that f̃(p) ∈ div∩f(Σ). Since f̃(p) ∈ M̃0,
it follows from Lemma 5.7.3 that, in an analytic neighborhood Ω of p,
the bundle adΞ is pulled back via f̃ from ad Ξ1. It follows that the
line bundle

(
det Rπ2∗(ad Ξ⊗ π∗

1λ)
)−1 and its canonical section are also

pulled back via f̃ . Thus f̃∗[Σ] · D3 = Σ · D
X̃

as claimed. �
We cannot apply Lemma 5.7.4 directly to the morphism

Ψ: WP(η0)→M(G, c),

since there is no universal adG-bundle over WP(η0). However, as in
the proof of Lemma 5.4.3, there is a finite cover of WP(η0) by a pro-
jective space Prc and an adG-bundle over Prc . Let Ψ̂ : Prc → M(G, c)
be the induced morphism. It follows from the proof of Lemma 5.4.3
that OWP(η0)(−2gnc,α/n0) pulls back to OPrc (−2gnc,α/n0) and that this
line bundle is the determinant line bundle on Prc . By Lemma 5.7.4,
Ψ̂∗[D2] = c1(OPrc (−2gnc,α/n0)), and hence Ψ∗[D2] = [D1]. Together
with Corollary 5.7.2 and Corollary 5.4.4, this completes the proof of
Theorem 5.1.1.

Appendix: Nonabelian cohomology

We discuss the general formalism, due to Grothendieck [15], for de-
ciding when a principal bundle with structure group a quotient group
can be lifted back to the full group, and for classifying all such liftings.
In general, the set of liftings (suitably interpreted) is given by a non-
abelian cohomology set. We then go on to discuss circumstances under
which this cohomology set has a natural scheme structure, and indeed
represents an appropriate functor. The arguments here are modifica-
tions of arguments due to Deligne and Babbitt-Varadarajan [4], given
in a somewhat different context.

A.1 Lifting

We begin with a very general discussion of nonabelian cohomology
and liftings of principal bundles. First suppose that G is a linear al-
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gebraic group and that ξ is a principal G-bundle over X, where X is
a scheme or analytic space. Here it is understood that there is some
topology for which ξ is locally trivial, for example, Zariski, étale, or
classical, and cohomology will always be computed with respect to the
appropriate topology. Throughout this paper, we have always worked
with holomorphic bundles and the classical topology. One basic result
is that, if X is projective, there is a natural bijection between the set of
isomorphism classes of principal holomorphic G-bundle over X in the
classical topology and the set of principal G-bundles over X in the étale
topology. This follows from the method of proof of Prop. 20 in GAGA
[22] and the fact that, if G is a closed subgroup of GL(n), then the
quotient GL(n)/G is quasiprojective and admits local cross-sections in
the étale topology. Thus the set of isomorphism classes of holomor-
phic principal G-bundles over X is canonically identified with the set
of principal G-bundles over X in the étale topology. However, when we
discuss representable functors below and try to put a scheme structure
on various cohomology sets, it will be convenient to use the étale topol-
ogy. For most of the paper, we have only considered the case where X
is a smooth projective curve, and the issue of the correct topology is
not important. Indeed, it follows from [24] that, if X is a smooth curve
and G is linear, then a locally trivial G-bundle in the étale topology is
actually Zariski locally trivial. However, we will not use this fact. One
fact about cohomology which we shall need is the following: if X is a
scheme and V is a coherent sheaf on X, then H i(X; V ) computed for the
étale topology is the usual sheaf cohomology computed in the Zariski
topology [18], III (3.8). Of course, by GAGA, a similar statement holds
in the classical topology for the analytic sheaf associated to V provided
that X is projective.

If S is a scheme on which G acts, we can form the associated scheme
ξ ×G S (not to be confused with fiber product). It is fibered over X
and the fibers are isomorphic to S. Denote the sheaf (of sets) of cross
sections (regular, holomorphic, or étale, depending on the context) of
ξ ×G S by S(ξ). We will usually be interested in the case where S is
itself an algebraic group and where G acts on S by homomorphisms.
In this case, ξ ×G S is a group scheme and S(ξ) is a sheaf of (not
necessarily abelian) groups. For example, if S = G and the action is
by conjugation, then G(ξ) is the automorphism group scheme of ξ and
its global sections are the group AutG ξ. If S is a vector space and
G acts on S linearly, then S(ξ) is the vector bundle associated to the
corresponding representation on G. Given an algebraic group G and a
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space X, the sheaf of morphisms from X to G will be denoted G. Here
G is a sheaf in the Zariski, étale, or classical topology, depending on the
context.

Suppose that G is an algebraic group and that N is a closed normal
subgroup. Let H = G/N , with π : G → H the induced morphism. Let
X be a scheme, and let ξ0 be a principal H-bundle over X. Suppose
that ξ is a principal G-bundle lifting ξ0. Note that G acts on N by
conjugation, so that N(ξ) is defined. If moreover N is abelian, then
this action of G on N factors through an action of H on N , and so
N(ξ0) is defined.

The group H0(X; H(ξ0)) acts on the cohomology set H1(X; N(ξ)).
We have the following general result [15] or [23]:

Lemma A.1.1. With the above notation, the set of all principal G-
bundles lifting ξ0, or in other words the fiber of the class [ξ0] ∈ H1(X; H)
under the natural map H1(X; G) → H1(X; H), may be identified with
H1(X; N(ξ))/H0(X; H(ξ0)). �

We will also want a slight variant of the above:

Lemma A.1.2. In the notation of Lemma A.1.1, the set of all iso-
morphism classes of pairs (η, ϕ), where η is a principal G-bundle and ϕ
is an isomorphism from η/N to ξ0, can be identified with H1(X; N(ξ)).

�

Note that H0(X; H(ξ0)) is the group of global automorphisms of ξ0,
and this group acts naturally on the set of pairs (η, ϕ) as above. In fact,
this action is the same as the coboundary action of H0(X; H(ξ0)) on
H1(X; N(ξ)).

Next, we ask the bundle ξ0 lifts to an G-bundle. For example, sup-
pose that G = N � H is a semidirect product of N and H. Then there
is a natural lift of ξ0 given by the choice of an inclusion of H in G. In
particular, the map H1(X; G) → H1(X; H) is surjective. In this case,
we can see the identification of Lemma A.1.1 quite explicitly: suppose
that ξ0 is defined by the cocycle {hij} with respect to some open cover
{Ui} of X. Viewing the hij as taking values in G via the inclusion, it is
easy to see that, if ξ is a G-bundle lifting ξ0 on H, then we can assume
that ξ is given by transition functions of the form hijnij . In order to be
a 1-cocycle, the nij must satisfy(

h−1
jk nijhjk

)
njk = nik,
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which says that {nij} defines an element of H1(X; N(ξ)). If two such
cocycles, say {hijnij} and {h′

ijn
′
ij} define isomorphic G-bundles, then

we can first arrange by a 1-coboundary that hij = h′
ij . In this case, if

{hijnij} and {hijn
′
ij} are cohomologous, then there exist hi such that

h−1
i hijhj = hij , so that {hi} ∈ H0(X; H(ξ0)), and moreover n′

ij =
h−1

j nijhj , so that the cocycles {nij} and {n′
ij} differ by the action of

H0(X; H(ξ0)) on H1(X; N(ξ)). Conversely, if {nij} and {n′
ij} differ by

an element of H0(X; H(ξ0)), then reversing the above argument shows
that the corresponding G-bundles are isomorphic.

For another example of the surjectivity of the map H1(X; G) →
H1(X; H), we have:

Lemma A.1.3. Suppose that N is abelian and that H2(X; N(ξ0)) =
0, for example suppose that N is a vector space and that dim X = 1.
Then the bundle ξ0 lifts to a G-bundle.

Proof. This follows from [23], Corollary to Prop. 41, p. 70 or [15].
�

One trivial observation which we shall often use is the following:

Lemma A.1.4. Suppose that we are given an exact sequence

1→ U → G→ H → 1,

and that ξ0 is a principal H-bundle over X. Suppose that U0 is a closed
subgroup of the center of U which is normal in G. Finally suppose that
ξ̃0 is a lift of ξ0 to a principal G/U0-bundle. Then the sheaf U0(ξ0)
defined by the natural action of H on U0 is isomorphic to U0(ξ̃0).

Proof. The groups H and G/U0 act on U0 by conjugation, and the
action of G/U0 factors through the projection to H. Thus, the sheaves
U0(ξ0) and U0(ξ̃0) are identified as well. �

A.2 Representability

Let G = LU , where U is a normal subgroup of G and G is a semidi-
rect product of U and L. Let ξ0 be a principal L-bundle. We want to
find some circumstances under which the points of the cohomology set
H1(X; U(ξ0)) can be identified with the points in an affine space. In
fact, it is important to prove a much stronger statement, that a cer-
tain functor corresponding to the cohomology set is representable by an
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affine space. For example, if U is a vector space on which L acts linearly,
then H1(X; U(ξ0)) is an ordinary sheaf cohomology group and thus is
itself a vector space, and the corresponding affine space represents a
functor. We will encounter nonabelian groups U which are unipotent.
Thus, U has a filtration UN ⊂ · · · ⊂ U1 = U by normal, L-invariant
subgroups Ui with the property that Ui is contained in the inverse image
in U of the center of U/Ui+1. The idea then, following the general lines
of [4], will be to work inductively, starting with the case where U is a
vector group. The inductive step depends on the following ([4], Lemma
2.5.3):

Lemma A.2.1. Let R be a ring. Suppose that F and G are
two covariant functors from the category of R-algebras to sets and that
ϕ : F→ G is a morphism of functors, with the following property:

(i) G is represented by a polynomial algebra R[x1, . . . , xn] over the
ring R.

(ii) For every R-algebra S and for every object ξ ∈ G(S), the functor
Fϕ,ξ from S-algebras to sets defined by

T �→ ϕ(T )−1(ξ′),

where ξ′ is the element of G(T ) induced by ξ, is represented by a
polynomial algebra S[y1, . . . , ym] over S.

Then the functor F is represented by R[x1, . . . , xn, y1, . . . , ym].

Proof. Let S = R[x1, . . . , xn] and let ξ ∈ G(S) correspond to
the identity in HomR(S, S). For an R-algebra T , if η ∈ F(T ), let
ξ′ = ϕ(T )(η). Then there exists a unique homomorphism f : S → T
corresponding to ξ′ ∈ G(T ), so that T is an S-algebra. Now ξ′ is the
image of ξ ∈ G(S) under f∗, and the element η ∈ ϕ(T )−1(ξ′) defines
a unique homomorphism S[y1, . . . , ym] → T . Thus η defines a unique
homomorphism S[y1, . . . , ym] = R[x1, . . . , xn, y1, . . . , ym] → T . Con-
versely, suppose given a homomorphism

f : R[x1, . . . , xn, y1, . . . , ym] = S[y1, . . . , ym]→ T.

Then f induces a homomorphism R[x1, . . . , xn] = S → T and thus an
element ξ′ ∈ G(T ) induced by ξ, and the homomorphism f then gives an
element η ∈ F(T ) mapping to ξ′. Clearly these are inverse constructions.
It follows that F is represented by R[x1, . . . , xn, y1, . . . , ym]. �
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The proof shows more generally that, if G is represented by some
R-algebra S, and, for ξ the object of G(S) corresponding to the identity,
if the functor from S-algebras to sets defined by

T �→ ϕ(T )−1(ξ′),

where ξ′ is the element of G(T ) induced by ξ, is represented by an
S-algebra S̃, then S̃ represents F.

We shall apply Lemma A.2.1 as follows. First let us define the func-
tor F from C-algebras to sets corresponding to the group H1(X; U(ξ0)).
For a C-algebra S, let F(S) be the set of isomorphism classes of pairs
(Ξ, Φ), where Ξ is a principal LU -bundle over X×Spec S and Φ : Ξ/U →
π∗

1ξ0 is an isomorphism from the principal L-bundle over X × Spec S
induced by Ξ to the pulled back bundle π∗

1ξ0. Thus,

F(S) = H1(X × Spec S; U(π∗
1(ξ0)).

Theorem A.2.2. Let G = LU be an algebraic group over C, where
U is a closed normal unipotent subgroup of G and G is isomorphic to the
semidirect product of L and U . Let X be a projective scheme, let ξ0 be a
principal L-bundle over X, and let U(ξ0) be the corresponding sheaf of
unipotent groups. Let {Ui}Ni=1 be a decreasing filtration of U by normal
L-invariant subgroups such that, for every i, Ui/Ui+1 is contained in the
center of U/Ui+1. Suppose that, for every i,

H0(X; (Ui/Ui+1)(ξ0)) = H2(X; (Ui/Ui+1)(ξ0)) = 0.

Then:

(i) The cohomology set H1(X; U(ξ0)) has the structure of affine n-
space An. More precisely, there is a G-bundle Ξ0 over X × An

and an isomorphism Φ0 : Ξ0/U → π∗
1ξ0 such that the pair (Ξ0, Φ0)

represents the functor F defined above.

(ii) There is a natural action of the algebraic group AutL ξ0 on the
affine n-space An representing H1(X; U(ξ0)). This action lifts to
an action on Ξ0.

Proof. We claim that the functor F is representable by an affine
space. The proof is by induction on the length of the filtration {Ui}. If
this length is zero, then U = {0} and there is nothing to prove. Suppose
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that the claim has been verified for every group and filtration of length
less than N , and let {Ui} be a filtration of U length exactly N satisfy-
ing the hypotheses of Theorem A.2.2. If UN is the first term in {Ui},
then the filtration {Ui/UN} of U/UN has length N − 1. By induction,
the functor G corresponding to LU/UN is representable. Moreover,
there is an obvious morphism of functors ϕ : F → G. Now suppose
that S is a C-algebra and that we are given an object ξ of G(S), in
other words a pair (Ξ, Φ), where Ξ is a principal LU/UN -bundle over
X × Spec S and Φ : Ξ/U → π∗

1ξ0 is an isomorphism from the princi-
pal L-bundle over X × Spec S induced by Ξ to π∗

1ξ0. We define the
functor Fϕ,ξ on S-algebras T as follows: Fϕ,ξ(T ) consists of isomor-
phism classes of pairs (P, Ψ), such that P is a principal LU -bundle
over X × Spec T and Ψ is an isomorphism from the principal LU/UN -
bundle over X × Spec T induced by P to the pullback Ξ̃ = (Id×f)∗Ξ
of Ξ to X × Spec T , where f : Spec T → Spec S is the morphism cor-
responding to the homomorphism S → T . There is a natural map
Fϕ,ξ(T )→ ϕ(T )−1(Ξ̃, (Id×f)∗Φ) ⊆ F(T ). First we claim:

Claim A.2.3. There exists a a principal LU -bundle P over X ×
Spec T lifting the principal LU/UN -bundle Ξ̃ = (Id×f)∗Ξ over X ×
Spec T . In other words, for all T , Fϕ,ξ(T ) �= ∅.

Proof. By Lemma A.1.3, the obstruction to finding such a lift lives
in the group H2(X×Spec T ; UN (Ξ̃)). By Lemma A.1.4, we can identify
UN (Ξ̃) with the sheaf UN (π∗

1ξ0), which is the pullback via π∗
1 of the

vector bundle V = UN (ξ0) on X. Now since Spec T is affine,

H2(X × Spec T ; UN (Ξ̃)) = H2(X × Spec T ; π∗
1V ) = H2(X; V )⊗C T.

Since H2(X; V ) = 0 by hypothesis, we can lift Ξ̃ to a bundle P . �
Once we know that there exists one lift P as in the claim, it fol-

lows from Lemma A.1.2 that the set of all such pairs (P, Ψ) is classi-
fied by H1(X × Spec T ; UN (P )). Next we claim that the map Fϕ,ξ(T )
→ F(T ) is injective, and thus identifies Fϕ,ξ(T ) with the fiber
ϕ(T )−1(Ξ̃, (Id×f)∗Φ). To see this, it follows from the general for-
malism of nonabelian cohomology that there is a transitive action of
H0(X × Spec T ; U/UN (P )) on the fibers of the map from Fϕ,ξ(T ) =
H1(X × Spec T ; UN (P )) to F(T ) = H1(X × Spec T ; U(π∗

1ξ0)), which
identifies the fibers with the coset space

H0(X × Spec T ; U/UN (P ))/ Im H0(X × Spec T ; U(P )).
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In our case, the unipotent group H0(X × Spec T ; U/UN (P )) is filtered,
with successive quotients contained in

H0(X × Spec T ; (Ui/Ui−1)(π∗
1ξ0)) = 0.

Hence Fϕ,ξ(T )→ F(T ) is injective.
Using Lemma A.1.4 and the fact that SpecT is affine,

H1(X × Spec T ; UN (P )) = H1(X × Spec T ; π∗
1V ) = H1(X; V )⊗C T.

If e1, . . . , en is a basis for H1(X; V ), with dual basis x1, . . . , xn, this says
that Fϕ,ξ(T ) ∼= HomS(S[x1, . . . , xn], T ). Thus Fϕ,ξ is representable by
an affine space over Spec S. Applying Lemma A.2.1 and induction, the
functor F is then representable by an affine space, in other words there
exists an affine space An = Spec C[x1, . . . , xn] and an object (Ξ0, Φ0) ∈
F(C[x1, . . . , xn]) such that the couple (C[x1, . . . , xn], (Ξ0, Φ0)) repre-
sents F.

The fact that the functor F defined above is representable implies in
particular that there is a universal LU -bundle over X × An, where An

is the affine space representing F. A formal reduction also shows that
obvious extension of F to a functor from schemes of finite type over C

to sets is also representable by An.
Lastly we must analyze the action of AutL ξ0 on H1(X; U(ξ0)).

Proposition A.2.4. Suppose that X is proper and that L is a
linear algebraic group. Then AutL ξ0 is also a linear algebraic group,
and the natural set-theoretic action of AutL ξ0 on H1(X; U(ξ0)) is an
algebraic action. Moreover, this action lifts to an action on Ξ0.

Proof. Let A be the functor from C-algebras to groups correspond-
ing to AutL ξ0: for a C-algebra S, A(S) is the group of automorphisms
of the pullback of ξ0 to X × Spec S. Since X is proper and L is affine,
A is representable by a linear algebraic group scheme AutL ξ0 over C.
To see this, first assume that L = GLn. If V is the vector bundle cor-
responding to ξ0, AutL ξ0 is an affine open subset of the affine space
H0(X; End V ) and we claim that this linear algebraic group represents
the associated functor. Indeed, an automorphism of π∗

1V is the same
thing as a section of π∗

1End V , in other words a SpecS-valued point ϕ of
H0(X; End V ), such that the determinant of ϕ is an invertible element
of S, and this is the same thing as a morphism from S to the Zariski
open subset of H0(X; End V ) consisting of elements with nonzero deter-
minant. In general, choose an embedding of L as a closed subgroup of
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GLn for some n, defined by polynomials fi. It is then straightforward to
verify that A is representable by a closed subgroup of the corresponding
group scheme for GLn.

If F is the functor associated to H1(X; U(ξ0)), there is an obvious
morphism of functors A× F → F: if the points of F(S) correspond to
pairs (Ξ, Φ), where Φ is an isomorphism from the principal L-bundle
over X × Spec S induced by Ξ to π∗

1ξ0, then the automorphisms of π∗
1ξ0

act by composition with Φ. Since A and F are representable by AutL ξ0

and by the affine coordinate ring of H1(X; U(ξ0)) respectively, there
is a corresponding morphism AutL ξ0 ×H1(X; U(ξ0))→ H1(X; U(ξ0)),
which is easily checked to give an action. It again follows formally by
representability that this action lifts to an action on Ξ0. �

This concludes the proof of Theorem A.2.2. �

Remark A.2.5. In the hypotheses of Theorem A.2.2, suppose we
only assume that, for all i, H2(X; (Ui/Ui+1)(ξ0)) = 0 and that, for all
i > 1, H1(X; (Ui/Ui+1)(ξ0)) = 0. Then, in the inductive construction
of the proof, the fibers Fϕ,ξ(T ) are all a single point and thus the map
Fϕ,ξ(T )→ F(T ) is automatically injective. Thus the proof goes through
in this case as well.

There is also a relative version of Theorem A.2.2.

Theorem A.2.6. Let G = LU and the filtration {Ui} be as in
Theorem A.2.2. Suppose that π : Z → Spec R is a flat proper morphism,
and that ξ0 is a principal L-bundle over Z, with Vi = (Ui/Ui+1)(ξ0) the
vector bundle associated to the action of L on Ui/Ui+1 and the principal
L-bundle ξ0. Suppose that H2(π−1(t); Vi|π−1(t)) = 0 for every point
t ∈ X, that H0(π−1(t); Vi|π−1(t)) = 0 for every point t ∈ X, and that
the R-module H1(Z; Vi) is locally free and compatible with base change,
in the sense that, for every homomorphism R → S of C-algebras, with
corresponding morphism f : Spec S → Spec R, we have

H1(Z ×Spec R Spec S; f∗Vi) ∼= H1(Z; Vi)⊗R S.

For example, if π has relative dimension one and, for every i,
dim H1(π−1(t); Vi|π−1(t)) is independent of t ∈ Spec R, then H1(Z; Vi)
is locally free and compatible with base change in the above sense. Then

(i) There exists a locally trivial bundle of affine spaces A over Spec R,
such that the set of sections of A is isomorphic to the set
H1(Z; U(ξ0)).
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(ii) There exists a universal bundle Ξ over Z ×Spec R A in the obvious
sense.

(iii) The automorphism group scheme A of ξ0 acts on the bundle A of
affine spaces over Spec R, and this action lifts to an action on Ξ.

�
Remark A.2.7. One can also replace Spec R in the above state-

ments by a scheme of finite type over C. Moreover, in case R =
C[t1, . . . , tj ], or more generally if every vector bundle over SpecR is
trivial, then the inductive proof of Theorem A.2.2 shows that we can
take A = Spec R[x1, . . . , xn].
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Études Sci. Publ. Math. 25 (1965) 49–80.

Columbia University


