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1 Introduction

Quantum field theories that are not Lorentz invariant have been studied extensively in

recent years. Bounds on the violation of Lorentz symmetry have been set at high energy,

while at low energy one finds that Lorentz violations appear in various condensed matter

systems of interest that exhibit quantum criticality. Materials such as high Tc supercon-

ductors and heavy fermion compounds have a metallic phase whose properties cannot be

explained within the standard Landau-Fermi liquid theory [1–6]. In these systems one

observes quantities that exhibit a universal behavior, such as resistivity that is a linear

function of the temperature [7–9], which is believed to be the consequence of quantum
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criticality. These systems possess a Lifshitz scaling symmetry around the quantum critical

point [6, 10].

Lifshitz scaling is an anisotropic scale symmetry of time and space:

t→ λ−zt xi → λ−1xi i = 1, . . . , d , (1.1)

where d is the number of space dimensions and z is the dynamical critical exponent. When

z 6= 1, it measures the anisotropy between space and time. The generators of the Lifshitz

algebra in d+ 1 spacetime dimensions are time translation H, space translations Pi, scale

transformation D and spatial rotations Mij . The commutation relations read:

[D,Pi] = iPi, [D,H ] = izH, [Mij ,Mkl] = iδkjMil + . . . ,

[Mij , Pk] = −iδkiPj + . . . , [Mij , H] = 0 . (1.2)

There are no Casimir operators that are polynomial in the generators of the Lifshitz algebra

and, therefore, no obvious quantum numbers to label its irreducible representations, if exist.

Relativistic supersymmetry is a unique extension of spacetime Poincare symmetry al-

gebra, where the anticommutator of the fermionic generators {Q,Q†} yields the bosonic

spacetime translations. Supersymmetry has been for many years the leading candidate

for an extension of the Standard Model of particle physics and there is an ongoing exten-

sive high energy experimental search for it. At low energy, emergent supersymmetry is

potentially a property of some strongly coupled condensed matter system which is yet to

be realized experimentally. Relativistic supersymmetric field theories exhibit a rich and

calculable holomorphic quantum structure. When certain quantities, such as the effective

action, have a holomorphic dependence on the quantum fields and coupling constants, it is

possible to get restrictions on the flow of these quantities under renormalization. Indeed,

non-renormalization theorems are common in relativistic theories with a sufficient amount

of supersymmetry (see e.g. [11, 12]).

Supersymmetry of Lifshitz field theories have been studied in e.g. [13–22]. The aim

of this work is to construct supersymmetric Lifshitz quantum field theories that exhibit

a holomorphic structure and study the implications. In addition to the relevance for the

study of non-relativistic field theories, this may also shed light on which properties of

relativistic holomorphic supersymmetry follow from the relativistic symmetry and which

ones from the holomorphic structure. We will consider a supersymmetric Lifshitz algebra

where the anticommutator of the fermionic generators yields the Hamiltonian, that is the

bosonic generator of time translation
{

Q,Q†} ∼ H. We will refer to such structure as time

domain non-relativistic supersymmetry.

We will construct time domain supersymmetric Lifshitz field theories with four real

supercharges in a general number of space dimensions. The theories consist of complex

bosons and fermions and exhibit a holomorphic structure and non-renormalization prop-

erties of the superpotential reminiscent of the relativistic N = 1 Wess-Zumino model in

four dimensions. We will study the theories in a diverse number of space dimensions and

for various choices of marginal interactions and show that they include lines of quantum

critical points with an exact Lifshitz scale invariance and a dynamical critical exponent

that depends on the coupling constants. This conclusion will not be based on perturbative

arguments and it applies to the strong coupling regime as well.

– 2 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
4

The paper is organized as follows. In section 2 we construct a family of Lifshitz

supersymmetric models that possess a holomorphic structure. We discuss their symmetries

and classical properties. We begin in subsection 2.1 by reviewing the N = 1 models

of Lifshitz supersymmetry (two real supercharges) which have been previously studied.

These theories do not acquire a holomorphic structure. In subsection 2.2 we present the

N = 2 holomorphic models of Lifshitz time domain supersymmetry. In section 3 we study

the quantum behaviour of these theories. In subsection 3.1 we discuss renormalization

and regularization methods as well as quantum fixed points in Lifshitz field theories. In

subsection 3.2, we generalize the study of the renormalization group flow in Lifshitz theories

by considering a dual-scale renormalization scheme. In subsection 3.3 we give a general

proof of the non-renormalization theorems based on the symmetries of the models. In

subsection 3.4 we provide a perturbative point of view on the quantum behaviour of the

theories. In subsection 3.5 we study the marginal cases and show that the theories possess

lines of quantum fixed points in which the system has an exact Lifshitz scaling symmetry.

In subsection 3.6 we discuss the gapless singular case. Finally, we conclude in section 4.

Some details are given in the appendices.

2 Time domain supersymmetry

Various types of non-relativistic supersymmetric field theories have been considered in the

past from different motivations and points of view (see for example [13–22]). Here we

restrict our discussion to what we will refer to as “time domain” supersymmetry, which

corresponds to those cases in which the supersymmetric algebra closes on the Hamiltonian

of the system alone (as opposed to other constructions, such as ones in which the super-

symmetric algebra follows the relativistic one as in [14]). Our focus is on non-relativistic

field theories in d + 1 dimensions which are invariant under space and time translations

as well as space rotations (sometimes known as Lifshitz or Aristotelian theories), along

with a time domain supersymmetry, without imposing any boost symmetry (either of the

Lorentzian or the Galilean types).

In this section we construct and discuss such time domain supersymmetric models. We

start with a brief review of the minimal non-relativistic N = 1 time domain supersymmetric

models,1 which have been studied in various works [20–27], and some of their properties.

We then construct a family of N = 2 models with an SU(2) R-symmetry and a holomorphic

structure, which includes both free and interacting theories, and discuss their symmetries

and particle content.

2.1 A review of N = 1 time domain supersymmetry

We start by reviewing the N = 1 time domain supersymmetric models, which have been

studied in various works (see for example [20–27]). These are non-relativistic field theo-

ries in d + 1 dimensions, which are invariant under the usual time translations H, space

1Note that, in our conventions, N = 1 refers to models with 2 real supercharges, which is the minimal

number required for an algebra of the form {Q,Q} ∼ H. Accordingly N = 2 refers to 4 real supercharges

(or 2 complex ones).

– 3 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
4

translations Pi (i = 1, . . . , d) and space rotations Mij , as well a complex supercharge Q (or

equivalently two real supercharges) and a U(1) R-symmetry charge R, satisfying2 (see [22]):

{Q,Q} =0,
{

Q,Q†
}

= 2H,

[Mij , Q] = 0, [Pi, Q] = 0, [R,Q] = iQ.
(2.1)

For models which are additionally invariant under a Lifshitz scaling symmetry D with some

dynamical critical exponent z (such as free models), these relations also imply:

[D,Q] = i
z

2
Q. (2.2)

As noted in [22] (see also e.g. [20, 21, 26, 28]), this algebra can be realized in a (d + 1)-

dimensional field theory given by the following action:

S
[

φ, ψ, ψ†
]

=

∫

ddxdt

[

1

2
(∂tφ)

2 − 1

2

(

δW

δφ

)2

+ iψ†∂tψ
]

−
∫

ddxddx′dt
δ2W

δφ(x)δφ(x′)
ψ†(x)ψ(x′),

(2.3)

where φ is a bosonic real field and ψ a fermionic complex field,3 both of which are scalars

with respect to spatial rotations.4 The superpotential W (φ) here is some local functional

of the field φ(x), and will generally contain its spatial derivatives. This action can also be

written in superspace formalism as follows:

S =

∫

dtddxdθdθ†
[

1

2
DΦD†Φ

]

−
∫

dtdθdθ†W (Φ), (2.4)

where θ, θ† are Grassmannian superspace coordinates, Φ is a superfield defined as:

Φ(t, x) ≡ φ+ θψ + ψ†θ† + Fθ†θ, (2.5)

F is a real auxiliary field and the covariant derivatives are given by:

D =
∂

∂θ
− iθ†∂t, D† = − ∂

∂θ†
+ iθ∂t. (2.6)

In terms of the fields φ, ψ, the conserved supercharges may be written:

Q =

∫

ddx

[

∂tφ+ i
δW

δφ

]

ψ, Q† =
∫

ddx

[

∂tφ− i
δW

δφ

]

ψ†. (2.7)

Of course, one may extend the action (2.3)–(2.4) to any number of superfields.

2Note that the supercharge Q here is a scalar under space rotations. This is not surprising as one does

not necessarily expect any specific spin-statistics correspondence in these non-relativistic models.
3Note that the notation here is different to the one in [22], where ψ was defined as a two component real

fermion field.
4As these are non-relativistic models, and the degrees of freedom involved do not correspond directly to

a non-relativistic limit of some relativistic degrees of freedom, standard relativistic spin-statistics relations

need not apply here.
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It is important to mention that these models share many similarities with minimal

models of supersymmetric quantum mechanics (see [24, 25, 27]), and in fact can be viewed

as a dimensional extension of it, with the main difference being that the superpotential W

is a functional of φ(x) (rather than a function of a finite number of degrees of freedom).

A free N = 1 model can be obtained by choosing a superpotential of the form:

Wfree(φ) =

∫

ddx
1

2

[

k
∑

l=0

hl φ∇2lφ

]

, (2.8)

where hl are constant parameters. In particular, when only one term of order k is present

in the above sum — that is, when:

W (φ) =
g

2

∫

ddx
(

φ∇2kφ
)

, (2.9)

one obtains a scale invariant theory with a dynamical critical exponent z = 2k. The

constant g is dimensionless under this scaling symmetry, whereas the scaling dimensions of

the fields are given by [φ] = (d− z)/2 and [ψ] = d
2 . When more than one term is present in

the sum (2.8), the theory is dominated at high energy and momentum scales by the highest

derivative term and therefore behaves as a z = 2k fixed point in the UV.5 This implies that

the perturbative renormalizability properties of the interacting versions of this theory are

dictated by the highest derivative terms (see also subsection 3.1 as well as [29, 30]). Here we

shall restrict the discussion strictly to cases with k = 1 (that is, where the superpotential

contains at most two space derivatives). In this case, the bosonic field is just a free, real

z = 2 Lifshitz scalar, whereas the fermion is a free (spinless) Schrödinger fermion (with

the possible addition of a chemical potential corresponding to the l = 0 term), whose U(1)

particle number symmetry corresponds to the R-symmetry of (2.1).

Interactions that respect the supersymmetric algebra (2.1) may be introduced to the

above free models by adding to the superpotential arbitrary local terms which are polyno-

mial in the superfield Φ and its spatial derivatives. Depending on the Lifshitz dimension

of these deformations, such theories have been shown to be perturbatively renormalizable

(see [22, 29, 30], as well as the discussion in subsection 3.1). Note, however, that such

interactions will generally break the Galilean invariance of the fermionic sector of the free

model (with z = 2).

As an example, a model corresponding to the following superpotential in 2+ 1 dimen-

sions was considered in [22]:

W (φ) =
1

2

∫

d2x

(

g (∇iφ)
2 −

∞
∑

n=1

gan
φn+1∇2φ

n+ 1
+

∞
∑

n=1

cn
φn+1

n+ 1

)

, (2.10)

and it was shown that the action (2.3) indeed represents the most general supersymmetric

action one can build out of the fields φ, ψ (that respects the algebra (2.1) and does not

include interaction terms with time derivatives), and that supersymmetry is preserved in

5It is for this reason that such theories are often labeled as z = 2k Lifshitz theories in the literature,

even though, strictly speaking, they are only scale invariant when hl = 0 for l < k.
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these models by quantum corrections (up to first order). Note that in 2+1 dimensions, the

field φ is dimensionless, and there is therefore an infinite number of marginal and relevant

deformations (similar to a relativistic scalar theory in two dimensions). In the following

discussion, we will restrict ourselves to cases with d ≥ 3.

Similarly to relativistic supersymmetry (and to supersymmetric quantum mechanics),

the time domain supersymmetric algebra (2.1) guarantees that the energy spectrum of the

theory is non-negative (regardless of the choice of the superpotential functional W and

its properties), and that zero energy states are necessarily invariant under the full N = 1

supersymmetry of the theory. Since the classical bosonic potential is given by
∣

∣

∣

δW
δφ

∣

∣

∣

2
, the

condition for a (semiclassical) supersymmetric vacuum is given by the equation:

δW

δφ
= 0. (2.11)

Note, however, that unlike the relativistic case, this equation is not an algebraic equa-

tion but rather a differential one. For models with a superpotential of the form W =

Wfree+
∫

ddxWint where Wfree is given by (2.8) and Wint(φ) is an arbitrary function of φ, if

W ′
int(φ0) = 0 then φ = φ0 is certainly a constant solution to equation (2.11), however there

may also be non-constant solutions to this equation, representing supersymmetric vacua

that break the spatial translation symmetry.

When the functional W (φ) is positive semi-definite (or at least bounded from below),

the model (2.3) is said to satisfy the detailed balance condition. In this case, one can

show (see [21, 23, 25]) that a supersymmetric vacuum state |0〉 always exists that satisfies
the properties:6

〈

φ̃(x)
∣

∣

∣
0
〉

= Ne−W{φ̃(x)}, (2.13)

ψ(x)|0〉 = 0, (2.14)

where N is a normalization constant, and for any function φ̃(x), |φ̃(x)〉 is a state satisfying

φ(x)|φ̃(x)〉 = φ̃(x)|φ̃(x)〉. This can be seen from the requirement Q|0〉 = Q†|0〉 = 0 and

the expressions for the supercharges (2.7). Alternatively, it can be derived from stochastic

quantization arguments: the Parisi-Sourlas stochastic quantization procedure (see [21, 23,

26, 28]) famously relates the model (2.3) (and the corresponding quantum correlation

functions) to the Langevin equation for a bosonic field φ in a potential given by W (φ) and

a Gaussian noise source7 (and the corresponding stochastic correlation functions). When

the above conditions are satisfied, this equation has a steady state described by a Boltzmann

distribution, which corresponds to the supersymmetric vacuum state satisfying (2.13) of

6An alternative formulation for the property (2.13) is that any equal-time correlation function of φ in

the vacuum state |0〉 is given by the following path integral in d dimensions:

〈0|φ(t, x1) . . . φ(t, xk)|0〉 ∝

∫

Dφ̃(x) φ̃(x1) . . . φ̃(xn)e
−2W{φ̃(x)}. (2.12)

7Note that in the stochastic quantization approach, the fermions take the role of ghost fields that do not

appear on external legs of correlation functions.

– 6 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
4

the model (2.3). This also implies that equal-time correlation functions of φ in this vacuum

are the same as the correlation functions of a scalar boson in a d-dimensional Euclidean

field theory given by the action W (φ), and therefore one may deduce many properties

of the (d + 1)-dimensional Lifshitz model from those of the corresponding d-dimensional

theory. In particular, the renormalization group (RG) flow properties of couplings in W

are related to those of the d-dimensional theory involving only the bosonic field φ. This

might lead one to wonder why the fermions do not contribute to the correlation functions

of φ in the (d+ 1)-dimensional model.

Perturbatively, the answer lies in the quantization of the fermions around the semiclas-

sical vacuum φ0(x) that minimizes the functional W : since δ2W
δφ2

is positive semi-definite

at φ0, the fermions should be quantized such that (2.14) is satisfied. In fact, when φ0 is

constant, the second-order fermion action around it is just that of a Schrödinger fermion

(with a non-positive chemical potential), and the semiclassical vacuum corresponds to the

standard Galilean vacuum for this fermion. It is well known, however, that upon introduc-

ing interactions that preserve the fermion’s U(1) particle number symmetry (which is just

the U(1) R-symmetry here), particle-number-neutral loops of the Schrödinger fermion in

Feynman diagrams will vanish in the Galilean vacuum (see for example [31]). Therefore

fermions do not contribute to Feynman diagrams with only bosons on their external legs.

When the functionalW (φ) is not bounded from below (or from above), the action (2.3)

still describes a well-defined model (as the potential is still non-negative), and generally

a semiclassical vacuum will still exist. Provided the condition (2.11) is satisfied, it will

be supersymmetric and one can still study the theory perturbatively around this vacuum.

When doing so, however, if φ0 does not minimizeW , the fermionic modes will not all satisfy

the condition (2.14) (in terms of the free Galilean theory, some of them would represent

“holes” rather than particles), and as a result may contribute to correlation functions of φ.

Non-perturbatively, it is more difficult to tell in this case whether the full quantum theory

has a supersymmetric vacuum — in particular, the equation (2.11) may have soliton-like

vacuum solutions in addition to the constant solutions, and tunneling effects between them

may cause the dynamical breaking of supersymmetry in the full quantum theory. We

discuss these possibilities more in section 4, but for most of the following discussion we

assume the existence of a supersymmetric vacuum.

2.2 A holomorphic N = 2 model of time domain supersymmetry

In this subsection we construct a family of supersymmetric, non-relativistic field theory

models in d + 1 dimensions with N = 2 time domain supersymmetry. In addition to

time translations, space translations and space rotations, these models are invariant under

two complex supercharges (or four real ones) labeled Qα (α = 1, 2), as well as an SU(2)

R-symmetry charge Ra (a = 1, 2, 3) satisfying:

{Qα, Qβ} = 0, {Qα, Q†
α̇} = 2σ0αα̇H,

[Mij , Qα] = 0, [Pi, Qα] = 0, [Ra, Qα] =
i

2
(σa)α

βQβ ,
(2.15)

– 7 –
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where for the fermionic SU(2) indices we use the conventions of [32],8 in which α, α̇ = {1, 2},
and σ0αα̇ = σ̄0α̇α = 12×2 (a summary of conventions can be found in appendix A). We also

use (σa)α
β (a = 1, 2, 3) here to denote the Pauli matrices. In cases with a Lifshitz scaling

symmetry D (with some dynamical critical exponent z), these relations also imply:

[D,Qα] = i
z

2
Qα. (2.16)

In analogy to the N = 1 models and the relativistic Wess-Zumino model, we may

construct an off-shell realization of this N = 2 algebra in superspace formalism. Similarly

to the relativistic case, we label superspace coordinates by xµ, θα, θ†α̇, where x
µ ≡ (t, xi),

and θα, θ†α̇ are anti-commuting two-component coordinates. The supersymmetric transfor-

mation of these coordinates will be given by:

δθα = ǫα, δθ†α̇ = ǫ†α̇,

δt = iǫσ0θ
† − iθσ0ǫ

†, δxi = 0,
(2.17)

and therefore in terms of the superspace coordinates, the supercharges are given by:

Qα = i
∂

∂θα
− (σ0θ†)α∂t, Q†

α̇ = −i ∂

∂θ†α̇
+ (θσ0)α̇∂t. (2.18)

Continuing the analogy to the relativistic Wess-Zumino model, we define a holomorphic

superfield Φ(xµ, θ, θ†) as one satisfying the condition:

D†
α̇Φ = 0, (2.19)

and similarly an anti-holomorphic superfield Φ† as one satisfying

DαΦ
† = 0, (2.20)

with the supersymmetric covariant derivatives defined as:

Dα =
∂

∂θα
− i(σ0θ†)α∂t, D†

α̇ = − ∂

∂θ†α̇
+ i(θσ0)α̇∂t. (2.21)

The holomorphic and anti-holomorphic superfields Φ,Φ† can be generally decomposed

in terms of component fields as follows:

Φ = φ(y, ~x) +
√
2θψ(y, ~x) + θθF (y, ~x),

Φ† = φ∗(y∗, ~x) +
√
2θ†ψ†(y∗, ~x) + θ†θ†F (y∗, ~x),

(2.22)

where φ is a complex bosonic field, ψα is a two component complex fermionic field, F is an

auxiliary complex bosonic field (needed in order to ensure the closure of the supersymmetric

algebra off-shell), and y, y∗ are generalized time coordinates defined by:

y ≡ t+ iθ†σ̄0θ, y∗ ≡ t− iθ†σ̄0θ. (2.23)

8Throughout this work the fermions and fermion charges are non-relativistic and scalar under space

rotations, though our conventions are inherited from the relativistic structure for convenience. In this

sense, the index α does not carry any information about the spin, but rather acts as an index for the

representation of the SU(2) R-symmetry.
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From the decomposition (2.22) and the transformations (2.17), one can readily deduce the

supersymmetric transformation laws for the component fields to be:

δφ = ǫψ, δφ∗ = ǫ†ψ†,

δψα = −i(σ0ǫ†)α∂tφ+ ǫαF, δψ†
α̇ = i(ǫσ0)α̇∂tφ

∗ + ǫ†α̇F
∗,

δF = −iǫ†σ̄0∂tψ, δF ∗ = i∂tψ
†σ̄0ǫ.

(2.24)

In superspace terms, the most general action one can build from the holomorphic superfield

Φ which is local and invariant under the supersymmetric algebra (2.15) corresponds to the

following Lagrangian:

L =

∫

d2θd2θ†K(Φ,Φ†) +
∫

d2θW (Φ) +

∫

d2θ† W̄ (Φ†), (2.25)

where the Kähler potential K(Φ,Φ†) ≡
∫

ddxK(Φ,Φ†) is a local, real functional of Φ(x)

(and Φ†(x)) and the superpotential W (Φ) ≡
∫

ddxW(Φ) is a local, holomorphic functional

of Φ(x) (both of which are invariant under spatial translations and rotations, and may

contain spatial derivatives of Φ,Φ†). Each term in the Lagrangian (2.25) is independently

invariant under the supersymmetric transformation generated by the supercharges Qα and

Q†
α̇ (up to a total derivative). Recalling again that the fermions are non-relativistic and

do not carry any spin, note that the model (2.25) can be considered in any number of

spacetime dimensions d+ 1.

If we restrict our discussion to cases which, in the free limit, behave as a z = 2 Lifshitz

fixed point in the UV (that is, cases in which the classical action involves terms with up to

2 time derivatives or 4 space derivatives), K(Φ,Φ†) will be a general real function of Φ,Φ†

(with no derivatives), whereas the superpotential density W(Φ) will take the general form:

W(Φ) = G(Φ)∂iΦ∂
iΦ+ F (Φ), (2.26)

where F (Φ) and G(Φ) 6= 0 are general holomorphic functions of Φ. Further restricting

to models which are renormalizable in d ≥ 3 space dimensions (see the discussion in

subsection 3.1), we shall assume for the majority of the following discussion that K(Φ,Φ†) =
Φ†Φ, G(Φ) = const. and F (Φ) is a polynomial of degree n ≤ n∗ ≡ 2d

d−2 .

Performing the integration over the Grassmannian coordinates θ, θ† and eliminating

the auxiliary fields F , F ∗ using their equations of motion, one obtains the following ex-

pression for the Lagrangian in terms of the component fields:

L =

∫

ddx

[

∂tφ
∗∂tφ+ iψ†σ̄0ψ −

∣

∣

∣

∣

δW

δφ

∣

∣

∣

∣

2 ]

−
∫

ddxddx′
1

2

δ2W

δφ(x)δφ(x′)
ψ(x)ψ(x′)

−
∫

ddxddx′
1

2

δ2W̄

δφ∗(x)δφ∗(x′)
ψ†(x)ψ†(x′).

(2.27)

Much like the N = 1 case, this family of models can be viewed as a dimensional extension

of the N = 2 supersymmetric quantum mechanics models discussed e.g. in [33, 34]. Note
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also that as these models are a special case of the N = 1 models discussed in subsection 2.1,

they can be written in terms of the N = 1 action (2.4), where the N = 1 superpotential is

related to the N = 2 one as follows:

WN=1(φ1, φ2) = 2 Im
[

ei2αWN=2(φ)
]

, (2.28)

where φ = 1√
2
(φ1 + iφ2), and α is an arbitrary constant phase9 (that corresponds to the

choice of the N = 1 supercharge within the N = 2 algebra).

A free N = 2 model (with z = 2 UV scaling) can be obtained by choosing a superpo-

tential density of the form:

Wfree(Φ) =
g

2
Φ∇2Φ+

f2
2
Φ2. (2.29)

The space of parameters in the free theory thus consists of the parameter g, which we take

to be real and positive10 (g > 0, g ∈ R) and acts here as a conversion factor between time

and space units, as well as the gap parameter f2 which is generally complex and determines

the gap in the spectrum. Substituting this superpotential into the expression (2.27), the

Lagrangian density for the free model reads:

Lfree = ∂tφ
∗∂tφ− g2∇2φ∇2φ∗ − |f2|2φ∗φ− g(f2φ∇2φ∗ + f∗2φ

∗∇2φ)

+ iψ†σ̄0∂tψ − g

2
(ψ∇2ψ + ψ†∇2ψ†)− 1

2
(f2ψψ + f∗2ψ

†ψ†).
(2.30)

This model consists of a free, complex (z = 2) Lifshitz scalar field, and two free

Schrödinger fermion fields (with chemical-potential-like terms). In addition to the symme-

tries in (2.15), the free model has several more noteworthy symmetries (see table 1):

• The bosonic sector in invariant under an extra internal U(1) symmetry.

• When f2 is real, the fermionic sector has a Galilean boost symmetry.

• In addition to the SU(2) R-symmetry, the fermionic sector has an additional inter-

nal U(1)M symmetry that, when f2 is real, corresponds to the Galilean conserved

particle number.

Moreover, when f2 = 0 (or equivalently in the high energy limit), the free model (2.30)

is invariant under the z = 2 Lifshitz scaling transformation (1.1). Similarly to the N = 1

case, the scaling dimensions of the fields are given by [φ] = (d− 2)/2 and [ψ] = d/2.

The free single particle dispersion relation can be easily read off the Lagrangian (2.30),

and is given by:11

ω = ±|gk2 − f2|. (2.31)

9This can be easily seen by substituting ψ1 ≡ eiα√
2

(

ψ̃1 + iψ̃2

)

, ψ2 ≡ eiα√
2

(

−iψ̃1
†
+ ψ̃2

†)
into the ac-

tion (2.27) and comparing with (2.3), keeping in mind that W is holomorphic in Φ.
10By fixing the arbitrary phase factor in the definition of the superfield Φ, one can always make g real

and positive, but this generally leaves f2 complex.
11We denote k ≡ |~k|, k2 ≡ kik

i with i = 1, . . . , d.
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Group Transformation

U (1)M

(

ψ1

ψ∗
2

)

→ eiθσ
1

(

ψ1

ψ∗
2

)

.

U (1) φ→ eiθφ.

SU (2)

(

ψ1

ψ2

)

→ eiθσ
a/2

(

ψ1

ψ2

)

, a = 1, 2, 3.

Table 1. The internal symmetries of the free fields Lagrangian (2.30), for the case of a real f2.

Figure 1. The free particle dispersion relation.

Thus both the magnitude and phase of f2 have physical significance to the spectrum: when

Re(f2) ≤ 0, the energy is minimal at k = 0 momentum and the gap is given by ωgap = |f2|.
In the case of a purely imaginary f2, for example, the single particle dispersion relation

reads ω = ±
√

g2k4 + Im(f2)2, and f2 plays a role similar to the relativistic mass. When

Re(f2) > 0, however, the minimal energy occurs at momenta of magnitude k =
√

Re(f2)/g,

and the gap is given by ωgap = |Im(f2)|. In particular, when f2 is real and positive, the

spectrum is gapless and contains a sphere of zero energy states at momenta of magnitude

k̃0 =
√

f2/g. As discussed in subsection 3.6, with the addition of interactions, this case

suffers from IR singularities and is generically strongly coupled at low energies. The various

cases are demonstrated in figure 1. For a complete derivation of the particle spectrum and

second quantization of the bosons and fermions in (2.30), see appendix B.

One may introduce general (renormalizable) interactions that respect the supersym-

metric algebra (2.15) by adding to the superpotential density a polynomial in Φ, i.e.:

W = Wfree +
n∗
∑

n=3

W(n)
int , (2.32)

where:

W(n)
int ≡ fn

n
Φn, (2.33)
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and fn is a coupling constant. Note that, while these interaction terms are invariant under

the SU(2) R-symmetry, they generally break the fermionic Galilean symmetry of the free

theory, as well as the U(1) and U(1)M symmetries (of the bosonic and fermionic sectors

respectively) listed in table 1. One should not expect, therefore, a conservation of the

fermionic Galilean particle number in these models.

In terms of the existence of a supersymmetric vacuum state, the N = 2 models inherit

the properties of the N = 1 ones as discussed in subsection 2.1. The bosonic potential is

given by:

V = |F |2 =
∣

∣

∣

∣

δW

δφ

∣

∣

∣

∣

2

≥ 0, (2.34)

and the condition for a semiclassical supersymmetric vacuum is given by the differential

equation:
δW

δφ
= 0, (2.35)

with the difference being that the superpotential W is now a holomorphic functional. For

a superpotential of the form (2.32), then, the solution φ = 0 always represents such a

supersymmetric vacuum,12 although there may be others φ = φ0(x), either constant or

non-constant in space, depending on the form of W .

An important distinction in relation to the general N = 1 case, however, is the fact that

W is holomorphic and therefore the N = 1 superpotential (2.28) is never bounded and the

detailed balance condition is never satisfied. From the point of view of perturbation theory

around the φ = 0 vacuum, the interactions preserve the SU(2) R-symmetry, but break

the U(1)M symmetry. Consequently, when f2 is real, the two fermions always represent a

particle and “hole” pair with interactions that break the Galilean particle number symmetry

of the free theory. Therefore unlike the detailed balance case, fermionic closed loops will

not vanish, and will contribute to the bosonic correlation functions. In particular, this is

required for the cancellations that lead to the non-renormalization discussed in section 3.

Of course, as in the N = 1 case, one must also consider non-perturbative effects which may

lead to the dynamical breaking of supersymmetry here (for further discussion see section 4).

To close this section, for later reference we make the following definitions for the above

models (2.32)–(2.33):

• For the ungapped, IR singular cases with f2 > 0, f2 ∈ R, we define f2 ≡ gk̃20, with

k̃0 ∈ R. The dispersion relation is then given by ω = g|k2 − k̃20|, and thus k̃0 is the

momentum of zero energy.

• For the interaction terms (with n ≥ 3), we define the coupling constant λn ≡ fng
−n/2,

which is dimensionless in time (energy) units. When n = n∗, λn is dimensionless in

both time and space units.

12In fact, similarly to the relativistic Wess-Zumino model, since W is holomorphic, as long as the poly-

nomial F (φ) of (2.26) is of degree n ≥ 2, there is always a constant solution to the equation (2.35), and

therefore a supersymmetric semiclassical vacuum always exists. In order to obtain a spontaneous breaking

of supersymmetry on this level, one would have to consider a model with multiple interacting holomorphic

superfields (as in the O’Raifeartaigh model).
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3 Quantum analysis of Lifshitz field theories

In this section we study the quantum behaviour of the family of N = 2 time domain

holomorphic supersymmetric models presented in subsection 2.2 in diverse dimensions and

different choices of interactions of the form (2.32)–(2.33).

In subsection 3.1, we discuss the renormalization group flow properties of Lifshitz field

theories such as the models at hand, review several renormalization and regularization

methods for these types of models and study some properties of quantum Lifshitz fixed

points. In subsection 3.2, we make a digression to discuss a dual-scale RG formalism, in

which the energy and the momentum scales flow independently, and point out some proper-

ties of Lifshitz fixed points in this picture. In subsection 3.3 we prove non-renormalization

theorems for the models at hand, based on the symmetries of the theory. The arguments

are similar to the ones made in [11] for the relativistic holomorphic supersymmetry,13 with

a few subtleties (due to the non-boost-invariant nature of the theory). In subsection 3.4 we

discuss and demonstrate some properties of the perturbative quantum corrections in these

models, including a perturbative argument for non-renormalization and some examples of

its consequences.

In subsection 3.5, three different marginal cases are analyzed: 6 + 1, 4 + 1 and 3 + 1

spacetime dimensions with n = 3, 4, 6 interactions (respectively) of the form (2.33). We

show that in all three cases, there is a line of quantum critical points, in which the system

possesses an exact Lifshitz scaling symmetry with a critical exponent that depends on the

coupling. This conclusion is not based on perturbative arguments, and applies to the strong

coupling limit as well. Finally, in subsection 3.6 we discuss the gapless case with f2 > 0

and its IR properties.

3.1 Regularization, renormalization and fixed points

We turn to discuss the general procedures of regularization and renormalization, as well

as scaling behaviour, in the context of non-boost-invariant field theories. In such a theory,

there is no inherent relation between space and time dictated by the symmetry algebra, and

therefore one can consider scaling the space and time dimensions separately. In general,

any operator in the theory will carry both time and space dimensions. If an operator

Ô carries dimensions [E]∆t [p]∆s , where [E] and [p] stand for energy (time) and spatial

momentum (space) units14 respectively, then one can define its weighted Lifshitz dimension

corresponding to a dynamical exponent z as its dimension under a Lifshitz transformation

13A non-renormalization theorem was also proven in [19] for the Galilean Wess-Zumino model in 2 + 1

dimensions, which can be obtained via null reduction of the relativistic Wess-Zumino model in 3 + 1

dimensions. It should noted, however, that although both that model and the one considered here are non-

relativistic, they are significantly different: the model considered in [19] is invariant under Galilean boosts

and a U(1) particle number symmetry, and the supersymmetric algebra is not “time domain”, rather it

closes on spatial translations as well as the particle number symmetry. In particular this means that, like

its relativistic counterpart, the existence of terms with spatial derivatives in the superpotential is a subtlety

that does not arise in that model.
14As usual, we use units in which ~ = 1.
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of the form (1.1), that is:

∆lif
z (Ô) ≡ z∆t(Ô) + ∆s(Ô). (3.1)

Note that this definition depends on the choice of z, which is for now left as an unrestricted

parameter for a given theory (for example, for the family of models we consider here, we do

not restrict z to be 2 at this point). As we shall see, any specific fixed point will correspond

to Lifshitz invariance with respect to a particular value of z.

In the free theory (2.30) and for a general value of the critical exponent z, the parameter

g signifying the relative strength of the space and time kinetic terms carries dimensions

[g] = [E] [p]−2. Its weighted Lifshitz dimension is therefore:

∆lif
z (g) = z − 2. (3.2)

Specifically for z = 2 it is dimensionless ∆lif
z=2(g) = 0, aligning with the fact that the

free gapless (f2 = 0) theory is invariant under Lifshitz scaling symmetry with a critical

exponent of z = 2.

Perturbative regularization and renormalization procedures of non-boost-invariant

(Lifshitz) field theories have been previously discussed in e.g. [29, 30, 35–37]. Gener-

ally, they are similar to those of a relativistic theory, with the main difference that in the

non-boost-invariant case, the analysis and classification of UV divergences is carried out

with respect to the weighted Lifshitz scaling dimension, with the parameter z = zuv corre-

sponding to the critical exponent of the free theory at the UV15 [29]. In analogy with the

relativistic case, an operator Ô is called relevant if the corresponding coupling constant gÔ
has positive weighted Lifshitz scaling dimension, ∆lif

zuv(gÔ) > 0. Similarly, it is classified

as an irrelevant operator in cases where the corresponding coupling constant carries neg-

ative weighted Lifshitz scaling dimension ∆lif
zuv(gÔ) < 0, and (classically) marginal when

∆lif
zuv(gÔ) = 0. For example, for the family of models discussed in subsection 2.2, zuv = 2

and therefore the coupling fn is relevant when n < n∗, (classically) marginal when n = n∗

and irrelevant when n > n∗.
Various regularization and renormalization methods have been used in the literature

for non-boost-invariant field theories. A subset of regularization methods which are com-

monly used (see e.g. [22, 38–40]) are time-first regularization methods, in which one first

performs the integration over energy space and subsequently uses standard relativistic-like

regularization procedures to regularize the remaining Euclidean integrals over momentum

space. This type of methods can only be used in cases where the integration over energy

space converges for all correlation functions one is interested in.

Consider, for example, the m-loop contribution to any n-point correlation function in

a (d + 1)-dimensional field theory containing Lifshitz scalar bosons and fermions (of the

type considered here) with a UV critical exponent of zuv = 2:

I(n,m)(ωi, pi) =

∫∫ m
∏

j=1

ddqjdΩj Ĩ(ωi, pi, qj ,Ωj), (3.3)

15Put differently, one chooses the value of z for which the coefficient of the term with the highest number

of spatial derivatives in the action of the free theory is dimensionless. The superficial degree of divergence

is then defined depending on the weighted Lifshitz dimension corresponding to this value of z.
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where (ωi, ~pi) (i = 1, . . . , n) are the external energies (for time coordinates) and momenta

(for space coordinates) respectively which appear in the correlation function, and (Ωj , ~qj)

(j = 1, . . . ,m) are the internal loop energies and momenta. When there are no composite

operators in the correlation function, one can start by performing the integration over the

energies
∫
∏m
j=1 dΩj since it is always UV convergent16 (it can be performed, for example,

by using contour integration in the complex plane). One is then left with an expression of

the form:

I(n,m)(ωi, pi) =

∫ m
∏

j=1

ddqj Î(ωi, pi, qj), (3.4)

containing only spatial momenta integrations, similar to those of Euclidean field theories.

One then proceeds to regularize these remaining d-dimensional integrals
∫
∏m
j=1 d

dqj using

any of the well-known relativistic regularization methods, such as using a spatial UV cutoff

Λs, or dimensional regularization by varying the number of space dimensions d = dphyss −ǫs.
As a more general alternative, one can use a regularization method in which both energy

and momentum integrations are regularized separately. For example, one may introduce

separate UV cutoffs for spatial momenta Λs and for energies Λt. Another example is the

split dimensional regularization method (introduced in [43, 44] and used in [29, 35] in the

context of Lifshitz field theories), in which one analytically continues both the number of

space dimensions ds = dphyss − ǫs and time dimensions dt = 1− ǫt separately.

Any renormalization scheme one chooses to renormalize the theory will inevitably in-

troduce at least one renormalization scale. One may choose a single-scale renormalization

scheme, which introduces a scale µs that carries only spatial dimensions [µs] = [p]1 (or, al-

ternatively, a scale µt that carries only time dimensions). This may be, for example, a scale

of external (spatial) momenta in the renormalization condition for an “on-shell” scheme,

a scale introduced as part of a minimal subtraction scheme or, in the Wilsonian approach,

a lower bound for spatial Feynman integrals of the form
∫ Λs
µs

ddqj . The result yields renor-

malized correlation functions I
(n)
ren (µs, ωi, pi) which depend on the external momenta and

energies, and the renormalization scale. The time-first regularization methods discussed

above clearly lend themselves to such a (spatial) single-scale renormalization scheme.

An alternative and more general approach is to use a dual-scale renormalization

scheme, in which one introduces two different renormalization scales: µs for the spatial

and µt for the time dimensions, with [µs] = [p]1 and [µt] = [E]1. These can correspond

to “on-shell” conditions on both the external momenta and energies of the form: ωi ∼ µt,

pi ∼ µs. They could appear as part of a minimal subtraction scheme after regularizing

both energy and momentum integrations (for example, when using a split dimensional reg-

ularization method). In a Wilsonian approach they would appear as the lower bounds on

16This follows from the following arguments: first, note that for almost any possible Feynman diagram

or subdiagram, the superficial degree of divergence in energy space alone is negative. The only possible

exception is loops containing only a single propagator, when that propagator is first order in time derivatives

(such as the fermions in the models discussed in section 2). Such loops can be rendered UV finite via an

appropriate choice of regularization or normal ordering. Then the absolute convergence in energy space

is guaranteed by the Weinberg-Dyson convergence theorem (see e.g. [41, 42]), applied to the energy space

integrals alone.
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spatial momenta and energy integrals respectively, i.e.
∫ Λt
µt
dΩj

∫ Λs
µs

ddqj . It is important

to note that unlike boost invariant theories, there is no natural relation between the two

parameters µs, µt that holds at all scales. Although there may be UV and IR Lifshitz fixed

points that characterize the RG flow of the quantum theory, those can generally have dif-

ferent values of the dynamical critical exponent z associated with them, and one may not

know what they are ahead of time as they can get contributions from quantum corrections

(as we demonstrate later). This implies that generally one could consider two-dimensional

RG flows in which the momentum and energy scales flow independently.

We now turn to study the RG flow equations in non-boost-invariant (Lifshitz) field

theories. For simplicity we first consider the single-scale approach to renormalization,

in which only a spatial renormalization scale µs is introduced. Consider a non-boost-

invariant field theory in d + 1 dimensions, with an action containing a set of parameters

(or coupling constants) cl, (l = 1, . . . , L). In the models of the form (2.32) (as discussed in

subsection 2.2) these are the parameters cl = {g, f2, f3, . . .} representing the kinetic term

parameter g, the gap term f2 and the coupling constants.

Typically at least one of the parameters cl has non-vanishing energy dimension. Let us

assume then that c1 is such a parameter, that is ∆t(c1) 6= 0. Then one can always define

dimensionless versions c̃l of the other parameters using c1 and µs as follows:

c̃l ≡ cl c
sl
1 µ

rl
s , l = 2, . . . , L, (3.5)

where sl = −∆t(cl)
∆t(c1)

and rl = −∆s(cl) − sl∆s(c1). For example, for the N = 2 su-

persymmetric family of models discussed in subsection 2.2, we have c1 = g and c̃n =

fng
−n

2 µ
− d−2

2
(n∗−n)

s = λnµ
− d−2

2
(n∗−n)

s for 2 ≤ n ≤ n∗ (it is easy to see that in the marginal

case λn∗ is indeed dimensionless). g in this case cannot be made dimensionless (as there

is no other energy scale). As will be explained in the rest of this subsection, its RG flow

properties will be responsible for the value of the critical exponent z associated with a

particular fixed point.

Next, consider a renormalized n-point correlation function17 G
(n)
ren(pi, ωi; cl, µs) for some

field φ.18 It will generally depend on the external momenta and energies (pi, ωi), the

(spatial) renormalization scale µs and the renormalized coefficients cl(µs) which run with

the scale µs (or alternatively c1(µs) and c̃l(µs)). The Callan-Symanzik RG equation for

the n-point correlation function G
(n)
ren can be written as follows:

(

µs
∂

∂µs
+ γc1c1

∂

∂c1
+

L
∑

l=2

βl
∂

∂c̃l
+ nγφ

)

G(n)
ren(pi, ωi;µs, c1, c̃l) = 0, (3.6)

(with c̃l = {c̃2, . . . , c̃L}) where we have defined:

γc1(c̃2, . . . c̃L) ≡
µs
c1

∂c1
∂µs

, (3.7)

17For this discussion, we are considering a correlation function written in momentum and energy space,

which does not include the overall delta function factor associated with momentum and energy conservation.
18We assume for simplicity that all external fields appearing in the correlation function are identical, but

a similar analysis holds in cases where there are various fields and the equations can be easily adjusted.
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βl(c̃2, . . . , c̃L) ≡ µs
∂c̃l
∂µs

, (3.8)

γφ(c̃2, . . . , c̃L) ≡
1

2

µs
Zφ

∂δZφ
∂µs

, (3.9)

Zφ is the field strength for φ (φ =
√

Zφ φren) and δZφ ≡ Zφ − 1. Note that, since c1 is the

only parameter with a non-vanishing energy dimension, γc1 , βl and γφ cannot depend on

it — they only depend on the dimensionless couplings c̃2, . . . , c̃L.

At this point we reiterate the fact that since there is no boost invariance in these the-

ories, one can consider two independent scaling transformations: one for space coordinates

and another for time coordinates, and therefore each quantity in this analysis, including

the n-point function G
(n)
ren, has two respective dimensions associated with it. The n-point

function is therefore required to be homogeneous under both of these scaling transforma-

tions independently. Put differently, G
(n)
ren is required to be homogeneous under a Lifshitz

scaling transformation for any value of the critical exponent z. The resulting homogeneity

equation for the n-point correlation function under a general Lifshitz transformation takes

the form:
(

µs
∂

∂µs
+ pi

∂

∂pi
+ zωi

∂

∂ωi
+∆lif

z (c1)c1
∂

∂c1

− n∆lif
z (φ) + (n− 1)(d+ z)

)

G(n)
ren(pi, ωi;µs, c1, c̃l) = 0,

(3.10)

with ∆lif
z (c̃l) (∆

lif
z (φ)) the classical weighted Lifshitz scaling dimension of c̃l (φ) for an arbi-

trary choice of the critical exponent z. Subtracting the Callan-Symanzik RG equation (3.6)

from equation (3.10) we find:
(

pi
∂

∂pi
+ zωi

∂

∂ωi
+
(

∆lif
z (c1)− γc1

)

c1
∂

∂c1
−

L
∑

l=2

βl
∂

∂c̃l

− n
(

∆lif
z (φ) + γφ

)

+ (n− 1)(d+ z)

)

G(n)
ren(pi, ωi;µs, c1, c̃l) = 0,

(3.11)

again for any value of z.

Now, suppose that for specific values of the dimensionless couplings c̃l = c̃l
FP the beta

functions all vanish, i.e.

βl
(

c̃2
FP, . . . , c̃L

FP
)

= 0, 2 ≤ l ≤ L. (3.12)

Then at this point in parameter space, we have:
(

pi
∂

∂pi
+ zωi

∂

∂ωi
+
(

∆lif
z (c1)− γFPc1

)

c1
∂

∂c1

− n
(

∆lif
z (φ) + γFPφ

)

+ (n− 1)(d+ z)

)

G(n)
ren

(

pi, ωi;µs, c1, c̃l
FP
)

= 0,

(3.13)

where γFPc1 ≡ γc1
(

c̃2
FP, . . . , c̃L

FP
)

and γFPφ ≡ γφ
(

c̃2
FP, . . . , c̃L

FP
)

. Since (3.13) is true for

any choice of z, we may choose z = zFP such that ∆lif
zFP(c1) = γFPc1 , that is:

zFP =
γFPc1 −∆s(c1)

∆t(c1)
. (3.14)
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For this value of z, equation (3.13) takes the form:

(

pi
∂

∂pi
+ zFPωi

∂

∂ωi
− n

(

∆lif
zFP(φ) + γFPφ

)

+ (n− 1)(d+ zFP)

)

G(n)
ren

(

pi, ωi;µs, c1, c̃l
FP
)

= 0.

(3.15)

We therefore conclude that this point in parameter space represents a Lifshitz fixed point

with an associated dynamical critical exponent given by zFP (which depends on γFPc1 ). The

field φ has a Lifshitz scaling dimension of ∆lif
zFP(φ) + γFPφ at this fixed point.

As an example, consider the family of models discussed in subsection 2.2. A Lifshitz

fixed point will appear at a point in parameter space in which the beta functions for all

dimensionless parameters c̃n = λnµ
− d−2

2
(n∗−n)

s vanish. Equation (3.14) then implies the

following relation between the value of the dynamical critical exponent associated with

that fixed point and the anomalous dimension of g at the fixed point:

zFP = 2 + γFPg . (3.16)

Note that zFP ≥ 2 as long as γFPg ≥ 0.

3.2 Dual scale RG flows

As explained in subsection 3.1, an alternative approach to the standard, single-scale renor-

malization of non-boost-invariant field theories is the use of a dual-scale renormalization

scheme, utilizing separate scales for momentum (µs) and for energy (µt). This type of

renormalization scheme can prove useful as a tool for analyzing theories flowing between

fixed points with different values of the dynamical critical exponent z, as it explicitly al-

lows for changing the energy and momentum scales independently, without presupposing

a specific relation between them.19 It is also a natural fit for regularization methods which

treat space and time on an equal footing, such as split dimensional regularization (an ex-

ample is given in subsection 3.5). In this subsection we digress to analyze some properties

of this dual-scale formalism, and the way RG fixed points are described by it. While the

results of this discussion are used for some calculations in later subsections, it is not re-

quired for following the rest of this section, and the reader may safely proceed directly to

subsection 3.3.

We again consider a non-boost-invariant field theory in d + 1 dimensions, with an

action containing a set of parameters cl, (l = 1, . . . , L). We further suppose this theory

is renormalized using a dual-scale renormalization scheme, introducing µs as the spatial

(momentum) scale and µt as the temporal (energy) scale. We define dimensionless versions

of the parameters c̃l using these scales, as follows:

c̃l ≡ cl µ
−∆t(cl)
t µ−∆s(cl)

s . (3.17)

19For example, when the physical dispersion relation is unknown, one may consider off-shell renormal-

ization conditions for correlation functions with external propagators having independent values for the

momentum and the energy.

– 18 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
4

For example, for the N = 2 supersymmetric family of models discussed in subsection 2.2,

we may choose c̃1 = gµ−1
t µ2s and c̃n = fng

−n
2 µ

− d−2
2

(n∗−n)
s = λnµ

− d−2
2

(n∗−n)
s for 2 ≤ n ≤ n∗.

Given some initial conditions, a dual-scale RG flow for these initial conditions corre-

sponds to a mapping:

R
2 → M̂ ≡M × R, (3.18)

of the form (c̃l(µs, µt), lnZφ(µs, µt)), where M is the manifold of renormalizable actions

parameterized by c̃l, and Zφ is the field strength for the field φ.20 The renormalization

group action therefore induces a (possibly singular) foliation on the manifold M , with

leaves of dimension 2 or less. This RG flow may be described by two sets of beta and

anomalous dimension functions, defined as follows:

βsl (c̃k) ≡ µs
∂c̃l
∂µs

, βtl (c̃k) ≡ µt
∂c̃l
∂µt

, (3.19)

γsφ(c̃k) ≡
1

2
µs
∂ lnZφ
∂µs

, γtφ(c̃k) ≡
1

2
µt
∂ lnZφ
∂µt

. (3.20)

These functions in turn define two vector fields β̂s, β̂t ∈ TM̂ given by:

β̂s ≡ βs + 2γsφZφ
∂

∂Zφ
, β̂t ≡ βt + 2γtφZφ

∂

∂Zφ
, (3.21)

with βs, βt ∈ TM defined as:

βs ≡
L
∑

l=1

βsl
∂

∂c̃l
, βt ≡

L
∑

l=1

βtl
∂

∂c̃l
. (3.22)

Note that Lβ ≡ Span(βs, βt) defines a generalized distribution on M . At generic

points, this distribution would be two dimensional, but there may be singular points in

which βs and βt become colinear and Lβ becomes one dimensional.21 As will be explained

in this subsection, these singular points correspond to RG fixed points in this description.

From the definition of the RG flow functions, it is clear that βs, βt (and more generally

β̂s, β̂t) are not arbitrary vector fields. Indeed they must satisfy a constraint: since the dis-

tribution L̂β ≡ Span(β̂s, β̂t) induces a foliation on M̂ , it must be integrable. Furthermore,

since β̂s, β̂t correspond to the coordinate system µs, µt over each leaf of the foliation, they

must commute. Put differently, as one flows along a closed curve on the (µs, µt) plane and

returns to the initial point, one expects to return to the same physical values of parameters.

This translates to the following constraint on these vector fields:

L̂β̂s β̂t = 0, (3.23)

20Here we are considering for simplicity the case of a single field φ, but a generalization to any number

of fields is straightforward.
21Strictly speaking one could also find points with βs = βt = 0, at which Lβ is 0-dimensional. These

represent more exotic fixed points with independent space and time scale symmetries. We will not consider

these cases here.
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where L̂ is the Lie derivative on M̂ . Expressed in terms of the RG functions on M , this

implies the following two constraints:

Lβsβt = 0, (3.24)

Lβsγtφ − Lβtγsφ = 0, (3.25)

where L is the Lie derivative onM , and γsφ, γ
t
φ are considered here as scalar functions onM .

Consider a renormalized n-point function G
(n)
ren (pi, ωi;µs, µt, c̃l) for the field φ. In the

dual-scale description, two Callan-Symanzik equations may be written for G
(n)
ren correspond-

ing to each of the two scales:22

(

µs
∂

∂µs
+

L
∑

l=1

βsl
∂

∂c̃l
+ nγsφ

)

G(n)
ren (pi, ωi;µs, µt, c̃l) = 0, (3.26)

(

µt
∂

∂µt
+

L
∑

l=1

βtl
∂

∂c̃l
+ nγtφ

)

G(n)
ren (pi, ωi;µs, µt, c̃l) = 0. (3.27)

On the other hand, as in the single scale case (see subsection 3.1), G
(n)
ren is required to be

homogeneous under space and time scaling transformations independently. Thus we have

the following homogeneity equations:
(

µs
∂

∂µs
+ pi

∂

∂pi
− n∆s(φ) + (n− 1)d

)

G(n)
ren (pi, ωi;µs, µt, c̃l) = 0, (3.28)

(

µt
∂

∂µt
+ ωi

∂

∂ωi
− n∆t(φ) + (n− 1)

)

G(n)
ren (pi, ωi;µs, µt, c̃l) = 0. (3.29)

Subtracting equations (3.26)–(3.27) from equations (3.28)–(3.29) respectively and taking a

linear combination of the resulting equations, we obtain:
(

pi
∂

∂pi
+ zωi

∂

∂ωi
−

L
∑

l=1

(βsl + zβtl )
∂

∂c̃l

− n
(

∆lif
z (φ) + γzφ

)

+ (n− 1)(d+ z)

)

G(n)
ren (pi, ωi;µs, µt, c̃l) = 0,

(3.30)

where z is arbitrary (that is, this equation is satisfied for any value of z), and γzφ ≡ zγtφ+γ
s
φ.

Suppose that for some point c̃FP ∈ M and some value zFP the RG flow functions

satisfy:

zFPβt(c̃FP) + βs(c̃FP) = 0. (3.31)

Then choosing z = zFP at this point, equation (3.30) takes the form:
(

pi
∂

∂pi
+ zFPωi

∂

∂ωi
− n

(

∆lif
zFP(φ) + γFPφ

)

+ (n− 1)(d+ zFP)

)

G(n)
ren

(

pi, ωi;µs, µt, c̃l
FP
)

= 0,

(3.32)

22Note that, due to the Frobenius theorem, the constraints (3.24)–(3.25) are necessary and sufficient for

this system of equations to be integrable.

– 20 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
4

where γFPφ ≡ γz
FP

φ (c̃FP). This implies that c̃FP represents a Lifshitz fixed point with

an associated dynamical critical exponent of zFP, and the field φ has a Lifshitz scaling

dimension of ∆lif
zFP(φ) + γFPφ at this fixed point.

However, there is an additional subtlety that arises in the dual-scale description. Re-

call that in this description, the full orbit of the point c̃FP under the RG flow is given

by the individual scaling of space and time, and not just by the specific Lifshitz scaling

corresponding to z = zFP. As one does not expect βs and βt to individually vanish at

c̃FP, this point is clearly not a fixed point of the full RG action. In other words, since µs
and µt are individually arbitrary renormalization scales, one is free to change one without

changing the other, and the physics should not change (in particular, the system should

still be at a Lifshitz fixed point). One is therefore compelled to identify the physical “fixed

point” with the entire orbit of the point c̃FP in M . This naturally raises the question of

whether the condition (3.31) is satisfied over the entire orbit (with the same value of zFP),

and whether the anomalous dimension γz
FP

φ (c̃) remains constant over this orbit, as one

would expect from physical considerations. Indeed, one can show these properties follow

trivially from the constraints (3.24)–(3.25) assumed earlier.

To see this, let RFP ⊂ M be the orbit of the point c̃FP. We would like to show that

for any point c̃ ∈ RFP the following two conditions are satisfied:

zFPβt(c̃) + βs(c̃) = 0, (3.33)

γz
FP

φ (c̃) = γz
FP

φ (c̃FP) = const. (3.34)

To show property (3.33), define a coordinate system (τ1, . . . , τL) in some neighborhood of

c̃FP such that c̃(0, . . . , 0) = c̃FP and ∂
∂τ1

= βs. Then due to condition (3.31), βt(c̃FP) =

(−1/zFP, 0, . . . , 0) in this coordinate system. However the constraint (3.24) implies that the

components of βt do not depend on τ1 and therefore βt (c̃(τ1, 0, . . . , 0)) = (−1/zFP, 0, . . . , 0)

for any τ1. That is, (3.33) is satisfied on the one-dimensional orbit of c̃FP generated by

βs, which in turn implies that βt generates the same orbit, and it is in fact the full (one-

dimensional) leaf induced by the RG flow that contains c̃FP. By using property (3.33)

in (3.25) one then obtains Lβsγz
FP

φ = Lβtγz
FP

φ = 0 on RFP, and property (3.34) follows.

It is important to note, however, that while zFP and γz
FP

φ are both constant over

the leaf RFP corresponding to the fixed point, γsφ and γtφ may not be, and in fact these

quantities are renormalization scheme dependent even at the fixed point.

The definitions and assumptions above are covariant with respect to diffeomorphisms

of M , which correspond to renormalization scheme changes that can be described as redef-

inition of the parameters c̃l. It is immediately clear, then, that the properties (3.33)–(3.34)

are invariant under any diffeomorphism of M that preserves the foliation induced by the

RG action. In fact, if a scheme exists in which γsφ, γ
t
φ are constant over RFP, then they are

clearly unchanged under these kinds of scheme changes. However, one can instead consider

a larger family of renormalization scheme changes — those that involve in addition a linear

redefinition of the field φ of the form:

φ′ = φhZ(c̃k),

c̃l
′ = hl(c̃k),

(3.35)
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where hl(c̃k) represents a foliation preserving diffeomorphism on M . In their infinitesimal

form, these are diffeomorphisms of M̂ generated by a vector field ξ̂ ∈ TM̂ of the form:

ξ̂ ≡ ξ + 2ξZ(c̃)Zφ
∂

∂Zφ
, (3.36)

where ξ ∈ TM is a linear combination of βs, βt:

ξ ≡ ξs(c̃)βs + ξt(c̃)βt. (3.37)

Under this family of diffeomorphisms, the RG flow functions transform as follows:

δβs = Lξβs = −(Lβsξs)βs − (Lβsξt)βt, (3.38)

δβt = Lξβt = −(Lβtξs)βs − (Lβtξt)βt, (3.39)

δγsφ = Lξγsφ − LβsξZ = ξsLβsγsφ + ξtLβtγsφ − LβsξZ , (3.40)

δγtφ = Lξγtφ − LβtξZ = ξsLβsγtφ + ξtLβtγtφ − LβtξZ . (3.41)

It is easy to check that at a point c̃ ∈ RFP, due to properties (3.33)–(3.34), indeed:

δ(zFPβt + βs) = 0, (3.42)

δγz
FP

φ = 0. (3.43)

That is, zFP and γz
FP

φ remain unchanged under such a renormalization scheme change,

as one would expect. However, δγsφ and δγtφ do not vanish separately, even if γsφ and γtφ
are separately constant on RFP. In fact, with an appropriate choice of ξZ one may freely

change one of them (as the combination γz
FP

φ remains fixed). We therefore observe that

while for a given fixed point of the dual-scale RG flow zFP and γz
FP

φ are physical, scheme

independent quantities, γsφ and γtφ individually are not.

In subsection 3.5 we make use of these properties to extract the values of zFP and γz
FP

φ

for the fixed points realized by the marginal cases of the models introduced in subsection 2.2.

3.3 Non-renormalization theorem: a general proof

In this subsection we introduce and prove a non-renormalization theorem for the Lifshitz

supersymmetric family of models defined in subsection 2.2.

Similarly to the relativistic case (see [11]), one can make a general argument for the

non-renormalization of the superpotential in these models, based on its holomorphicity

and the symmetries of the theory. Suppose we start with a classical superpotential of the

general form:23

Wtree(Φ) = G(Φ)∂iΦ∂iΦ+ F (Φ), (3.44)

23For simplicity we assume here a single holomorphic superfield Φ and a (classical) superpotential with

no more than two spatial derivatives, that is with a classical value of zUV = 2 for the dynamical critical

exponent at the UV, in agreement with the previous assumptions in subsection 2.2. The following arguments

could easily be extended to more general cases as well.
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where G(φ) and F (Φ) are holomorphic functions of Φ with the following expansions:

G(Φ) = −
∞
∑

k=0

1

k + 2
gk+2Φ

k, (3.45)

F (Φ) =

∞
∑

k=2

1

k
fkΦ

k. (3.46)

The coefficients g2, f2 correspond to the free part of the superpotential, whereas gk, fk
for k ≥ 3 correspond to interactions. Note that, unlike most of this work, we assume

here the more general form (2.26) for the superpotential, which allows for d = 2 spatial

dimensions as well (for d = 2, the Lifshitz scaling dimension of the superfield vanishes,

and the superpotential may generally contain an infinite number of classically relevant and

marginal terms).

As in the relativistic case, we make the following assumptions:

1. Supersymmetry, and any other relevant global symmetries, are non-anomalous and

remain unbroken by quantum corrections,

2. The system is smooth in the weak coupling limit, i.e. in the limit gk, fk → 0 for

all k ≥ 3.

Additionally, we assume that the IR physics of the system can be faithfully described by

the microscopic degrees of freedom. It is important to note that the fulfillment of these

assumptions is less trivial here than in the analogous relativistic (3+1)-dimensional Wess-

Zumino model: whereas the latter model is always IR free, the systems studied here may

flow to a finite or strong coupling in the IR (see subsections 3.5–3.6), and one may have

to account for non-perturbative effects and their implications on these assumptions. For

instance, as mentioned in section 2, in some cases these systems may have soliton-like

semiclassical vacua with a finite tunneling amplitude to the trivial vacuum, and they may

change the IR physics. For further details, see the discussion in section 4.

We consider the Wilsonian effective action of the theory associated to some momentum

scale µs, energy scale µt, or both (if one uses a dual-scale renormalization scheme, see dis-

cussion in subsection 3.1). We define this to be the effective action obtained by integrating

out a region in momentum and energy space associated with these scales, which does not

include any IR singularities of the propagators.24 For the gapped cases (with Im(f2) 6= 0 or

Re(f2) > 0) or the case of f2 = 0, this corresponds to integrating out momenta with k > µs
(or energies |ω| > µt), similarly to the relativistic case. For the gapless singular case, with

a real and positive f2, this requires the integrated-out region to exclude the singular sphere

of momenta — one can choose, for example, to integrate out momenta with |k − k̃0| > µs
(see discussion in subsection 3.6). Unlike the 1PI effective action, the Wilsonian effective

action does not suffer from IR divergences as one approaches the gapless limit. For sim-

plicity, for most of this subsection we assume the gapped or f2 = 0 cases, and return to

discuss the gapless singular case in the end.

24That is, regions in energy and momentum space which do not include the points (ω = 0, k = k̃0) such

that ω(k̃0) = 0 (where ω(k) is the single particle dispersion relation).
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Due to the assumption that supersymmetry is preserved by the full quantum theory,

the effective action will take the general form:

Leff =

∫

d2θd2θ†Keff

(

Φ,Φ†
)

+

∫

d2θWeff (Φ) + c.c., (3.47)

where Weff (Φ, gk, fk) is a holomorphic functional of the superfield Φ and depends on the

parameters gk, fk, and similarly Keff

(

Φ,Φ†, gk, fk
)

is a real functional of Φ,Φ† and the

parameters gk, fk.
25

Under the assumptions outlined above, we aim to show that the effective superpotential

Weff(Φ, gk, fk) is equal to the classical one Wtree.

As in the relativistic case (see [11]), let us regard the coupling constants gk, fk as

background superfields. The classical action is then seen to be invariant under global

U(1)× U(1)R symmetries, by assigning the following charges to the fields, the superspace

coordinates θ and the superpotential W :

U(1) U(1)R
Φ −1 0

gk, fk k 2

θ 0 −1

W 0 2

As the parameters gk, fk are regarded as background superfields, Weff has to be a

holomorphic functional of both them and Φ. This holomorphic property and the second

assumption above mean that Weff can be expanded in non-negative powers of Φ and its

derivatives, as well as the coupling constants gk, fk for k ≥ 3 (this also rules out any non-

perturbative contributions to Weff in terms of these coupling constants — see section 4

for a discussion on non-perturbative considerations). Consider a term in this expansion of

degree n in Φ, which has the general form:26

h(g2, f2)

∞
∏

k=3

glkk f
mk
k Φn, (3.48)

where lk,mk ≥ 0 for all k ≥ 3, and h(g2, f2) is a holomorphic function of f2, g2 that can

also depend on the renormalization and UV cutoff scales. Requiring that Weff respects

the global symmetries U(1) × U(1)R of the original action, we conclude that h must be

a homogeneous function of degree −p (that is, h(λg2, λf2) = λ−p h(g2, f2)) such that the

following two conditions are satisfied:

∞
∑

k=3

k(lk +mk)− 2p− n = 0, (3.49)

∞
∑

k=3

2(lk +mk)− 2p = 2. (3.50)

25Weff and Keff can also depend on the renormalization scale µs (or µt) as well as UV cutoffs.
26A similar argument will be valid for terms that contain any number of derivatives of Φ.
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Note that by subtracting the second condition from the first we obtain:

∞
∑

k=3

(k − 2)(lk +mk) = n− 2, (3.51)

from which we immediately conclude that lk = mk = 0 for k > n. In particular, for n = 2

the coefficient of Φ2 does not depend on any of the coupling constants gk, fk for k ≥ 3. It

therefore takes the form h(g2, f2)Φ
2. Restricting to the free case (gk = fk = 0 for k ≥ 3)

and comparing to the classical action, it is clear that for this term h(g2, f2) =
1
2f2. Thus we

establish non-renormalization for this term, and a similar argument is valid for any term

with n = 2 (such as −1
2g2 ∂iΦ∂iΦ).

For n ≥ 3, in the weak coupling limit, it is clear that this term corresponds to a

Feynman diagram27 with n external lines, lk vertices of type gk and mk vertices of type

fk. If we denote by I the number of internal lines in the diagram, we get from standard

counting arguments:
∞
∑

k=3

k(lk +mk) = n+ 2I. (3.52)

Comparing with condition (3.49) we see that I = p. Denoting by V ≡∑∞
k=3(lk +mk) the

total number of vertices in the diagram, condition (3.50) then implies that I = V −1. This

equality can only be satisfied in a tree-level diagram. However, the only tree-level diagrams

that contribute to the effective action are the 1PI ones, with a single vertex and no internal

lines, which correspond to terms of the form h(g2, f2)gnΦ
n or h(g2, f2)fnΦ

n. Finally, by

comparing to the classical action in the weak coupling limit, the former is excluded, and

h(g2, f2) is determined to be 1
n . We are therefore left with the non-renormalized term

1
nfnΦ

n. A similar argument can be used to prove non-renormalization for terms with any

number of derivatives of Φ.

The gapless singular case (in which f2 is real and positive) can be handled similarly to

the above arguments, except that the effective action is defined by integrating out momenta

which are far from the singular sphere in momentum space. It is therefore more convenient

to write the effective action in momentum space.28 For a small enough value of µs, the

renormalized fields will be defined inside a shell around the singular sphere, given by the

condition on the momenta |k − k̃0| < µs. A term of degree n in the expansion of the

effective superpotential will generally take the form:

∞
∏

k=3

glkk f
mk
k

∫

|pi−k̃0|<µs

ddp1 . . . d
dpn

(2π)dn

h(g2, f2; ~p1, . . . , ~pn)Φ(~p1) . . .Φ(~pn)(2π)
dδ(~p1 + . . .+ ~pn),

(3.53)

27In the context of this argument, Feynman diagrams refer to supergraph formalism, or alternatively to

diagrams of the theory before integrating out the auxiliary field F , so that an interaction of the form fkΦ
k

always corresponds to a vertex of k propagator lines.
28Note that the parameter k̃0 =

√

f2/g2 that corresponds to the radius of the singular sphere does not get

renormalized itself along the RG flow due to the arguments here, and it is therefore consistent to consider

its value to be a fixed parameter in the quantum theory equal to its classical value.
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with h homogeneous in g2, f2. For n = 2, it is clear from the arguments above that

there is no contribution from gk, fk for k ≥ 3. Then by restricting to the free case we

have h(g2, f2; ~p1,−~p1) = −g2
2 p

2
1 +

f2
2 as in the tree level expression. For n ≥ 3, the only

contribution is again from the single vertex diagrams proportional to either fn or gn,

corresponding to the tree-level term with h(g2, f2; ~p1, . . . , ~pn) =
1
n or h(g2, f2; ~p1, . . . , ~pn) =

1
n ~p1 · ~p2 respectively.

3.4 Perturbative analysis

In this subsection we study the perturbative behaviour of the family of models, and demon-

strate some of its properties.29 In subsection 3.4.1 the Feynman rules for these models are

given. These are used later on in subsections 3.4.3 and 3.5. Subsection 3.4.2 briefly presents

a general argument that shows that there are no perturbative quantum corrections to the

holomorphic superpotential, thus supporting the general proof presented in subsection 3.3.

The perturbative argument is very similar to the relativistic one, which can be found in [45].

We refer to appendix C for full technical details of this analysis. Subsection 3.4.3 describes

several interesting features of the model with an n = 3 interaction of the form (2.33) in

3+ 1 dimensions, stemming from supersymmetry and the non-renormalization property of

the model.

3.4.1 Feynman rules

The expressions for the bosonic and fermionic Feynman propagators may be easily derived

from the action (2.30), and are given by:

〈φ(ω, k)φ∗(−ω,−k)〉 = i

ω2 − |gk2 − f2|2 + iǫ
, (3.54)

and

〈

ψα(ω, k)ψ
†
β̇
(−ω,−k)

〉

=
iωσ0

αβ̇

ω2 − |gk2 − f2|2 + iǫ
, (3.55)

〈

ψ†α̇(ω, k)ψβ(−ω,−k)
〉

=
iωσ̄0 α̇β

ω2 − |gk2 − f2|2 + iǫ
, (3.56)

〈

ψα(ω, k)ψ
β(−ω,−k)

〉

=
−iδβα(gk2 − f∗2 )

ω2 − |gk2 − f2|2 + iǫ
, (3.57)

〈

ψ†α̇(ω, k)ψ†
β̇
(−ω,−k)

〉

=
−iδα̇

β̇
(gk2 − f2)

ω2 − |gk2 − f2|2 + iǫ
. (3.58)

The visual representations of these propagators in terms of Feynman diagrams are given

in figures 2 and 3 respectively. The conventions used here were inherited from those in [46].

The Feynman rules for vertices corresponding to a general interaction of the form (2.33) are

given in figure 4. Additionally, there is the usual symmetry factor taken into consideration

when studying various diagrams, as well as a factor of −1 for every closed fermionic loop.

29A perturbative analysis of the Galilean Wess-Zumino model in 2 + 1 dimensions was presented in [19].

As previously mentioned, however, this is a different model with different perturbative behaviour and

renormalization properties.
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Figure 2. Feynman diagram representation for the bosonic propagator, in correspondence with

equation (3.54).

(a)
iωσ0

αβ̇

ω2−|gk2−f2|2+iǫ (b) iωσ̄0 α̇β

ω2−|gk2−f2|2+iǫ (c)
−iδβα(gk2−f∗

2
)

ω2−|gk2−f2|2+iǫ (d)
−iδβ̇

α̇
(gk2−f2)

ω2−|gk2−f2|2+iǫ

Figure 3. Feynman diagram representation for the fermionic propagators. These correspond to

equations (3.55)–(3.58). In these conventions, arrows on fermionic lines are always directed away

from dotted indices or towards undotted indices at a certain vertex. It should be noted that the

choice between figures 3(a) and 3(b) is made in accordance with the index contraction order chosen

for the corresponding fermionic line in the full diagram, and the direction in which the propagator

appears in it. In the diagrams here the index order is assumed to be taken from right to left,

matching equations (3.55) and (3.56).

(a) −
iδβαfn(n−1)

2
or −

iδβαfn(n−1)

2
(b) −

iδα̇
β̇
f∗n(n−1)

2
or −

iδ
β̇
α̇
f∗n(n−1)

2

(c) −ifnf
∗
m (d) igfnq

2 − if∗
2 fn (e) igf∗

nq
2 − if2f

∗
n

Figure 4. Feynman rules for a general interaction of the form (2.33). A thick dashed line represents

a boson with a spatial momentum ~q insertion. In figures 4(a), 4(b), the choice of which rule to

use depends on how the vertex connects to the rest of the diagram considered, and on the index

contraction order chosen for the corresponding fermionic line.

3.4.2 A perturbative argument for the non-renormalization theorem

We now present a perturbative argument for the non-renormalization theorem of subsec-

tion 3.3, based on Feynman supergraph considerations. The argument is similar to the one

found in [45] for the relativistic case. We therefore only state the main differences. As in

the relativistic case, the propagators for the superfields can be constructed from the prop-

agators of the component fields. The details of the calculation, including the propagators
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in terms of off-shell component fields, are given in appendix C. For example, using (2.22)

and the definition (2.23) one finds:

〈

Φ(t, x, θ, θ†)Φ(t′, x′, θ′, θ′†)
〉

= −i(f∗2 + g∇2)δ(θ − θ′)e−i(θσ
0θ†−θ′σ0θ′†)∂tGlif(t− t′, x− x′),

(3.59)

where

Glif(t, x) ≡ Ĝlif(t, x)δ(t)δ(x), Ĝlif(t, x) ≡
−1

∂2t + |f2 + g∇2|2 . (3.60)

Similar expressions for the 〈Φ†Φ†〉 and 〈ΦΦ†〉 propagators in superspace are given in

appendix C. In analogy to the relativistic case, the propagators of 〈ΦΦ〉 and
〈

Φ†Φ†〉 are

proportional to δ(θ − θ′) and δ(θ† − θ′†) respectively. Therefore, any closed loop which

contains only 〈ΦΦ〉 (or only
〈

Φ†Φ†〉) propagators clearly vanishes, and thus there are no

one-loop contributions, finite or infinite, to the coupling constants, the gap parameter f2 or

the kinetic term parameter g. The generalization of this argument to any loop order follows

from the procedure detailed in chapters 9 and 10 of [45]. The technical adjustments required

for the case of the non-boost-invariant, holomorphic time domain supersymmetric model

considered here are presented in appendix C, including the free fields super-propagators

written in terms of covariant superderivatives of the form (2.21) and some useful identities

satisfied by these derivatives.

The Feynman rules for the superfields in a model with a general n interaction of the

form (2.33) can be easily deduced in analogy to the relativistic case. This yields the

following rules for supergraphs:

• Each external line represents a holomorphic (or an anti-holomorphic) superfield Φ(z)

(Φ†(z)).

• The propagators ΦΦ, Φ†Φ†, ΦΦ† correspond to the Lifshitz analogue of the Grisaru-

Rocek-Siegel (GRS) propagators:

〈

Φ(z)Φ(z′)
〉

GRS
= Ĝlif(f

∗
2 + g∇2)

D2

4�t
δ(z − z′), (3.61)

〈

Φ†(z)Φ†(z′)
〉

GRS
= Ĝlif(f2 + g∇2)

D̄2

4�t
δ(z − z′), (3.62)

〈

Φ(z)Φ†(z′)
〉

GRS
= Ĝlifδ(z − z′), (3.63)

where we have defined z ≡ (t, x, θ, θ†), δ(z) ≡ δ(t)δ(x)δ(θ)δ(θ†) and �t ≡ −∂2t .

• At each Φn vertex with m internal lines, one adds factors of −1
4D̄

2 acting on m− 1

internal propagators. Similar factors of −1
4D

2 hold at each (Φ†)n vertex.

• A factor of fnn appears for each vertex accompanied by an integration
∫

dtddxd2θd2θ†.

• In addition one must take into account the usual combinatoric factor that multiplies

each diagram.
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(a) (b) (c) (d)

Figure 5. One-loop corrections for the 〈φφ∗〉 propagator in the n = 3 model.

Using these Feynman rules and the identities presented in appendix C it is easy to follow

the relativistic arguments to argue that any arbitrary closed loop with a general number of

integrations over the whole θ, θ† space can be reduced to an expression containing a single

d4θ integral (see appendix C for the full derivation). As in the relativistic case, this leads

to the conclusion that the effective action can be written as an expression of the form

∫

d2θd2θ†dt1ddx1 · · · dtnddxn
(

F1(t1, x1, θ, θ
†) · · ·Fn(tn, xn, θ, θ†)G(t1, x1 · · · , tn, xn)

)

,

(3.64)

where G(t1, x1 · · · , tn, xn) is a function which is invariant under translations (both time and

space translations) and F1, · · · , Fn are functions of superfields and their derivatives. The

Fn’s do not contain any factors of �−1
t , and therefore the integration over d2θd2θ† cannot be

converted into a d2θ integration without adding time-derivatives. One can therefore deduce

that the gap parameter f2, the kinetic term parameter g and the coupling constants of the

interaction are not renormalized to any order in perturbation theory.

3.4.3 One loop example in 3 + 1 dimensions with an n = 3 interaction

In this subsection we demonstrate the consequences of supersymmetry and non-

renormalization in the models discussed here, by pointing out some interesting properties

for the case of 3 + 1 dimensions with an n = 3 interaction of the form (2.33). We restrict

most of the discussion to the one-loop level in perturbation theory. The Feynman rules for

the propagators and vertices are given in subsection 3.4.1. Studying the one-loop Feynman

diagrams for this model, we make the following observations:

• There are no one-loop quantum corrections to the 1PI (amputated) fermionic am-

plitudes 〈ψψ〉 and
〈

ψ†ψ†〉. This implies there are no one-loop quantum corrections

to the energy gap parameter f2 and to the kinetic parameter g, aligning with the

non-renormalization theorem discussed in previous subsections.

• There is a cancellation of UV divergences in the one-loop corrections to the 1PI (am-

putated) bosonic two point function 〈φφ∗〉: the Feynman diagrams corresponding to

the one-loop corrections to these correlators are given in figure 5. Divergences occur

only in the diagrams 5(a), 5(b) and 5(c). Since the (Lifshitz) degree of divergence

here is 1, in order to demonstrate the cancellation of these divergences it is sufficient
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Figure 6. One-loop corrections for the
〈

ψψ†
〉

propagator in the n = 3 model.

to show that the sum of these three contributions vanishes for a vanishing exter-

nal energy (as any terms proportional to positive powers of the external energy will

converge by dimensional analysis).

The expression for diagram 5(a) reads:

A = (−1)(−if3)(−if∗3 )

×
∫

d3qdωq
(2π)4

4(iωq)(iωq)
[

ω2
q − |gq2 − f2|2

] [

ω2
q − |g(k − q)2 − f2|2

] ,
(3.65)

where k is the external momentum and we have omitted the iǫ in the denominators

for simplicity. The diagram 5(b) results in:

B = 4(−if3)(−if∗3 )
∫

d3qdωq
(2π)4

(i|f2 − g(k − q)2|)2
[

ω2
q − |gq2 − f2|2

] [

ω2
q − |g(k − q)2 − f2|2

] , (3.66)

and finally, the expression for diagram 5(c) reads:

C = 4(−i|f3|2)
∫

d3qdωq
(2π)4

i

ω2
q − |gq2 − f2|2

. (3.67)

It is easy to check that (given an appropriate regularization) the sum of these three

contributions vanishes for any value of k:

A+ B + C = 0. (3.68)

Therefore, in total there are no divergent one-loop corrections to the bosonic two-

point function 〈φφ∗〉. This is expected due to supersymmetry, since the only one-loop

correction to the fermion propagator, given in figure 6, is finite, and gives rise to a non-

trivial but finite correction to the Kähler potential. The remaining bosonic correction

described in diagram 5(d) is finite and also arises as a result of the corrections to the

Kähler potential.

• There is an exact cancellation of the one-loop corrections to the 1PI (amputated)

〈φφ〉, 〈φ∗φ∗〉 correlation functions. The relevant diagrams are given in figure 7.

The expression corresponding to diagram 7(a) reads:

D =4(−if3)2(−1)

∫

d3qdωq
(2π)3

−i(gq2 − f∗2 )
[

ω2
q − |gq2 − f2|2

]

× −i(g(k − q)2 − f∗2 )
[(ω − ωq)2 − |g(k − q)2 − f2|2]

,

(3.69)
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(a) (b)

Figure 7. One-loop corrections for the 〈φφ〉 correlation function.

where ω and k are the external energy and momentum respectively. Similarly, the

expression for diagram 7(b) reads:

E = 4(if3)
2

∫

d3qdωq
(2π)3

i(gq2 − f∗2 )
[

ω2
q − |gq2 − f2|2

]

i(g(k − q)2 − f∗2 )
[(ω − ωq)2 − |g(k − q)2 − f2|2]

. (3.70)

Altogether it is easy to check that the corrections to the correlation function of 〈φφ〉
vanish to one-loop order:

D(φφ)(ω, k) = D + E = 0, (3.71)

and similarly for 〈φ∗φ∗〉 corrections. This cancellation is another indication that the

holomorphic structure is indeed preserved to this order in perturbation theory.

• We have shown that all UV divergences in the one-loop corrections to the propaga-

tors cancel in this model. In fact, one can check that other than the diagrams in

figures 5(a), 5(b), 5(c), 7(a) and 7(b), the only other diagrams (to any perturbative

order and with any number of external legs) which have a non-negative superficial

degree of divergence30 are “tadpole” diagrams for 〈φ〉, which must cancel due to

supersymmetry and non-renormalization of the superpotential. Therefore UV diver-

gences in any diagrams for this model will only occur as subdivergences resulting

from the appearance of the above set of diagrams (5(a), 5(b), 5(c), 7(a), 7(b) and the

“tadpole” diagrams) as subdiagrams. However since these subdiagrams will always

appear alongside each other with the same relative signs and relations that led to the

cancellation of their divergences in equations (3.68) and (3.71), these subdivergences

will similarly cancel. We therefore find this model has the interesting property of

being UV finite to all order in perturbation theory. This can also be seen directly

from dimensional analysis of supergraphs (see appendix C).

3.5 The marginal cases and exact Lifshitz scale symmetry

In this subsection we study the classically marginal cases of the family of supersymmetric

models introduced in section 2.2 (see subsection 3.1 for a definition of marginality in this

context). These consist of superpotentials of the form (2.32)–(2.33), with fn 6= 0 only for

30For an arbitrary 1PI Feynman diagram of order O(fm3 ) in this model with EB bosonic external legs

and EF fermionic ones, the superficial (Lifshitz) degree of divergence is: 5 − 3
2
m− 1

2
EB − 3

2
EF .
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n = n∗ ≡ 2d
d−2 (and in particular f2 = 0). Overall, there are three such cases: n = 3 for

6+1 dimensions, n = 4 for 4+1 dimensions and n = 6 for 3+1 dimensions. For all of these

cases, the coupling constant λn ≡ fng
−n/2 is dimensionless in both time and space units.

We would like to argue that each of these three cases realizes a line of fixed points,

where the beta function of the marginal coupling constant λn (n = 3, 4, 6) vanishes at the

corresponding critical dimension (d = 6, 4, 3 respectively). Consider the Wilsonian effective

action of these theories associated to some momentum scale µs, energy scale µt or both (if

one uses a dual-scale renormalization scheme, see discussion in subsections 3.1–3.2). As a

direct consequence of the non-renormalization theorem proven in subsection 3.3, the only

term in the effective action that transforms non-trivially under the RG flow of the theory is

the Kähler potential. Therefore after canonically normalizing the superfield Φ, the effective

Lagrangian takes the form:31

Leff =

∫

d2θd2θ†ddxΦ†
cnΦcn

+

(

∫

d2θddx

(

gZΦ

2
Φcn∇2Φcn +

fnZ
n
2
Φ

n
Φncn

)

+ h.c.

)

,

(3.72)

where we have defined Φ ≡ √
ZΦΦcn, Φcn is the canonically normalized superfield and ZΦ

is its field strength renormalization factor. The canonical effective parameters gcn and f cnn
are therefore given by:

gcn = gZΦ, f cnn = fnZ
n
2
Φ . (3.73)

However, these are dimensionful parameters. The effective dimensionless coupling λcnn is

therefore:

λcnn = f cnn (gcn)−
n
2 = fnZ

n
2
Φ g

−n
2Z

−n
2

Φ = fng
−n

2 = λn, (3.74)

which implies the beta function identically vanishes for each of the marginal cases (n =

3, 4, 6) discussed above, and for any value of the coupling:

βn(λn) = 0. (3.75)

This argument can also be formulated in terms of the RG flow functions of subsection 3.1:

due to non-renormalization, the beta functions corresponding to the dimensionful parame-

ters fn and g are both proportional to the anomalous dimension function32 γΦ (as defined

in equation (3.9)):

γΦ ≡ 1

2

µs
ZΦ

∂δZΦ

∂µs
, (3.76)

with:

βfn ≡ µs
∂fn
∂µs

= nγΦfn, (3.77)

βg ≡ µs
∂g

∂µs
= 2γΦg. (3.78)

31We have omitted here classically irrelevant contributions to the Kähler term of the effective action as

these are not important for the arguments that follow.
32Here are referring to the single-scale RG description.
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Equation (3.75) for the dimensionless coupling λn then immediately follows. Note that,

due to (3.78), the anomalous dimension corresponding to g (as defined in equation (3.7))

is related to γΦ via:

γg ≡
µs
g

∂g

∂µs
= 2γΦ. (3.79)

Following the discussion of subsection 3.1, we therefore conclude that each of these

marginal cases realizes a Lifshitz scale invariant theory. Furthermore, in accordance with

equation (3.16), the dynamical critical exponent associated with this scale invariance is

determined by the anomalous dimension of the field Φ as follows:

z = 2 + γg(λn) = 2 + 2γΦ(λn). (3.80)

That is, the holomorphic structure here implies that (for each of these marginal cases)

this family of models describes a line of quantum critical fixed points corresponding to

each value of the coupling λn, with the dynamical exponent depending on the coupling.

This is reminiscent of well known families of relativistic superconformal models which

realize a set of fixed points for various values of coupling constants, interpolating between

weak and strong coupling, such as the N = 4 SYM model, although note that unlike

those cases (which are relativistic and therefore have z = 1), here z changes along the

marginal directions.

It is useful to describe these results from the point of view of the dual-scale RG for-

malism discussed in subsection 3.2. Recall that in this description we introduce two renor-

malization scales: a spatial one (µs) and a temporal one (µt). We then have 2 independent

dimensionless parameters in these models, which we may choose to be g̃ ≡ gµ2sµ
−1
t and λn.

Due to non-renormalization (using the same type of arguments as in the single-scale case),

we see that the both beta functions of the coupling λn vanish:

βsn(g̃, λn) = 0, βtn(g̃, λn) = 0, (3.81)

whereas those of the parameter g̃ are related to the anomalous dimension functions as

follows:

βsg̃(g̃, λn) = (2 + 2γsΦ(g̃, λn)) g̃, βtg̃(g̃, λn) =
(

−1 + 2γtΦ(g̃, λn)
)

g̃. (3.82)

From the discussion in subsection 3.2 we conclude that any point g̃, λn on the parameter

space is part of a one-dimensional RG orbit representing a Lifshitz fixed point, and these

orbits are just λn = const. lines in the parameter space. The dynamical exponent and

Lifshitz anomalous dimension of these fixed points are given by:33

z(λn) =
2 + 2γsΦ(g̃, λn)

1− 2γtΦ(g̃, λn)
, (3.83)

γΦ(λn) =z(λn)γ
t
Φ(g̃, λn) + γsΦ(g̃, λn). (3.84)

33Note that z and γΦ cannot depend on g̃ as they must remain constant along the fixed point leaves (see

subsection 3.2), which in this case are the λn = const. lines.
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Viewed as equations for γsΦ, γ
t
Φ, (3.83)–(3.84) have a solution only if the condition (3.80)

is satisfied, aligning with the single-scale picture. Moreover, these equations then have an

infinite set of solutions, corresponding to various possible renormalization schemes.34

It is important to mention here that none of the arguments made so far in this subsec-

tion are based on perturbative arguments, and these conclusions should therefore apply to

strong coupling as well. However, we did assume the existence of a supersymmetric vacuum

state, and that at strong coupling the UV degrees of freedom still correctly describe the

physics at lower energies (for a discussion on non-perturbative considerations see section 4).

A natural question which arises in the context of non-boost-invariant theories is

whether there are any restrictions on the possible values of the dynamical critical ex-

ponent z, and in particular whether it can have a value smaller than z = 1. For the critical

cases considered here, it is clear from the relation (3.80) that as long as γΦ(λn) > 0 we

have z > 2, that is z is larger than its classical value. In the rest of this subsection and in

appendix D we show this to be satisfied to the leading order in perturbation theory, for each

of the 3 marginal cases. Whether this behaviour persists to higher orders in perturbation

theory or in strong coupling remains an open question which is left for future work.

In the rest of this subsection we provide an example for the perturbative calculation of

z in the marginal cases, by calculating the one-loop quantum corrections to the anomalous

dimension for the critical case of the n = 3 interaction in 6 + 1 dimensions. As long

as supersymmetry is preserved in the quantum theory, the anomalous dimension for the

holomorphic field Φ can be easily calculated from the quantum corrections to the fermionic

propagator. In this case the leading order non-trivial correction to the fermionic propagator

is the one-loop (λ23) order.

To this order in perturbation theory, using the Feynman rules of subsection 3.4.1 it

is easy to see that there are no quantum corrections to the ψψ or ψ†ψ† propagators, as

dictated by supersymmetry and the non-renormalization of the parameter f2 (see subsec-

tion 3.3). The Feynman diagram for the one-loop correction to the ψψ† fermionic propa-

gator (that is, the self-energy one-loop diagram) is given in figure 8, and the corresponding

expression reads:

Aβ̇α = 4(−if3)(−if∗3 )
∫

dΩ

2π

∫

d6q

(2π)6
iΩσ̄0β̇α

Ω2 − g2q4
i

(ω − Ω)2 − g2(k − q)4
, (3.85)

where (ω, k) are the external energy and momentum and (Ω, q) are the internal ones running

in the loop (the iǫ factors in the denominators have been omitted here for simplicity).

The Feynman integral in (3.85) is of course divergent and requires regularization and

renormalization. To that end, we first extract the UV divergent part of the integral.35 This

can be done using standard techniques of expansion in external momenta and energies (see

34In fact, the diffeomorphisms of M̂ generated by (3.36) with the choice ξ = 2ξZ(g̃, λn)g̃
∂
∂g̃

are examples

of a renormalization scheme change that preserves the foliation induced by the dual-scale RG flow, the

values of the dynamical exponent z and the Lifshitz anomalous dimension γΦ as well as the relations (3.82),

while still changing γtΦ and γsΦ individually.
35We are using minimal subtraction renormalization schemes here, and it is therefore sufficient to subtract

just the divergent part.
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Figure 8. The leading order quantum corrections to the fermionic propagator in the critical model

of n = 3 interaction in 6 + 1 dimensions.

e.g. [29, 35] for application of these techniques for non-boost-invariant field theories). It is

easy to see that, due to time reversal invariance (Ω → −Ω), the integral (3.85) vanishes for

ω = 0, and therefore the divergent part is logarithmic and proportional to ω. This is also

expected due to supersymmetry (as corrections to the Kähler potential involve at least one

time derivative). The one-loop correction can therefore be written as follows:

Aβ̇α = ω

(

∂Aβ̇α

∂ω

)

ω,k=0

+ . . . = 8|f3|2ωσ̄0β̇α
∫

dΩ

2π

∫

d6q

(2π)6
Ω2

[Ω2 − g2q4]3
+ . . . , (3.86)

where “. . .” stands for finite terms. Define the renormalized fermionic field ψren and field

strength Zψ by the following relation: ψ =
√

Zψψren, δZψ = Zψ − 1. The counterterm

contribution to the self-energy takes the form iσ̄0β̇αωδZψ . Employing a minimal subtraction

scheme, we therefore set δZψ to cancel the divergent part of the one-loop expression (3.86):

iδZψ = −8|f3|2
∫

dΩ

2π

∫

d6q

(2π)6
Ω2

[Ω2 − g2q4]3

∣

∣

∣

∣

div

, (3.87)

(where “div” here refers to taking the UV divergent part of the expression after regulariza-

tion). We demonstrate the regularization and renormalization of these integrals using two

different methods. For the first, we use the time-first regularization method, along with

a spatial UV cutoff and a single scale renormalization. Performing the integral over the

running loop energy Ω using contour integration in the complex plane one finds36

iδZψ = −i|f3|2
∫

d6q

(2π)6
1

2(gq2)3

∣

∣

∣

∣

div

= − i|λ3|2
16(2π)3

∫

dq

q

∣

∣

∣

∣

div

, (3.88)

where in the second equality we have used the spherical symmetry of the theory. Im-

posing a spatial UV cutoff Λs, the counterterm coefficient will be chosen to be:37 δZψ =

− |λ3|2
16(2π)3

log
(

Λs
µs

)

, where µs is a spatial renormalization scale (which carries spatial dimen-

sions [µs] = [p]). This leads to the following result for the anomalous dimension of the

theory:

γψ ≡ 1

2

∂δZψ
∂ log(µs)

=
|λ3|2

32(2π)3
> 0, (3.89)

with the dynamical exponent given by the relation (3.80).

36Strictly speaking this integral is IR divergent as well and has to be IR regularized, however such an IR

regulator would not change the UV divergences.
37Alternatively, one may view this as a calculation of the field strength correction in the Wilsonian

effective action evaluated at the spatial scale µs.
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For the second method of regularization and renormalization, we use split dimensional

regularization (see subsection 3.1 and [29, 35]) along with a dual scale renormalization (see

subsection 3.2). Split dimensional regularization of the integral (3.87) yields:38

iδZψ = −8|f3|2
∫

ddtΩ

(2π)dt

∫

ddsq

(2π)ds
Ω2

[Ω2 − g2q4]3

∣

∣

∣

∣

div

= −8|f3|2
2idtg−ds/2

(4π)(dt+ds)/2
Γ
(

ds
4

)

Γ
(

2+dt
2

)

Γ
(

dt
2

)

Γ
(

ds
2

)

Γ(3)
µ−ǫlif/2

1

ǫlif

∣

∣

∣

∣

∣

div

= − i|λ3|2
16(2π)3

µ−ǫlif/2
1

ǫlif
,

(3.90)

where we have defined dt ≡ 1 − ǫt, ds ≡ 6 − ǫs and ǫlif ≡ 2ǫt + ǫs, and µ is some scale

of dimensions [µ] = [E] required to make the total dimensions of the expression vanish.

A natural choice for µ would be µ = µt, from which we obtain the following anomalous

dimension functions:

γtψ ≡ 1

2

∂δZψ
∂ log(µt)

∣

∣

∣

∣

ǫlif=0

=
|λ3|2

64(2π)3
, γsψ ≡ 1

2

∂δZψ
∂ log(µs)

∣

∣

∣

∣

ǫlif=0

= 0. (3.91)

Finally from (3.83)–(3.84) we have, to lowest order in λ3:

γψ =
(

2 +O(|λ3|2)
)

γtψ + γsψ =
|λ3|2

32(2π)3
+O(|λ3|4), (3.92)

in agreement with the result (3.89). Note that one can also choose µ = gµ2s for the arbitrary

energy scale in expression (3.90) (or some combination of µt and gµ
2
s), changing the values

of the scheme dependent γtψ and γsψ, but leaving the physical z and γψ unchanged (see the

discussion in subsection 3.2).

In appendix D we give expressions for the leading order corrections to the anomalous

dimension in the other two marginal cases (d = 4, 3 with n = 4, 6 respectively). Similarly

to the above d = 6 case, in both cases we find the correction has a positive sign.

3.6 The gapless singular case

In this subsection we make some comments on the gapless singular case of the family of

models described in subsection 2.2. This is the case in which the gap parameter f2 is real

and positive. As stated in subsection 2.2, the single particle spectrum of the free model

contains a spherical surface of zero energy at momenta of magnitude k̃0 =
√

f2/g. For

momenta in the vicinity of this sphere, the dispersion relation takes the approximate form:

ω ≈ ±v|δk|, (3.93)

where v ≡ 2gk̃0 and δk ≡ k−k̃0. The energy is thus approximately linear in the momentum

difference from the zero energy surface. This behavior is similar to that of a Fermi liquid

near its Fermi surface. In fact, the singular surface here can be thought of as a Fermi

38The integral can be found in subsection 3.2.2 of [35].

– 36 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
4

surface for the two non-relativistic fermions. The important difference from Fermi liquid

theory is that here, due to supersymmetry, the IR singularity exists in the bosonic sector

as well, and is more severe. Near the singular surface, the system can be viewed as a

(1+ 1)-dimensional system, with the direction normal to the surface serving as the spatial

direction and the directions tangent to it viewed as internal degrees of freedom. The

free propagators are then similar to those of a massless (1 + 1)-dimensional relativistic

theory, with the bosonic propagator of the form: 1
ω2−v2(δk)2 , and the fermionic one of the

form: ω
ω2−v2(δk)2 or vδk

ω2−v2(δk)2 . Then, similarly to the (1 + 1)-dimensional relativistic case,

introducing scalar interactions will generally lead to IR singularities.

To see this more explicitly, consider any Feynman diagram loop containing a bosonic

propagator, and let (Ω, q) be the energy and momentum associated with this propagator

respectively, and (ωi, ki) arbitrary energies and momenta external to this loop.39 The

contribution to the loop integral from the region of momentum space where |δq| < ε

(k̃0 − ε < q < k̃0 + ε) is then given by an expression of the form:

∫ ∞

−∞

dΩ

2π

∫

dSd−1 k̃d−1
0

(2π)d−1

∫

|δq|<ε

d(δq)

2π

iF (q,Ω, ki, ωi)

Ω2 − v2(δq)2 +O ((δq)3) + iǫ
, (3.94)

where dSd−1 is the measure on the unit sphere associated with the direction of q and

F (q,Ω, ki, ωi) is some function of of the various energies and momenta which contains the

other loop propagators. Performing the integral over Ω we obtain:

∫

dSd−1 k̃d−1
0

(2π)d−1

∫

|δq|<ε

d(δq)

2π

F
(

q, v|δq|+O
(

(δq)2
)

, ki, ωi
)

2v|δq| (1 +O(δq))
+ . . .

≈
∫

dSd−1 k̃d−1
0

(2π)d−1

∫

|δq|<ε

d(δq)

2π

F
(

k̃0q̂, 0, ki, ωi

)

2v|δq| + . . . ,

(3.95)

where “. . .” stands for finite terms, including the contributions from the poles of other

propagators, and q̂ ≡ ~q/|~q|. Since F
(

k̃0q̂, 0, ki, ωi

)

generally does not vanish, it is clear

the above term is logarithmically divergent. In order for perturbation theory to be well-

defined, then, it requires an IR regulator µIRs , and as one takes µIRs → 0 perturbative

quantum corrections to physical observables will diverge.

It is important to note here that the holomorphic supersymmetry of the model ensures

the consistency of the assumption that Im(f2) = 0 (and therefore the gaplessness of the

model) from a naturalness point of view. In a general, non-supersymmetric theory with

these types of bosons and fermions, one would generically expect Im(f2) to gain quantum

corrections and form a gap along the RG flow so that the gapless singular case discussed

here would require fine-tuning (or put differently, renormalization of the theory would

require adding such a gap as a counterterm). However here, due to the non-renormalization

properties of theory discussed in subsection 3.3, Im(f2) remains vanishing, and furthermore

— the singular sphere radius k̃0 is not renormalized.

39For simplicity we assume here that the external momenta ki are chosen such that the singular spheres

of the various propagators in the loop do not intersect, and the external energies are chosen such that no

two loop propagators are simultaneously on shell when |δq| < ε, but are otherwise arbitrary.
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The fact that these models are strongly coupled in the IR can also be seen from an RG

flow analysis. Consider the IR Wilsonian effective action in these gapless, singular cases.

Similarly to the RG treatment of Fermi liquid theory (see for example [47, 48]), since the

zero modes are located along the |k| = k̃0 sphere rather than at k = 0, for the IR effective

action we include only modes within a spherical shell of width 2µs around the singular

sphere, namely the modes with |δk| < µs, and integrate out the rest. Another important

difference from other cases (where the single particle spectrum is gapped or has ω = 0 only

at k = 0) is that as we flow to the IR, we must scale the momenta towards the singular

surface rather than k = 0. We therefore define the scaling procedure of the momenta such

that the momentum component of the fields normal to the singular surface δk scales along

the flow (δk → s δk), whereas the components tangent to the surface do not (k‖ → k‖). As
in subsections 3.1 and 3.2, the energy may still scale independently.

Assuming as usual that the IR effective action may still be written in terms of the UV

degrees of freedom, due to the arguments outlined in subsection 3.3, the superpotential

will not get renormalized. The (canonically normalized) effective action at scale µs will

then take the general form:

S =

∫

|δk|<µs
dtd2θd2θ†

ddk

(2π)d
Φ̃†(k)Φ̃(k)−

∫

|δk|<µs
dtd2θ

ddk

(2π)d
v

2
δk Φ̃(k)Φ̃(−k)

+

∫

|δki|<µs
|δ(k1+...+kn−1)|<µs

dtd2θ
ddk1 . . . d

dkn−1

(2π)d(n−1)

fn
n
Φ̃(k1) . . . Φ̃(kn−1)Φ̃(−k1 − . . .− kn−1),

(3.96)

where ddki ≡ k̃d−1
0 dSd−1

i d(δki), δ(k1 + . . . + kn−1) ≡ |k1 + . . . + kn−1| − k̃0, and we have

omitted other terms (higher derivative terms in the superpotential, as well as higher deriva-

tive and higher order terms in Φ̃ in the Kähler potential) which are at most (classically)

marginal with respect to the free fixed point. Note that, similarly to Fermi liquid theory,

the kinematic condition |δ(k1+ . . .+kn−1)| < µs restricts the interaction to a subset of mo-

menta directions that obey certain geometric relations (rather the entirety of
(

Sd−1
)n−1

).

For example, for n = 3, this restricts the interaction to momenta with an angle of 2π/3

between them. The interactions between momenta that do not obey this condition be-

come irrelevant in the “deep” IR. Assigning dimensions to the various quantities in (3.96)

according to the scaling prescription outlined above, we have:

[Φ̃] = [E]−
1
2 [δk]−

1
2 , (3.97)

[v] = [E]1[δk]−1, (3.98)

[fn] = [E]
n
2 [δk]−

n
2
+1. (3.99)

In particular, equation (3.98) (along with the discussion of subsection 3.1) confirms that

the free case corresponds to a z = 1 IR fixed point. We can now define the following

“dimensionless” (in terms of the scaling defined above) coupling:

λ̃n ≡ fnv
−n

2 µ−1
s . (3.100)
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As usual, the non-renormalization of the superpotential enables us to express the beta

functions of v, fn and λ̃n in terms of the anomalous dimension of the field Φ:

βv = 2γΦv, (3.101)

βfn = nγΦfn, (3.102)

βλ̃n = −λ̃n. (3.103)

It is therefore clear that λ̃n diverges as µs → 0, and the interaction is relevant (with respect

to the free fixed point), for any value of n and any dimension.40

While it is difficult to draw conclusions regarding the IR behavior of the models in these

gapless, singular cases, we may conjecture that they reach some IR Lifshitz fixed point. If

that is indeed the case, and we further assume that the effective action description of (3.96)

is still valid in this regime (and the other assumptions mentioned in 3.3 stand), then the

non-renormalization of the superpotential leads us to conclude that the kinetic term in the

superpotential will become irrelevant with respect to this fixed point. Furthermore, the

discussion of subsection 3.1 then allows us to relate the dynamical critical exponent of this

fixed point to the anomalous dimension of Φ: using equation (3.14) for fn (since in this case

v becomes irrelevant with respect to the IR fixed point, the fixed point is determined by

fn) along with (3.102) we obtain the relation: z = 1− 2
n+2γΦ. Whether these assumptions

are truly satisfied, though, we leave as an open problem.

4 Discussion and outlook

In this work we studied the consequences of holomorphic time domain supersymmetry in

the context of Lifshitz (non-boost-invariant) quantum field theories. To that end, we con-

structed a family of such models possessing four real supercharges which satisfy supersym-

metric commutation relations closing on the Hamiltonian, endowing these systems with a

holomorphic structure. We found that while these models share some similarities with rela-

tivistic models of holomorphic supersymmetry, such as the existence of non-renormalization

properties of the superpotential (subsection 3.3), they also yield several new and interesting

results. Chief among these is the scale invariance property of the marginal cases studied

in subsection 3.5: we found that each of the three marginal cases realizes a line of inter-

acting quantum critical points with an exact Lifshitz scale invariance (each in a different

spatial dimension). We showed that the dynamical critical exponent z in these cases is

related to the anomalous dimension of the superfield, and therefore depends on the cou-

pling constant and changes along the marginal direction. We also calculated the leading

order perturbative correction to the anomalous dimension (and therefore the dynamical

exponent) in these models and showed that, to this order at least, z is larger than its free

limit value (z > 2).

Another interesting distinction from relativistic supersymmetry lies in the possibility

of having supersymmetric vacua with spontaneously broken spatial translation symmetry.

40In fact, if one trusts that the effective action (3.96) still describes the system in the strongly coupled

IR, supersymmetry ensures that fnv
−n

2 has dimension of exactly [δk]1.
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Whereas in relativistic supersymmetry the moduli space of vacua is represented by an

algebraic equation, in the non-boost-invariant (time domain) case it is represented by a

differential one (see equation (2.11) for the N = 1 case and equation (2.35) for the N = 2

holomorphic case). These vacuum equations could therefore have non-homogeneous solu-

tions, representing supersymmetric vacua with broken spatial translations. Furthermore,

in the holomorphic N = 2 case, since the superpotential is not renormalized, the mod-

uli space of the full quantum theory can be studied exactly by solving the semiclassical

vacuum equation (2.35). While we haven’t focused on these vacua in this work, their exis-

tence strongly suggests that these models may serve as an interesting test case for studying

spontaneous breaking of translation symmetries in non-boost-invariant field theories.

Most of the discussion of the quantum behaviour of these models in section 3 relies

on perturbative and semiclassical arguments, and does not account for non-perturbative

phenomena. While a full analysis of these non-perturbative effects and their consequences

seems to be a considerable task beyond the scope of this work, we can make some comments

and observations on their possible implications.

As previously stated, the vacuum equation in these models allows for supersymmet-

ric, non-homogeneous semiclassical vacua, and in particular in some cases there may be

soliton-like solutions to the equation (that is, solutions that vanish at spatial infinity in all

directions). A simple example (see [49]) for such a solution is the following for any of the

marginal cases discussed in subsection 3.5:

φsol(x) =

[

d(d− 2)a−1
n B2

]
d−2
4

[

B2 +
∑d

i=1(xi − zi)2
]
d−2
2

, (4.1)

where B, zi ∈ C (i = 1, . . . , d) are arbitrary complex parameters, and an ≡ fn/g. These

solutions may exist even for cases in which the free single particle spectrum is gapped,41

and in many cases can belong to L2(Rd) (for the marginal case solution (4.1) this is true

for d = 6). Moreover, in some cases, an infinite sequence of such soliton solutions may exist

(see [51]). These classical solutions are non-perturbative in the sense that they “escape”

to infinity (in field space) in the free limit (fn → 0). Any soliton solution of this form

spontaneously breaks at least the spatial translation symmetries, and may also break spatial

rotations and scale symmetry (in the marginal cases). Therefore one may act on such a

solution with any element in the broken spacetime symmetries group to obtain another

solution, and in fact, since the vacuum equation is holomorphic here, the same is true

for the complex version of these groups. Thus in the IR the soliton may be viewed as

a non-relativistic, supersymmetric and gapless quantum mechanics particle, moving on a

Kähler target space42 parameterized by the complex parameters of the solution (which can

be interpreted as the collective coordinates associated with it).

41In fact, it has been shown (see [50]) that such a soliton solution always exists in the gapped cases with

d ≥ 3, with a real and negative gap parameter f2 < 0 and n < n∗, and vanishes exponentially at spatial

infinity.
42Generally this Kähler manifold will be non-compact (even if the physical space is compact, as the

imaginary directions may still be non-compact), and may become singular as the soliton solution becomes

singular for some subset of its parameter space.
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Whenever these soliton solutions are in L2(Rd), there is a finite amplitude for tunneling

between them and the trivial vacuum (and between each other), even in the infinite volume

limit. These configurations therefore generally contribute to any correlation function via

instanton solutions that interpolate between them and the trivial vacuum. The tunneling

amplitude from the trivial vacuum to a soliton is proportional to a factor related to the

classical Euclidean action of an interpolating instanton, which can be bounded as follows:

e−SE ≤ e−2|W (φsol)| ∼ e−C |λn|−
2

n−2L
d− 2n

n−2
sol , (4.2)

where C is a constant that depends only on the shape of the soliton, and Lsol is a length scale

related to the size of the soliton (and in the gapped cases controlled by the gap parameter).

The soliton contributions are therefore exponentially suppressed at weak coupling, but must

be accounted for at strong coupling.

As in supersymmetric quantum mechanics, the non-perturbative contributions of the

soliton vacua may also lead to dynamical breaking of supersymmetry. In the case of (non-

degenerate) N = 2 supersymmetric quantum mechanics (see [33, 34]) one can use Witten

index techniques and the holomorphic structure of the model to show that supersymmetry

is not dynamically broken. A generalization of such arguments to the field theory models

studied here, however, is complicated by the existence of an infinite number of degrees of

freedom, a possible infinite tower of semiclassical vacua and degeneracies due to the global

spacetime symmetries of these models. A full classification of the semiclassical soliton

vacua for each of these models, as well as an analysis of their implications for the existence

of a stable supersymmetric vacuum, would clearly be desirable in order to obtain a non-

perturbative understanding of time domain supersymmetry in non-boost-invariant field

theories. We leave these subtle issues for future work.

In addition to the supersymmetric family of models introduced in section 2.2, we also

discussed the properties of the RG flow and Lifshitz fixed points in non-boost-invariant

field theories (see subsections 3.1 and 3.2). We obtained a relation between the dynamical

critical exponent z and the anomalous dimension of one of the parameters in the theory.43

Additionally, we introduced an alternative approach of a dual-scale RG flow and explained

some of the properties of fixed points in this picture. These discussions may prove useful

in the larger context of non-boost-invariant field theories.

Several interesting directions for future study follow from this work. First, is the

study of spontaneous symmetry breaking in these supersymmetric models — as previously

mentioned, they serve as interesting examples for understanding spontaneous breaking of

global symmetries, and in particular space translation symmetries, as well as the associated

Goldstone modes, in non-boost-invariant theories. More specifically, analyzing the cases

in which space translations are broken to a discrete subgroup (by a periodic solution to

the vacuum equation) may help to shed light on the properties of striped phases in certain

condensed matter systems (see for example [53–55]).

43This is similar to a result in [52], which studies the RG flow in relativistic systems with quenched

disorder where the couplings vary randomly in space. In such systems a Lifshitz fixed point can appear

with a dynamical critical exponent which is related to the anomalous dimension corresponding to a source

coupled to the energy density.
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As mentioned in subsection 3.5, a question which arises in the study of non-boost-

invariant theories is whether there are any restrictions on the value of the dynamical critical

exponent z, and in particular whether it can have a value smaller than z = 1. For the

scale invariant cases considered in this work, we have shown that z > 2 to leading order in

perturbation theory. It would be interesting to understand whether this persists to higher

perturbative orders and non-perturbatively in these models, as well as whether one can find

restrictions on z for wider classes of non-boost-invariant theories from general arguments.

Another question left unanswered in subsection 3.6 is the strongly coupled IR behavior

of the gapless singular cases in these models. In particular we would like to understand

whether the theory flows to some strongly coupled Lifshitz fixed point in the IR, and

whether we can learn anything about this fixed point from the holomorphic supersymmetric

structure of the models.

Another interesting challenge is the construction of vector, matrix and tensor model

generalizations of the supersymmetric models introduced here, and studying their large

N limit, with the goal of obtaining analytic results for their behavior at weak and strong

coupling. The fact that in some cases these models exhibit exact Lifshitz scale symmetry

at arbitrary coupling suggests that the large N limits might have a description in terms of

a holographic gravity dual, similarly to analogous relativistic systems.

It would be interesting to find a way to gauge these time domain supersymmetric

models, or extend them to supersymmetric models with more supercharges. In the larger

context of non-relativistic supersymmetry, unlike their relativistic counterparts, the pos-

sible supersymmetry algebras and their representations in non-relativistic (both Galilean

invariant and non-boost-invariant) theories have not been classified, as supersymmetry is

less restricted in these cases. Such a classification is clearly desirable as a long term goal

for understanding non-relativistic field theories.
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A Notations and conventions

In this appendix we briefly summarize our notations and conventions.

In this work we consider non-boost-invariant field theories in d+ 1 dimensions, where

d is the number of space dimensions. We use Latin letters (i, j, k . . .) for spatial indices, or

indices enumerating parameters.
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The fermions and fermion charges in the models we consider are non-relativistic ones.

They are scalars under spatial rotations and carry no spin. However, they are charged under

an SU(2) global R-symmetry. We use Greek letters (α, α̇, β, β̇ . . .) for the SU(2) indices of

the fermions. Although these are not spin indices, we use the relativistic notations and

conventions of [32] for contracting, raising and lowering of the fermionic indices, namely:

ξψ = ξαψα, ξ†ψ† = θ†α̇ψ
†α̇, (A.1)

ξα = ǫαβξ
β , ξα = ǫαβξβ , χ†

α̇ = ǫα̇β̇χ
†β̇ , χ†α̇ = ǫα̇β̇χ†

β̇
, (A.2)

where α, α̇ = {1, 2} and ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1. We define σ0αα̇ = σ̄0α̇α = 12×2 as

the unit matrix. In components, the fermion fields are therefore defined as follows:

ψα =

(

ψ1

ψ2

)

, ψα =

(

ψ2

−ψ1

)

, ψ†
α̇ =

(

ψ∗
1, ψ

∗
2

)

, ψ†α̇ =

(

ψ∗
2

−ψ∗
1

)

, (A.3)

where ψ1, ψ2 are complex Grassmannian fields.

Throughout this work we generally use the letters k, p, q to denote (d-dimensional)

momenta and E,ω,Ω to denote energies. As usual we use units in which ~ = 1.

B Free field quantization

In this appendix we detail the canonical second quantization procedure for both the bosonic

and fermionic fields described by the free fields Lagrangian density (2.30). We start with

the bosonic field, whose equation of motion reads:

∂2t φ+ g2∇4φ+ |f2|2φ+ g(f2 + f∗2 )∇2φ = 0. (B.1)

Its solution can be written in terms of modes expansion as follows:

φ(t, x) =

∫

ddp

(2π)d
1√
2ω

(

ape
ipx−iωt + b†pe

−ipx+iωt
)

,

φ∗(t, x) =
∫

ddp

(2π)d
1√
2ω

(

a†pe
−ipx+iωt + bpe

ipx−iωt
)

,

(B.2)

with

ω(p) = |gp2 − f2|. (B.3)

The Hamiltonian density that corresponds to the bosonic part of the Lagrangian den-

sity (2.30) is given by:

Hbos = ∂tφ
∗∂tφ+ g2∇2φ∗∇2φ+ |f2|2φ∗φ+ g(f2∇2φ∗φ+ f∗2φ

∗∇2φ). (B.4)

By imposing the usual canonical commutation relations:

[φ(x), ∂tφ
∗(x′)] = [φ∗(x), ∂tφ(x′)] = iδd(x− x′), (B.5)

one obtains the following commutation relation for ap and bp:

[ap, a
†
p′ ] = [bp, b

†
p′ ] = (2π)dδd(p− p′), (B.6)
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as well as the following expression for the Hamiltonian:

Hbos =

∫

ddp

(2π)d
ω(p)

(

a†pap + b†pbp
)

, (B.7)

as expected. Note that we have dropped the infinite vacuum energy term. Next we address

the question of quantizing the fermionic fields appearing in (2.30). For convenience we

rewrite the fermionic part of the Lagrangian density in terms of the components ψ1, ψ2:

Lferm = iψ∗
1∂tψ1 + iψ∗

2∂tψ2 − gψ2∇2ψ1 + gψ∗
2∇2ψ∗

1 − f2ψ2ψ1 − f∗2ψ
∗
1ψ

∗
2. (B.8)

The corresponding equations of motion are given by:

i∂tψ2 + g∇2ψ∗
1 + f∗2ψ

∗
1 = 0,

i∂tψ1 − g∇2ψ∗
2 − f∗2ψ

∗
2 = 0.

(B.9)

The fields ψ1, ψ2 can be decomposed in terms of mode expansion as follows:

ψ1(t, x) =
1√
2

∫

ddp

(2π)d

(

ãpe
ipx−iωt + b̃†pe

−ipx+iωt
)

,

ψ∗
1(t, x) =

1√
2

∫

ddp

(2π)d

(

ã†pe
−ipx+iωt + b̃pe

ipx−iωt
)

,

ψ2(t, x) =
1√
2

∫

ddp

(2π)d

(

c̃pe
ipx−iωt + d̃†pe

−ipx+iωt
)

,

ψ∗
2(t, x) =

1√
2

∫

ddp

(2π)d

(

c̃†pe
−ipx+iωt + d̃pe

ipx−iωt
)

,

(B.10)

substituting these into the equations of motion one finds the following constraints:

c̃p =
(gp2 − f∗2 )
ω(p)

b̃p, d̃p =
(f2 − gp2)

ω(p)
ãp, (B.11)

with

ω(p) = |gp2 − f2|. (B.12)

We therefore have:

ψ1(t, x) =
1√
2

∫

ddp

(2π)d

(

ãpe
ipx−iωt + b̃†pe

−ipx+iωt
)

,

ψ∗
1(t, x) =

1√
2

∫

ddp

(2π)d

(

ã†pe
−ipx+iωt + b̃pe

ipx−iωt
)

,

ψ2(t, x) =
1√
2

∫

ddp

(2π)d
(gp2 − f∗2 )

ω

(

b̃pe
ipx−iωt − ã†pe

−ipx+iωt
)

,

ψ∗
2(t, x) =

1√
2

∫

ddp

(2π)d
(gp2 − f2)

ω

(

b̃†pe
−ipx+iωt − ãpe

ipx−iωt
)

.

(B.13)

The Hamiltonian density which corresponds to the Lagrangian density (B.8) reads:

Hferm = gψ2∇2ψ1 − gψ∗
2∇2ψ∗

1 + f2ψ2ψ1 + f∗2ψ
∗
1ψ

∗
2. (B.14)
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Imposing the canonical anti-commutation relations:

{ψ1(x), ψ
∗
1(x

′)} = {ψ2(x), ψ
∗
2(x

′)} = δd(x− x′), (B.15)

one finds the relations for ãp, b̃p:

{ãp, ã†p′} = {b̃p, b̃†p′} = (2π)dδd(p− p′), (B.16)

as well as the following expression for the Hamiltonian in terms of creation and annihilation

operators:

Hferm =

∫

ddp

(2π)d
ω(p)

(

ã†pãp + b̃†pb̃p
)

, (B.17)

where we have again dropped the infinite vacuum energy term.

C More details for perturbative superspace analysis

In this appendix we elaborate on the technical details involved in the supergraph for-

mulation of Feynman diagrams for the holomorphic, time domain supersymmetric family

of models introduced in subsection 2.2, as well as the perturbative argument for non-

renormalization as discussed in subsection 3.4.2. As most of the details are similar to those

of the relativistic Wess-Zumino model (see [45]), we mostly highlight the differences.

The Lagrangian density of the free model (in d+ 1 dimensions) given in (2.25), (2.29)

can be written in the following form:44

L =

∫

d2θd2θ†
(

ΦΦ∗ +
(

g

2
Φ∇2Φ+

f2
2
Φ2

)

δ(θ†) +
(

g

2
Φ∗∇2Φ∗ +

f∗2
2
Φ∗2

)

δ(θ)

)

. (C.1)

In terms of component fields, the Lagrangian (C.1) yields the following propagators:

〈

φ(t, x)φ∗(t′, x′)
〉

= iGlif(t− t′, x− x′), (C.2)
〈

φ∗(t, x)F ∗(t′, x′)
〉

= −i(f2 + g∇2)Glif(t− t′, x− x′), (C.3)
〈

φ(t, x)F (t′, x′)
〉

= −i(f∗2 + g∇2)Glif(t− t′, x− x′), (C.4)
〈

F (t, x)F ∗(t′, x′)
〉

= −i∂2t Glif(t− t′, x− x′), (C.5)
〈

ψα(x, t)ψ
β(t′, x′)

〉

= iδβα(f
∗
2 + g∇2)Glif(t− t′, x− x′), (C.6)

〈

ψ†α̇(x, t)ψ†
β̇
(t′, x′)

〉

= iδα̇
β̇
(f2 + g∇2)Glif(t− t′, x− x′), (C.7)

〈

ψα(x, t)ψ
†
β̇
(t′, x′)

〉

= −σ0
αβ̇
∂tGlif(t− t′, x− x′), (C.8)

where Glif(t, x) is defined in (3.60).

In addition to the expression (3.59), using the definitions in equation (2.23) one finds

the following expressions for the super-propagators:
〈

Φ†(t, x, θ, θ†)Φ†(t′, x′, θ′, θ′†)
〉

= −i(f2 + g∇2)δ(θ† − θ′†)ei(θσ
0θ†−θ′σ0θ′†)∂tGlif(t− t′, x− x′),

(C.9)

44We use the conventions of [45], in which
∫

d2θδ(θ) =
∫

d2θ†δ(θ†) = 1.
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and:
〈

Φ(t, x, θ, θ†)Φ†(t′, x′, θ′, θ′†)
〉

= ie−i(θσ
0θ†+θ′σ0θ′†−2θ′σ0θ†)∂tGlif(t− t′, x− x′). (C.10)

These free fields super-propagators can be written in terms of covariant superderiva-

tives as follows:

〈

Φ(z)Φ(z′)
〉

=
i

4
(f∗2 + g∇2)ĜlifD̄

2δ(z − z′), (C.11)

〈

Φ†(z)Φ†(z′)
〉

=
i

4
(f2 + g∇2)ĜlifD

2δ(z − z′), (C.12)

〈

Φ(z)Φ†(z′)
〉

=
i

16
ĜlifD̄

2D2δ(z − z′), (C.13)

〈

Φ†(z)Φ(z′)
〉

=
i

16
ĜlifD

2D̄2δ(z − z′), (C.14)

where we have defined z ≡ (t, x, θ, θ†) and δ(z) ≡ δ(t)δ(x)δ(θ)δ(θ†), Ĝlif is defined in (3.60)

and the superderivatives are defined in equation (2.21). Note that, to derive these expres-

sions, we have used the identity:

1

16

D̄D̄DD

�t
Φ = Φ, if D̄α̇Φ = 0, (C.15)

where �t ≡ −∂2t .
As in the relativistic case, based on the Feynman rules for the supergraph formalism

(as detailed in section 3.4.2), the form of the GRS propagators (3.61)–(3.63) and using the

identities:

D̄2D2D̄2 = 16�tD̄
2, (C.16)

D2D̄2D2 = 16�tD
2, (C.17)

which hold for the time domain superderivatives (2.21), the expression for any arbitrary

closed loop the with an integration over the whole superspace for each interaction vertex

can be reduced to an expression containing a single d4θ integral.

We briefly summarize the argument for this: suppose that θi, θ
†
i denote the Grass-

mannian coordinates corresponding to the i-th vertex in the loop. Each propagator in

the loop will contribute an expression of the form: D2
i D̄

2
iD

2
i . . . δ(θi − θj)δ(θ

†
i − θ†j) or

D̄2
iD

2
i D̄

2
i . . . δ(θi − θj)δ(θ

†
i − θ†j), with overall li instances of D2

i and ki instances of D̄2
i

(lj , ki ∈ N). For any li > 1 or ki > 1 one can use the identities (C.16), (C.17) to reduce

the number of superderivatives until one remains with li, ki = {0, 1} (leaving non-negative

powers of the �t operator).

The expression can then be further simplified by repeatedly integrating the su-

perderivative factors by parts and subsequently performing the remaining δ-function inte-

grations over the Grassmannian coordinates. Eventually either the expression vanishes or

one is left with a single
∫

d4θ integration, with no further factors of δ(θi− θj) or δ(θ†i − θ
†
j),

and all remaining D2 or D̄2 factors operating on lines external to the loop. This process

can be repeated over all loops, and thus the integration over all θi space is reduced to a

single d4θ integral, as promised. We are then led to the conclusion that the effective action
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Figure 9. Leading order quantum corrections to the fermionic propagator in 4+1 dimensions with

an n = 4 interaction.

can be written in the form given in equation (3.64) (with no negative powers of �t appear-

ing). Therefore the holomorphic superpotential is not renormalized quantum mechanically

in perturbation theory.

D The anomalous dimension in other marginal cases

In subsection 3.5 we discussed the marginal cases for the family of time domain supersym-

metric models introduced in subsection 2.2, and showed they exhibit exact Lifshitz scaling

invariance for any value of the dimensionless coupling. We related the dynamical critical

exponent z to the anomalous dimension of the superfield, and calculated it to the leading

non-trivial order in perturbation theory for the case of 6 + 1 dimensions with an n = 3 in-

teraction. In this appendix we study the leading non-trivial order perturbative corrections

to the anomalous dimension in the other marginal cases — 4+1 dimensions with an n = 4

interaction and 3+1 dimensions with an n = 6 interaction — with the goal of determining

the sign of the anomalous dimension (and thus whether z > 2 in these cases). We use a

time-first regularization method along with single-scale renormalization.

In both cases we find that the sign of the anomalous dimension is indeed positive in

the leading non-trivial order in perturbation theory.

D.1 4 + 1 dimensions with a Φ4 interaction

Consider first the marginal case in 4 + 1 dimensions with an n = 4 interaction of the

form (2.33). As in subsection 3.5, the anomalous dimension of the field Φ can be calculated

from the corrections to the fermionic propagator. The leading order ones are described in

figure 9, and the corresponding expression reads:

Bβ̇α =8

(

−3if4
2

)(

−3if∗4
2

)
∫

dΩ1

(2π)

∫

d4q1
(2π)4

∫

dΩ2

(2π)

∫

d4q2
(2π)4

× i(ω − Ω1 − Ω2)σ̄
0β̇α

[(ω − Ω1 − Ω2)2 − g2(k − q1 − q2)4]

i
[

Ω2
1 − g2q41

]

i
[

Ω2
2 − g2q42

] ,

(D.1)

where (ω,~k) are the external energy and momentum respectively and (Ωl, ~ql) (l = 1, 2) are

the loop energies and momenta. Extracting the UV divergent part of the integral similarly
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to subsection 3.5, one finds:

Bβ̇α = − 18i|f4|2σ̄0β̇αω
∫

dΩ1

(2π)

∫

d4q1
(2π)4

∫

dΩ2

(2π)

∫

d4q2
(2π)4

× (Ω1 +Ω2)
2 + g2(q1 + q2)

4

[(Ω1 +Ω2)2 − g2(q1 + q2)4]
2

1
[

Ω2
1 − g2q41

]

1
[

Ω2
2 − g2q42

] + . . . ,

(D.2)

where “. . .” again stands for UV finite terms. Then setting the counterterm contribution

to the self-energy to cancel the divergent part, we get:

iδZψ =18i|f4|2
∫

dΩ1

(2π)

∫

d4q1
(2π)4

∫

dΩ2

(2π)

∫

d4q2
(2π)4

× (Ω1 +Ω2)
2 + g2(q1 + q2)

4

[(Ω1 +Ω2)2 − g2(q1 + q2)4]
2

1
[

Ω2
1 − g2q41

]

1
[

Ω2
2 − g2q42

]

∣

∣

∣

∣

∣

div

,

(D.3)

where we have used the same definitions for δZψ as those in section 3.5. Performing the

two integrals over the energies using contour integration (both integrals converge, one after

the other, in either order) one finds:

δZψ = −9|f4|2
8g4

∫

d4q1
(2π)4

∫

d4q2
(2π)4

1

q21q
2
2(q

2
1 + ~q1 · ~q2 + q22)

2

∣

∣

∣

∣

div

. (D.4)

Since the integrand in the above expression is everywhere negative, it is clear that

after imposing a spatial UV cutoff and introducing a spatial renormalization scale µs, the

anomalous dimension γψ will be positive (in this perturbative order):

γψ ≡ 1

2

∂δZψ
∂ log(µs)

> 0, (D.5)

and therefore z > 2 due to (3.80).

D.2 3 + 1 dimensions with a Φ6 interaction

Next consider the marginal case in 3 + 1 dimensions with an n = 6 interaction of the

form (2.33). The leading order quantum corrections to the fermionic propagator contain

four loops and are described in figure 10. The corresponding expression reads:

C β̇α = −
∣

∣

∣

∣

5f6
2

∣

∣

∣

∣

2

96
4
∏

i=1

(

∫

dΩi
(2π)

∫

d3qi
(2π)3

i
[

Ω2
i − g2q4i

]

)

×
iσ̄0β̇α

(

ω −∑4
i=1Ωi

)

(

ω −∑4
i=1Ωi

)2
− g2

(

k −∑4
i=1 qi

)4 ,

(D.6)

where (ω,~k) are the external energy and momentum respectively and (Ωl, ~ql) (l = 1, . . . , 4)

are the loop energies and momenta. Extracting the UV divergent part as in the previous
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Figure 10. Leading order quantum corrections to the fermionic propagator in a model of f6Φ
6

interaction in 3 + 1 dimensions.

cases and setting the self-energy counterterm to cancel it, we get:

δZψ = − 600|f6|2
4
∏

i=1

(
∫

dΩqi
(2π)

∫

d3qi
(2π)3

)

(

1
[

Ω2
i − g2q4i

]

)

×
(
∑4

j=1Ωj)
2 + g2(

∑4
j=1 qj)

4

[

(
∑4

j=1Ωj)
2 − g2(

∑4
j=1 qj)

4
]2

∣

∣

∣

∣

∣

∣

∣

div

.

(D.7)

Performing the integrals over the energies one finds:

δZψ = −75|f6|2
8g6

4
∏

i=1

(
∫

d3qi
(2π)3

)

1

q21q
2
2q

2
3q

2
4

(

∑

1≤i≤j≤4 ~qi · ~qj
)2

∣

∣

∣

∣

∣

∣

∣

div

, (D.8)

which again leads to the conclusion that the anomalous dimension is positive, and z > 2,

to leading order in perturbation theory.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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