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Abstract

Actuarial ratemaking is usually performed at product and guarantee level, meaning that each
product and guarantee is considered in isolation. Moreover, independence between policyholders
is generally assumed. In this paper, we propose a multivariate Poisson-mixture, with random
effects correlated using a hierarchical structure, to accommodate for the dependence that may
exist between unobserved risk factors across Home and Motor insurance and between policy-
holders from the same household. The hierarchical structure accommodates for the fact that
Home insurance covers the whole household, whereas Motor insurance policies are subscribed
by specific policyholders within the household. The model allows to periodically correct the a
priori claim frequencies using the reported number of claims in any of the considered products.
Some cross-selling opportunities are identified.
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1 Introduction and motivation

In property and casualty insurance it is common to perform ratemaking using a two-step approach:
First, policyholders are classified by the insurer into risk classes using the informations available
at inception of the policy. These informations include covariates about the policyholder himself,
the insured car and/or home. Each risk class contains similar policyholders with respect to the
risk they represent and allows to estimate the claim frequency. This risk classification can be
routinely done using Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs).
The risk classes remain however heterogeneous as important risk factors are not observed and
differentiate policyholders belonging to the same a priori risk class. In a second step, the a posteriori
ratemaking consists in using credibility theory, to correct periodically the estimates to account for
this heterogeneity. More specifically, the previous a priori model can be extended thanks to random
effects which represent the latent risk factors. As time passes, the number of claims reported every
period reveals informations about the unobserved risk factors. See Denuit et al. (2007) for a
comprehensive review of these techniques in nonlife insurance.

In Home insurance, multiple guarantees can be subscribed by policyholders in the EU and
cover damage to a building and/or its content by some risks. The guarantees are generally sold in
packages and in some situations some guarantees may be even compulsory. The policy can cover
either the building only, the content only or both. The main guarantees cover damages due to fire,
water damage, electricity, broken glass and third-party liability (e.g. covering third parties in the
event of fire or water damage). Due to the nature of the policy, although one specific policyholder
subscribes a Home insurance policy, the whole household is in fact covered.
In Motor insurance, the two most common guarantees that can be bought by policyholders in the
EU are Third-Party Liability (TPL) insurance and Material Damage (MD) insurance. TPL is
compulsory and covers a third-party’s loss caused by the insured car. MD is an optional guarantee
that covers the cost of repairing or replacing the insured’s own vehicle. This guarantee will often
be used when the policyholder is liable for the claim, or when no liable person could be identified.

It is not the first work that combines both products and considers multiple policyholders from
the same household. Indeed, Guillen et al. (2008) and Brockett et al. (2008) moved from a product
view to a customer (or household) view and focused on the behaviour of households with multiple
policies. Using logistic regression, they analysed how much time the insurer has to retain customers
starting from the household’s first policy cancellation until all the policies have been lapsed.

Some works have focused on the dependence arising from the possibility that claims trigger
multiple guarantees at the same time. Indeed, in Motor insurance for instance, it may happen
that a single event triggers both TPL and another guarantees (e.g. MD). When only the number
of claims in each guarantee is available and it is not possible to know which claims triggered
multiple guarantees, one can rely on the bivariate Poisson regression, as e.g. in Bermúdez (2009).
The dependence between the number of claims in both guarantees arises from a common latent
count variable that counts the claims that triggered both guarantees. This bivariate model has been
further extended to more guarantees in Bermúdez & Karlis (2011). The authors used a multivariate
Poisson regression as well as a zero-inflation Poisson regression and relied on Bayesian calculations
for the estimation.

Other works that focused on the modelling of claim frequencies over multiple guarantees and/or
products can be classified in two main categories.

One way to induce dependence is by introducing a copula. Credibility theory can be used
in conjunction of copulas, see e.g. Frees & Wang (2005). Frees & Valdez (2008) and Frees et al.

(2009) used t-copulas to account for the dependencies among claims from different types of coverage
in Motor insurance. Frees et al. (2018) modelled jointly lapsation and claims in Motor and Home

2



Insurance using copulas, by exploiting the idea that claims outcome may be related to the lapsation
of a policy. Also, Shi & Valdez (2014) introduced a multivariate Negative Binomial regression model,
where each pair of variables has its own covariance structure. On aggregated loss, Frees & Wang
(2006) used elliptical copulas to model the dependencies between the severities, and the dependence
between the number of claims was modelled introducing latent correlated factors. Shi et al. (2016)
introduced dependence between the cost of claims of various types of claims with a Gaussian copula.
The copula allows to capture the cross-sectional and temporal dependence among the claims. Shi
& Yang (2018) investigate multiple kind of insurance claims using mixed D-vine copula to model
the temporal dependence. The result is used to integrate the policyholders’ past experience into
their future premiums. Bermúdez et al. (2018) analysed the time and cross dependence between
number of claims using a Bivariate Integer-valued AutoRegressive regression model (BINAR, see
also Karlis & Pedeli (2013)). The model allows to account for both the serial correlation arising
from multiple observations of the same policyholder over time as well as the correlation between
claims in different guarantees.

Another way to introduce dependence is by inclusion of correlated random effects which model
the unobserved risk factors that influence the claim frequency. As these latent risk factors may
be correlated across guarantees and across policyholders from the household, the random effects
are not assumed to be independent amongst the unit household. The introduction of this depen-
dence therefore induces correlation between the claim frequencies which in turn induces correlation
between the number of claims. Purcaru & Denuit (2003) analysed what kind of dependences re-
sults from the introduction in the claim frequency of correlated random effects. Bermúdez & Karlis
(2017) extended the bivariate model in Bermúdez (2009) by inclusion of either one common random
effect per policyholder or three correlated random effects, one for each count variable. Pechon et al.

(2018) used a multivariate Poisson mixture to account for correlated latent risk factors in Motor
TPL amongst policyholders from the same household. A maximum likelihood approach was used
in the estimation. Also, Pechon et al. (2019) used a multivariate Poisson mixture on two guarantees
in Motor insurance and on multiple policyholders from the same household. Three count variables
were used to model the claim frequencies in both guarantees, depending on which guarantee(s)
were triggered and for each count variable a random effect was introduced. The results showed
a positive dependence between the random effects related to policyholders from the same house-
hold. Also, Antonio et al. (2010b) used a multivariate credibility model using a Bayesian approach
on a portfolio of fleets of vehicles. See also Antonio et al. (2010a). A posteriori ratemaking can
also be used to construct a Bonus-Malus (BM) System. For instance, Pinquet (1998) constructs a
Bonus-Malus system that models the dependence between at-fault and not-at-fault claims in Motor
insurance using bivariate credibility. Boucher & Inoussa (2014) proposed a Bonus-Malus system
for panel data, while differentiating at-fault and not-at-fault claims in Motor insurance.

The aim of this paper is to supplement the existing bibliography on multivariate credibility
and present an approach to model the dependencies between claim frequencies in Home and Motor
insurance. Specificities of these products are taken into account: In Home insurance, one policy-
holder will subscribe the policy which will cover the whole household, while in Motor insurance,
multiple policies (one per vehicle, each subscribed by the main driver of the car) can be expected in
a household. Moreover, different kind of claims are observed in Motor insurance. The paper aims
at taking into account all the claims’ related information about both products in each household
to update the household’s claim frequencies.

Our approach can be summarized as follows. First we estimate by maximum likelihood the
four kind of a priori claim frequencies (Home insurance, TPL only, MD only and TPL and MD
simultaneously) using the a priori available covariates. We assume that each of these number of
claims follows a Poisson distribution. In practice, this can be done using GAMs. In a second step, a
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posteriori ratemaking is performed with the help of credibility theory. Important risk factors are not
observed but are revealed through time by the number of reported claims. Part of these latent risk
factors may be shared or correlated across guarantees and products as well as across policyholders
from the same household. These dependencies can be accounted for by introducing dependence
between the random effects related to the same household. The inclusion of random effects using
a hierarchical structure leads to a multivariate Poisson-mixture. The hierarchical structure allows
to have a well-defined variance-covariance matrix and more interpretable results. In Pechon et al.

(2019), no hierarchical structure was used and the model was restricted to Motor Insurance. We
follow a maximum likelihood approach, implying that we need to specify the distribution of the
random effects. Similarly to Pechon et al. (2018) and Pechon et al. (2019), the random effects
are assumed to be Gaussian. Since the random effects are latent, the evaluation of the likelihood
involves the calculation of integrals, which can be computed numerically, for instance using the
Gauss-Hermite quadrature. Other possibilities include quasi-likelihood approaches, Monte-Carlo
integration or the Laplace method, see Tuerlinckx et al. (2006) and Antonio & Zhang (2014)
for an extensive review on these methods. As the random effects related to the same household
are not assumed to be independent, the contribution of one household to the likelihood involves
the computation of as many integrals as there are count variables. On our dataset, households
had at most two policyholders in Motor insurance and at most one policy in Home insurance,
meaning that there are three count variables and three random effects related to each policyholder
in Motor insurance, and one count variable and one random effect related to Home insurance.
Consequently, the contribution to the likelihood of one household involves at most the computation
of a 7-dimensional integral. The Gauss-Hermite quadrature revealed itself to be fast, especially
when used in conjunction with the package Rcpp contributed by Eddelbuettel & François (2011)
which allows to write chunk of codes in C++ inside an R script enabling a drastic reduction in
computational time (up to 30 times faster). Note that this approach is different to a copula approach
(e.g. as in Frees & Wang (2006)) which would directly induce dependence between the number
of claims or between the claim frequencies, without relying on the introduction of random effects.
In our approach, dependence arises from correlated random effects (representing unobserved risk
factors) which in turn correlated the claim frequencies and also the number of claims. The results
show that the latent risk factors are correlated across products, guarantees and policyholders from
the same household, meaning that the unobserved risk factors may be correlated or shared in the
household. Therefore, any claim from the household can be used to predict more accurately the
claim frequency in any of the considered guarantees for any policyholder from the household.

The main contribution of this paper is on the application side. The model shows using a
household (or family) approach that the claim frequencies of different products, subscribed by
different policyholders are correlated. The model can be considered as an extension of Pechon
et al. (2019). Indeed, in Pechon et al. (2019), only Motor insurance is considered whereas in this
paper, Home insurance is included in addition to the two guarantees in Motor insurance, TPL and
MD. Also, in this paper the random effects are correlated using a hierarchical structure, allowing
more interpretability.

The model can be used to assess the value of a household, using all the available information:
Using a univariate approach, one policyholder in one product may appear to be of poor value for
the insurer, while using our multivariate approach makes it possible for the insurer to see the whole
picture and may in fact realize that the household as a whole is profitable. Consequently, as shown
in the applications, the model can also be used to identify cross-selling opportunities. We also show,
with the help of numerical illustrations, the importance of identifying which claims in TPL and in
MD originate in fact from the same event and should be considered as only one claim triggering
both guarantees at the same time.
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Figure 1: Left: Average age of policyholders split by gender during the years 2011 to 2013. Right:
Covered value in Euro of the insured vehicles.

2 Datasets

Let us briefly describe the datasets that will be used to support our analysis. Two detailed datasets
relate to portfolios of policies of the same European Insurance company observed during the years
2011-2013. The first dataset is the one used in Pechon et al. (2019) and relates to policyholders
that have subscribed both TPL and MD insurance, in Motor insurance. The policyholders are aged
between 30 and 90 years. We have at our disposal the number of claims triggering each guarantee
as well as the number of claims that triggered both guarantees at the same time. Some covariates
about the policyholder (e.g. age, gender, place of residence) are available as well as the use of the
car. Note that each policy relates to a unique vehicle and is associated to a main driver. Some
covariates related to the policy itself are also available, such as whether the payment of the premium
has been split. Also, we have access to a variable (litigation) indicating whether the policyholder
has had a failure to pay its premium in due time. Finally, a family identifier allows to match the
policyholders that live in the same household. Some statistics about the available covariates are
given in Table 1 as well as on Figure 1.

Usage Split Litigation

Private 91.13% Annually 48.61% 0 97.99%
Professional 8.87% Monthly 15.79% 2 1.65%

Semi-Annually 22.59% 4 0.36%
Quarterly 13.01%

Power New Car

Low 95.90% New (≤ 3 years) 62.68%
High 4.10% Old (> 3 years) 37.32%

Table 1: Proportions of policyholders in each level of the categorical variables.

The second dataset relates to a portfolio of Home insurance policies of the same European in-
surance company. A pool of multiple guarantees covering the damages to the building is considered:
Damage due to fire, water damage, electricity as well as broken glass and third-party liability (e.g.
covering third parties in the event of fire or water damage). These guarantees, all related to the
building, have been pooled in order to obtain similar claim frequencies than in Motor insurance.
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Note that the coverage of the content is not included in the analysis. The dataset contains a total
of 704 733 households with a Home insurance policy with a total exposure of 1 462 233 years. Some
covariates are available, such as the value of the covered building, whether the policyholder is owner
(72%) or tenant (28%), whether the building is an apartment (20%) or a house (80%), whether the
building is contiguous to other buildings (61%) or not (39%) and finally the ZIP code related to the
location of the house. This latter variable can be used to find latitude and longitude coordinates.

The Family identifier also allows to match households from both portfolios. More specifically,
we can identify which households have subscribed Home insurance and how many Motor insurance
policies (covering both TPL and MD) have been bought in the household. Note that this is only
possible as long as policyholders buy their insurance policy from the same insurance company, as
the datasets relate to only one insurance company.

Among the 704 733 households in the Home insurance portfolio and 230 020 households in the
Motor insurance portfolio, 91 857 have a Home insurance policy as well as at least one Motor
insurance policy covering TPL and MD. More specific details can be found in Table 2.

With Home Insurance Without Home Insurance Total

No Motor Policies 612 876 0 612 876
One Motor Policy 86 321 132 717 219 038

Two Motor Policies 5 536 5 446 10 982

Total 704 733 138 163 842 896

Table 2: Number of households according to coverage subscribed in Home and Motor insurance.

3 Model

3.1 Notations

We define some notations, similar to those in Pechon et al. (2019). We define H the set of house-
holds. Let us introduce the following claim count variables :

- NTPL
h(i),t: Number of claims of policyholder i from household h that triggered only TPL during

year t;

- NMD
h(i),t: Number of claims of policyholder i from household h that triggered only MD during

year t;

- NMD:TPL
h(i),t : Number of claims of policyholder i from household h that triggered both TPL

and MD simultaneously during year t;

- NHome
h,t : Number of claims of household h that triggered Home insurance during year t.

Note that to simplify some expressions, sometimes we will write NHome
h(i),t when we actually mean

NHome
h,t (e.g. in the first assumption later in this section). Clearly, NHome

h(i),t = NHome
h,t for every

policyholder i belonging to household h.
As in Pechon et al. (2019), this implies that the number of claims for policyholder i from

household h that triggered TPL (resp. MD) during year t is NTPL
h(i),t + NMD:TPL

h(i),t (resp. NMD
h(i),t +

NMD:TPL
h(i),t ).
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We denote the corresponding a priori claim frequencies as λTPL
h(i),t = E

[
NTPL

h(i),t

]
, λMD

h(i),t = E
[
NMD

h(i),t

]
,

λMD:TPL
h(i),t = E

[
NMD:TPL

h(i),t

]
and λHome

h,t = E
[
NHome

h,t

]
.

We also introduce the aggregated number of claims over the considered time horizon t =
1, . . . , T , namely

- NTPL
h(i),• =

∑T
t=1N

TPL
h(i),t;

- NMD
h(i),• =

∑T
t=1N

MD
h(i),t;

- NMD:TPL
h(i),• =

∑T
t=1N

MD:TPL
h(i),t ;

- NHome
h,• =

∑T
t=1N

Home
h,t .

The corresponding a priori claim frequencies are denoted λTPL
h(i),• = E

[
NTPL

h(i),•

]
, λMD

h(i),• = E
[
NMD

h(i),•

]
,

λMD:TPL
h(i),• = E

[
NMD:TPL

h(i),•

]
and λHome

h,• = E
[
NHome

h,•

]
. In our study, T = 3. This means that the

policyholders have been observed for at most 3 years. In fact, a variable Exposure expresses the
amount of time the policyholders were covered during the T years.

Let GMotor = {TPL,MD,MD : TPL} be the set of types of claims in Motor insurance and
G = GMotor ∪ {Home}.

3.2 Correlation structure

We introduce a Poisson multivariate mixture to allow for dependence between the latent effects
which represents all the unobserved risk factors affecting the claim frequency. Let us make the
following assumptions:

1. ∀h ∈ H, i = 1, 2, ∀g ∈ G, given Θg

h(i) = θ, the random variables Ng

h(i),1, . . . , N
g

h(i),T are
independent.

2. ∀h ∈ H, i, j = 1, 2, ∀gi, gj ∈ GMotor such that i 6= j or gi 6= gj , given (Θgi
h(i),Θ

gj
h(j)) = (θi, θj),

the sequences of random variables Ngi
h(i),1, N

gi
h(i),2, . . . , N

gi
h(i),T and N

gj
h(j),1, N

gj
h(j),2, . . . , N

gj
h(j),T

are independent.

3. ∀h ∈ H, i = 1, 2, ∀gi ∈ GMotor, given (Θgi
h(i),Θ

Home
h ) = (θi, θ), the sequences of random

variables Ngi
h(i),1, N

gi
h(i),2, . . . , N

gi
h(i),T and NHome

h,1 , NHome
h,2 , . . . , NHome

h,T are independent.

4. For a household with two Motor insurance policies and one Home insurance policy, let Θh =
(ΘHome

h ,ΘTPL
h(1) ,Θ

MD
h(1) ,Θ

MD:TPL
h(1) ,ΘTPL

h(2) ,Θ
MD
h(2) ,Θ

MD:TPL
h(2) ) the vector of all random effects. We

assume that E(Θ) = 1. Furthermore, we assume that the random effects can be decomposed
using the hierarchical structure described in Figure 2 (with nested random effects):

- ∀h ∈ H,ΘHome
h = exp

(
EHousehold
h + EHome

h

)
;

- ∀h ∈ H, ∀i ∈ h, ∀g ∈ GMotor,Θ
g

h(i) = exp
(
EHousehold
h + EMotor

h + EPolId
h(i) + Eg

h(i)

)
.

We will assume that EHousehold
h ∼ N

(
−

ς2
Household

2 , ς2Household

)
, EHome

h ∼ N
(
−

ς2
Home

2 , ς2Home

)
,

EMotor
h ∼ N

(
−

ς2
Motor

2 , ς2Motor

)
, EPolId

h(i) ∼ N
(
−

ς2
PolId

2 , ς2PolId

)
, ∀g ∈ GMotor Eg

h(i) ∼ N
(
−

ς2g
2 , ς

2
g

)
.
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EHousehold

EHome EMotor

EPolId 1 EPolId 2

ETPLonly ETPLonlyEMDonly EMDonlyEMD:TPL EMD:TPL

Figure 2: Hierarchical Structure with policyholder effect in Motor insurance.

The random vector Eh = (EHousehold
h , EHome

h , EMotor
h , EPolId

h(i) , ETPL
h(i) , EMD

h(i) , E
MD:TPL
h(i) ) has mean

vector E[expEh] = 1 and variance-covariance matrix

V [Eh] = diag(ς2Household, ς
2
Home, ς

2
Motor, ς

2
PolId, ς

2
TPL, ς

2
MD, ς

2
MD:TPL).

In short, the additive random effects are independent.

Considering Figure 2, EHousehold can be understood as the Household effect. Indeed, all the shared
risk factors across the policyholders from the household and across both products are included in
this random effect. Thanks to this random effect, both products are correlated. In Motor insurance,
some effects may be common to policyholders from the same household, in addition to the previously
cited Household effect. Indeed, the random effect EMotor induces additional covariance between the
claim frequencies in Motor insurance. Finally, some policyholder-related latent factors may exist
and influence the claim frequencies: These effects are modelled thanks to EPolId.

Note that the assumptions above that relate to Motor insurance are similar to those made in
Pechon et al. (2019). The assumption of Normality means that the vector of random effects Θh

has a multivariate LogNormal distribution with unit mean, as in Pechon et al. (2019). In Pechon
et al. (2018), a Poisson mixture was used to introduce dependence between policyholders from the
same household in TPL insurance. The authors compared a Poisson-Gamma, where the Gamma
distributed random effects were correlated using a Gaussian copula, with a Poisson-LogNormal
model and concluded that the Poisson-LogNormal model outperformed the Poisson-Gamma model.
The model involves a hierarchical structure of random effects representing the latent effects. The
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variance-covariance matrix of logΘh (where the log is taken on each component) is given by

ΣlogΘh
=




σ2
Home σHM σHM σHM σHM σHM σHM

σHM σ2
TPL σPolId σPolId

σHM σPolId σ2
MD σPolId σMotor

σHM σPolId σPolId σ2
MD:TPL

σHM σ2
TPL σPolId σPolId

σHM σMotor σPolId σ2
MD σPolId

σHM σPolId σPolId σ2
MD:TPL




where

σ2
Home = ς2Household + ς2Home

σ2
TPL = ς2Household + ς2Motor + ς2PolId + ς2TPL

σ2
MD = ς2Household + ς2Motor + ς2PolId + ς2MD

σ2
MD:TPL = ς2Household + ς2Motor + ς2PolId + ς2MD:TPL

σHM = ς2Household (Household effect)

σMotor = ς2Household + ς2Motor (Inter Policyholder)

σPolId = ς2Household + ς2Motor + ς2PolId (Intra Policyholder).

3.3 Estimation

Since the support of each random effect is R+, we can write the likelihood as

L(ΣlogΘ) =
∏

h∈H

∫

R7
+




2∏

i=1

∏

g∈G

exp
(
−λg

h(i),•θ
g

h(i)

)
(
λg

h(i),•θ
g

h(i)

)n
g

h(i),•

ng

h(i),•!


 fΘh

(θh)dθh. (1)

Note that if for some household the length of the vector Θh is smaller than seven (i.e. no Home
insurance policy or less than two Motor insurance policies), by adopting the convention that 00 = 1
and by setting the corresponding a priori claim frequency λ to zero yields the correct likelihood.

The computations have been realized in the statistical software R. The estimation was done
in a two-part approach. First the a priori claim frequencies have been estimated with a Poisson
regression using GAMs. As the paper focuses on the a posteriori claim frequencies, the more details
about the a priori analyses have been put in the appendix. In a second part, the a priori claim
frequencies are fixed and the variance-covariance matrix of the random effects is estimated.

In order to compute the likelihood in (1), we need to rely on numerical integration. We rely
on the multivariate Gauss Hermite quadrature, which is available in R thanks to the package
MultiGHQuad contributed by Kroeze (2016). The Gauss-Hermite quadrature avoids relying on
simulation as in Monte-Carlo integration techniques or MCMC in a Bayesian framework. We have
a step-by-step approach to estimate the parameters, which we shall describe below. The step-
by-step approach allows to break down the estimation in different steps of smaller dimension (i.e.
which require less computations) which in turn give us good initial values for the final step that
incorporates all the parameters. Having good initial values for this final step allows to have less
iterations in the optimization process and consequently reduces drastically the computation time.

First, we estimate by maximum likelihood the parameters related to Motor insurance at a poli-
cyholder level (the variances ς2PolId, ς

2
TPL, ς

2
MD, ς

2
MD:TPL), the other variances being fixed temporary
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at zero. As initial values, we rely on the marginal estimates of the variance. To obtain initial values
for the parameters ς2TPL, ς

2
MD, ς

2
MD:TPL, we can estimate the three variances of three different uni-

variate Poisson-LogNormal models. A initial value for ς2PolId can be given by optimizing a trivariate
Poisson-LogNormal model with the three previous variances fixed and the covariance (i.e. ς2PolId)
being estimated. Since these models are of low dimension and each of them involves only one
parameter to optimize, convergence is fast.

In a second step, the variance ς2Motor is estimated. In fact, the parameters σ2
TPL, σ

2
MD, σ

2
MD:TPL

are kept constant in this step and an increase of the parameter ς2Motor (inducing the dependence
between random effects from the same household) is compensated by a decrease of the parameter
ς2PolId (inducing dependence between random effects from the same policyholder). Note that the
difference at this point with Pechon et al. (2019) comes from the dependence structure: The
covariance (induced by ΘMotor) is estimated and is assumed to be the same for any pair of different
random effects belonging to the same policyholder, whereas in Pechon et al. (2019), each pair of
random effects related to the same policyholder had its own covariance parameter.

In the third step, Home insurance is then included. However, the hierarchical structure imposes
that the correlations (resp. covariances) are positive. As opposed to Motor insurance, for which
we could rely on the results found in Pechon et al. (2019), we need to first assess whether the
dependence between Home and Motor insurance is positive before using the hierarchical structure.
For this preliminary assessment, we first introduce a single random effect ΘHome and introduce
dependence with respect to Motor insurance thanks to a unique covariance parameter between the
random variable ΘHome and the random variables ΘTPL,ΘMD,ΘMD:TPL. The variance (i.e. the
residual heterogeneity in Home insurance) is estimated marginally and then is fixed at its value to
estimate the covariance. We find a covariance equal to 0.1202 (std. error 0.0174).
Given that the covariance between Home and Motor insurance’s random effects is significantly
positive, we can rely on the hierarchical structure which imposes a positive dependence and estimate
all the parameters simultaneously in a third step.

We display all the estimates at each step in Table 3.

First Step Second Step Third Step (Std. Error)

ς̂2Household 0.0000 0.0000 0.1220 (0.0156)
ς̂2Home 0.0000 0.0000 0.1920 (0.0200)
ς̂2Motor 0.0000 0.1896 0.0824 (0.0235)
ς̂2PolId 0.2152 0.0256 0.0137 (0.0189)
ς̂2TPL 0.3417 0.3394 0.3350 (0.0425)
ς̂2MD 0.1453 0.1485 0.1490 (0.0178)

ς̂2MD:TPL 0.1063 0.1148 0.1150 (0.0406)

Table 3: Estimates at each step of the optimization process.

We note that at each step there is a transfer that occurs: The estimated ς̂2PolId from step 1
is split into ς̂2PolId and ς̂2Motor in step 2. This breakdown can be understood in the following way.
The introduction of the variance ς̂2Motor induces covariance between policyholders from the same
household in Motor insurance, while in step 1, only the random effects of guarantees related to
the same policyholder had a strictly covariance. The increase in ς̂2Motor is however compensated
by the decrease in ς̂2PolId: The covariance for guarantees related to the same policyholder does not
change, while the policyholders from the same household in Motor insurance become correlated.
Similarly, from step 2 to step 3, the introduction of the random effect related to the Home induces
a decrease of ς̂2Motor that is compensated by an increase of ς̂2Household: The covariances in Motor
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ETPLonly EMDonly EMD:TPL ETPLonly EMDonly EMD:TPL

Figure 3: Hierarchical Structure of final model.

insurance remain the same than in step 2, however, due to the common variance ς̂2Household, Home
and Motor Insurance become correlated, with a covariance equal to ς̂2Household. As noted above,
at step 2, one difference with Pechon et al. (2019) comes from the dependence structure. If we
compare the log-likelihood from both models, we obtain (without some constants involved in the
likelihood) −66 507.32 for the model restricted to Motor insurance (step 2) and −66 664.46 for the
final model from Pechon et al. (2019).

Finally, we observe that the policyholder effect (i.e. ς2PolId) does not seem to be significantly
different from zero. This appears to be coherent with the results found in Pechon et al. (2019),
where the estimates of the analogue parameters appear to have overlapping confidence intervals.
This model is then re-estimated by forcing ς2PolId = 0. The estimates can be found in Table 4.

A likelihood ratio test is conducted, to assess whether the policyholder effect is significant
(i.e. ς2PolId > 0). The value of the statistic is t = 0.1866. Since the test involves a value on the
boundary of the domain, Self & Liang (1987) and Agresti (2003) suggest to compute the p-value
using 1

2 Pr
(
χ2
1 > t

)
. We obtain a p-value of 0.3329, which confirms that the policyholder effect is

not significant.

Effect Estimate Std.Error

ς̂2Household 0.1203 0.0173
ς̂2Home 0.1912 0.0215
ς̂2Motor 0.0927 0.0208
ς̂2PolId 0.0000
ς̂2TPL 0.3412 0.0173
ς̂2MD 0.1507 0.0215
ς̂2MD:TPL 0.1173 0.0208

Table 4: Final Estimates.

This model, without the policyholder effect, amounts to a hierarchical structure as depicted on
Figure 3.

Note that given the parametrization using a hierarchical structure, any value within the con-
fidence intervals will yield an appropriate (that is, positive-definite) variance-covariance matrix.
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This is one of the advantage of the hierarchical parametrization.

3.4 Implied dependence structure

Now that the model has been estimated by maximum likelihood and that it has even been simplified
by removing of the policyholder effect, we can compute the implied dependence structure between
these latent factors. We can first start with the variances, which represent the strength of these
latent factors (i.e. the amount of residual heterogeneity in each risk class constructed with the a
priori model).

We will first start with the implied dependence structure of the underlying multivariate Nor-
mal distribution. Afterwards, the implied dependence structure on the Lognormal scale (i.e. the
dependence structure of Θh) will be deduced.

For i = 1, 2, we can compute the residual heterogeneity:

V
[
logΘHome

h

]
= ς2Household + ς2Home estimated by 0.3115

V
[
logΘTPL

h(i)

]
= ς2Household + ς2Motor + ς2TPL estimated to 0.5542

V
[
logΘMD

h(i)

]
= ς2Household + ς2Motor + ς2MD estimated to 0.3637

V
[
logΘMD:TPL

h(i)

]
= ς2Household + ς2Motor + ς2MD:TPL estimated to 0.3303.

As stated above, the hierarchical structure induces positive covariances between the random
effects. We can now explicitly compute these. Indeed, we have that for i, j = 1, 2

Cov
[
logΘHome

h , logΘTPL
h(i)

]
= Cov

[
logΘHome

h , logΘMD
h(i)

]

= Cov
[
logΘHome

h , logΘMD:TPL
h(i)

]

= ς2Household estimated to 0.1203

Cov
[
logΘTPL

h(i) , logΘMD
h(j)

]
= Cov

[
logΘTPL

h(i) , logΘMD:TPL
h(j)

]

= Cov
[
logΘMD

h(i) , logΘ
MD:TPL
h(j)

]

= ς2Household + ς2Motor estimated to 0.2130

and for i 6= j,Cov
[
logΘTPL

h(i) , logΘTPL
h(j)

]
= Cov

[
logΘMD

h(i) , logΘ
MD
h(j)

]

= Cov
[
logΘMD:TPL

h(i) , logΘMD:TPL
h(j)

]

= ς2Household + ς2Motor estimated to 0.2130.

We can compute the correlations between the log of the random effects. The estimated correlations
are shown in Table 5. These correlations are related to the underlying Normal distribution, which
is on the score scale (i.e. the log scale).

Now that the dependence structure of the multivariate Normal random vector is computed,
we can deduce the correlation structure between the Lognormal random effects. Let us compute
the variances as well as the correlations between the Lognormal distributed random effects Θh =
(ΘHome

h ,ΘTPL
h(1) ,Θ

MD
h(1) ,Θ

MD:TPL
h(1) ,ΘTPL

h(2) ,Θ
MD
h(2) ,Θ

MD:TPL
h(2) ). We show the estimated variances in Table

6 and the estimated correlations in Table 7.

12



logΘHome
h logΘTPL

h(1) logΘMD
h(1) logΘMD:TPL

h(1) logΘTPL
h(2) logΘMD

h(2) logΘMD:TPL
h(2)

logΘHome
h 1.0000 0.2896 0.3574 0.3751 0.2896 0.3574 0.3751

logΘTPL
h(1) 0.2896 1.0000 0.4745 0.4979 0.3844 0.4745 0.4979

logΘMD
h(1) 0.3574 0.4745 1.0000 0.6146 0.4745 0.5857 0.6146

logΘMD:TPL
h(1) 0.3751 0.4979 0.6146 1.0000 0.4979 0.6146 0.6450

logΘTPL
h(2) 0.2896 0.3844 0.4745 0.4979 1.0000 0.4745 0.4979

logΘMD
h(2) 0.3574 0.4745 0.5857 0.6146 0.4745 1.0000 0.6146

logΘMD:TPL
h(2) 0.3751 0.4979 0.6146 0.6450 0.4979 0.6146 1.0000

Table 5: Estimated correlation structure between the random effects on the log scale (i.e. at the
score scale).

ΘHome
h ΘTPL

h(i) ΘMD
h(i) ΘMD:TPL

h(i)

Var 0.3655 0.7406 0.4387 0.3914

Table 6: Estimated variances of random effects for i = 1, 2.

Let us provide some interpretations for the values dispayed in Tables 6 and 7.
The heterogeneity appears to be the smallest in Home insurance. This is very intuitive since the
claims related to Motor insurance are strongly linked to the behaviour of the driver, whereas in
Home insurance the claims are less the result of choices and decisions made by the policyholder
and more related to the architecture of the building (e.g. faulting electrical connections).

The dependence between both Home and Motor Insurance materialises in a correlation of about
30%. It appears however to be weaker than within guarantees related to Motor insurance. Again,
this is intuitive, as less choices are made by the policyholder in Home insurance than in Motor
insurance. The correlations in Motor insurance appear to be of similar order of magnitude than
those given in Pechon et al. (2019), although a different pair appears to have the strongest correla-
tion. By looking at the standard errors of the estimates, we can assume that this could be related
to randomness.

Consequently, there appears to be some unobserved risk factor that is affecting the whole
household and that is correlating the claim frequencies in both Motor insurance guarantees as well
as in Home insurance. This could be a very local geographic effect that the a priori model could
not identify using a bivariate function of the latitude and longitude of the place of residence, or
even the socio-economic status. Nevertheless, one can only take guesses, since these informations
are not available and consequently cannot be added to the a priori model.

The fact however that the correlation between Motor insurance guarantees is the highest sug-
gests that some other unobserved factor representing the behaviour and risk averseness of the pol-
icyholder is hidden in this residual heterogeneity and is also possibly shared among policyholders
from the same household.

4 Insurance applications

In this section, we aim to focus on applications which illustrate the consequence of the dependence
between Home and Motor insurance using credibility theory. Some applications related to Motor
insurance have been reviewed in Pechon et al. (2019). We aim to focus here on the consequence of
the dependence between Home and Motor insurance.

In the first application, we will show how the claims experience can be used to produce yearly (or

13



ΘHome
h ΘTPL

h(1) ΘMD
h(1) ΘMD:TPL

h(1) ΘTPL
h(2) ΘMD

h(2) ΘMD:TPL
h(2)

ΘHome
h 1.0000 0.2457 0.3193 0.3380 0.2457 0.3193 0.3380

ΘTPL
h(1) 0.2457 1.0000 0.4165 0.4410 0.3206 0.4165 0.4410

ΘMD
h(1) 0.3193 0.4165 1.0000 0.5730 0.4165 0.5412 0.5730

ΘMD:TPL
h(1) 0.3380 0.4410 0.5730 1.0000 0.4410 0.5730 0.6066

ΘTPL
h(2) 0.2457 0.3206 0.4165 0.4410 1.0000 0.4165 0.4410

ΘMD
h(2) 0.3193 0.4165 0.5412 0.5730 0.4165 1.0000 0.5730

ΘMD:TPL
h(2) 0.3380 0.4410 0.5730 0.6066 0.4410 0.5730 1.0000

Table 7: Correlation structure between the Lognormal random effects.

for any other period) updates of the claim frequencies (i.e. a posteriori claim frequencies). Different
scenarios related to the number of claims observed in the different products and guarantees will be
discussed.
In the second application, we will show how the newly introduced dependence between the latent
factors in Home and Motor insurance impacts the claim frequency corrections. More specifically, we
will compare the corrections given by our model with the corrections given in case we would assume
independence between Home and Motor insurance (but keeping the dependence at household level
between the guarantees in Motor insurance).

4.1 A posteriori corrections of claim frequencies

As time passes by and the insurer observes the number of claims, we can compute corrections
to apply to the a priori claim frequency conditional to the observed number of claims thanks
to credibility theory. Due to the dependence between the random effects related to the same
household, the number of claims of any policyholder from the household as well as of any guarantee
are relevant.

Let a household h consist of two policyholders, h(1) and h(2), and let them both have TPL and
MD insurance. Moreover, the household also has a Home insurance policy at the same insurance
company. We will assume for simplicity that all the policies start at the same date. At any time,
the insurer computes for each guarantee the cumulated (i.e. aggregated) number of claims since
the contracts inception as well as the cumulated (i.e. aggregated) a priori claim frequencies. For
instance, at the end of year T , the insurer can then compute the following corrections for the
household in Home insurance:

E
[
ΘHome

h |Nh = nh

]

=
1

Pr [Nh = nh]

∫

R7
+

θHome Pr [Nh = nh|Θ = θ] fΘ(Θ)dΘ

=
1

Pr [Nh = nh]

1 + nHome
h,•

λHome
h,•

∫

R7
+

Pr
[
N

(−Home)
h

= n
(−Home)
h

, NHome
h,• = nHome

h,• + 1|Θ = θ

]
fΘ(Θ)dΘ

=
Pr

[
N

(−Home)
h

= n
(−Home)
h

, NHome
h,• = nHome

h,• + 1
]

Pr [Nh = nh]

1 + nHome
h,•

λHome
h,•

where

14



Nh =
(
NHome

h,• , NTPL
h(1),•, N

MD
h(1),•, N

MD:TPL
h(1),• , NTPL

h(2),•, N
MD
h(2),•, N

MD:TPL
h(2),•

)

nh =
(
nHome
h,• , nTPL

h(1),•, n
MD
h(1),•, n

MD:TPL
h(1),• , nTPL

h(2),•, n
MD
h(2),•, n

MD:TPL
h(2),•

)

and where N
(−Home)
h

(resp. n
(−Home)
h

) is the vector Nh (resp. nh) without the item related to the
Home guarantee.

In Motor insurance, we can compute the conditional expectation of any random effect:

∀g ∈ GMotor, E
[
Θg

h(i)|Nh = nh

]
=

Pr
[
N

(−g)
h(i) = n

(−g)
h(i) , N

g

h(i),• = ng

h(i),• + 1
]

Pr [Nh = nh]

1 + ng

h(i),•

λg

h(i),•

where

Pr [Nh = nh] =

∫

R7
+

∏

i∈h

∏

g∈G

exp
(
−λg

h(i),•θ
g

h(i)

)
(
λg

h(i),•θ
g

h(i)

)n
g

h(i),•

ng

h(i),•!
fΘh

(θh)dθh

can be computed numerically, for instance with the Gauss-Hermite quadrature, and where N
(−g)
h(i)

(resp. n
(−g)
h(i) ) is the vectorNh (resp. nh) without the item related to the guarantee g of policyholder

h(i).
Although the modelling in Motor insurance includes three count variables and three random

effects to model two guarantees (in order to capture the events that trigger both guarantees at the
same time), we can in fact calculate the correction that is applied in TPL and in MD by considering
the following linear combinations:

1

λTPL
h(i),• + λMD:TPL

h(i),•

(
λTPL
h(i),•E

[
ΘTPL

h(i) |Nh = nh

]
+ λMD:TPL

h(i),• E
[
ΘMD:TPL

h(i) |Nh = nh

])

1

λMD
h(i),• + λMD:TPL

h(i),•

(
λMD
h(i),•E

[
ΘMD

h(i) |Nh = nh

]
+ λMD:TPL

h(i),• E
[
ΘMD:TPL

h(i) |Nh = nh

])
.

(2)

In order to numerically compute these corrections we need to determine the a priori risk profiles
of both policyholders in TPL and MD as well as the household’s risk profile in Home insurance.
For this matter, we bin the predicted a priori claim frequencies obtained with the GAMs into
three categories, using the quantiles 2/6 and 4/6: low, medium and high risk profiles. The three
risk profiles are then associated with the numerical values given by the quantiles 1/6, 3/6 and
5/6 (i.e. the corresponding median claim frequency of each risk class). In the following numerical
examples, we will only consider the cases in which the same a priori risk profile is shared across all
the policyholders and all the guarantees. Of course, other combinations are possible.

4.1.1 A posteriori corrections in the claim-free case

Let us first illustrate the example in which no claim was reported in any guarantee. We show on
Figure 4 the corrections to apply in Home and Motor insurance when no claim occurred as time
passes. As expected, the correction factor drops as time passes and no claim is reported. The riskier
profiles have a stronger correction, in line with the idea that claim-free years are more expected
from a safer policyholder than from a riskier policyholder. Note that the corrections are similar in
TPL and in MD, although they appear to be slightly stronger in MD. This comes from the fact

15



that the average claim frequency is higher in MD than in TPL, although this effect is, in these
examples, partly compensated by the fact that the heterogeneity is greater in TPL than in MD.
Also in Home Insurance a correction factor below 90% is observed after 5 claim-free years, meaning
that in average, claim-free households (in Motor and Home insurance) with a low risk profile, have
about 10% less claims in Home insurance than the claim frequency given by their a priori risk class.
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Corrections when no claim occurred

Figure 4: Corrections to apply in TPL (left), MD (middle) and in Home insurance (right) when no
claim occurred in the household.

4.1.2 A posteriori corrections in Motor insurance after a claim

In the following, we will first consider that a claim occurred (either in Home or in Motor insurance)
and discuss the corrections to apply to the guarantees in Motor insurance. The corrections to
apply in Home insurance will be considered later. Note that, even though two policyholders are
considered in the household, we can consider in these examples without loss of generalization
that h(1) experiences the claims in Motor insurance and h(2) remains claim-free. Also, note that
for Home insurance, it is neither h(1) nor h(2) that experiences the claim, but rather the whole
household h.

On Figure 5, the corrections to apply in TPL to both policyholders are depicted. The figures
show that a claim in any guarantee will increase the correction factors in all the guarantees and for
all the policyholders from the household. We see however that the biggest increase is for h(1) in
TPL (i.e. the policyholder at fault in the triggered guarantee). We also note that both h(1) and
h(2) have the same corrections after a claim of h(1) in MD only. This comes from the fact that
the model assumes the same covariance between the different random effects in Motor insurance
(regardless if they are related to the same policyholder from the household). This is not the case
for the corrections after a claim triggering both TPL and MD, as the correction in TPL explicitly
combines both kind of claims: those triggering only TPL and those triggering TPL and MD (see
eq. 2).

Similarly, on Figure 6, the corrections to apply in MD to both policyholders are shown. By
comparing the corrections in TPL after a claim in TPL (Figure 5) and the corrections in MD after
a claim in MD (Figure 6), it appears that we have a stronger correction factor in TPL when a
claim is reported in TPL than in MD when a claim in MD is reported. This comes from the greater
heterogeneity in TPL (see Table 6) and the lower claim frequencies in TPL which means that a
claim is less expected in TPL than in MD. Moreover, the decrease of these correction factors is
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Corrections in TPL Insurance

Figure 5: Correction to apply to TPL insurance a priori claim frequencies when one claim was
reported.

greater in MD than in TPL, in line with the greater claim frequencies in MD than in TPL.
Furthermore, it appears that a claim triggering both guarantees at the same time has less conse-
quences on the MD a posteriori claim frequency than on the TPL a posteriori claim frequency. One
explanation is that in average the claim frequency related to MD:TPL claims, λMD:TPL, only plays
for about 28% of the total claim frequency in MD (i.e. λMD + λMD:TPL), whereas it is about 55%
of the total claim frequency in TPL (i.e. λTPL+λMD:TPL). Hence, the correction arising from the
conditional expectation of ΘMD:TPL is less weighted (i.e. in the convex combination (2)) in the
MD case than in the TPL case.

Finally, let us analyse the correction factors when a claim was reported in Home insurance
(Figure 5 and Figure 6) and compare them to those when no claim was reported (Figure 4). Both
in TPL and MD, we observe that after one year, there is a difference of around 10%. As time passes
the difference shrinks to around 5% after five years. Consequently, we see that taking into account
the reported claims in Home Insurance to compute a posteriori claim frequencies is pertinent.

4.1.3 A posteriori corrections in Home insurance after a claim

We can also compute the corrections to apply to the a priori claim frequency in Home insurance,
as a function of the number of reported claims in both Home and Motor Insurance. As before,
we assume a household with two policies in Motor insurance as well as one Home insurance. The
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Figure 6: Correction to apply to MD insurance a priori claim frequencies when one claim was
reported.
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Figure 7: Correction to apply to Home insurance a priori claim frequency when one claim was
reported
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correction to apply to Home insurance are depicted on Figure 7. Note that, on the contrary to the
Motor insurance case, only one correction applies, as the policyholder is assumed to be the whole
household in this case.

Symmetrically to the Motor insurance case, a claim in Home insurance appears to increase the
most the correction factor to apply to the a priori claim frequency in Home insurance. We note
however that in the long run, differences between lower and higher risk profiles appear to be large
(about 10% to 15%). Only a claim in Home insurance yields a correction factor larger than one
after five years. Moreover, note that the correction factors arising from a claim in any guarantee
in Motor insurance are all equal, regardless of which guarantee was triggered. The reason of this
comes from the common covariance between the Home insurance guarantee and the three random
effects related to the three count variables in Motor insurance.

4.2 Repercussions of dependence between Home and Motor insurance on cor-

rections

Let us assess on an example in what way the dependence between Motor and Home insurance
changes the corrections to apply.

We will consider a household with two policyholders, each holding a policy in Motor insurance,
covering both TPL and MD. In addition, the household also holds a Home insurance policy. To
ease the presentation, we will consider a unique risk profile for each guarantee and each of the
policyholders. More specifically, we will consider the median a priori claim frequency for each of
the four count variables (i.e. medium risk profile in the previous example).

In order to measure the impact of the dependence between Home and Motor insurance, we will
distinguish two cases:

1. The correlation structure of the random effects is given by Table 7;

2. The same variance-covariance matrix as above, except for the off-diagonal terms of the first
row (resp. column) are set to 0 (i.e. independence between Home and Motor insurance is
assumed). The dependence in Motor insurance for policyholders from the same household is
therefore kept at there levels given by Table 7.

Six examples are considered: (i) A claim-free case (meaning that in all three policies no claim
was reported), (ii) One claim in Home Insurance (during the first semester), (iii) One claim from
policyholder h(1) in Motor TPL, (iv), one claim from policyholder h(1) in Motor MD, (v) one claim
from policyholder h(1) that triggered both TPL and MD simultaneously and (vi) two claims from
policyholder h(1): one triggering TPL, the other triggering MD.

4.2.1 Impact on Home insurance

Let us first show the corrections to apply in Home insurance, by discussing the six examples detailed
above. The corrections in Motor Insurance will be presented later. The corrections are depicted
on Figure 8.

In the claim-free case, we see that both Motor policies help decrease the estimate by an extra
10% compared to the independence case. In the second example, where one claim was reported in
Home Insurance, the correction is above 1, but the dependence allows this correction to be weaker
at first. As time goes by the correction decreases faster than in the independence case thanks to the
claim-free years in Motor insurance. In the next three examples, in which one claim was reported
in Motor insurance, we observe similar corrections to be applied in Home insurance. We see that
even though a claim was reported in Motor insurance, the correction factor in Home insurance
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Figure 8: Impact of the dependence of the random effects related to Home and Motor insurance
measured by the corrections in Home Insurance. Six cases are considered, whether a claim occurred
or not, and if so, which guarantees were triggered by the claim.

falls below one after about 2 years. Note that the difference with the first example (i.e. no claims
in any guarantee) is about 5% after five years when considering the dependence. So, correcting
the Home insurance a priori claim frequency without considering the Motor insurance experience
may yield too advantageous corrections in the considered examples. In the last example, we note
the importance of distinguishing when a single event is triggering two guarantees (i.e. only one
claim) compared to two events each triggering a different guarantee (i.e. two claims). Indeed, in
the former case the correction factor in Home insurance is 5% to 10% lower than in the latter case.
These differences also exhibit the importance of identifying whether two claim counts are in fact
related to a single event (i.e. one claim triggering both guarantees) or whether they are unrelated
and should be considered as two separate claims.

Finally, note that as could be expected, the corrections in the independence case are the same
in 5 of the 6 examples (i.e. when no claim was reported in Home insurance).
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Figure 9: Impact of the dependence of the random effects related to Home and Motor insurance
measured by the corrections in Motor TPL for h(1). Six cases are considered, whether a claim
occurred or not, and if so, which guarantees were triggered by the claim.

4.2.2 Impact on Motor insurance

Let us now assess the corrections to apply in Motor insurance (TPL and MD), by discussing the
same six examples as previously. Even though the modelling in Motor insurance involves three
count variables, we can compute two correction factors, one for TPL and one for MD, using the
formulas given in (2). The corrections are shown on Figure 9 for TPL and on Figure 10 for MD.
Note that only the corrections for policyholder h(1) (who is the only policyholder among the two
policyholders in the household that experiences claims in Motor insurance) are shown. By looking
at Figure 9 (resp. Figure 10) which displays the corrections to apply to h(1) in TPL (resp. MD),
we note that the dependence between Home and Motor insurance does not seem to considerably
change the corrections. While the independence case considers that there is independence between
Home and Motor insurance, no independence between guarantees in Motor insurance for different
policyholders from the same household is assumed. This means that the observed number of claims
of any policyholder in Motor insurance remains relevant in both cases displayed on Figure 9 and
Figure 10. Let us explain why the additional information related to Home insurance does not
change a lot the correction factors. Compared to the aggregated a priori claim frequencies for two
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Figure 10: Impact of the dependence of the random effects related to Home and Motor insurance
measured by the corrections in Motor MD for h(1). Six cases are considered, whether a claim
occurred or not, and if so, which guarantees were triggered by the claim.

policies in Motor insurance (TPL and MD), the a priori claim frequency in Home insurance is
actually small. Actually it is comparable to the one of one policyholder in Motor TPL, so that it
amounts to around 1/7 of the total claim frequency in the household. This means that a claim-free
year in Home insurance will have a little impact on the correction factors in TPL and MD. Only
when a claim occurs in Home insurance, it appears to have an impact on the correction factors in
TPL and MD. In that situation, Figure 9 and 10 show that after 5 years there is a difference of
about 5% in the correction factors to apply to TPL and MD due to the dependence with Home
Insurance.

The corrections to apply to h(2) (who does not experience any claims in any of the six cases)
exhibit a similar difference between the independence case and the dependence case.

5 Conclusion

In this paper, we have presented a model that allows the actuary to account for the dependence
between two different products which can have multiple guarantees as well as multiple policyholders
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from the same household. The model captures the dependencies that exist between unobserved
risk factors that influence the claim frequencies. Home insurance is subscribed by one specific
policyholder, but in reality the whole household is covered by the policy. In Motor insurance,
each policy relates to a single car and policyholder. The proposed model takes into account these
specificities by the introduction of a hierarchical dependence structure of the random effects which
model the unobserved risk factors. On top of easing the parametrization, the hierarchical structure
brings some additional interpretability.

The results show that there is a dependence between Home and Motor insurance. Consequently,
any claim from any guarantee is relevant to refine the predictions on the claim frequencies on both
considered products. The hierarchical structure hints towards the fact that part of the unobserved
risk factors are common to the whole household, whereas some are more specific to the product (i.e.
Home or Motor insurance) and others are specific to the different guarantees in Motor insurance.
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Appendix

A A priori model

We aim here to give more details on the a priori model that is used to estimate the a priori claim
frequencies in both Motor and Home insurance.

Four different claims are considered: one in Home insurance and three in Motor insurance. As
explained in Section 2, a pool of multiple guarantees in Home insurance is considered, whereas
in Motor insurance three types of claims are considered. The GAMs were chosen to model the
claim frequencies, using a Poisson regression with a log link function. See Wood (2017) for an
introduction to GAMs. In the present study, the mgcv package available in R was used. After
careful variable selection, the final models were as follows:

Nclaim_Home ~ offset(log(Expo)) + policy_holder_role_C * risk_classification_cd_C +

contiguity_cd_C+ s(covered_value_building) + s(Longitude, Latitude)

Nclaim_MD ~ offset(log(Expo)) + NewCar + usage_profes + litigation +

gender + s(age, by = gender) + s(covered_value)+s(Longitude, Latitude)

Nclaim_TPL ~ offset(log(Expo)) +NewCar + usage_profes + litigation +

gender + s(age, by = gender) + s(covered_value)+s(Longitude, Latitude)

Nclaim_MDTPL~ offset(log(Expo)) +NewCar+ usage_profes + litigation24+

gender +powerCAT +s(age, by=gender) + s(Longitude, Latitude)

Note that the models used in Motor insurance are the same as in Pechon et al. (2019).
Due to confidentiality reasons, we cannot display the estimated claim frequencies. We can

however show the relative impact of some selected variables.
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Figure A.1: Left: Effect (on the scale of the score) of covered value on the claim frequency in Home
Insurance. Right: Geographic effect (additive on the scale of the score) on the claim frequency in
Home Insurance.

For Home insurance, the reference levels are owners covering a house. Tenants appear to have
82% less claims than owners. Apartments appear to be riskier than houses (6%). However, an
interaction was found between the variable tenant/owner and the type of home (apartment or
house), decreasing the claim frequency for tenants in apartment by an extra 17%. The contiguity
of the building was found to be important. As such, contiguous buildings have 20% more claims.
Two continuous covariates were included in the a priori model: the covered value of the building
as well as the location (represented by latitude and longitude coordinates). The estimated smooth
functions of these covariates are depicted on Figure A.1.

For Motor insurance, we show on Figure A.2 the impact of the age of the policyholder, which
was estimated for both genders. Also, on Figure A.3, the geographic effect is displayed. Moreover,
in what relates the categorical variables, in TPL, policyholders with new cars have about 13.6%
less claims and professional usage increases by 37% the claim frequency. Litigation also increased
the claim frequency.

In MD, new cars, as opposed to TPL, appeared to have a multiplicative effect of 1.59, while the
professional usage increased the claim frequency by 8.5%. Again, the litigation variable showed an
increase of the claim frequency when the policyholder once failed to pay its premium in due time.

In MD:TPL, policyholders with new cars also appear to have more claims (multiplicative effect
of 1.15), as well as professional usage (1.15) and the litigation variable. Finally, cars with higher
power have also an increase of the claim frequency (1.23).
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Figure A.2: Estimation of the effect of the age on the claim frequency. The effect is shown by
gender and by type of claim on the score scale.
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Figure A.3: Geographic effect (additive on the scale of the score) in Motor Insurance for each of
the three count variables.
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