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ABSTRACT Home energy management systems (HEMSs) help manage electricity demand to opti-

mize energy consumption and distributed renewable energy generation without compromising consumers’

comfort. HEMSs operate according to multiple criteria, including energy cost, weather conditions, load

profiles, and consumer comfort. They play an increasingly ubiquitous role in energy efficiency through the

reduction of electricity consumption within residential and commercial smart grids. This paper presents

a comprehensive review of the HEMS literature with reference to main concepts, configurations, and

enabling technologies. In doing so, it also provides a summary of HEMS computing trends and popular

communication technologies for demand response applications. The ensuing survey offers the reader with

an overall overview of current and future trends in HEMS solutions and technologies.

INDEX TERMS Home energy management system, demand response, smart technologies, integrated

wireless technology, intelligent scheduling controller.

I. INTRODUCTION

Smart homes have become essential components of the

smart grid in many countries due to their considerable

environmental and socioeconomic benefits. By enabling the

scheduling of home appliances according to demand response

programs enacted by energy providers, smart homes help

users optimize energy consumption to reduce costs and

enhance the reliability and effectiveness of the power grid.

Smart homes also play an essential role in reducing the

generation, transmission and distribution investments needed

to meet future electricity demands by promoting distributed

energy generation [1].

Smart homes have emerged as the convergence of cutting-

edge information and communication technologies, such as

smart sensors, advanced metering infrastructures, intelligent

home appliances, and the Internet-of-Things (IoT) devices.

This growing trend has enabled the deployment of Home

Energy Management Systems (HEMSs) to pave the way

towards the smart grids of the future.

Over the past few years, HEMSs have gained global accep-

tance and become essential in managing electricity demand
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effectively within the smart grid. A growing body of HEMS

research worldwide aims at improving energy efficiency and

security and reducing electricity cost in residential and com-

mercial power systems. These studies indicate that HEMSs

still face many challenges relative to control and communica-

tion technologies, which are crucial components of HEMSs.

Some of the more persisting issues concern the integration

of power electronic converters, renewable energy, and energy

storage into HEMSs. Current HEMS research focuses more

on theoretical design and less on implementation and opera-

tional issues. This is an imbalance that needs to be addressed

as the real-world application of HEMSs is critical in validat-

ing HEMS design and addressing deployment issues.

The successful deployment of HEMSs relies on the conver-

gence of sensing, communication, and control technologies,

which enable access to energy demand data and dispatch of

control strategies through the network in a timely fashion.

Communication networks in smart grid applications can be

classified according to scale of coverage: Home Area Net-

works (HANs), Neighborhood Area Networks (NANs), and

Wide Area Networks (WANs) [2]. A typical HAN includes

a smart electricity meter that interconnects several home

devices, sensors, displays, gas and water meters, renewable

energy sources, and electric vehicles. All these components
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are managed by a HEMS that monitors and controls the

consumption, storage, and generation of power [3], [4]. The

HAN’s central controller is connected to the utility grid

through the its smart meter. Information frommultiple HANs

is aggregated and stored in a database, which in turn forms

the NAN or WAN depending of coverage scope. The aggre-

gated data from multiple NANs/WANs are delivered to the

utility administrator to help him/her decide on several system

parameters, including price, expected load, etc.

The communication technologies suitable for HANs are

divided into two categories according to the medium of com-

munication [5]. Wired media such as Ethernet and Power

Line Communication (PLC) constitute the first category of

technologies, and the second includes wireless media such

as Wi-Fi, wireless cellular networks, and low-rate wire-

less personal area networks operated according to IEEE

802.15.4 standard. PLC has generated added interest because

of its lower costs and easier deployment. For example,

the Home Plug Alliance has been supporting and extending

the use of PLC through the provision of standards to make

PLC viable for smart grid applications. The use of PLC has

also been proposed for indoor power networks [6], and as

the communication backbone in energy management sys-

tems [7], [8].

All HAN communication technologies have relative

advantages and disadvantages. For example, PLC provides a

level of security that is as high as that delivered by the Ether-

net [2] in connecting users with utility companies, at costs that

are as low as those of wireless solutions. However, it offers

lower transmission rates when compared to other solutions

due to the use of AC electric power lines to relay information

between the HAN’s devices and energy management con-

troller. The best PLC data transmission rate is between 4 and

10 Mbps, while at comparable deployment costs, wireless

solutions offer higher connectivity. Another drawback of PLC

is data transmission quality due to noise issues. Ethernet

provides the best solution in terms of security, robustness,

and connectivity. However, it has significantly higher costs

and it presents logistic challenges when new cables need to

be installed.

In addition to communication technologies, the integration

of energy storage systems (ESSs), hybrid renewables, and

power electronic devices into smart homes is crucial for the

operational deployment of HEMSs. ESSs play a significant

role in managing renewable energy sources. In combina-

tion with power electronics, ESSs ensure the stabilization

of intermittent power generation to offer improved power

quality and efficient energy use through demand response.

ESS technologies currently in use include flow and lead-

acid batteries, chemical energy storages, and ultra-capacitors

[9], [10]. Since renewable energy sources (RESs) such as

wind and solar energy are subject to variability due to weather

conditions, it is necessary to find ways to reconcile energy

supply and demand whenever imbalances arise. RES volatil-

ity can be balanced through smart battery charging and dis-

charging schemes that ensure power stability and reliability.

At peak-load times, RESs would be in full swing to

power smart homes, while ESSs can be engaged at any

time to redress demand-supply imbalances and enhance the

resilience of the power grid [11], [12].

Since the variability of different RESs often derives from

complementary weather conditions, a stable and reliable

power supply cannot be provided by a single RES [13]. One

solution is to use hybrid RES systems that help deliver con-

tinuous power supply and mitigate the undesirable effects of

RES variability through the integration of diverse RESs [11].

Hybrid RES systems for smart homes can be developed

through the integration of various RESs, such as photovoltaic

(PV), wind, biomass, hydropower, etc. [14].

The generation of electrical power from RES is carried out

through energy conversion systems that use power electronic

devices to enable the conversion process, and help establish

the optimal dispatch of the energy produced (e.g., immediate

use or storage) [15]. In residential energy generation systems,

electronic power converters have been widely adopted to

manage rooftop solar and small wind power systems, which

can be combined to maximize power extraction under all

conditions (i.e., maximum power point tracking) [16]. These

power converters need to be calibrated with reference to

their intended use context (e.g., building type, RES, and ESS

integration) to achieve an optimal configuration [17], [18].

The development of hybrid RES systems and their integra-

tion with ESSs requires the reconciliation of different power

supply systems and voltage levels. For example, the output

of PV systems is in DC voltage and is usually converted

into single- or three-phase AC voltage, whereas the output

of wind turbines is in AC voltage with variable magnitude

and frequency. A typical battery ESS goes through an initial

DC/DC conversion step to deliver a given voltage level from

several cells in series to the DC-link from where the final

AC output voltage is generated through a DC/AC conversion

step [19].

The energy-mix used to produce electricity can differ

greatly and involve diverse sources in varying quantities

from country to country. For example, Germany generates

approximately 30% of its energy from renewables. In the U.S,

according to the EIA [20], about 60% of the electricity is

produced using fossil fuels. While efforts are being made to

increase the share of green technologies in power generation,

it is understood that fossil fuels will still play a significant

role in the short to medium term. In order to minimize the

use of fossil fuel for energy generation, it is therefore essential

to manage the existing energy resources efficiently to reduce

energy demand. The increasing use of electric vehicles and

demand-side management solutions in the areas of demand

response and HEMSs all contribute to more efficient use of

energy.

In the last few years, traditional power grids have pro-

gressively moved towards a more intelligent and reliable

mode of operation. The new ‘‘smart’’ grid paradigm enables

a two-way communication between utilities and consumers

through advanced metering infrastructures in neighborhood
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and wide area networks. This new mode of operation sup-

ports the monitoring and control of distributed generation and

energy storage systems across the power grid ecosystem.

The smart grid capitalizes on powermonitoring and control

technologies such as HEMSs to improve its productivity in

quality and capacity. In enabling the automated optimization

of home appliance use, HEMSs offer significant energy sav-

ingswithout compromising end-user comfort. HEMs perform

this enablement through communication protocols that oper-

ate across devices and between the home and the grid. These

communication protocols facilitate the information exchange

of energy needs and availability to help HEMSs schedule

appliances intelligently, using optimization techniques that

balance user comfort level against expected energy supply

and demand.

This paper provides a survey of the technologies that

enable the deployment of HEMSs in the smart grid. After an

overview of HEMSs and their role in the smart grid, an anal-

ysis is presented of how different computing paradigms

have influenced the development of HEMSs. Then, HEM

components are examined with reference to their intercon-

nection within the smart home, and the communication

technologies and key protocols that allow them to operate

are reviewed. Finally, a description of demand response pro-

grams is given, and the optimization techniques that HEMs

use for scheduling devices in order to achieve energy effi-

ciency are discussed.

II. HEMS OVERVIEW AND ITS ROLE IN SMART GRID

Figure 1 shows the overall structure of a HEMS. The core

component of the HEMS is the smart controller. It pro-

vides system management functionalities that include log-

ging, monitoring and control. The smart controller collects

real-time electricity consumption data from schedulable and

non-schedulable appliances to implement optimal demand

management strategies. The communication infrastructure

that enables the flow of demand-side data, whether wired

or wireless, is therefore, a critical component of the HEMS,

FIGURE 1. Overall architecture of a HEMS.

as is the interconnection with the smart meter that records the

energy consumption and production of specific users. Smart

meters also enable smart billing solutions based on alterna-

tive electricity pricing schemes such as Time-of-Use, (peak)

Demand, Real-Time pricing, Seasonal, or Weekend/Holiday

rates.

Distributed renewable generation is another critical HEM

component. In the last decades, wind and PV power gen-

eration systems have become the most popular renewable

energy sources. Sunlight and/or wind are abundant world-

wide and relatively cost-effective to harness using PV and

wind turbine technologies. However, the intermittent nature

of wind and sunlight due to weather variation can negatively

affect power stability, reliability, and quality. Home Energy

Storage Systems (HESSs) offer an effective solution to the

intermittent nature of solar and wind energy by providing

immediate energy dispatch or storage when needed to ensure

continuous and stable power supply.

With the increasing electrification of transportation, elec-

tric vehicles (EVs) are becoming an essential source of

schedulable loads in residential areas. The main feature that

distinguishes the EVs from other loads is that they can also

be used as an energy storage device. More specifically, EVs

can provide emergency power dispatch at peak consumption

times, and storage on demand to absorb excess energy gener-

ation at low consumption times.

Over the past two decades, global electricity con-

sumption has grown at a yearly average rate of 3.1%

(https://yearbook.enerdata.net/), escalating the level of stress

on electrical power systems. The ongoing electrification of

transportation is likely to intensify this growth rate with

added strain on power grids. Traditional grids cannot meet

the onerous demands of this trend, which is exacerbated by

the integration of large amounts of variable RESs. The typi-

cal response by decision-makers to the continued growth in

electricity demand is to develop new power plants and extend

the grid infrastructure. Such a solution is not sustainable

in view of economic, safety, and environmental concerns.

Utility grids need to undergo a radical transformation aimed

at maximizing energy efficiency to prevent power plants and

grid infrastructure development from spawning a situational

crisis [21].

According to the U.S. Energy Information Administration,

the expected gap between current supply (about 4 billion

gigawatt-hours) and the increasing demand will reach 6 bil-

lion gigawatt-hours by 2030, with homes expected to con-

sume approximately 30% of total electricity production [21].

To ensure continuity of the electrical service and mini-

mize the imbalance between energy supply and demand, the

smart grid paradigm must prevail to extend the reach of

energy management solutions that include demand response,

energy efficiency and distributed renewable energy integra-

tion, as shown in Figure 2 [21]. In facilitating the combined

enactment of these three solutions, HEMSs play an important

role in the modern smart grid, with ensuing benefits for cus-

tomers and energy providers alike. HEMSs allow customers
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TABLE 1. Previous notable literature related to the home energy management system.

FIGURE 2. The growing gap between electricity demand and current and
planned electricity generation capacity [21].

to control their energy consumption in order to save energy

and reduce costs while maintaining their comfort level at opti-

mal levels. At the same time, HEMSs allow utility companies

to analyze future energy demand in order to optimize the

utilization of the electrical system and increase its reliability.

III. COMPUTING TRENDS IN HEMS

Early HEMSs were based on analog systems and had lim-

ited application [22]. In the 1970s, HEMSs were digitalized,

running on high-speed general-purpose computers like the

Xerox Sigma. With the introduction of personal computers

in the 1980s, the HEMS underwent another evolution. Most

vendors released energy management systems built on pro-

prietary operating systems. Platforms based on the Linux

and Windows operating systems became more popular at the

turn of the 21st century, with central computing support for

coordination and visualization purposes. In modern HEMSs,

components use microcontrollers and work together by using

a distributed communication protocol with or without a cen-

tral server [24]. This modular architecture allows the HEMS

to function even when one of its components breaks down.

References [22] and [23] present a comprehensive overview

of computing trends in HEMSs. Some of the seminal litera-

ture on HEMS computing trends is listed in Table 1.

The requirements for a smart HEMS have become more

demanding with the advent of advanced metering infrastruc-

ture [25] and increased consumer use. As mentioned in [26],

the smart HEMS should include the following elements:
• Sensors with microcontrollers for the monitoring of

home conditions.

• Different databases to cater for low-latency ingestion of

sensor data.

• Actuators with microcontrollers that take actions upon

receiving commands.

• A server for data ingestion and visualization, which can

also act as a gateway for connecting to other networks

and protocols, and

• Web applications for remote control of data and

devices.
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[26] presents a simple architecture that uses cloud comput-

ing for issuing control commands, running queries, executing

algorithms, and storing data. Each actuator or sensor is

capable of communicating with the cloud via gateways.

The authors in [27] propose a novel scalable architecture

with a uniform interface model that eases the effort of

adding/removing devices to/from a smart home network.

The architecture is structured into five layers: (1) a resource

layer, which consists of sensors and actuators; (2) an inter-

face layer, which serves as an abstraction; (3) an agent

layer, where agents manage individual devices using RFID

tags; (4) a kernel layer, which is responsible for manag-

ing agents, and (5) the user application layer. The authors

in [28] put forward a cloud-based architecture (CloudThings)

that offers infrastructure-as-a-service (IAAS), software-as-a-

service (SAAS), and platform-as-a-service (PAAS) services

for rapid application development, deployment, and oper-

ation of IoT devices. End-devices like sensors and actua-

tors use the Constrained Application Protocol CoAP [29]

for machine-to-machine communication. CoAP also easily

interfaces with HTTP, thus enabling integration with the web.

FIGURE 3. Generic, cloud computing enabled smart home architecture.

Figure 3 shows a general cloud-based architecture for

smart HEMSs. The gateway component represents a proces-

sor that interpret the underlying protocol for device com-

munication and connects to the cloud to execute workloads

that require high processing power. The internal network

of the HEMS consists of actuators, sensors, and appliances

connected through a communication bus. A set of industrial

open standards ([24], [30], [31]) forming a protocol stack

enables communication within the network. Since Internet of

Things (IoT) devices in smart homes can generate a lot of

data, some amount of processing may have to be carried out

at the gateway level to reduce operational costs by averting

the transmission of large data volumes to the cloud. The

gateway can process a sizeable amount of data and can also

retain sensitive data that should not be transmitted over the

internet [23].

Smart HEMSs can use public cloud platforms, such as

AWS, Azure, and GCP ([32]–[34]), or private ones, such as

OpenStack and VMware ([35], [36]) for computing purposes.

Cloud computing provides a reliable technology for big data

storage and scalable infrastructure for data processing that

has low latency. To solve privacy issues relative to the use

of cloud computing [37] with big data transmission, Fog and

Edge computing have recently been gaining momentum [38].

The primary objectives of Fog computing are to [39]:

• Reduce the amount of data sent to the cloud for

processing;

• Improve response time and decrease latency, and

• Protect privacy.

Cisco was the first one to coin the term ‘‘Fog Computing’’

[40]. In Fog computing, data processing occurs between the

source and the cloud. Gateways (see Figure 3) help achieve

this task. Fog computing also results in faster response times

by reducing network latency. The gateway may still forward

data to the cloud when more intensive processing and stor-

age tasks require it. Fog computing can suffer from spe-

cific latency and privacy issues, especially in applications

where end-devices use compute-intensive Artificial Intelli-

gence (AI) methods for real-time data analytics.

Edge computing [41] refers to machine processing that

happens on the device/sensor. In combinationwith techniques

such as federated learning [42], Edge computing enables

the decentralized training of machine-learning models on

devices/sensors that hold data samples without recourse to

the cloud for storage and processing. Edge computing helps

to solve critical issues in data privacy, security, and access

rights and reduces or eliminates cloud-computing costs.

IV. COMPONENTS OF HEMS

As discussed in [50], the HEMSs provides five primary ser-

vices: management, control, logging, monitoring, and fault

detection. To enact these services, the HEMS needs to inte-

grate sensors, measuring devices, smart controllers/actuators,

a communication infrastructure, and a user interface system.

Sensors can monitor occupancy, smoke, light, and tempera-

ture. Their purpose is to send feedback to the HEMS to make

the required changes to the actuators for optimal comfort and

energy efficiency. The various sensors used in HEMS are

listed in Table 2. Measuring devices quantify the usage of

resources such as gas, electricity, or water [23]. They also

signal the current state of the system to the HEMS. Smart

controllers are devices that can sense voltage and current

and make direct local decisions without the need for global

supervision.

Communication infrastructure includes networking media

and the communication protocols used by HEMS devices.

Different protocols have different requirements for physical

media, transmission rates, and physical security.
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TABLE 2. Various sensors used in HEMS.

The HEM’s management controller is an embedded com-

puter or workstation with energy management software that

can visualize the current state of the building/homemonitored

by the HEMS. It can also provide control functionalities and

integrate various protocols [51].

Smart meters form an essential measuring component of

HEMSs as they provide feedback to the utility and enable

two-way communication between users and the utility. They

also enable consumers to manage their energy use, tak-

ing into account other factors such as distributed energy

resources [52]. Smart meters represent the latest trend in

combining measurement techniques with modern computing

technologies to promote intelligent energy systems. They

gather data from all utility services, including electricity, gas,

and water. The primary functions of the smart meter include

the following [53]:

• Measuring the multi-period and multi-mode power rates

of active and reactive energy usage.

• Supporting two-way communication between users and

the utility by sending consumption data and accept-

ing pricing signals from the utility and responding to

queries.

• Enabling response by looking at user preferences to

influence smart-load shedding, and

• Interacting with DER and other power infrastructures,

along with HEMSs, to provide electricity when the pri-

mary power grid fails.

A HEMS that integrates a smart meter can display all

relevant energy usage information to the end-user and

provide automated demand-response taking into account

user-preferences for comfort [54]. In such a setting, a smart

HEMS management controller acts as the central integration

point for distributed energy resources, energy storage devices,

and electricity regulation for electric vehicles. The consump-

tion patterns of individual appliances can also be observed by

using sensors that measure reactive power and active power or

by using non-intrusive load monitoring (NILM) [55]. NILM

identifies individual appliance consumption by recognizing

‘‘signatures’’ of appliances in the total consumption data

without the need for invasive interventions to home cir-

cuitry and devices. A review of NILM techniques is provided

in [56].

A. HOME APPLIANCES

Demand-response programs allow end users to sched-

ule appliances in their homes to achieve energy effi-

ciency without compromising comfort. Home appliances

can be divided into non-schedulable and schedulable loads.

Non-schedulable loads are those that cannot be shifted in

response to utility signals. These may be set by users and typ-

ically include refrigerators, printers, TVs, microwaves, com-

puters, etc. Schedulable loads are those that can be switched

on/off at any time. These include lights, air-conditioners,

heaters, iron, EV chargers, etc. [57]. Schedulable loads can be

further divided into interruptible or non-interruptible loads.

Non-interruptible loads are constrained by a ‘hold-time’, i.e.

a fixed period of operation before they can be turned off [58].

B. ELECTRIC VEHICLES

Electric vehicles (EV) will also play an essential role in

future demand-response applications as EV adoption and the

push for energy-efficiency grow. EVs act as a load and can

also be used to transmit power to the grid. We can classify

EV charging as unidirectional or bidirectional, as discussed

in [59].

1) UNIDIRECTIONAL CHARGING

In unidirectional charging, the electricity flows from the grid

to the electric vehicle, which acts like another load for the

power system. This mode of operation is also known as grid-

to-vehicle (G2V) in literature.

Unidirectional charging can be classified into uncontrolled

and controlled charging. In uncontrolled charging, the grid

does not have a comprehensive view of the EV charging

cycles. Thus, multiple simultaneous EV charging cycles can

cause unrestrained demand peaks. Large-scale simultaneous

charging can overload the infrastructure and cause voltage

deviations and deterioration of power quality [60]–[62]. In

controlled charging, EV charging is safely balanced with

other loads, thusminimizing the occurrence of demand peaks.

As discussed in [59] and [63], controlled EV charging can be

either manual, where the EV owner can choose an off-peak

time for charging to be a ‘‘smart’’ energy user, or automatic,

to the central controller that integrated in the HEMS decides

the best time for vehicle charging.

2) BIDIRECTIONAL CHARGING

In bidirectional charging, EV can run in G2V, vehicle-to-

grid (V2G), vehicle-to-home (V2H), and vehicle-to-building

(V2B)modes [64]. In V2G, V2H andV2B, the EV can supply

the grid with power. V2G, V2H, V2B can all be used for

peak-shaving and the reduction of electricity bills [65]. The

general structure of the V2G, V2H, and V2V concepts is

illustrated in Figure 4. In cases where there is a demand spike,

EV bidirectional charging can supply temporary power to

reduce uncertainty in power supply and avoid power short-

ages. The deployment of EV bidirectional charging requires
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FIGURE 4. The general structure of V2G, V2H, and V2V concepts in power
system.

a significant upgrade of current communication and distribu-

tion systems [60].

C. INTEGRATING RENEWABLE ENERGY WITH HEMS

As residential adoption of renewable energy systems

grows, the demands on power electronics become more

complex [66]. With reference to power electronic convert-

ers, specific requirements include: 1) stable and reliable

power supply; 2) high-performance operation; 3) low cost;

4) effective protection; 5) regulation of active and reac-

tive power; 6) fault ride-through capabilities and, 7) secure

communication.

An overview of HEMS usage for renewable energy

resources is provided in [67]. As shown in Figure 5, 38.6%

of renewable energy worldwide is used in utility-scale power

plants, and 41.7% in residential, commercial, and public

applications. Due to improvements in communication and

control technologies, the energy mix in smart-homes has

advanced to include various sources of renewable energy

resources, including solar PV, wind power, biomass, and

geothermal energy [68].

FIGURE 5. Usage of renewable energy per sector [67].

Residential renewable applications often integrate an

energy storage system to improve their dispatchability. Lead-

acid, flow, lithium-ion, ultracapacitors, and chemical energy

storage technologies have been widely used in Home Energy

Storage Systems (HESSs) [69]. HESSs stabilize the supply

electricity generated by variable RES such as wind and solar.

In the event of a grid outage, renewable energy generation in

combination with HESSs can provide an independent source

of electricity supply for critical loads [12].

D. MANUFACTURERS CREATING SMART HEMS

Several companies develop HEMS products, as shown

in Table 3. One of the energy meter manufactured by Schnei-

der Electric [70] uses the Modbus protocol [71] for commu-

nication. Schneider also makes energy meters that make use

of the KNX communication protocol [72]. Meters based on

open protocols, can be used with HEMS products by differ-

ent vendors, such as GE and Siemens. Siemens’s ‘‘Synco’’

platform [73] is a home and small building automation prod-

uct line that uses standard industrial communication proto-

cols. It also connects to the cloud to provides real-time data

using visualizations.

TABLE 3. List of manufacturers along with their energy measurement and
control devices.

Large software companies such as Google, Apple, and

Cisco now distribute HEMS products. This trend empha-

sizes the increasing role of software engineering for IoT

devices. Google’s Home, Apple’s Siri, and Cisco’s energy

management service [74]–[76] are examples of home energy

management services. Cisco’s energy management service

can integrate products and services that control HEMSs.

The GE digital power meter [77] is yet another device

that is easily integrated with a Building Management System

(BMS) using the Modbus protocol, and incorporates straight-

forwardly with the electrical distribution system. Traditional

audiovisual vendors such as Control4 [78], AMX [79], and

Crestron [80], [81] also manufacture products for home

energy management and control. Crestron and Control4 run
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products on proprietary protocols. However, they provide

interfaces to some of themost popular open protocols. Table 3

provides more information on the products available in the

home energy management market.

V. COMMUNICATION TECHNOLOGIES IN HEMS

Smart homes consist of connected devices that communicate

with each other to exchange data and implement actions.

To make the right decision, it is important for the HEMS

to have a complete view of the system. HEMSs, therefore,

need multiple sensors to collect various types of information

from home devices. These sensors need to communicate

with appliance actuators to perform required actions when

specific criteria are met. Communication protocols determine

how actuators and sensors communicate and connect with

each other. Smart homes use wireless sensor networks and

machine-to-machine protocols. These communication proto-

cols can be wired, wireless, or hybrid. For wired networks,

a tree or star bus topology is preferred since it provides higher

flexibility in-home wiring. For wireless networks, the mesh

topology is preferable as it can bypass obstacles inside a

home. The following criteria help determine the choice of

communication protocol [23]:

• Range of Coverage:Length of physicalmedia (for wired

network), or distance between receiver and transmitter

(for wireless networks) that allows devices to communi-

cate properly.

• Level of security: Should communication between

devices be encrypted? Is access control required to

send/receive messages on the communication bus?

• Network size: Number of devices that can be attached

to the network without compromising the quality of

communication. This varies from protocol to protocol

and can range from a few devices to 1000’s of devices.

• Latency: Some protocols allow for faster communica-

tion, while others rely on slower communication.

• Availability of functionality: Different protocols and

standards tend to specialize in specific features, and so

it is essential to know which protocol and device would

serve the purpose of the installation.

Control and automation protocols generally cover dif-

ferent functionalities including management, control and

field functionalities. Management functionalities revolve

around reporting, high-level control, and facility visualiza-

tion. Control functionalities include programmable logic,

internet/protocol gateways, and specialized control tasks.

Field functionalities usually comprise the simple operation of

sensors and actuators. A detailed explanation of control and

automation concepts is presented in [82].

Price is another factor in the selection of a protocol. Open

protocols allow multiple vendors to compete for a product

and consequently tend to offer lower rates. Proprietary pro-

tocols suffer from vendor lock-in and can result in premium

prices. In [82], a price comparison is given for smart home

automation systems built on various protocols including open

protocols (e.g., KNX) and proprietary protocols (e.g., Cre-

stron). Similarly, for wireless networks, the cost of devices

based on the open ZigBee protocol is lower than that of

devices based on the proprietary Z-Wave protocol [83]. Zig-

Bee tends to be used more for research purposes due to its

lower barrier to entry, while Z-Wave is preferred for com-

mercial applications because it has a longer range and fewer

congestion issues.

The standard practice in protocol design has been to lever-

age distributed protocols to enable HEMS resilience. This

means that each device can respond to events on its own

without the need for a single computing processor, as had

been the case in a centralized setting. The use of distributed

protocols prevents a single point of failure and makes HEMS

more resilient. The three most prominent open protocols for

wired networks are BACnet, KNX, and LonWorks. Each

allows different manufacturers to create different products

that are compatible with one another. In addition to these

open protocols, there are a number of proprietary proto-

cols. Table 4 provides an overview of wired and wireless

protocols for smart home technologies. Figure 6 shows the

available functionalities in different protocols [83].

FIGURE 6. Overview of functionality available in different protocols [83].

VI. RESIDENTIAL DEMAND RESPONSE PROGRAMS

An overview of Demand Response (DR) programs is pro-

vided in [22], [84], [85]. Traditionally, electric utilities have

focused on making power generation, transmission, and dis-

tribution more efficient. With advancements in HEMSs, util-

ities have directed new efforts to demand-side management.

HEMSs have also become attractive for end-users since they

promote reductions in electricity usage that result in lower

electricity bills. The United States Department of Energy [86]

characterizes DR programs as either price-based or incentive-

based, as shown in Figure 7. End users can follow three strate-

gies in response to price- or incentives-based DR programs.

One strategy consists of reducing consumption during peak

hours. This strategy can decrease customer comfort levels.

Another strategy is to shift loads from peak to off-peak hours.

An example of this strategy is to operate the washingmachine

and dishwasher loads during off-peak hours, rather than dur-

ing peak hours. Customers can also use on-site generation
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TABLE 4. Wired and wireless protocols description.

through renewable sources to decrease reliance on the con-

ventional power grid during peak consumption periods. This

third strategy results in a decrease of the average load on

distribution and transmission grids.

In a price-based DR scheme, customers are offered varying

electricity tariff rates at different times. Typically, these tar-

iff rates are priced to encourage customers to reduce loads

at peak times. Pricing can be dynamic or predefined [87].

Critical peak, real-time, and time-of-use (TOU) pricing are

some examples of price-based DR schemes [88], [89]. One

adversity that customers might face with price-based DR

schemes is to keep abreast of tariff changes. This adver-

sity can be resolved through scheduling algorithms that

automatically manage loads as per predefined or dynamic

tariff changes [90].

With TOU pricing, the cost of electricity is set for off-peak

and peak times. Time of usage is divided into off-peak (less

costly) and peak (more expensive) intervals [102]. In dynamic

pricing, the cost of electricity is established in ‘‘real-time’’ at

regular intervals, e.g., every hour [103]. Critical peak pricing

involves identifying peak times throughout the year, and then

notifying consumers of increased prices when peak demand

is likely to occur [104].

Demand response systems have evolved to make use of

distributed energy generation and energy storage. Although

home energy management is overall an excellent initiative,
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FIGURE 7. Types of demand response programs.

local energy use decisions can have an adverse effect on the

main grid. For example, phenomena such as ‘‘rebound peak’’

where too many appliances are shifted to times with low

prices can cause new and unexpected demand peaks [105].

Thus, from the utility’s perspective, it is preferable to manage

DR at the neighborhood level. This gives rise to the need for

HEMS coordination across households. The entities involved

in smart HEMS coordination include:

• The utility operator, who is responsible for the reliable

transmission of electricity to the end-customer. Utilities

benefit from DR by managing demand and promoting

energy efficiency.

• The aggregator, who can provide DR services to the

utility, and ancillary services to end-users on behalf of

the utility, and can become the focal point for energy

trading [106].

• End users, who can take the role of energy ‘‘pro-

sumer’’ by operating distributed energy and energy stor-

age devices.

Energy-management coordination across households can

be centralized or decentralized. In a centralized setting, one

entity is responsible for managing energy demand in a group

of households. The managing body (e.g., the utility) has

access to the required information using Advanced Meter-

ing Infrastructure [25]. In decentralized coordination, the

end-users exert more control overload scheduling choices.

To manage such degree of distributed control, households

must communicate with each other so that the neighborhood

aggregator can have a comprehensive view of the status

quo to relay safe DR measures to end-users and/or utilities.

Energy-management coordination approaches can be classi-

fied into three categories:

• Entirely dependent structure: Smart homes receive

information about the neighborhood energy-demand

profile through a central entity such as an aggregator or

the utility. No peer-to-peer communication occurs.

• Fully independent: Smart homes communicate with

each other to achieve awareness about the neighborhood

energy-demand profile.

• Partially independent: Smart homes can communicate

with each other and interact with a central entity to

receive neighborhood load profile information.

An overview of neighborhood coordinated and uncoordinated

demand response is provided in [107].

VII. LOAD SCHEDULING TECHNIQUES

The implementation of energy efficiency and demand

response measures requires that consumer loads be either

reduced or shifted. Load shifting involves scheduling to find

the optimal operational timings at which to operate consumer

appliances, considering both peak demand times and user

preferences. The load scheduling optimization techniques

discussed in the literature are summarized in Table 5. A dis-

cussion of these techniques follows below.

TABLE 5. Common scheduling optimization techniques.

For load shifting, several choices need to be taken into

account to find an optimal schedule. This schedule will

always be an approximation as future electricity demand

and generation cannot be predicted with absolute certainty.

In the literature, different mathematical optimization tech-

niques are used to find an optimal load shifting schedule.

Constrained-based mathematical optimization techniques

have been used extensively for device scheduling. Lin-

ear, nonlinear, and convex programming are examples of

constrained-based optimization techniques. Linear and non-

linear programming models compute the relationships across

variables as a linear and nonlinear function, respectively,
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according to the distribution of the reference data. Nonlin-

ear programming is computationally more expensive. Con-

vex programming is a superset of linear programming and

involves relations and objective functions that are convex in

nature.

Reference [108] uses binary programming to optimize con-

straints that include consumer preferences. Reference [109]

presents a mixed integer programming approach that opti-

mizes device scheduling, taking into account renewable

energy and energy storage resources. Reference [110] inves-

tigates the optimization of multiple objectives simultane-

ously by using the mixed-integer linear programming (MILP)

approach. Reference [111] uses mixed integer nonlinear

programming to model constraints via nonlinear functions.

Reference [112] uses convex programming to optimize

scheduling while taking into account real-time pricing.

Reference [113] models uncertainties in forecasting along

with deterministic optimization for scheduling.

Mathematical optimization problems are computationally

expensive when they are a large number of constraints and

variables involved. Often it is desirable to find an accept-

able solution rather than a deeply optimized one. Heuristic

approaches enable the reduction of computational complex-

ity by using high-level criteria to select a subset of the

search space that is likely to contain a satisfactory optimiza-

tion solution. Reference [114] uses genetic programming

to find a schedule for demand-response based control of

inverter air-conditioners. Reference [115] presents a dif-

ferential evolution algorithm for demand-response based

scheduling. Particle swarm optimization (PSO) is yet another

heuristic-based optimization technique that has been used

in the literature. For example, [116] and [117] use particle

swarm optimization for demand response.

Model Predictive Control (MPC) has also been used for

optimizing scheduling, factoring in prediction uncertainty

and dynamic modeling [118]–[123]. MPC requires a detailed

plant model, constant monitoring, and continuous data acqui-

sition - all processes that demand significant resources. Ref-

erence [120] highlights the limitations of the MPC approach.

Game theory is yet another approach that has been used

in the literature for scheduling HEMS devices, in the form

of cooperative and non-cooperative games. In cooperative

games, agents communicate to reach a common goal. Refer-

ence [124] uses a cooperative game strategy for coordinating

households to optimize demand. In non-cooperative games,

agents focus on achieving local optimizing objectives without

communicating with one another. References [125]–[128]

highlight studies that use game theory to minimize overall

consumption in a single household.

Various studies have used machine learning to optimize

scheduling. Reference [129] presents an approach that uses

a Neural Network model to determine appliance scheduling.

Reference [130] describes a global neural network controller,

which takes into account all inputs to switch off the required

device. In [131], ANN is used with a genetic algorithm for

weekly appliance scheduling. Reference [132] uses a neural

network based on particle swarm optimization for improv-

ing appliance scheduling operations through hyperparameter

optimization. Reference [133] proposes a lightning search

ANN algorithm to predict when to turn on/off a device.

Reference [134] uses a distributed algorithm for training a

neural network.

Fuzzy logic controllers (FLC) have also been used in lit-

erature for scheduling HEMSs. A fuzzy control system is

developed in four steps: 1) map discrete values into fuzzy

one; 2) add amembership function for each variable; 3) define

rules for the system, and 4) map fuzzy values back to discrete

values. Reference [135] uses FLC for the day-ahead schedul-

ing of the air-conditioning unit. In [136], the authors use

FLC techniques to maximize comfort and minimize energy

consumption. In [137], a solar plant is integrated with the

DR system, and energy cost is reduced using fuzzy systems.

Reference [138] present a real-time controller based on FLC,

using various home appliances with PV and energy storage.

Neural-Fuzzy methods have also been used in literature.

In a neural-fuzzy system, the output of neural networks is

fed to a fuzzy system, which can then use rules derived from

domain knowledge to produce the required output. The neural

network adjusts weights by calculating the error from fuzzy

outputs. Reference [139] presents a controller based on an

adaptive network-based fuzzy inference system (ANFIS) that

schedules and controls house loads to reduce power consump-

tion. Reference [140] implements an ANFIS controller for

smart homes. The controller schedules devices without min-

imizing energy consumption in response to dynamic pricing.

Reference [142] provides an overview of reinforcement

learning-based algorithms for demand response. Reinforce-

ment learning (RL) is an agent-based AI algorithm that has

the capacity to learn scheduling parameters and preferences

through trial and error interactions that are guided by a reward

function. A reinforcement learning system involves an envi-

ronment, control actions, transition probabilities, a reward

function, a policy, and a performance metric. Further details

about RL can be found in [141]. The first usage of rein-

forcement learning for home energymanagement is described

in [143], where a neural network is used to control heat-

ing, ventilation, air conditioning (HVAC), and lighting to

minimize user discomfort and reduce energy costs. Refer-

ences [144] and [57] use reinforcement learning to schedule

devices in response to pricing signals. In [145], different

functions measure user dissatisfaction when appliances fail

to perform the required task in the required time. Refer-

ence [146] uses an RL algorithm in a demand response

setting and compares it with a decentralized heuristic-based

approach. Reference [147] uses RL to minimize cost by not

exceeding a certain power threshold and without causing

dissatisfaction by delaying the operation of devices. Refer-

ence [148] focused on shifting the cost of certain flexible

loads. Reference [149] uses Q-learning to shave peak demand

of appliances and electric vehicles with distributed generation

by breaking down the main problem into sub-tasks that are

then solved independently using RL.
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VIII. CONCLUSIONS

The increasing ubiquity of distributed renewable energy

generation has promoted the development of microgrids as

local power structures that integrate HEMSs. At the level

of the individual household, HEMSs enable consumers to

make energy-efficient choices without compromising com-

fort, through optimal management of appliance usage and

EV charging in Home Area Networks. At the level of the

electricity grid as a whole, utilities can monitor federated

HEMSs through Wide Area Networks and acquire situation

awareness about the dynamics of consumption to set dynamic

parameters for the management of the power grid such as

electricity prices, and enact protective measures when imbal-

ances in supply and demandmay lead to system vulnerability.

Somewhere in between, the federated monitoring of HEMs

in Neighborhood Area Networks enables local operators to

manage microgrids for optimal power flow and transient sta-

bility to avoid overloading and voltage or frequency instabil-

ities and optimize microgrid operations in changing weather

scenarios.

HEMSs have come a long way since they first appeared

in the 1970s, moving from a centralized solution running

on proprietary operating systems to distributed architecture

running on standard operating systems. Modern HEMSs are

more resilient because their components run on microcon-

trollers and work together through distributed protocols so

that the HEMS still works even when one of the parts fails.

Distributed protocols allow each device to respond to events

on its own without having to interact with a centralized

workstation so that the HEMS does not have a single point

of failure. The use of cloud computing provides a stable

platform for data storage and processing. The integration

of IoT devices ensures maximum access to the information

relative to each HEMS component. The inclusion of Edge

and Fog computing techniques allows data to be stored and

processed locally to avoid excessive data transmission to the

cloud, improve response time and decrease latency, and offer

greater privacy.

The components of a HEMS include sensors, measuring

devices, smart controllers/actuators, infrastructure for com-

munication, and a management controller for supervision

and control of data. These components address five primary

functions: management, control, logging, andmonitoring and

fault detection for energy systems. The target application

is to enable end-users to control and schedule appliances,

including EV chargers, to consume more efficiently, follow-

ing utility-sponsored demand-response programs based on

incentives or price schemes (e.g., ToU).

A host of increasing studies shows that optimization meth-

ods, including game theory, machine learning, and other AI

techniques, can help find the best demand-response configu-

ration by determining the best time to shift or reduce loads

taking into account user preferences. As HEMSs enter the

mainstream home technology market, these techniques are

likely to be integrated into commercial HEMSs to help the

user manage home appliances and devices in a seamless way.

Looking forward, HEMSs can have a pivotal role in facili-

tating the growth of federated microgrids as the power system

solution of the future. In enabling energy efficiency, HEMSs

promote cost reduction, making microgrids more econom-

ically viable. At the same time, HEMSs provide detailed

information about home energy use across Neighborhood and

Wide Area Networks that operators can use to increase grid

safety, resiliency, and effectiveness.
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