
 Open access  Posted Content  DOI:10.1101/106328

Holotomography: refractive index as an intrinsic imaging contrast for 3-D label-free
live cell imaging — Source link 

Doyeon Kim, SangYun Lee, Moosung Lee, Juntaek Oh ...+2 more authors

Institutions: KAIST

Published on: 15 Nov 2018 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Live cell imaging

Related papers:

 Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging

 Three-dimensional structure determination of semi-transparent objects from holographic data

 Optical diffraction tomography techniques for the study of cell pathophysiology

 
High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ
hemozoin crystals using optical diffraction tomography

 Marker-free phase nanoscopy

Share this paper:    

View more about this paper here: https://typeset.io/papers/holotomography-refractive-index-as-an-intrinsic-imaging-
3bjsiy4tw8

https://typeset.io/
https://www.doi.org/10.1101/106328
https://typeset.io/papers/holotomography-refractive-index-as-an-intrinsic-imaging-3bjsiy4tw8
https://typeset.io/authors/doyeon-kim-2d98trx0hv
https://typeset.io/authors/sangyun-lee-2mhnpdz8ec
https://typeset.io/authors/moosung-lee-256fndid4h
https://typeset.io/authors/juntaek-oh-2u5inynrof
https://typeset.io/institutions/kaist-ta0mf5gm
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/live-cell-imaging-1rt303by
https://typeset.io/papers/refractive-index-as-an-intrinsic-imaging-contrast-for-3-d-3rwnfszy19
https://typeset.io/papers/three-dimensional-structure-determination-of-semi-17z6f3j1ry
https://typeset.io/papers/optical-diffraction-tomography-techniques-for-the-study-of-2td87esjk7
https://typeset.io/papers/high-resolution-three-dimensional-imaging-of-red-blood-cells-mcec0nerwq
https://typeset.io/papers/marker-free-phase-nanoscopy-4c5hrag0d1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/holotomography-refractive-index-as-an-intrinsic-imaging-3bjsiy4tw8
https://twitter.com/intent/tweet?text=Holotomography:%20refractive%20index%20as%20an%20intrinsic%20imaging%20contrast%20for%203-D%20label-free%20live%20cell%20imaging&url=https://typeset.io/papers/holotomography-refractive-index-as-an-intrinsic-imaging-3bjsiy4tw8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/holotomography-refractive-index-as-an-intrinsic-imaging-3bjsiy4tw8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/holotomography-refractive-index-as-an-intrinsic-imaging-3bjsiy4tw8
https://typeset.io/papers/holotomography-refractive-index-as-an-intrinsic-imaging-3bjsiy4tw8


Holotomography: refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging   

Doyeon Kim1, SangYun Lee2, Moosung Lee2, JunTaek Oh2, Su-A Yang3, and YongKeun Park2,4,5,* 

1Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea 

2Department of Physics, KAIST, Daejeon 34141, South Korea 

3Department of Biological Sciences, KAIST, Daejeon 34141, South Korea 

4KAIST Institute Health Science and Technology, Daejeon 34141, South Korea 

5Tomocube Inc., Daejeon 34051, South Korea 

*Corresponding author, E-mail: yk.park@kaist.ac.kr, Phone: +82-42-350-2514, Fax: +82-42-350-2510 

 

Abstract 

Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive 

index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide 

invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently 

significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being trans-

ferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To 

provide insight how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic 

principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, he-

matology, infectious diseases, hematology, and histopathology.    

Keywords: Biological Imaging, Microscopy, Live cell imaging, Refractive index, Quantitative Phase Imaging, Holoto-

mography 

 

Introduction 

Optical images of biological cells and tissues provide invaluable information on the pathophysiology of diseases. Visual 

diagnosis of blood cells is essential for the diagnosis of various infectious diseases associated with red blood cells 

(Kaushansky et al. 2016). In pathology and cytology, tissue biopsy and morphological examination of cells, such as check-

ing for abnormally shaped nuclei in the Papanicolaou test, is an essential step for cancer diagnosis (Koss 1989).  

The medical diagnostic capabilities of various diseases have evolved with advances in optical imaging technology. In the 

17th century, Robert Hooke first observed cork cells using his microscope. Since then, various types of microscopes have 
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been developed and likewise the ability to investigate disease-related cellular, and cellular structures have dramatically 

improved in recent decades. For example, the invention of phase contrast and differential interference contrast microscopes 

in the mid 20th century have accelerated the studies in the field of microbiology and cell biology, because these interfero-

metric microscopy techniques allowed effective visualization of transparent biological cells (Allen et al. 1969; Zernike 

1942). The development of fluorescent proteins and fluorescence microscopy have also enabled specific labeling of target 

molecules or proteins. This breakthrough in technology thus has opened a new era for molecular biology. 

Moreover, various super-resolution microscope techniques have broken the barrier of diffraction-limited optical resolution. 

The resolution limit of the optical microscope has been extended to the nanometer scale, enabling investigation of biolog-

ical phenomena at the single molecule scale (Hell 2007; Huang et al. 2009). More recently, researchers have used adaptive 

optical approaches for in vivo imaging of biological cells or tissues (Ji et al. 2010; Park et al. 2017b; Yu et al. 2014; Yu et 

al. 2015). 

Over the past several decades, fluorescent protein technology has been widely used to locate specific target molecules and 

proteins in cells using the molecular specificity of the probe (Specht et al. 2017). This allows effective visualization of 

specific targets in cells and tissues with very high imaging contrast (Lichtman and Conchello 2005). When combined with 

the fluorescence correlation spectroscopy technique, the fluorescent probe can also provide information about the physical 

and chemical information of the surrounding medium (Thompson 2002). In addition, when combined with the Foster res-

onance energy transfer technique, the intermolecular distance can be accurately measured in the nanometer scale (Roy et 

al. 2008). 

However, the use of fluorescent probes in biological imaging inevitably causes several limitations. It is important to note 

that fluorescence technology uses exogenous fluorescent molecules as a secondary imaging contrast. Expression or binding 

of a target molecule of a fluorescent probe in a cell generates various problems (Fei et al. 2011; Hoebe et al. 2007). First, 

the introduction of an exogenous marker into a cell can affect the intrinsic physiology of the cell, because of possible 

photodamage and phototoxicity caused by the fluorescent molecule. This issue becomes even more severe when 

experimenting with neurons or stem cells because these cells are more sensitive to changes in the environment (Braydich-

Stolle et al. 2005; Millet et al. 2007). Second, long-term cell imaging may be limited when using fluorescent technologies 

due to photobleaching of probes (Hoebe et al. 2007). Common fluorescent probes cannot produce strong, continuous flu-

orescence signals. Most probes photobleach after some time, which means the probes irreversibly lose its fluorescence. 
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Thus maximum period for long-term imaging of live cells is limited to the photobleaching period of fluorescent probes. 

Third, most fluorescence technologies do not provide quantitative information. The use of fluorescent probes only provides 

information of the location of the target molecule, but it does not provide quantified information of the mass or concentra-

tion of the target molecule. 

To complement the limitation caused by the use of exogenous imaging contrast, the use of refractive index (RI), as an 

intrinsic optical parameter has been exploited recently. All materials have unique RI value, which is correlated with the 

electrical permittivity of the material. RI is the ratio of the speed of light passing through the specific material to that 

passing in the vacuum. Conventional phase contrast or differential interference microscopy uses RI values as optical im-

aging contrast. However, their imaging systems do not provide a one-to-one quantitative mapping of the information about 

RI distributions in a sample, but only generate high contrast intensity information via interference (Popescu et al. 2008a). 

Recently, there have been escalating interests in measuring 3-D RI distributions for various applications in biological im-

aging. Mainly because RI, as the primarily intrinsic optical parameters, provides the possibility for label-free live cell 

imaging with the capability of providing quantitative information about the sample. Although 3-D RI tomography does not 

provide molecular specificity in general, some specimen having distinct RI values such as lipid droplets (Kim et al. 2016b) 

or gold nanoparticles (Kim et al. 2018a; Sung et al. 2018) in the cytoplasm, can be specified and quantified. 

Furthermore, 3-D RI tomography provides quantitative imaging capability; cellular dry mass or cytoplasmic concentration 

can be precisely quantified from the measured RI values, which are inaccessible with fluorescence imaging techniques. 

Most importantly, 3-D RI tomography does not require the use extracellular agent, and thus, it simplifies sample prepara-

tions and is also suitable for long-term live-cell imaging (Barty et al. 2000; Lee et al. 2013; Majeed et al. 2016; Popescu 

2011). In addition, due to the quantitative and thus reproducible imaging capability, the use of 3-D RI tomography for the 

disease diagnosis is being actively investigated in combination with other techniques such as microfluidics (Merola et al. 

2012; Sung et al. 2014), machine and deep learning algorithms (Jo et al. 2019; Jo et al. 2015; Jo et al. 2014; Jo et al. 2017; 

Rivenson et al. 2017), and fast imaging processing algorithms (Kim et al. 2013). In this mini-review, we introduce the 

principle of optical techniques that measure 3-D RI tomograms and summarize recent applications for the study of various 

biological and medical applications.  
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The principles of biological imaging using refractive index as imaging contrast 

The RI of material is obtained by measuring the interactions between light and matter. One of the well-known RI measuring 

techniques includes a refractometer that obtains the average RI value of a solution or a surface plasmonic sensor used to 

measure the surface RI of metal (Willets and Van Duyne 2007). These refractometer techniques are suitable for measuring 

a sample with the homogeneous distribution of RI values, such as a transparent solution. However, it is technically chal-

lenging to measure a sample with an inhomogeneous distribution of RI values, such as biological cells or tissues (Liu et al. 

2016). This is because light refracts and reflects at the interface between the two media with different refractive indexes. 

When light refraction and reflection occurs many times, the coherence summation of these events can be expressed as 

multiple light scattering (Cheong et al. 1990). This explains why biological tissues appear opaque white, while individual 

cells seem transparent.  

Conventionally, phase contrast or differential inference microscopy have been utilized to exploit RI distributions in samples. 

When a laser beam passes through a transparent specimen, such as individual biological cells, the laser beam acquires a 

distorted wavefront or phase information. This occurs because the speed of light passing through a specific part of the 

sample differs from another part due to inhomogeneous distribution of RI of the sample. Unfortunately, conventional image 

sensors do not directly measure this wavefront information, because the speed of light is much faster than the capturing 

ability of an image sensor. Thus, phase contrast or differential inference microscopy exploits the principle of light interfer-

ence. Significant light interference can be created in an optical imaging system, such as bright-field microscopy, by insert-

ing additional optical components(Lee and Park 2014). This allows conversion of wavefront information into intensity 

information that can be measured by an image sensor. This is how one can achieve high imaging contrast when imaging 

transparent biological cells using phase contrast or differential inference microscopy. Hence phase contrast or differential 

inference microscopy enables clear visualization of the boundaries of the cell membrane as well as subcellular organelles 

(Mann et al. 2005; Smith 1955; Zernike 1942; Zernike 1955).   

However, these conventional interference microscopes, such as phase contrast or differential interference microscopy, can 

only provide qualitative information. This is because the relationship between wavefront information and intensity images 

for these interference microscopes is not straightforward, thus making it difficult to extract quantitative information(Smith 

1955; Zernike 1942; Zernike 1955). Quantitative phase information can provide valuable information about the sample 
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without using exogenous labeling agents. For example, the measurements of quantitative phase maps of red blood cells can 

be directly converted into a cell height information (Ikeda et al. 2005; Park et al. 2006; Popescu et al. 2006).  

Various quantitative phase imaging (QPI) techniques have been developed and utilized for various research fields (Park et 

al. 2018d). In particular, Mach-Zehnder or Michelson types of interference microscopic techniques have been extensively 

utilized. In-line holography techniques simplify the optical setup by removing a reference arm. Quantitative phase micros-

copy techniques based on the transport of intensity or ptychography have provided enhanced imaging quality with relatively 

simple instrumentations. Recently, the QPI unit was developed as a filter-type add-on unit, which can be attached to convert 

a conventional bright-field microscope into a quantitative phase microscope (Lee and Park 2014). The detailed information 

on QPI and its application to biological studies can be found in elsewhere (Lee et al. 2013; Majeed et al. 2016; Popescu 

2011).  

 

The principle of measuring 3-D RI tomography of cells and tissues 

Even though 2-D QPI techniques provide quantitative and label-free imaging of live cells, they only provide topographic 

information; i.e., the measured optical phase delay is a coupled parameter of cell height and its RI distribution (Rappaz et 

al. 2005). Previously, several methods have been suggested in order to decouple the height and RI information in 2-D QPI 

techniques. Measuring two holographic images obtained with two different extracellular media with different RI values 

(Rappaz et al. 2005) or illumination with two wavelengths (Rappaz et al. 2008) provides the separation of height and RI 

from the measured holograms. Alternatively, the mean RI of suspended cells is calculated from measured 2-D optical phase 

delay images, assuming spherical shapes of cells (Kemper et al. 2007). 

In order to measure 3-D RI tomograms of cells, various approaches have been demonstrated (Kim et al. 2016c). Among 

them, the angle scanning approach has been widely utilized (Fig. 1). First, multiple 2-D holograms of a sample are measured 

at various angles of illuminations [Figs. 1(a)(b)], from which a 3-D RI tomogram of the sample can be reconstructed via 

inverse scattering theory. According to the scattering theory, the difference in wavevectors of the incident and scattered 

lights determine the spatial frequency information of the optical scattering potential of the sample in 3-D Fourier space 

[Fig. 1(c)]. Finally, a 3-D RI tomogram of the sample [Fig. 1(d)] is reconstructed by applying 3-D inverse Fourier transform. 

This technique has been widely known as optical diffraction tomography (ODT) and holotomography (HT). The principle 
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of 3-D RI tomography is very similar to X-ray computed tomography (CT) where multiple 2-D X-ray images of the human 

body are measured at various illumination angles, and a 3-D X-ray absorptivity tomogram is then retrieved via the inverse 

scattering theory. Both X-ray CT and laser HT shares the same governing equation – Helmholtz equation, the wave equation 

for a monochromatic wavelength (Kim et al. 2016c). 

The history of HT goes back to the late 60s. After the rise of X-ray CT technology and the invention of lasers, some 

pioneering physicists realized that the X-ray CT principle could also be applied to a laser. The principles of X-ray CT are 

based on wave propagation and can be described by the wave equation, except they use different wavelengths of waves. 

The first theoretical work was presented in 1969 (Wolf 1969), and the first experimental demonstration was shown in 1979 

(Fercher et al. 1979). However, it seems that at the time many researchers did not realize this HT technique can be applied 

to biological imaging with significant benefits. The early applications of HT technique had been limited to measuring 3-D 

shapes of transparent microscopic plastics. In the 2000s, several research groups have revised and employed the HT tech-

nique for biological applications (Choi et al. 2007; Kim et al. 2014a; Lauer 2002).  

 

 

Figure 1. The schematic of 3-D refractive index tomography. (a) The illuminated plane waves and the scattered waves by 

the sample with distorted wavefronts. Three representative incident and scattered waves are depicted. (b) The retrieved 2-

D complex optical fields of the light scattered by the sample. (c) The synthesized 3-D optical scattering potential in 3-D 

Fourier space. The regions corresponding to the three illumination angles are specified with distinct colors. (d) Three cross-

sectional slices and the iso-surface of the reconstructed 3-D refractive index tomogram. 
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HT technology directly provides the measurements of the 3-D RI distribution of a cell. The reconstruction of 3-D RI tomo-

gram of the specimen is achieved by inversely solving the Helmholtz equation from a set of multiple 2-D optical field 

images of the sample. This set of 2-D optical field images of the sample containing the 3-D information is generally ob-

tained by varying the illumination angle of a laser impinging onto the specimen (Choi et al. 2007; Kim et al. 2014c; Shin 

et al. 2015), or rotating the specimen while keeping the light source fixed (Barty et al. 2000; Charrière et al. 2006a; Kuś et 

al. 2014). For further information, the principle of HT, the detailed procedure with a MatLab code, the phase retrieval 

algorithms, and the regularization algorithms can be found elsewhere (Debnath and Park 2011; Kim et al. 2014a; Lim et 

al. 2015) summarize various regularization algorithms used in HT. 

From a technical point of view, significant technical advancements have been made recently. For example, the sub-100-

nm spatial resolution was achieved using the deconvolution of complex optical field (Cotte et al. 2013). Tomographic RI 

reconstruction with white light illumination was presented, which demonstrates a signification reduction of speckle noise 

and dramatically improved image quality (Kim et al. 2014b). Hyperspectral HT was also demonstrated; it measures 3-D 

RI tomograms of a sample at various wavelengths using a wavelength scanning illumination (Jung et al. 2016). The real-

time reconstruction and visualization were also demonstrated, which was powered by a graphics processor unit (GPU) 

(Kim et al. 2013). It is worthy to note that in the mid-2010s, HT technology was commercialized and had started being 

used in biological laboratories and medical hospitals. As of 2018, two companies provides the commercialized HT systems 

– Nanolive (www.nanolive.ch) and Tomocube (www.tomocube.com).  

 

Opportunities and challenges of RI as imaging contrast  

Exploiting RI as imaging contrasts have advantages and limitations. In this section, we summarize representative features 

of HT technology.  

1. Label-free: Because RI is an intrinsic optical parameter of material. No labeling agents or dyes are required for 

imaging biological cells and tissues. It means 3-D images of live cells can be obtained for a long time as long as 

physiological conditions are met. In addition, it can save time and cost for sample preparation. This label-free 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2018. ; https://doi.org/10.1101/106328doi: bioRxiv preprint 

http://www.nanolive.ch/
http://www.tomocube.com/
https://doi.org/10.1101/106328
http://creativecommons.org/licenses/by/4.0/


8  

feature might become powerful for some applications where cells are to be reinjected to human bodies, for ex-

ample, as in immune therapy (Yoon et al. 2017; Yoon et al. 2015) or stem cell therapy (Braydich-Stolle et al. 

2005).  

2. Quantitative biological imaging: Using HT technology, RI value can be precisely measured. Unlike fluorescence 

techniques, where the intensity of fluorescence emission highly depends on protocol, and the results are only 

qualitative, HT technology provides highly reproducible RI value in a quantitative manner. Importantly, the RI 

value can be directly translated into the protein concentration information (Barer 1953). Furthermore, the dry 

mass of subcellular structures or cells can also be calculated from RI distributions (Barer 1953; Popescu et al. 

2008b; Zangle and Teitell 2014).  

3. Potentials in biological and medical applications: From spatial RI distributions, HT technology can retrieve var-

ious quantitative parameters. Certain molecules such as lipid(Jung et al. 2018; Kim et al. 2016b)  or metal nano-

particles (Kim et al. 2018a; Turko et al. 2013) have distinctly high RI values, which can be addressed by measur-

ing 3-D RI maps. RI values of a solution are linearly proportional to its concentration (Yoon et al. 2017). Local 

RI values in cells can be converted into cytoplasmic protein concentration (Barer 1952). The integration of RI 

values over a cell volume can be translated into dry cell mass. Furthermore, these RI values are intrinsic quanti-

tative parameters of live cells, and thus can be utilized for a biophysical marker. For example, 2-D and 3-D RI 

distributional maps can be utilized in label-free cellular identification (Chalut et al. 2012; Jo et al. 2015; Jo et al. 

2014; Jo et al. 2017; Yoon et al. 2017) and long-term growth monitoring (Bettenworth et al. 2014; Chalut et al. 

2012). In addition, RI itself can be used as a new marker which represents cellular states or abnormalities (Lenz 

et al. 2013; Schürmann et al. 2016), and the factors which change the intracellular RI are being actively studied 

(Ekpenyong et al. 2013; Wang et al. 2011b). 

HT technology also has several limitations and challenges: 

1. Limited molecular specificity: Although RI values can be precisely measured using HT technology, it is difficult 

to relate these measured RI to molecular information. This is mainly because proteins have similar RI values 

regardless of their types. Nonetheless, the spatial distribution RI values can provide limited morphological infor-

mation about subcellular organelles. For example, nucleus membrane, nucleoli, lipid droplets, and vacuoles can 
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be easily identified from RI distributions because they have distinct RI values different from neighboring envi-

ronments (Barer 1953; Jung et al. 2018; Kim et al. 2016b; Schürmann et al. 2016). Furthermore, the gradient of 

RI can also be utilized for further discriminating subcellular structures (Kim and Park 2018).  

With these potentials and challenges, measuring RI tomography of various types of cells have become widely adapted for 

the study of various research topics. Below we highlight recent applications of measuring RI tomograms for various re-

search disciplines. 

 

Microbiology 

Observing individual bacteria with conventional optical microscopes is challenging. This is due to a number of reasons. 

One is the size of most bacteria, which are in the order of micrometers or smaller. In addition, bacterial cytoplasm has 

refractive indexes similar to that of a medium, and the bacteria are transparent. Therefore it is difficult to visualize bacteria 

under a conventional bright field microscope and a high-resolution microscope is required. 

When imaging a bacterial cell using a phase contrast microscope, it is possible to obtain good imaging contrast. In this 

case, however, only limited morphological information is provided, such as the length, width, and shape of bacterial cells. 

Although phase contrast microscopy can measure live bacteria without using labels, it has limited capability for the study 

of microbiology because it provides only 2-D qualitative images. Immunofluorescent labeling technology can provide 

molecular-specific information inside bacteria, but it can be time-consuming and costly to stain the cells. In addition, re-

search is limited due to secondary problems such as photochromism and phototoxicity that occur during the bleaching 

process. This makes it difficult to observe the bacteria for long periods of time. Traditionally, confocal microscopes and 

transmission electron microscopes have been used to obtain the internal structure of individual bacteria at high resolution. 

However, it is difficult to observe live cells for a long time because these techniques require cell staining or fixation. 

RI tomographic imaging techniques can solve the problems of these existing imaging techniques. Because it is a non-

invasive, label-free method, living bacteria can be observed for a long time without using additional exogenous labeling 

agents. In particular, by measuring the RI, protein concentration and mass information within the bacteria can be extracted, 

which has recently led to several studies related to the division of bacterial cells. However, because RI itself does not 
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provide molecular specific information, an in-depth investigation in the context of molecular biology is significantly lim-

ited. In the future, there will be potentials where both 3-D RI tomographic imaging and fluorescence microscope technique 

are used simultaneously.  

Several previous papers had been reported where 3-D RI tomograms of individual bacteria are measured using HT tech-

nology. Using Mach–Zehnder interferometer and illumination scanning, 3-D RI tomograms of bacteria extracted from a 

sample of stool (Lauer 2002) and E. coli (Cotte et al. 2013) have been reported. Recently, white-light diffraction tomogra-

phy was used to image 3-D RI tomogram of E. coli (Kim et al. 2014b). More recently, 3-D RI distribution of Magnetospi-

rillum gryphiswaldense, a magnetotactic bacterium which produces magnetic particles (magnetosome), were measured 

(Bennet et al. 2016).  

RI information can be exploited to retrieve cellular dry mass and concentration information about individual bacteria. Dry 

mass refers to the non-aqueous contents inside cells and can be used as an indicator of cellular growth and division. Because 

RI of cytoplasm is linearly proportional to its concentration, RI tomography represents protein distribution of a cell. Fur-

thermore, the integration of RI over cell volume can also provide information about the dry mass of the cell. Dry mass of 

a cell can be simply retrieved by measuring 2-D optical phase delay maps and averaging it over cell area because the optical 

phase delay map of a cell corresponds to the integration of RI differences between non-aqueous contents inside cells (Lee 

et al. 2013; Popescu et al. 2008b). The cellular dry mass of fission yeast was monitored during the cell cycle with digital 

holographic microscopy, and the difference of mass production rate between wild-type and mutant fission yeast cells was 

observed (Rappaz et al. 2009). Using spatial light interference microscopy (SLIM), the dry mass of Escherichia coli cells 

was measured (Mir et al. 2011). In this work, the roles of cell density and morphology in mass regulation had been 

investigated.  

The application of RI based imaging in microbiology especially has a strong advantage for the long-term growth monitoring 

of microbes because RI provides both the morphological information and quantitative information about cell mass without 

using exogenous labels.. Recent reports show the bacterial species identification using the 2-D optical phase delay maps 

and artificial intelligence algorithms (Jo et al. 2015; Jo et al. 2014; Jo et al. 2017). More recently, 3D RI tomograms were 

utilized for evaluating antibacterial activities of the graphene-based film (Kim et al. 2017b). 
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Hematology 

The physical parameters of red blood cells (RBCs) are strongly related to the pathophysiology of various diseases (Suresh 

2006). Conventionally, optical microscopy with labeling methods has been used to examine RBC morphology in blood 

smears; poikilocytosis (e.g., spherocytes, target cells) and blood-borne infectious diseases including malaria are routinely 

examined. Information about hemoglobin (Hb) in RBCs are of particular importance in laboratory medicine; mean corpus-

cular Hb concentration (MCHC) and mean corpuscular Hb content (MCH) are extensively examined for medical diagnosis. 

It is also well known that the deformability of RBCs can be altered by several infectious diseases and genetic disorders 

(e.g. malaria and sickle cell disease) (Byun et al. 2012; Diez-Silva et al. 2012; Kim et al. 2014d; Mills et al. 2007; Park et 

al. 2008), with the implications of malfunctions in microcirculation. In clinical hematology, automated blood cell counters 

based on the complete blood count (CBC) have been utilized to measure the properties of RBCs. Current automated blood 

cell counter techniques measure the parameters of RBCs, including mean corpuscular volume (MCV), MCHC, MCH, and 

RBC distribution width (RDW), which serve as the principal and crucial information from which clinicians diagnose ab-

normalities in RBCs.  

The use of 3-D RI tomography in the field of hematology could lead to the simultaneous measurements of various optical 

parameters of individual RBCs. Figure 2 summarizes the analysis procedure for retrieving the parameters of individual 

RBCs using 3-D RI tomography, including the volume, surface area, sphericity, Hb content, Hb concentration, and mem-

brane fluctuation, which can be obtained at the single cell level. Figure 2 summarizes the analytical procedure for retrieving 

the parameters of individual RBCs using 3-D RI tomography, including volume, surface area, sphericity, Hb concentration, 

Hb content, and membrane fluctuations. 
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Figure 2. (a), Schematic diagram of the analysis procedure for retrieving the parameters of individual RBCs using 3-D RI 

tomography. (b-d), 3-D rendered isosurfaces of RI tomograms of individual RBCs and retrieved parameters from (b) 

healthy, (c) Iron-deficiency anemia, (d) reticulocyte, and (E) HS red blood cells. Reproduced from Ref. (Kim et al. 2014d) 

with permission.  

 

The measurements of various parameters of RBCs enables single-cell profiling, of which the importance has escalated in 

recent years (Higgins 2015; Weatherall 2011). Regulation of dynamic cellular systems and related pathophysiology can be 

better understood when the various parameters of individual cells are simultaneously analyzed in detail. This is because of 

recent improvements in measurement techniques, which have made single-cell profiling more efficient than before. In 

addition, data-based research approaches in biology and medicine have also grown rapidly, allowing researchers to explore 

new perspectives, in addition to existing hypothesis-based research methods. The 3-D RI measurements enable the retrieval 

of morphological (cell volume, cell surface area, sphericity), biochemical (Hb concent, Hb concentration), and biomechan-

ical (dynamic membrane fluctuation) information measured at the individual cell level. This allows correlative analysis, 

which is not possible with the conventional blood cell counters.  

Previously, 2-D QPI techniques have been employed for various applications in hematology. In particular, optical meas-

urements of the parameters of individual RBCs have been widely studied, including malaria-infected human red blood 

cells (Chandramohanadas et al. 2011; Park et al. 2008), sickle cell diseases (Byun et al. 2012; Shaked 2012), and ATP-
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dependent fluctuations (Park et al. 2010). RBCs do not have subcellular organelles and exhibit homogeneous RI distribu-

tions, which therefore allows measurements of Hb concentration. Thus, 2-D QPI measurements can also provide both the 

morphological information (cell height map) as well as the biochemical information (Hb contents or dry mass), with prior 

information about Hb concentration or the RI value of RBC cytoplasm. However, RBCs from an individual with diseases 

such as malaria infection or sickle cell anemia, the values of Hb concentrations, and thus RI values, vary significantly. 

Therefore, it is required to directly measure the 3-D RI tomograms of individual RBCs for the systematic study of disease 

states. 

Recently, 3-D RI tomograms of RBCs have been utilized for measuring the parameters of individual RBCs. Lee et al. used 

common-path diffraction optical tomography (cDOT) (Kim et al. 2014c), and measured 3-D RI tomograms and dynamic 

membrane fluctuations of RBCs exposed to ethanol (Lee et al. 2015). It was observed that RBCs exposed to an ethanol 

concentration of 0.10.3% v/v becomes more spherical shapes than those of normal cells (Lee et al. 2015). Using the cDOT, 

the properties of individual RBCs stored with and without a preservation solution, citrate phosphate dextrose adenine-1 

(CPDA-1) were reported. In this work, various red blood parameters were analyzed and the results showed that, in the 

absence of CPDA-1, RBCs undergo a dramatic morphological transformation from discocytes to spherocytes within two 

weeks (Park et al. 2016). The RBCs also experienced a reduction in cell surface areas and became less flexible. However, 

RBCs stored with CPDA-1 retained their biconcave shapes and deformability for up to six weeks.  

More recently, the RBCs from patients with diabetes mellitus have been systematically measured using 3-D RI tomography 

and dynamic membrane fluctuations (Lee et al. 2017). Morphologies of the RBCs from diabetic patients were not signifi-

cantly different from the healthy ones. The deformability of the RBCs from diabetic patients was significantly lower than 

those of healthy RBCs, which is consistent with the previous literature using ektacytometry or filtration assay. Interestingly, 

this work reported the negative correlation between dynamic membrane fluctuation and glycated Hb concertation or HbA1c 

level, for the healthy RBCs; the higher the HbA1c level, the less deformable the cells are. In addition, the alterations in 

RBCs resulted from the binding of melittin, the active molecule of apitoxin or bee venom, have been studied by measuring 

3-D RI maps and dynamic membrane fluctuations (Hur et al. 2017). RBCs from the cord blood of newborn infants and 

adult mothers or nonpregnant women were also systematically studied using 3-D RI tomography (Shin et al. 2015).  
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The study of white blood cells using 3-D RI tomography has not been fully exploited, but it will open new applications. 

More recently, Yoon et al. measured 3-D RI tomograms of mouse lymphocytes and macrophage (Yoon et al. 2015). In this 

work, the morphological alternations in lymphocytes, caused by lipopolysaccharide which is known to immunologically 

stimulate lymphocytes, were analyzed.  

The applications of 2-D and 3-D RI imaging techniques in hematology has increased. Among them, measurements of 

membrane fluctuation dynamics and Hb concentration of individual RBCs have been actively investigated due to their 

correlations with diseases and environmental abnormalities. In addition, because various cellular parameters are 

simultaneously extracted from individual blood cells, and their correlative analysis can be followed, more previous inves-

tigation of cellular alterations associated with various diseases are now accessible with direct experimental approaches.  

 

Infectious diseases 

The visualizations of the structures and dynamism of parasites and host cells are important for the study of parasitic infec-

tions. Electron microscopy provides spatial resolutions much higher than optical microscopy, and has been used to visualize 

the internal structures of parasites. However, the high spatial resolution of electron microscopy comes at the cost of static 

imaging; it does not provide the time-lapse information of parasitic infections. Optical microscopy techniques have been 

extensively used for imaging parasites and host cells (Cho et al. 2011). The use of labeling agents with high molecular 

specificity have elucidated the molecular biology of various infectious diseases. However, conventional fluorescent label-

ing techniques only provide qualitative imaging capability, and some parasite is difficult to be labeled.  

Recently, 3-D RI tomography techniques have been utilized for the field of infectious diseases. Park et al. have used tomo-

graphic phase microscopy and measured 3-D RI maps and dynamic membrane fluctuations of malaria-infected RBCs as a 

function of various infection stages (Park et al. 2008). Plasmodium falciparum parasites invaded into host human red blood 

cells were visualized from the measurements of 3-D RI tomography. Also, the significantly decreased dynamic membrane 

fluctuations in the infected RBCs were also reported, indicating the decreased cell deformability (Diez-Silva et al. 2010; 

Diez-Silva et al. 2012). The label-free capability of 3-D RI tomography has been utilized for the study of egress of malaria 

parasites (Chandramohanadas et al. 2011), which provided a comprehensive body of information on the relationships 

between biomechanical and biochemical parameters and parasite egress from RBCs infected by malaria-inducing parasites. 
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Kim et al. employed the ODT algorithm to reconstruct 3-D RI tomography of malaria-infected RBCs and it shows better 

image quality compared to the ones obtained with optical projection algorithm because ODT considers light diffraction 

inside samples(Kim et al. 2014a). In addition, various morphological information about invading parasites and produced 

hemozoin structures are obtained and analyzed quantitatively. The evasion mechanisms of P. falciparum from host immun-

ity was also studied using holotomography (Tougan et al. 2018).  

More recently, Babesia microti invaded RBCs were investigated by measuring 3-D RI tomograms at the individual cell 

level (Park et al. 2015). B. microti causes emergency human babesiosis, which shares similar pathophysiology and patho-

logic symptoms with malaria. In this work, RI information was effectively used for the study of babesiosis, because the RI 

of B. microti parasites is distinct from RBC cytoplasm can thus be clearly visualized, otherwise very difficult to be identi-

fied with conventional optical imaging techniques because of the lack of effective labeling agents for B. microti parasites. 

Ekpenyong et al. reported the RI maps of Primary murine bone marrow-derived macrophages which were infected by 

Salmonella enterica serovar Typhimurium (Ekpenyong et al. 2013).  

3-D RI tomography was also employed for the study of viral infection. Simon et al. used a setup, in which fluorescence 

confocal microscopy and optical diffraction tomography were combined, and studied human respiratory epithelial carci-

noma A549 cells infected with human influenza H3N2 virus (Simon et al. 2010). Interestingly, in the infected cells, the 

spherical structures with the size of 150200 nm and with the distinctly high RI values were observed, which were expected 

to correspond to the buddings of viral particles.  

In the field of microbiology, various cases have been studied where parasites can be detected using their distinctive RI 

values. Also, alterations in infected host cells are quantitative studies by measuring 3-D RI distributions. RI-based imaging 

techniques can potentially provide advantages over conventional techniques such as chemical assay and fluorescence mi-

croscopy, because of its label-free imaging capability and simple sample preparation procedures.  

  

Hepatology 
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Optical microscopic imaging of hepatocytes has played an important role in hepatology. The structures of cells and sub-

cellular organelles and their dynamics are strongly correlated to the physiology of hepatocytes, and also significantly al-

tered associated with liver-related diseases. Recently, Kim et al. have measured 3-D RI tomograms of human hepatocytes 

(human hepatocellular carcinoma cell line, Huh-7) were measured at the individual cell level (Fig. 3). In this work, various 

subcellular structures of hepatocytes are clearly identified using RI values, including cell membrane, nucleus membrane, 

nucleoli, and lipid droplets (LDs) (Kim et al. 2016b). Also, time-lapse 3-D RI tomograms of hepatocytes were also 

measured, from which dynamics of individual LDs were quantified.  

 

 

Figure 3. (a,b) 3-D rendered isosurface image of 3-D RI distribution of (a) an untreated and (b) oleic acid (OA) treated 

hepatocyte. (c,d) Cross-sectional slice images of 3-D RI distribution of (c) the untreated and (d) OA treated hepatocyte. 

The scale bars indicate 10 μm. e-j, Quantitative analysis of (e) RI of cytoplasm, (f) RI of LDs, (g) the ratio of LD volume 

to cell volume, (h) the ratio of LD mass to cellular dry mass, (i) volume of individual LDs, and (j) number of LDs in 

untreated and OA-treated hepatocytes. Reproduced from Ref. (Kim et al. 2016b) with permission 

 

Among subcellular structures of hepatocytes, lipid droplets (LDs) are of particular interest because they are directly related 

to the lipid metabolism. LDs consist of a monolayer of phospholipids and associated proteins surrounding a core of neutral 

lipid and are ubiquitous intracellular organelles storing and supplying lipids in most cell types as well as hepatocytes 
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(Martin and Parton 2006). Recent studies suggest that LDs participate in various pathological roles, such as cancer and 

diabetes mellitus, and exhibit 3-D motions to regulate lipid storage and metabolism (Welte 2009). However, the detailed 

process of LDs dynamics including biogenesis, growth and 3-D subcellular motions are incomplete (Wilfling et al. 2014).  

LDs can be effectively visualized exploiting its RI value; the RIs of lipid are significantly higher than protein(Beuthan et 

al. 1996) and thus LDs can be identified by measuring 3-D RI tomograms. Measuring LDs using the high RI values have 

several advantages over conventional approaches. Fluorescence techniques for labeling LDs have been widely used (Martin 

et al. 2005), but the use of fluorescent probes requires for ethanol treatment, which can influence the physiological condi-

tions of LDs such as induced fusions of LDs in live cells (Fukumoto and Fujimoto 2002). Coherent anti-Stokes Raman 

scattering Raman scattering techniques have been used to visualize LDs in live cells without the use of exogenous labels 

(Evans et al. 2005; Nan et al. 2003), but it requires for highly expensive laser and detection instruments and have the issue 

of low signal-to-noise ratio for molecules with low concentrations. The recent study demonstrated that the time-lapse 3-D 

RI distribution of LDs in live hepatocytes could be quantitatively analyzed with ODT (Kim et al. 2016b). The shapes, sizes, 

and the masses of individual LDs in live hepatocytes were retrieved from the measured 3-D RI tomograms. 

One of the direct and important applications of HT technology would be imaging and quantifying individual lipid droplets 

in hepatocytes. 3-D RI distributions of hepatocytes can provide quantitative imaging and analysis about metabolisms of 

lipids droplets in live cells. In addition, 3-D RI maps of live cells also provide morphological information, and thus the 

generations, dynamics, and degradation of lipid droplets can also be studied with the combination with the information 

about subcellular structures.  

 

Histopathology 

RI can potentially serve as an important contrast in histopathology because (i) the use of RI for imaging tissue slides 

provide imaging contrast for the visualization of anatomical features in tissue slides otherwise invisible under conventional 

bright-field microscopy and (ii) it does not require for the labeling process which can save time and cost. In addition, unlike 

conventional histopathology that relies on staining agents, the use of RI can provide quantitative criteria for pathologies in 

unlabeled biological tissues.  
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The RI information, for example, was used to quantify the weight loss in the inflammation-induced colitis (Lenz et al. 

2013). Besides the dry mass information, the measurements of optical phase delay maps of a tissue slice could precisely 

be utilized to extract the scattering parameters such as scattering coefficients (μs) and anisotropies (g) (Ding et al. 2011; 

Wang et al. 2011a; Wang et al. 2011b). This is because light scattering in tissue is caused by inhomogeneous distributions 

of RI, and thus as light passes through tissue, it undergoes significantly large events of light refraction and reflection, 

resulting in complex patterns of multiple light scattering. These scattering parameters have been employed to investigate 

the morphological alterations in prostate cancers (Figs. 4a-b) (Sridharan et al. 2014), breast cancers (Majeed et al. 2015) 

and epithelial pre-cancers(Su et al. 2015), which can be potentially utilized for diagnostic purposes.  

 

Figure 4. Applications of RI-based imaging techniques for histopathology and cell dynamics (a) 2-D optical phase map of 

a slice from a biopsy sample obtained from a patient who had a biochemical recurrence of prostate cancer after undergoing 

radical prostatectomy. (b) The adjacent tissue slice of (a) labeled with conventional H&E staining. (c-d) Scattering param-

eter (μs) map (c) and anisotropy (g) map (d) of a whole mouse brain tissue slice, which was retrieved from the measured 2-
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D optical phase map of the slice. (e) The adjacent tissue slice labeled with conventional H&E staining. Reproduced from 

Refs. (Lee et al. 2016) and (Sridharan et al. 2014) with permission.  

 

Recently, the label-free tissue imaging capability by utilizing RI information was adapted to neuroscience. Optical phase 

delay maps of brain tissues were obtained for whole brain mouse tissue slides (Lee et al. 2016). The maps of scattering 

parameter (μs and g), extracted from the measured optical phase delay images of brain tissue, showed anatomical structures, 

comparable to the ones obtained with the conventional hematoxylin and eosin (H&E) staining method (Figs. 4c-e). Fur-

thermore, these scattering parameter maps showed a statistical difference between the tissue slides from mice with Alz-

heimer’s disease and the ones from healthy mice, indicating the structural alternations in the tissue.  

For the application in histopathology, RI-based imaging of tissues can provide various parameters such dry mass, scattering 

coefficients, and anisotropies, and these values can be quantitatively analyzed in order to investigate morphological or 

structural alterations associated with diseases. In the near future, the use of QPI techniques will be further broadened for 

the diagnosis of various diseases (Kim et al. 2016a). Also, the RI-based imaging techniques does not require for complex 

procedures for sample preparation, which can dramatically reduce the time and cost for histopathological diagnosis 

(Greenbaum et al. 2014).  

 

Outlook 

Here we presented the principles of quantitative phase imaging techniques which exploit RI as an intrinsic optical imaging 

contrast for cells and tissues. Although this is a relatively new research field, and only a few topics of the studies have been 

investigated so far, the research work reviewed here suggest that the use of RI for biological imaging may play an important 

role in various fields of studies (summarized in Table 1), where label-free and quantitative live cell imaging capability 

provides benefits. This would significantly enhance our understanding of the pathophysiology of various diseases, which 

may also lead to the development of novel diagnostic strategies in the future. 
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Table 1. Major research areas which 2-D and 3-D RI measurement techniques have been employed. 

 

The uses of RI as intrinsic imaging contrast for cells and tissues for biological and medical applications have not yet been 

fully explored; there are still various important issues in the physiology and pathology, which can be addressed by the 

utilization of RI-based imaging techniques and corresponding analysis methods. Some of the representative cell images in 

emerging fields are presented in Fig. 5. Many interesting studies which had been performed with 2-D QPI techniques would 

be readily investigated with 3-D RI tomography techniques because 3-D RI measurements directly provide both RI values 

and shape information, whereas usual 2-D QPI techniques only provide optical phase maps – a coupled parameter between 
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RI values and the height of a sample. For example, water flux in individual neuron cells (Jourdain et al. 2011), morphologies 

of tumor cells (Kemper et al. 2006), cell growth and division (Cooper et al. 2013; Kemper et al. 2010; Mir et al. 2011), and 

cell death (Pavillon et al. 2012) would be studied in more details with 3-D RI tomography.  

 

Figure 5. Emerging fields of research using 3-D RI tomography and representative cell images: (a) neuron cell; (b) hu-

man sperm; (c) mouse macrophage; (d) LPS-treated mouse macrophage; (e) embryonic stem cells. Image in (a) is repro-

duced from Ref. (Yang et al. 2016) with permission. Images in (b-e) are provided by Tomocube Inc. 

 

Label-free live-cell imaging capability of 3-D RI tomography will be a strong advantage for its future applications in 

medicine and biology. For example, it has a potential to be used in the studies of stem and neuron cells which are vulnerable 

to environmental changes such as the use of fluorescent labeling agents (Braydich-Stolle et al. 2005; Millet et al. 2007). 

Although 3-D RI tomography does not generally have molecular specificity, it can provide information about the cellular 

morphology, internal structural changes, and various biophysical parameters. Thus, 3-D RI tomography will be a strong 
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complementary technique to fluorescence techniques. For example, a multimodal approach of using both the 3-D RI to-

mography and 3-D fluorescence microscopy open new avenues for the study of cell biology (Kim et al. 2017a; Kim et al. 

2018c). Recently, the combination of 3-D RI tomography and structured illumination microscopy for 3-D fluorescence 

imaging was demonstrated (Chowdhury et al. 2017; Shin et al. 2018). The specific molecules or proteins can be localized 

in live cells using 3-D fluorescence microscopy, and then long-term imaging of cell dynamics can be followed. Also, by 

utilizing 3-D fluorescence images, analyzing quantitative information about subcellular organelles such as concentration 

or dry mass can be performed. In addition, RI-based imaging has shown promises toward label-free cell identification. 

Although conventional fluorescence-based cytometry or imaging provides extremely high molecular specificity and signal-

to-background ratio, they only provide qualitative information which is highly dependent of protocols, sample conditions, 

etc. In contrast, RI is an intrinsic optical parameter of material, and thus can serve as a highly reproducible and yet quanti-

tative imaging contrast. When cleverly combined with appropriate algorithms, the 3-D or time-lapsed 3-D RI data obtained 

from individual cells can be effectively analyzed.  

Recently, RI-based imaging data has begun to be exploited in combination with machine learning algorithms (Jo et al. 

2019). For example, from the 2-D quantitative phase images of individual bacteria, the genus of various bacteria was 

distinguished using a machine learning algorithm (Jo et al. 2015; Jo et al. 2014). In addition, non-activated lymphocytes 

were recently identified and classified from their 3-D RI tomograms (Yoon et al. 2017). Recently, the weapons-grade 

anthrax spores are optically detected using 2-D QPI techniques and deep learning (Jo et al. 2017). Label-free classification 

of kinetic cell states was also demonstrated using 2-D QPI and machine learning (Hejna et al. 2017). More recently, pa-

rameters of 3-D QPI were exploited for the diagnosis of hematologic diseases with high accuracy (Kim et al. 2019). The 

combination of RI-based imaging techniques and machine learning will potentially generate strongly synergetic effects for 

the study of stem cells and neuroscience where the use of exogenous labeling agents are generally avoided (Maxmen 2017).   

Finally yet importantly potential topics in the application would include the 3-D label-free imaging for the study of Protists 

where 3-D morphometry and spatial movement are important issues. Previously, 3-D RI tomography has shown potentials 

for the in-depth investigation of amoeba (Charrière et al. 2006b) and phytoplankton (Lee et al. 2014). Also, the imaging of 

plant cells could be an important topic of study where label-free characterization and quantification of subcellular structures 

provide useful information (Kim et al. 2018b; Park et al. 2018a).  
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To facilitate the application of RI-based imaging methods for toxicology and pharmaceutical industry, it is required to 

achieve a platform to obtain high-throughput data. Toward this direction, several research activities are currently ongoing. 

Kim et al., presented a method to significantly enhance the speed of 3-D RI tomography employing sparse illumination 

patterns and a graphics processor unit (GPU) (Kim et al. 2013). Sung et al. demonstrated a method to obtain 3-D RI 

tomography of cells flowing in a microfluidic channel; without rotating a sample nor illuminating different patterns, optical 

information to construct a 3-D RI tomogram is acquired from the translations of a sample in the channel (Sung et al. 2014). 

Also, optical manipulation and 3-D tracking of biological cells in microfluidic channels may also open new applications 

combined with 3-D RI tomography (Merola et al. 2012).   

Developments in new analysis algorithm are also required. Previously, the quantitative imaging capability of RI-based 

imaging had been limited to static analysis, including cellular dry mass, morphological, and biochemical information. The 

RI information can also be exploited in analyzing the dynamics of cells and subcellular compartments. Measurements of 

time-lapse 3-D RI tomograms of cells would accompany with the developments in analysis algorithm (Ma et al. 2016).   

New techniques to effectively handle the large size of data are particularly needed to make RI-based imaging approaches 

even more useful. In order to perform analysis at the individual cellular level and reveal the details of the underlying 

mechanisms of diseases, at least dozens of cells should be measured in each experimental group. Then a technical issue 

arises – the sizes of tomogram files are enormously significant. For example, HT-1 series from Tomocube Inc., a commer-

cialized 3-D holographic microscopy system, generate a data file with a 67 Mega voxels for one 3-D RI tomogram; the 

imaging volume is 84.3  84.3  41.4 m with the pixel resolution of 112  112  356 nm for x-, y-, and z-direction, 

respectively. With the single-precision (or single) data type, a single tomogram of 67 Mega voxels will have the size of 268 

Mbyte. When a 4-D or time-lapse 3-D tomograms the frame number of 512 is recorded, the data size will be approximately 

134 Gbyte. More advanced methods to transfer, handle, and store such large sized data will also be required in the future.   

To provide better molecular sensitivity to RI-based imaging, multispectral approaches have been introduced recently (Jung 

et al. 2014). The use of multiple coherent lasers (Jang et al. 2012; Park et al. 2009) or wavelength-scanning illumination 

(Jung et al. 2013; Rinehart et al. 2012) enabled measuring the optical phase maps as a function of wavelength, and this 

information was utilized for molecular imaging because certain molecules have distinct optical dispersion properties, i.e., 

different RI values as a function of wavelengths. Recently, 3-D RI tomography has been achieved for a large number of 
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wavelengths using a super continuum source and a wavelength-scanning unit (Jung et al. 2016). Besides the technical 

difficulty, the major challenge in exploiting optical dispersion for molecular specificity is that most molecules present in 

cells do not exhibit strong optical dispersion except specific molecules such as Hb (Jung et al. 2014). Alternatively, the use 

of an ultraviolet light source was presented to better visualize chromosomes inside a cell (Sung et al. 2012). More recently, 

the use of gold nanoparticles (GNPs) has been utilized in RI-based imaging, because the strong light absorption and scat-

tering of GNPs at a resonant wavelength enable high imaging contrast (Kim et al. 2018a; Turko et al. 2013).   

Besides the developments in optical instrumentations and correlative imaging strategy, the advancements in reconstruction 

algorithm are expected to further enhance the quality of 3-D RI tomography. The current reconstruction algorithms are 

mostly based on the first order approximations – the algorithm only considers single scattered light to inversely solve the 

Wave equations. This assumption is valid for imaging single or up to a few layers of biological cells. However, the recon-

struction may fail for highly scattering samples, such as thick biological tissues or embryos. Recently, several methods 

have been introduced to consider high order scattering in the reconstruction algorithm, including a nonlinear propagation 

model based on the beam propagation method (Kamilov et al. 2016) and a treatment of an unknown surrounding medium 

as a self-resonator (Lim et al. 2017). Furthermore, the resolution of the optical imaging system measuring 3-D RI tomog-

raphy is governed by the numerical aperture of the objective and condenser lenses (Park et al. 2018b). Due to the limited 

numerical apertures of an imaging system, a fraction of side scattering signals is not collected, resulting into a reduced 

spatial resolution and inaccurate values of RIs in a reconstructed tomogram – known as a missing cone problem. To remedy 

this issue, several regularization algorithms have been used based on prior information about a sample (Lim et al. 2015). 

However, the careful use of appropriate prior condition is required and the computing power for the existing regularization 

algorithms are heavy.  The further developments are also expected to more effectively address this missing cone problem.  

In addition, optical trapping techniques can be combined with RI-based imaging techniques to revolutionize the way in 

which biologists approach questions in the field of cell-to-cell interaction and mechanobiology. Toward to this direction, 

the combination with 3-D RI tomography and optical manipulation techniques are beneficial. The optical tweezer technique 

has been shown to optically trap spherical particles, which aided to manipulate individual cells. Recently, 3-D RI tomog-

raphy technique was combined with holographic optical tweezers, which demonstrates the 3-D dynamic imaging of the 

interaction of an optically trapped particle to a macrophage (Kim et al. 2015). More recently, the 3-D RI maps of biological 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2018. ; https://doi.org/10.1101/106328doi: bioRxiv preprint 

https://doi.org/10.1101/106328
http://creativecommons.org/licenses/by/4.0/


25 

cells were measured in order to actively control optical wavefront for trapping beams, and the demonstration of stable 

control of complex shapes objects such as RBCs and dimers was demonstrated (Kim and Park 2017). 

From an application point of view, the utilization of microfluidic devices for 3-D RI tomography may open various oppor-

tunities. The use of a designed chip can be used to simplify an optical setup for the 3-D RI measurements (Bianco et al. 

2017), and to allow the quantification of chemical concentrations of fluids in a microfluidic channel (Park et al. 2017a). 

The label-free imaging using RI will also have potentials for the cytotoxicity assay (Kwon et al. 2018).   

One of the future directions of RI-based imaging would be toward in vivo application. If the use of RI information can be 

collected in vivo, it would bring significant impacts to the early diagnosis of various diseases. However, because of multiple 

light scattering in biological tissues deteriorate the delivery of optical information (Yu et al. 2015), the direct application 

of a simple optical imaging system would not be able to acquire clear images. Recently, 3-D RI tomograms of individual 

RBCs flowing through microcapillaries (Kim et al. 2016a). However, in this work, the part of a thin mesentery tissue should 

be placed in 3-D holographic microscopy. Ford et al. demonstrated in vivo phase imaging by collecting en face phase 

gradient images of thick scattering samples (Ford et al. 2012). More recently, Laforest et al. demonstrated in vivo phase 

imaging of retinal cells using transcleral illumination, which gives a dark-field configuration with a high numerical aperture 

(Laforest et al. 2017). Yet, deep tissue imaging toward applications in dermatology or gastroenterology is technically chal-

lenging due to multiple light scattering (Yu et al. 2015). There are several attempts to overcome multiple light scattering 

including optical coherence tomography using wavefront shaping (Jang et al. 2013; Park et al. 2018c; Yu et al. 2014; Yu et 

al. 2016) or accumulating single scattering light in deep tissue imaging (Kang et al. 2015).   

Various research results, in which RI was utilized as imaging contrast, are highlighted in this review article. Nonetheless, 

we believe that there are still uncountable potential applications, which are not yet discovered. In order to fully explore the 

potential and capability of RI-based approaches, interdisciplinary collaborations between biologists, medical specialists, 

and physicists are crucial. Considering the recent rapid growth of the field and the potentials of the approach, we are 

optimistic that optical imaging techniques based on RI will play important roles in various topics of studies where label-

free and quantitative live cell imaging is important. 
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