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Abstract

Purpose Sleep is an important human activity. Comfortable sensing and accurate analysis in sleep monitoring is beneficial 

to many healthcare and medical applications. From 2020, owing to the COVID-19 pandemic that spreads between people 

when they come into close physical contact with one another, the willingness to go to hospital for receiving care has reduced; 

care-at-home is the trend in modern healthcare. Therefore, a home-use and real-time sleep-staging system is developed in 

this paper.

Methods We developed and implemented a real-time sleep staging system that integrates a wearable eye mask for high-

quality electroencephalogram/electrooculogram measurement and a mobile device with MobileNETV2 deep learning model 

for sleep-stage identification. In the experiments, 25 all-night recordings were acquired, 17 of which were used for training, 

and the remaining eight were used for testing.

Results The averaged scoring agreements for the wake, light sleep, deep sleep, and rapid eye movement stages were 85.20%, 

87.17%, 82.87%, and 89.30%, respectively, for our system compared with the manual scoring of PSG recordings. In addition, 

the mean absolute errors of four objective sleep measurements, including sleep efficiency, total sleep time, sleep onset time, 

and wake after sleep onset time were 1.68%, 7.56 min, 5.50 min, and 3.94 min, respectively. No significant differences were 

observed between the proposed system and manual PSG scoring in terms of the percentage of each stage and the objective 

sleep measurements.

Conclusion These experimental results demonstrate that our system provides high scoring agreements in sleep staging and 

unbiased sleep measurements owing to the use of EEG and EOG signals and powerful mobile computing based on deep 

learning networks. These results also suggest that our system is applicable for home-use real-time sleep monitoring.
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1 Introduction

Sleep is an important human activity. Monitoring and recog-

nizing sleep stages has many healthcare and medical appli-

cations, such as long-term sleep quality evaluation, sleep 

environment control, and sleep disorder diagnosis [1, 2]. 

Comfortable sensing [compared with that afforded by a poly-

somnogram (PSG)] with automatic sleep staging is required 

for home-use sleep monitoring. Because of the COVID-19 

pandemic, which spreads among people when they come 

into close physical contact with one another, the willingness 

to go to a hospital for care has reduced. Care-at-home has 

been considered a practical solution to prevent infection and 

reduce the burden on healthcare systems.

A conventional PSG is a clinically approved sleep-mon-

itoring device. A PSG can be understood as a multivari-

ate system that records different biological signals, such as 

electroencephalograms (EEGs), electrooculograms (EOGs), 

electromyograms (EMGs), and electrocardiograms (ECGs). 

The recorded data are divided into 30-s intervals called 

epochs. Then, one or more experts classify each epoch into 

one of five stages [N1, N2, N3, rapid eye movement (REM), 

or wake] by quantitatively and qualitatively examining the 

signals of the PSG in the time and frequency domains. 

Because visual sleep scoring by experts is time consum-

ing and subjective, various automatic sleep scoring methods 

have been developed [3, 4]. However, the excessive num-

ber of wired connections in a conventional PSG disturbs a 

user’s sleep, and therefore, automatic sleep-staging methods 

based on a single channel EEG/EOG have been developed to 

reduce the number of wires and disturbance to a user [5–13].

For facilitating convenient sensing at home, various 

approaches without sleep EEGs have been proposed to 

describe sleep behavior/states, such as body activity [14, 

15], ECGs [16–18], voice [19], and breathing [20], that 

can be measured by a self-applicable device for home use. 

The characteristics of these methods are usually part of the 

standard PSG sleep protocol, and owing to a lack of EEG 

information, physiological details and descriptions of the 

sleep for diagnosis cannot be provided.

In this study, a real-time sleep-monitoring system that 

integrates a wearable eye mask [21] for EEG/EOG meas-

urement and a mobile device for stage identification is pro-

posed. The eye mask includes an embedded module that 

records EEGs and EOGs with high signal quality and cal-

culates the features. A mobile device is used to receive the 

features through Bluetooth Low Energy (BLE) and analyzes 

them for sleep-stage identification with MobileNetV2. A 

novel performance evaluation strategy that considers sleep-

staging agreements and sleep measures was proposed for 

parameter selection. The results of sleep staging and fun-

damental sleep measures obtained using our system were 

compared with the manual scorings obtained through PSG 

data for performance evaluation.

2  Methods and Materials

Figure 1 shows the development flowchart of this study. In 

the experiments, the proposed wearable eye mask and a PSG 

were mounted on the subjects for simultaneous recording. 

These data were used for training and validation. During the 

model training step, signal preprocessing and feature extrac-

tion were executed on a personal computer. Then, signal 

preprocessing and feature extraction were executed on a sys-

tem embedded in the wearable eye mask. The mobile plat-

form received the features sent from the eye mask through 

Bluetooth and used the trained stage classification model for 

real-time sleep scoring.

2.1  Hardware Design

To achieve a home-use solution, we proposed a portable 

wireless physiological measurement module. This module 

can be used as either a standard PSG measurement device or 

a wearable device in combination with an eye mask frame for 

convenient and comfortable sensing. The module employs 

edge computing for sleep-related feature extraction on the 

embedded system to achieve real-time sleep interpretation 

and extend the application of the system to home-care use.

Fig. 1  System development 

flowchart
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2.1.1  Portable Wireless Physiological Measurement 

Module

The developed sensing module can be used for microvolt-

level physiological signal recordings, such as EEG, EOG, 

EMG, or ECG, in a single-end/differential mode. The data 

are stored in an SD memory card and/or transferred in real 

time to the application device through BLE. The module 

integrates an nRF52840 microchip unit and an ADS1299 

analog front-end as shown in Fig. 2. The detailed specifi-

cations are listed in Table 1. The main requirements of the 

module considered for applicability are listed as follows:

(a) Light weight: The weight of the module with the bat-

tery is 19 (± 1) g (the sensing module weighs 9 g and 

the 500 mAh battery weighs 10 g). The light design 

significantly reduces the interference in sleep quality.

(b) Continuous 24-h recording: This proposed module can 

record and transfer raw sleep data for up to 30 h con-

tinuously. In general, a sleep-monitoring device should 

be able to record at least 9 h continuously for over-

night measurement. In addition, operating in the on-

line sleep-monitoring mode (with edge computing and 

wireless feature transmission), the system can record 

sleep continuously for 9.5 h and perform staging in 

home-use applications.

(c) Edge computing: To achieve real-time sleep scoring in 

mobile platforms and to reduce the power consump-

tion of the measurement module, signal preprocessing 

and feature extraction are implemented in the sens-

ing module. This approach prevents frequent BLE 

transmissions/connections, effectively reduces power 

consumption, and preserves personal privacy with-

out releasing raw data. The features are regarded as 

encrypted information, and a matching model (e.g., the 

classification model) is required to translate the actual 

situation of the user.

2.1.2  Wearable Eye Mask Design

The core design concept for comfortable sleep sensing is to 

integrate a sleep eye mask with EEG and EOG electrodes. 

To reduce pressure on the eyeballs, we use sponges located 

between the sensor and the eye mask to make the sensor 

fit the shape of the orbit. Our eye mask design and soft-

fabric electrodes protect users from interference due to the 

electrode wire and allow them to wear the eye mask con-

veniently, as shown in Fig. 3. This design has been proven 

to be more comfortable than a traditional PSG [21]. Two 

improvements were made in this study. First, we selected 

softer materials to make the mask lighter (from 63 to > 42 g). 

Second, instead of a single bipolar EOG signal recorded to 

calculate features, the forehead EEG and EOG-R singles 

were recorded in single-end mode to obtain EEG-related 

and EOG-related characteristics during sleep. The differ-

ence between the signals of these two channels was then 

calculated to obtain the EOG signal.

2
5
m
m

43mm

H:32mm

30mm

2
0
m
m

(A) (B) (C)

Fig. 2  Circuits of the designed portable wireless physiological meas-

urement module: A Top board circuit with MCU, USB plugin, SD 

card, and other parts; B Bottom board circuit with ADC and signal 

input pin; C Packaging with battery for wearable application

Table 1  Specifications of the designed portable wireless physiologi-

cal measurement module

Item PID Function

MCU nRF52840 Frequency: 2.4 GHz

RAM: 256 kB

Microcontroller: ARM Cortex-M4F

Bluetooth: 5.0

ADC ADS1299 4 channels

Resolution: 24 Bits

Sample rate: 250 Hz ~ 16 kHz

Input range (V): 0–5.25

Gain: 1–24

Accelerometer ADXL362 3-axis

Sensor range: ± 8 g

Resolution: 12 Bits

Memory Card With FAT32 page system

Total power

cost

About 16.38 mAh

Forehead

EEG-FP1
EOG Right

(B)

(A) (C)

Fig. 3  A Packaged sensing module, which is connected to the eye 

mask with metal snap buttons; B Outside and C inside of the eye 

mask, which can measure the forehead EEG and EOG-R signals; The 

entire eye mask wearable device weighs 74 g (± 1)
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Figure 4 shows the sleep measurement results obtained 

by using our sensing module (Fig. 2) to function as a 

mini-PSG (to record 2 EEG channels, 1 EOG channel, 

and 1 EMG channel) and the eye mask (Fig. 3) to perform 

simultaneous recordings. In the wake stage (Fig. 4A), the 

alpha rhythm (8–12 Hz) is observed in the EEG channels 

of both devices. The alpha rhythm is also observed in the 

EOG signal of the eye mask. In the light sleep stage (N1 

stage, Fig. 4B), the theta rhythm (4–7 Hz) is the major 

component in the EEG channels of both devices. In the 

deep sleep stage, characteristics of high-amplitude, slow-

wave activity (1–3 Hz) are observed in all channels of the 

two devices. In the REM stage, the EOG signals indicate 

REM with large amplitude. These recordings indicate 

that the eye mask can fix the dry electrodes to capture 

the EEG and EOG characteristics during different sleep 

stages. However, because the forehead EEG was recorded 

instead of typical C3-M2/C4-M1 channels, the EEG signal 

of the eye mask was not identical to the EEG signal of the 

PSG; therefore, a specific automatic sleep scoring model 

is required for the eye mask to perform home-use sleep 

monitoring.

2.2  Subjects and Recording

These measurements were approved by the internal review 

board of National Cheng Kung University. A total of 25 

overnight PSG and wearable eye mask sleep recordings were 

obtained simultaneously from 25 subjects (12 men and 13 

women, aged 23.2 ± 1.8 years, college students of NCKU) 

in this study. All subjects had no prior history of smoking or 

drug or alcohol abuse or neurological, psychiatric, or sleep 

disorders. No outside interference was observed during data 

collection, and no medications were used to induce sleep. 

To maintain the subjects’ sleeping habits and body clocks 

as much as possible, we provided an independent and user-

controlled sleeping environment (temperature: 25–28 °C, 

light, and airflow), and the scheduled bedtime was at their 

leisure. Subjects arrived at the laboratory at approximately 

10:00 PM and were given instructions for the experiment. 

Before execution the experiments, they did not take any tea, 

coffee, alcohol, etc.… Then, two sleep monitors (a mini-

PSG and the eye mask) were set up, which took 30–40 min. 

The mini-PSG recordings (utilizing the sensing module in 

Fig. 2) included two EEG (C3-M2 and C4-M1) channels, 

one EOG (EOG_R—EOG_L) channel, and a chin EMG 
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Fig. 4  Sleep recordings corresponding to different sleep stages obtained simultaneously by a PSG and the eye mask
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channel. The eye mask recordings contained a forehead EEG 

(FP1) and an EOG (EOG_R) channel, as shown in Fig. 3. 

The sampling rate of these two devices was 250 Hz, and the 

data were transmitted to the terminal computer in real time 

and were saved to the on-board SD card. All 25 PSG sleep 

recordings (EEG, EOG and EMG) were visually scored by 

a sleep specialist using the AASM guidelines in 30-s inter-

vals (named an epoch) as the gold standard to develop the 

automatic scoring model for the recordings obtained from 

the eye mask. To efficiently and effectively construct and 

evaluate our method, we sorted the recordings based on the 

sleep efficiency (SE) obtained from the manual scoring of 

the mini-PSG. The recordings of every third subject from 

the sorted list of the recordings based on SE were used for 

verification (8 subjects), and the remaining data from 17 

subjects were used for model construction.

Table 2 lists the statistics of sleep measures obtained 

from the 25 subjects. From the 24,029 epochs, the average 

percentages of the wake, light sleep, deep sleep, and REM 

stages were 10.78%, 53.6%, 17.38%, and 18.23%, respec-

tively. The SE ranged between 66 and 96%, and the SE of 

two subjects was < 80% (72.42% and 66.7%, respectively). 

The average total sleep time was > 7 h, ranging 325–524 min, 

and two subjects slept < 7 h (379 and 325 min, the same sub-

jects with poor SE).

2.3  Edge Computing for Feature Extraction

To effectively reduce power consumption as well as pre-

serve personal privacy, the embedded physiological sensing 

module in the eye mask provides a signal recording mode 

and a sleep scoring mode. In the scoring mode, an ARM 

processor in the embedded sensing module performs signal 

processing and feature extraction to reduce the data size of 

the BLE package and avoid the leaking of private informa-

tion. Figure 5 shows the flowchart of the real-time sleep 

analysis procedure, wherein edge computing is employed 

by the embedded physiological sensing module in the eye 

mask to extract features and mobile computing is employed 

in a mobile device for sleep-stage identification. The embed-

ded sensing module in the eye mask records the forehead 

EEG and EOG signals at a sampling rate of 250 Hz. Before 

feature extraction, the EEG and EOG raw data were filtered 

with a cutoff frequency of 0.5–30 Hz by using a 30-order 

Table 2  Statistics of sleep measures obtained from the 25 subjects

Sleep stage Wake Light Deep REM

Avg(%) 10.78 53.60 17.38 18.23

S.D 7.26 8.16 3.89 3.88

Avg(mins) 51.3 255.1 82.7 86.7

Sleep parameters SE (%) TST (min) SOT (min) WASOT (min)

Avg 89.22 429.0 29.6 17.3

S.D 7.26 61.4 19.7 22.2

Fig. 5  Flowchart of the real-

time sleep analysis procedure, 

wherein edge computing is 

employed by the embedded 

physiological sensing mod-

ule in the eye mask to extract 

features and mobile computing 

is employed in a mobile device 

with MobileNETV2 for sleep-

stage identification
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FIR low-pass filter and a 125-order FIR high-pass filter to 

remove artifacts and maintain the data characteristics for 

sleep analysis. Every 0.2 s of data and the previous 0.8 s of 

data were combined as 1 s of data to perform a 256-point fast 

Fourier transform calculation. The resultant spectrograms 

of the EEG and EOG signals were sent from the eye mask 

through BLE to the mobile platform to generate the feature 

map and identify sleep stages by using MobileNetV2.

2.4  Mobile Computing for Feature Map Generation 
and Sleep Staging

For home-use healthcare applications, mobile devices, such 

as smart phones and pads, provide acceptable computing, 

communication, display, and management functions. Tak-

ing advantage of the advances in powerful deep learning 

networks, we used MobileNetV2, a convolutional neural 

network (CNN)-based next-generation portable computer 

vision network developed by Google Inc., to identify the 

sleep stages based on the features calculated and transmitted 

from the eye mask. The network program is small enough 

to be deployed on a mobile device. This API contained a 

new architecture called “linear bottlenecks” and simplifies 

the layer connection through a shortcut. The shortcut helps 

improve the encoding of the model’s intermediate inputs and 

outputs, whereas the inner layer allows the model to trans-

form from lower-level concepts, such as pixels, to higher-

level descriptors, such as image categories [22].

The mobile-based sleep scoring method proposed in this 

study generated two MobileNetV2 models to compose a 

hierarchical classification process. The level-1 model first 

classifies the epoch into three classes—wake, deep sleep 

stage (N3), and other stages (N1, N2, and REM)—based 

on their EEG features. Next, the other stages are further 

classified as light sleep (N1 and N2) and REM through the 

level-2 model, based on their EOG features. Therefore, any 

unknown epoch is identified as one of the four stages: wake, 

light sleep, deep sleep, and REM.

Because MobileNetV2 is a pretrained deep learning net-

work by using the ImageNet dataset, we generated feature 

maps (images) based on the spectrograms of the EEG and 

EOG signals to fit the input structure of MobileNetV2. The 

completeness and coverage of essential information in the 

feature map and the suitable objective to achieve for the 

model are two major factors that influence the performance 

of model tuning and optimization. For sleep scoring, the 

following are considered.

2.4.1  Temporal Context for Feature Maps

For manual sleep scoring, in addition to the signal character-

istics of the current epoch to be identified, the characteristics 

of nearby epochs are observed by experts to consider the 

temporal context of sleep cycles. Therefore, in this study, 

the input feature maps were not limited to the spectrogram 

of the current epoch. Some portion of the previous and sub-

sequent epochs were also included. The received spectro-

grams 15 s before and after the current 30-s epoch were 

included in the current 30-s spectrogram, to obtain a 60-s 

spectrogram as the feature maps (EEG and EOG). Moreover, 

the regular input image size of MobileNetV2 is 224 × 224 

pixels, so the feature maps were resized into 224 × 224 pixels 

before they were fed into the MobileNetV2 network. In the 

experiments, the performances of including 20 s of previous 

and subsequent data in the current 30-s spectrogram were 

also compared. Similarly, the feature maps were resized to 

224 × 224 pixels. If the generated feature map was smaller 

than 224 × 224 pixels, the empty portions were designated 

as zero. If the generated feature maps were larger than 

224 × 224, the maps were resampled.

2.4.2  Objective Selection for the Classifier

Most of the automatic sleep scoring method compares the 

epoch-by-epoch agreements between the model outputs 

and manual scorings to adjust parameters or select models. 

However, for sleep diagnosis, beyond sleep staging, sleep 

indices calculated from the hypnograms are also important 

for evaluating a subject’s objective sleep quality. Consid-

ering or evaluating only the epoch-based agreement may 

cause overfitting and not ensure that accurate diagnostic 

sleep measurements are reported. Therefore, in addition 

to the average agreement of epoch staging, objective sleep 

measurements such as SE, sleep latency, wake after sleep 

onset time (WASOT), and total sleep time (TST) in model 

optimization were proposed and evaluated in this paper.

3  Results

In total, 25 overnight PSG and wearable eye mask sleep 

recordings were obtained simultaneously from 25 sub-

jects (12 men and 13 women, aged 23.2 ± 1.8 years). The 

SE ranged between 66 and 96%, and the recordings were 

sorted based on the SE. From the sorted list, every third 

recording from the subjects were used for verification (8 

subjects), and the remaining data from 17 subjects were 

used to establish and fine-tune the MobileNetV2 model. 

The spectrogram 15 s before and after the current 30-s 

epoch was included with the current 30-s spectrogram to 

obtain a 60-s spectrogram as the feature image (resized 

to 224 × 224 pixels) to be fed into MobileNetV2. The 

length of neighbor data to be included was determined 

by averaging the ranks of agreements corresponding to 

the wake, light sleep, deep sleep, and REM sleep stages, 

as well as the accuracies corresponding to objective sleep 
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measurements (SE), sleep latency, TST, sleep onset time 

(SOT), and WASOT). The feature map with the 60-s spec-

trogram (including 15 s before and after the current 30-s 

epoch) helps achieve a good balance between sleep staging 

and accuracy in sleep measurements.

The confusion matrix of the four-stage epoch classifica-

tion obtained using the data from eight test subjects and 

sensed by the eye mask and the classifier on the smart phone 

(Google Pixel 3a) is presented in Table 3. For the sleep 

stages, the overall agreement between the scores provided 

by the expert and those obtained by the proposed system was 

86.72% (± 1.85%); all interscorer agreements were higher 

than 82% [3]. The sensitivities of the wake, light sleep, deep 

sleep, and REM stages were 85.20%, 87.17%, 82.87%, and 

89.30%, respectively. The agreements between the predicted 

scores and the scores provided by experts for all stages were 

good and exceeded 80%. In addition, the mean average error 

absolute error was also calculated to measure the agree-

ments between the results of the expert and the proposed 

method with respect to various sleep measurements. The 

mean absolute errors (MAEs) with respect to four objec-

tive sleep measures—SE error, TST error, SOT error, and 

WASOT error—were 1.68% (± 2.5 9%), 7.56 (± 7.88) min, 

5.50 (± 9.07) min, and 3.94 (± 2.35) min, respectively.

For healthy adults, a deep sleep stage constitutes 

approximately 20% of the TST and the REM stage consti-

tutes approximately 25% of the TST. Therefore, the report 

addresses percentage of TST that each sleep stage occupies 

is essential for sleep diagnosis. Figure 6 shows the com-

parisons of the subject-by-subject percentage of the TST 

each sleep stage occupies, as estimated by our system and 

manual PSG scoring. The MAE between the results esti-

mated by our system and those estimated through manual 

PSG scoring corresponding to the four sleep stages—wake, 

light sleep, deep sleep, and REM—were 1.68% (± 1.92%), 

2.94% (± 1.66%), 1.99% (± 1.54%), and 2.10% (± 2.10%), 

respectively.

In the statistics analysis, no significant differences were 

observed between the proposed system and manual PSG 

scoring in terms of the percentage of each stage and the 

objective sleep measurements (p-values of the wake, light 

sleep, deep sleep, REM, SE, TST, SOT, and WASOT were 

0.9, 0.8, 0.33, 0.26, 0.9, 0.96, 0.7, and 0.32, respectively). 

Figure 7 shows the hypnograms of two test subjects, includ-

ing the PSG manual scoring results and the results of our 

system. These experimental results demonstrate the applica-

bility of our system for home-use sleep monitoring.

4  Discussion and Conclusion

From 2020, owing to the COVID-19 pandemic that spreads 

between people when they come into close physical contact 

with one another, the willingness to go to hospital for receiv-

ing care has reduced; care-at-home is the trend in modern 

healthcare. In this study, a home-use and real-time sleep-

monitoring system that integrates a comfortable eye mask 

and a mobile device was developed. The wearable eye mask 

[21] obtains high-quality EEG and EOG signals, uses edge 

computing for essential feature calculation, and facilitates 

real-time data transmission through BLE. A mobile device 

was used to receive the calculated features, generate the 

feature maps, and analyze the feature maps with Mobile-

NETV2 for sleep-stage identification. The averaged scoring 

agreements between our proposed system and the manual 

scoring of PSG recordings for the wake, light sleep, deep 

sleep, and REM stages were 85.20%, 87.17%, 82.87%, and 

89.30%, respectively. In addition, the MAEs with respect 

to the objective sleep measurements—SE, TST, SOT, and 

WASOT—were 1.68%, 7.56 min, 5.50 min, and 3.94 min, 

Table 3  Confusion matrices between the mobile scoring method and the visual scorings obtained with eight test subjects with respect to sleep 

stages and sleep measurements

Sleep stage Predict

Wake Light Deep REM ACC 

Scorer

 Wake 85.20% (616) 13.96% (99) 0.28% (2) 0.83% (6) 85.20%

 Light 2.49% (97) 87.17% (3389) 4.22% (164) 6.12% (238) 87.17%

 Deep 0.35% (5) 16.70% (236) 82.27% (1171) 0.07% (1) 82.87%

 REM 0.55% (8) 10.15% (148) 0.00% (0) 89.30% (1302) 89.30%

 ACC 86.72%

Error of sleep measurement SE (%) TST (min) SOT (min) WASOT (min)

Errors

 Average 2.10 1.68 7.56 5.50

 STD 2.10 2.59 7.88 9.07

 p-value 0.26 0.90 0.96 0.70
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respectively. No significant differences were observed 

between the proposed system and manual PSG scoring in 

terms of the percentage of each stage and the objective sleep 

measurements. The experimental results demonstrate the 

applicability of the proposed home-use and real-time sleep-

monitoring system.

Various automatic sleep-staging methods based on a 

single EEG channel have been developed for home-used 

sleep monitoring. These methods were developed with the 

objective of using less recording wires to reduce sleep 

disturbance [7, 9–13, 23]. However, most of these meth-

ods use the EEG signals from PSG recordings instead of 

home-based wearable devices, and although commercial 

wearable devices, such as wristbands [15, 24], are easy to 

use, they may not provide accurate sleep hypnograms and 

unbiased objective sleep measurements [25]. Our system 

provides high scoring agreements in sleep staging and 

unbiased sleep measurements owing to the use of EEG 

and EOG signals and powerful mobile computing based 

on deep learning networks.

Fig. 6  Comparisons of subject-

by-subject percentage of TST 

each sleep stage occupies, as 

estimated by the proposed sys-

tem and manual PSG scoring
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Fig. 7  Hypnograms of two test subjects, including those of the mini-PSG manual scoring results and results of our system
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To enhance the performance of sleep staging, the tem-

poral context is considered for feature map generation. As 

[23, 26] suggested, a trade-off exists between performance 

and length. As reported, the improvement in performance 

was marginal, and an overly long context extension may 

affect the detection of some sleep stages [11, 12, 23, 26]. 

We investigated the benefits of context extension from 0 

to 20 s in 5-s steps. We found that a context extension of 

5 s improved the performance of stage scoring, and the 

improvement tended to be smooth when using 15-s or 20-s 

context extensions. The experimental result showed that 

the feature map with the 60-s spectrogram (including 15 s 

before and after the current 30-s epoch) aids in achieving a 

good balance between sleep staging and accuracy in sleep 

measurements. Our proposed system also helps overcomes 

the limitations of computing capability, communication 

speed, and power consumption for the mobile platform.

The major limitation of this study was the young aver-

age age (under 30 years old) of the respondents. Elders 

need to be included and analyzed in future research. Older 

people find it more difficult to sleep for as long as possible 

and tend to wake up several times throughout the night. 

In addition, these insomnia symptoms of elders are more 

likely to be caused by sleep disordered breathing, such 

as sleep apnea syndrome. Although the current dataset 

includes subjects with low sleep quality, most of symp-

toms are difficulty in falling asleep. Our future studies 

should include sleep disordered breathing-related insom-

nia symptoms in the dataset.

On-line sleep monitoring is required for applications 

such as memory consolidation [27], efficient and effective 

napping [28, 29], and sleep environment enhancement [30]. 

These applications usually provide stimuli or change condi-

tions at specific sleep stages or when specific events occur. 

The proposed eye mask integrated with a smart phone meets 

such requirements; moreover, it is portable and can be used 

by someone on their own, which is critical for day-to-day 

living. In the future, more applications or advanced sleep 

research can be developed by using our system.
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