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Abstract—Powered by the technologies that have origi-
nated from manufacturing, the fourth revolution of health-
care technologies is happening (Healthcare 4.0). As an
example of such revolution, new generation homecare
robotic systems (HRS) based on the cyber-physical sys-
tems (CPS) with higher speed and more intelligent exe-
cution are emerging. In this article, the new visions and
features of the CPS-based HRS are proposed. The latest
progress in related enabling technologies is reviewed, in-
cluding artificial intelligence, sensing fundamentals, mate-
rials and machines, cloud computing and communication,
as well as motion capture and mapping. Finally, the future
perspectives of the CPS-based HRS and the technical chal-
lenges faced in each technical area are discussed.
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I. INTRODUCTION

W
ITH the increase of the aging population, the demand for

home care services is escalating and pulling the trans-

formation that traditional home care is evolving from open-loop

human-dominated systems to closed-loop Homecare Robotic

Systems (HRS). However, it can be expected that significant

challenges are being faced in this emerging interdisciplinary

field, which can be addressed by the enabling technologies

originated from Industry 4.0. On the analogy of Industry 4.0,

Healthcare 4.0 is used to depict the gradual emergence of

the fact that an increasing number of technologies, especially

Cyber-Physical Systems (CPS), incubated in the manufacturing

sector are being adopted in healthcare [1]. In the context of this

new revolution, increasing quantities of CPS are shaping digital

healthcare systems involving products, technologies, services,

and enterprises [2]. The fundamental components of these CPS

arise from a mix of enabling technologies and approaches,

including intelligent sensing and actuation, automatic control,

autonomous robotics, Internet of Things (IoT), Big Data analyt-

ics, Fog and Cloud Computing, and Artificial Intelligence (AI).

Challenges faced by today’s aging society facilitate the CPS

to be applied in Homecare Robotic Systems with higher speed

and more intelligent execution, which is an appealing option to

provide effective in-home care.

The goal of this article is threefold: 1) to give an overview

of homecare robotic systems revolutionized by the Healthcare

4.0; 2) to review the latest research advancement in related

topics; and 3) to forecast the directions and challenges for future

research. The application scenarios cover one of the emerging

research fields in health engineering – homecare – to cope with

the effective provision of healthcare services, especially in aging

societies. This article focuses on interdisciplinary researches,

possible solutions, and pioneering initiatives, crossing AI, sens-

ing fundamentals, new materials and machines, cloud computing

and communication, as well as motion capture and mapping.

II. THE NEW VISION AND METHODOLOGY

A. Core Ideas of the Healthcare 4.0

1) Definition: Given the sustainability challenges around cur-

rent medical models in developed countries, and the direction
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Fig. 1. Illustration of the relationships of new technologies within large-
scale AI-powered integrated CPS in Healthcare 4.0.

that healthcare industries and services must evolve to meet these

challenges, a clear definition of Healthcare 4.0 is given by:

Healthcare 4.0 is a continuous but disruptive process of trans-

formation of the entire healthcare value chain ranging from

medicine and medical equipment production, hospital care,

out-of-hospital care, healthcare logistics, and healthy living

environment, to financial and social systems. As shown in the

Fig. 1, in Healthcare 4.0, vast amount of healthcare devices

including sensors and actuators (e.g., healthcare robots) and

services in the physical world, i.e., the Physical Healthcare

Systems (PHS), are precisely modeled by vast amount of digital

models and automation processes in the cyber world, i.e., the

Cyber Healthcare Systems (CHS). The Big Data from the PHS

to the CHS and the feedback control from the CHS to the PHS are

transmitted through high performance IoT networks in real-time,

and all the software components are deployed over Cloud and

Fog Computing platforms in a fully distributed fashion. Both the

PHS and CHS are powered by AI for not only data analytics but

all decision making and execution so that manual intervention

is minimized. As a result, the Healthcare 4.0 will create not

only digitalized healthcare products and technologies but also

digitalized healthcare services and enterprises [1].

2) Shift of Design Paradigm: The design paradigm of the

healthcare system has fundamentally shifted from open loop

to closed loop, from small loop to large loop, and from single

loop to multiple loops [3]–[5]. In the past years of development

of smart home for home care, considerable single-point devices

and systems have been developed. These devices and systems

can provide the function of data collection and analytics for

home environment monitoring, daily activity tracking, health

status assessments, remote control of appliances [1]. In general,

there is a lack of automation in terms of decision-making and

execution that are currently human-dominated, which is called

“open loop”. The new paradigms are arising in healthcare to

mark an epochal change in the domain, that is, more and more

AI-powered high-speed networked healthcare devices are taking

over humans in terms of the role for decision-making and

execution, which is called “closed loop”.

The shift of the Healthcare 4.0’s design paradigm occurs at

three different levels, i.e., sensing, data fusion, and data inter-

pretation. With single-point devices and systems withdrawing

from the healthcare industries, a variety of interoperable smart

devices are used to collect data on human health and condition

of infrastructure [6]. Computing and processing techniques such

as big data analytics and AI are leveraged to fuse, analyze, and

manage data [7]. In terms of closing the loop, smart sensing and

processing techniques are being combined with actuators and

being seamlessly integrated into overall control systems [8]. As

a result, the closed-loop, automatic and intelligent executions for

instant short-term supports and more professional care services

are emerging, such as robot-assisted fall prevention and waking

sleep apnea, robotic first aid and tele-medicine. Indeed, the in-

telligent execution of all kinds of actuators makes it increasingly

possible to build the healthcare value chain.

The shift of design paradigm allows for both formal and infor-

mal caregivers, more digital healthcare services, and wider enter-

prises or institutes to be created and to participate in Healthcare

4.0, which aims to realize ultimate vision of the 8-P Healthcare:

preventive, predictive, participatory, patient-centered, personal-

ized, precision, pre-emptive, and pervasive healthcare [1], [9].

B. The New Vision of CPS-Based Homecare
Robotic Systems

As shown in Fig. 2, the CPS-based homecare robotic system

(CPS-HRS) is experiencing a design paradigm shift from the

open, small, single loops to the closed, large, multiple loops

more reflective of holistic care, where humans and robots share

their capabilities and intelligence. A typical cyber-physical

coupling system consists of three parts: cyber part, physical

part, and cyber-physical interaction modules [10]. These three

parts are closely connected via those loops. The cyber part

includes sensing, actuating, computing, and communication

hardware/software. The physical part consists of care recipi-

ents, doctors, family members, and robots. The cyber-physical

interaction modules are composed of data processing, analysis,

and transmission modules, interfacing modules, and control

modules. The ultimate purpose of using cyber infrastructure

is to intelligently and automatically monitor (from physical

to cyber) and control (from cyber to physical) the physical

homecare robotic system via interaction modules, realizing the

closed loops of the revolution mentioned above. The goal of the

CPS-HRS is to establish a new system to support computational

and cognitive homecare services based on robotics.

C. New Services Enabled by the CPS-HRS

The proposed design has the intrinsic characteristic of a CPS

providing tight coupling of computational parts and physical

parts (e.g., patients and robots). It has several cyber–physical

interactions via closed feedback loops, as illustrated in Fig. 3.

The elderly usually lack self-care ability limited by their body

function [11]. Practical implementations of the robot-assisted

living can be enabled based on the CPS-HRS. Various func-

tional devices and robots will be designed based on specific

functional requirements. For example, the elderly have difficulty

in using bathrooms, which can be assisted by robots to increase

the quality of life [12]. The current number of professional

rehabilitation trainers does not meet the needs of patients’ re-

habilitation training. The CPS-HRS provides a solution using
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Fig. 2. Illustration of the concept of the CPS-HRS, composing of cyber HRS and physical HRS. The information flow in the CPS-HRS is
bidirectional. Devices and data are managed and analyzed respectively according to the real-time conditions data of status transferred from physical
HRS to cyber HRS. Robots and devices in physical HRS are connected and controlled by the feedback generated by the digital model of robotic
systems and care recipients from cyber HRS.

Fig. 3. Illustration of emerging application scenarios enabled by
cyber–physical interactions via closed loops in the CPS-HRS. The typ-
ical examples of cyber–physical interactions are: infrastructure-robot
interaction for robotic daily housework; human-robot interaction for
robot-assisted living, first aid, diseases prevention, and health manage-
ments; infrastructure-human interaction for interventional rehabilitation;
infrastructure-human-robot interaction for robotic tele-medicine.

robotic interventional rehabilitation training [13]. Besides, the

monitoring and measurements for patients must be conducted in

a hospital under the doctor’s or nurse’s support. The CPS-HRS

provides a novel way of implementing the tele-medicine, in

which the doctor or the nurse can conduct some necessary

measurements based on special devices [14]. Another important

service enabled by the CPS-HRS is the robotic first aid based

on the teleoperation technology, such as putting and starting the

patch of automatic external defibrillator (AED) on the patient’s

body, which improve the efficiency and the success rate of first

aid [15]. In addition, supported by the development of AI and

big data technologies, disease prevention will be a significant

application. For instance, early and specific diagnosis is con-

sidered important as it can help to guide Alzheimer’s disease

and dementia therapy, which can be further enhanced based

on the CPS-HRS [16]. Besides, cognitive decline is an obvious

symptom of dementia patients. Timely and accurate independent

medication is difficult for people with dementia. Robotic health

managements will be a focus of CPS-HRS with the development

of IoT-enabled devices [17]–[19].

D. New Features Enabled by Closed Loop Feedback

1) Affective Human-Robot-Interaction: In the past few

decades, human-robot interaction (HRI) has become an increas-

ingly important research area in the cross-disciplinary fields of

psychology, behavioral science, and cognitive science. It in-

cludes both the development of robots with human involvement

and the study of how humans and robots interact [20]. Past HRI

researches have focused on how humans control robots. How-

ever, for healthcare robots, they need to communicate with the

user in order to optimize their performance. Therefore, the robot

must be able to effectively recognize, interpret, and respond to

the emotions expressed by humans, given such emotions convey

important aspects of interaction, namely thoughts and feelings.

Two major models have been identified in the field of neuro-

science and cognitive science, describing how people perceive

and classify affection: categorical model and dimensional model

[21]. Many affective human-robot interaction studies use cate-

gorical models for facial expressions [22], body language [23],

voice [24], physiological signals [25], and multi-modal systems

[26]. The model allows the robot to interpret emotions in a

similar way to humans [27]. The most common discrete affective

categories that robots use in HRI settings are surprise, anger,

disgust, fear, sad, happy, and neutral. These affective categories

contain the six basic affection of Ekman and have been used to

infer appropriate social robot responses in various HRI scenarios

[28]. In the near future, healthcare robots will inhabit human
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environments. These communication skills are one of the keys

to the human acceptance of healthcare robots.

2) Seamless Infrastructure-Robot-Interaction: A large num-

ber of single point smart devices and open-loop systems have

been developed with the expansion of IoT and smart infrastruc-

tures [29]. Enabled by closed-loop feedback, we believe that

the CPS-HRS will integrate all the smart devices in the home

environment to promote and advance seamless infrastructure-

robot-interaction. More abundant and detailed data about the

condition of infrastructure and the information of the surround-

ing environments that impact on human health can be collected

[30]. Therefore, more optimized decision results for special

cases can be made based on computing [31] and AI [32]. The

CPS-HRS in the future eventually closes the loop by intelligent

execution through all kinds of actuators based on the decisions

made. Based on the obtained fusion information, the CPS-HRS

can make a more suitable decision to sequential problems and

perform accountable actions in homecare cases [33].

3) Human-Robot-Symbiosis: A variety of advanced robots

have entered human workspaces or living spaces with rapid

advances in robotic technology [34]. These robots can operate

side by side with humans or assist humans with specific tasks

without the need for physical barriers, i.e., fences [35]. In this

case, how to ensure security and realize human-robot-symbiosis

will be an emerging research topic [36]. Social robots and

assistive robots will be two practical hot topics in this field.

In the above context, the next generation of robot companions

or robot working partners will take the initiative to ensure inter-

action security. Advanced sensing technology, such as flexible

robot skin tactile sensor, and joint moment sensor, guarantees

the security of interaction [37], [38]. Combining with the deep

learning or other AI solutions and motion capture technology,

the HRS will be able to accurately sense and identify people’s

behavior, so as to predict collision [39], actively avoid obstacles,

or perform other actions, in order to ensure the security of

human-robot-symbiosis.

4) Teleoperation of Collaborative Robots: With the aging

population, the lack of home caregivers will be a big problem

[11]. Teleoperation is a promising solution for this problem,

which uses robotic devices remotely according to the operator’s

intention [30]. For the relatively easy assistive operations, the

robot can accomplish those operations autonomously. For the

half-disabled elderly which are partially incapacitated, they

can teleoperate the robot using their remaining capabilities to

support independent living. Besides, teleoperation can realize

the on-site professional operation of the people who have profes-

sional skills, such as the caregivers who work in the healthcare

institutions can teleoperate the robot to care these elderly in

home. Collaborative robot, a.k.a. “Cobot”, is an example of

the current development phase of human-robot-symbiosis. It

permits a safe interaction between robots and humans working

for the same or interrelated processes. The combination of

teleoperation and cobot for homecare will be a major trend of

CPS-HRS. In this trend, some new use cases will emerge for

making up for the lack of caregivers and reducing the cost of

homecare.

Fig. 4. Illustration of four new features enabled by five technologies
with supplementary reference, clearly providing the relationships be-
tween features and technologies. Given by this reference map, the indi-
vidual importance of these technologies for constructing the CPS-HRS
can be initially concluded.

The integration of advanced sensing, AI, new materials and

machines ensure the security interaction ability of cobot [31].

This makes it possible for cobot to provide care in the new vision

of HRS. Advanced motion capture technologies and novel mo-

tion mapping methods will provide a more natural and effective

way of capturing the operator’s intention for teleoperation [40].

In the future, the CPS-HRS will involve the caregiver or other

professional personnel in the hospital as the remote tele-operator.

E. Enabling Technologies

The distinguishing features mentioned above are enabled

by technologies that have originated from the manufacturing

industry, such as flexible sensing, new materials and machines,

cloud computing and communication, AI, and motion capture

and mapping. AI empowers the CPS-HRS with the capability in

the analysis of complex health or medical data for prevention or

treatment. Flexible sensing provides data support for the analysis

of a patient’s health condition. New materials and machines

expand the application scenarios of the CPS-HRS. Cloud com-

puting and communication are the key technologies to build a

connection between the cyber world and the physical world [41],

[42]. Motion capture and mapping enable the teleoperation of

homecare robots. As shown in Fig. 4, the following sections

will cover these five enabling technologies and bridge the gap

between enabling technologies and new features in CPS-HRS.

III. ARTIFICIAL INTELLIGENCE FOR THE CPS-HRS

Benefited by the recent progress of AI, wireless communica-

tion, cloud computing, and big data technology [7], there are new

homecare situations for the elderly, where robots and intelligent

technologies are at the core. In the AI-powered CPS-HRS,

robots can be used as the second body of expert doctors and

professional caregivers, performing disease prediction, assisted

diagnosis, assisted therapy, and assisted rehabilitation. The AI

for the intelligent hospital can also be applied to the home-based,

community-based healthcare of the elderly in the CPS-HRS.
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A. Disease Prediction

As analysis mining and integration of data by AI become

faster and more accurate, features outside accepted ranges can be

identified early and when appropriately combined used to avoid

serious consequences or complications. For example, the Moor-

fields Eye Hospital in the UK has developed a machine learning

system with Google DeepMind to perform early screening for

two major diseases causing vision loss: diabetic retinopathy

and age-related macular degeneration. Google claims that the

application of the mobile platform will save 10,000 patients

from vision loss every year [43]. Chen et al. [44] proposed a

new convolutional neural network based multimodal disease

risk prediction (CNN-MDRP) algorithm using structured and

unstructured real data from the hospital and an experiment on

the prediction of a regional chronic disease of cerebral infarction.

The accuracy reaches 94.8%. The accurate analysis of medical

data benefits early disease detection, patient care and community

services.

B. Intelligent Hospital

Due to the shortage of healthcare resources, a common trend

is that the hospitalization experience of patients is poor. To

alleviate this pressure, many countries have started to implement

the AI approaches with medical treatment: Thomas Jefferson

University Hospital launched an intelligent hospital supported

by the IBM Watson IoT in 2016. Through IBM’s cognitive com-

puting and natural language processor, the patient can customize

the ward environment according to his or her needs, and obtain

the information by dialoguing with the system. The platform

assists healthcare staff interacting with patients and recording

and storing conversations for later healthcare examinations.

Telemedicine and remote consultation and diagnosis can also be

achieved using high-speed wireless communication technology

[45]. Alder Hey children’s hospital in Liverpool, United King-

dom, in collaboration with the Science and Technology Facilities

Council’s (STFC) Hartree Centre created the United Kingdom’s

first ‘cognitive’ hospital by harnessing ‘big data’ and the power

of IBM’s Watson technology platform. Alder Hey will greatly

enhance patient experience by identifying patient anxieties and

providing information and reassurance on-demand; reminding

young patients and their parents about appointments and after-

care; and providing insightful feedback to clinicians based on

the tone and sentiment of these interactions. It can provide more

personalized service for a child and make significant cost savings

[46].

C. Assisted Diagnosis

In recent years, the development of image processing

technology and deep learning technology have continued to de-

velop, so that in medical diagnosis, Computer-Aided Detection/

Diagnosis (CAD/CADx) can help pathologists make more ob-

jective and effective judgments. Das et al. [47] developed a

machine learning framework based on the alternating decision

(AD) tree technique and three neural network models, including

probabilistic, radial basis function, and multilayer perceptron

neural networks. The AD tree simulates human brain cognition

to analyze complex medical data and automatically interpret

lung function tests and computed tomography results to diag-

nose the most common obstructive pulmonary diseases. Medi-

cal image assisted diagnosis technology based on deep neural

networks has also been wildly studied and get high accuracy in

the classification of Parkinson’s disease [48], lung cancer [49],

breast cancer [50], and diabetic retinopathy [51].

D. Assisted Therapy

The development of four sub-areas of AI (deep learning, artifi-

cial neural network, natural language processing, and computer

vision) enhances treatment efficiency and quality, mainly re-

flected in big data analysis, building intelligent shared databases,

and providing favorable clinical decision support [52]. In the

future, doctors will be able to use intelligent analysis to derive

specific data on each stage of patient treatment: Before treat-

ment, the patient will be automatically monitored to extract such

parameters as body weight, blood sugar, nutrition, activities, and

using mobile applications and wearable sensors with upload to

an electronic health records (EHR) [53]. Automated analysis

of clinical data prior to treatment provides a doctor with a

more specific assessment of treatment risk. During treatment, by

integrating the real-time data of the treatment process the doctor

can make more accurate clinical decisions during the treatment

process according to the analysis results, and reduce or avoid

the occurrence of adverse events [54].

E. Assisted Rehabilitation

After treatment, smart devices perform an integrated analysis

of all data (before, during, and after treatment) to help patients

understand recovery status and effectively predict complica-

tions. After discharge, wearable healthcare devices will continue

to record the patient’s vital signs data, and integrate it with the

data since the patient was admitted to the hospital to truly achieve

patient-centered care [54].

The involvement of AI and the Internet of Healthcare Things

(IoHT) will promote the entire process of medical treatment

[55]. The usage of IoHT will get more accurate and compre-

hensive medical data, and AI will reduce human workload as

well as decrease the workforce needed for the caring process

(e.g., doctors, medical equipment technicians, and allied health

workers) [56].

IV. FLEXIBLE SENSING FOR THE CPS-HRS

Flexible sensing is emerging as a significant technology to

enable the invention and fabrication of sensors, using flexible

materials. Compared with conventional sensors based on rigid

materials, flexible sensors have excellent properties, such as

high bendability, stretchability and ultrasensitivity [57]. Thus,

they could be conformally attached to an arbitrary surface, such

as human skin and robot contours, for health monitoring. In

addition, flexible sensors can also be applied to environmental

cognition and robot perception to provide a safer and more

comfortable human-robot interface in the CPS-HRS.
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A. Flexible Sensing for Human Health Monitoring

The advancement of flexible sensing technologies facilitates

the development of wearable devices. It can be foreseen that

wearable devices will be wildly applied in the future, as they

endow chronic disease care systems with the capability of remote

and real-time monitoring of biomedical signals along with other

symptoms, including actimetry and mobility [58].

The ECG is a direct indicator of heart electrical activity

with important clinical significance. Wearable devices, such as

electronic tattoo, can be directly attached to human skin for

long-term measurement of ECG [59]. These devices provide the

possibility of a novel clinical method of BP monitoring by softly

laminating on the skin. In the future, pressure transients of arte-

rial blood flow and heart rate variability could be continuous and

non-invasive monitored in real time [60], [61]. Body temperature

is a vital index of human health, which is also closely related to

various types of ailments such as sepsis, inflammatory disease,

infection, and heatstroke [58]. To satisfy the requirements of

wearability, the temperature sensors need to be portable, flexible,

and conformal to human skin [62]. Wearable devices have also

been applied for plantar pressure detection [63]. By attaching

pressure sensors to insoles or shoes, the plantar pressure dis-

tribution can be extracted for gait analysis [64]. In addition,

activities of daily living could also be monitored by flexible

sensors embedded into the ambient environment or as smart

objects interacting with subjects, such as steering wheel [65],

pillow-case [66], or toothbrush [67].

B. Flexible Sensing for Environmental Cognition

Environmental parameters such as humidity, gas concentra-

tion, and light illumination are essential components in HRS,

which can also be monitored continuously and precisely by

advanced flexible sensors, so that human beings could be pro-

tected from the deleterious environment. As to humidity sensing,

various flexible sensors based on different mechanisms have

been studied. The common feature of humidity sensors is that the

change of humidity can lead to a variety of electrical parameters

[68]. With the increasing problems of environmental pollution,

it is of great value to detect gas concentration in surroundings.

Flexible gas sensors could be attached to arbitrary surfaces such

as a wall, furniture, some portable devices, or even human skin

[69], [70]. For light illumination, a variety of flexible sensors

have also been reported based on the mechanism that light

illumination can stimulate electrons to produce photocurrent

[71].

C. Flexible Sensing for Robot Perception

The assistant robot is the main service provider in HRS.

During social interaction, the detection of tactile stimuli is one

of the primary methods that human extract information from

their surroundings. It is similar for robots when they work or

interact with humans in HRS. Flexible sensors attached to robot

surfaces, which can also be called robot skin, endow a robot

with the capability of tactile perception. Pressure is one of the

most common signals in HRI. There has been a great number of

research publications on pressure or strain sensors for robot skin

[72], [73]. Notably, to better imitate the capabilities of human

skin, increasing the variety of perception functions with different

kinds of sensors is an important research direction of robot skin.

At present, a commonly used method to fabricate flexible tem-

perature sensors for robot skin is to fix the temperature-sensitive

material to a flexible substrate [74].

D. Flexible Sensing for Human-Robot Interface

To achieve more substantive functionality for disadvantaged

groups, assistant robots, Hobbit and Care-O-bot for instance,

are increasingly being used to homecare field [75], [76]. Thus,

human physiological signals, such as electroencephalogram

signals [77], gestures [78], and joint motions [79], could be

collected by sensors to achieve real-time robot teleoperation

control, providing service for the disabled. However, assistant

robots with rigid surfaces are very likely to do harm to humans.

To ensure safety in HRI, efforts have been made in developing

various types of soft robotic skins to minimize the damage in

the case of collision [38].

V. NEW MATERIALS AND MACHINES FOR THE CPS-HRS

A. New Materials for Sensors

For more precise monitoring of biomedical parameters, sen-

sors are normally placed in contact with the human body.

Thus, comfort and safety are critical factors to be considered

during sensors design. With the advances of nanoscience and

nanotechnology, sensors applied to human body are typically

fabricated to be flexible, which is mainly composed of a flexible

substrate and conductive fillers. To date, commonly adopted

materials of substrate include polydimethylsiloxane (PDMS)

[80], polyimide (PI) [81] and polyethylene terephthalate (PET)

[82]. To convert biomedical signals into processable electrical

signals, conductive fillers are deposited in the substrate, elec-

trical properties of which can be significantly changed under

external stimuli. Presently, various materials have been used

as conductive fillers, such as metallic nanowires [83], carbon

nanotubes [84] and reduced graphene oxide [85]. In the scenarios

of neural activity sensing, electrodes are required for stimuli and

sensory feedback. Traditional electrodes made of rigid materials

cannot provide long-term and robust interfaces with neurons,

neural fascicles, and nerves. Currently, new materials have been

applied to electrode fabrication by inserting platinum wires into

flexible substrate [86], [87].

B. New Materials for Robots

Social robots and assistive robots are significant components

in the CPS-HRS, given they can take on homecare tasks for older

or disabled people. Conventional robots are mainly made of rigid

materials, such as steel and iron, which can lead to a feeling of

distance and compromising safety during HRI [88]. With the

advancement of new materials, various types of artificial skins

are designed to endow robots with multimodal perception. To

be concrete, by covering robot surface with flexible conductive

polymer or utilizing material spraying technique to directly
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form a uniform piezoelectric film on a robot, external tactile

stimuli can be converted to electrical signals for perception [37].

Meanwhile, it is a critical mission to improve the safety levels

of the CPS-HRS. Thus, soft materials could be adopted to create

a safer human-robot interface in case of an immediate collision

with humans [89]. Moreover, new materials can also be applied

to construct the main body of a robot to enable safe interaction

[90].

C. New Machines

There have been various studies on new devices, which can

be applied for human power augmentation, motion assist, or

rehabilitation. The exoskeleton robot is one of the major research

directions for minimizing workload so that human efforts can

be reduced. On one hand, exoskeleton robot can be applied

to the upper limbs of human beings to perform task-oriented

repetitive movements, in order to improve muscle function

that was decreased by diseases like stroke [91]. On the other

hand, it can also provide a device-based approach to safely and

effectively improving the walking state of disabled groups [92].

Although the athletic ability of the human wearer is enhanced

by the exoskeleton robot, the total weight also increased. Hence,

research has been carried out for devices with lower weight

and better power consumption, such as robotic suits or soft

actuators for joint support [93], [94]. While machines mentioned

above mainly aim to assist patients with complete limbs, related

studies are targeting amputees who lose motility due to injury

or disease. Prosthetics are such devices designed to restore

physiological functions of the disabled, researches of which

mainly focus on upper limb prosthetics [95], and lower limb

prosthetics [96]. Furthermore, with the convergence of the fields

of robotics, automation, embedded system, and AI, traditional

manual powered equipment, a wheelchair for instance, has also

been replaced and created to support the disabled community

[97].

In addition, control algorithms are important to achieve better

performance of new machines in the CPS-HRS. On one hand,

classification algorithms, support vector machine for example

[98], are leveraged to recognize body signals, such as elec-

tromyography (EMG), thus tracking human motion intention

and realize follower motion assistance. On the other hand,

adaptive algorithms [99] and neural network algorithms [100]

are adopted to optimize the dynamic relationship between the

position deviation of the joint and the force acting on it, thereby

ensuring precise pose control.

D. New Human-Robot Interfaces

To date, various human-robot interfaces have been proposed

to achieve signal transmission between human body and new

machines. Neuroprosthetics are such interfaces to facilitate mo-

tor, sensory, or cognitive-communication between the nervous

system and a prosthetic device by leveraging spared brain and

spinal circuits, thus restoring physiological functions [101].

Generally, electrodes are placed near the tissues or cells in a

specific region. For one thing, they could be localized to the

Central Nervous System (CNS), such as the brain or spinal cord,

serving as Brain-Computer Interface (BCI) [102]. For another,

electrodes could also be located to a nervous system outside

the CNS, a peripheral nervous system for instance, to transmit

command signals to the prosthetics [103]. As to BCIs, the

three major signal acquisition methods are electroencephalog-

raphy (EEG) [104], electrocorticography (ECoG) [105], and

intracortical electrodes [106], invasiveness and signal resolution

increasing simultaneously in turn. On one hand, the immune

response caused by noninvasive BCIs is less, while the output

capabilities of which are limited by their resolution. On the

other hand, invasive BCIs like intracortical electrodes can lead

to rejection of the users, due to the risk of the implantation

operation. In addition, deep brain stimulation (DBS) technology,

an effective surgical procedure for the treatment of a spectrum of

neurological disorders such as Parkinson’s disease and essential

tremor, could act as BCI for specific patients as well [107].

Considering the weak signal intensity of nerves, human-robot

interface based on EMG is also proposed for exoskeleton robots

or prosthetics control [108], [109]. By attaching electrodes to

the skin, electrical signals of selected muscles could be obtained,

which have an amplitude several orders of magnitude larger than

those of nerves. Several other interfaces have also been presented

that extract signals from parallel systems such as the eyes [110],

the voice [111], or the head [112] to derive the user’s motion

intention.

VI. CLOUD COMPUTING AND COMMUNICATION FOR

THE CPS-HRS

A. Cloud Computing

Cloud computing is a large-scale distributed computing archi-

tecture in which users can lease computing resources for storing,

processing, and managing data in real time. There are normally

three types of service models offered by cloud computing: In-

frastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS). For instance, the CloudThink facil-

itates shared path learning, including traffic routing in Fig. 5(a)

[113]. The main advantages of cloud computing are [114]: 1) a

virtualized platform for easy and efficient interaction with other

agents and external servers; 2) handling the massive storage

and processing of data in the cloud; 3) flexible configuration,

high scalability, and expanded capacity; and 4) simplifying the

maintenance and updating of software and drivers.

These advantages promote popularity among other research

fields, such as robotics. Robots connected to the cloud can

offload complex computational, storage, and communication

work to the cloud, and share information from various agents,

which endows robots with the characteristics of the service

model, Robot as a Service (RaaS). The applications of RaaS

combining the robot with cloud computing in terms of accessing

robots and controlling robots are detailed herein.

Accessing robots: Cloud computing takes advantage of scal-

able computing resources to facilitate accessing CPS-HRS in the

RaaS. A platform based on cloud computing provides access to

the data of robots in the cloud for users. For example, Parallel

Cloud Computing has been used to acquire the results from the

cross-product of perturbations in object and environment and
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Fig. 5. The architecture of applications based on the cloud computing. (a) The architecture of CloudThink for traffic routing and other applications
[113]. (b) The architecture of the service robot cloud platform [116].

robot response to sensors and commands [115]. In addition, it

is also useful to speed up motion planning methods in CPS-

HRS, such as realizing Simultaneous Localization and Mapping

(SLAM) in the Cloud [116]. In Fig. 5(b), the architecture of a

new service robot cloud platform is presented [116]. It should

be noted that the integration of cloud computing and robotics

extends the accessibility of CPS-HRS.

Controlling robots: Related data and information generated

by CPS-HRS are stored in the cloud. The physical robot shares

the data with other agents through RaaS and provides services.

Considering various applications of CPS-HRS, it should be ap-

plied under different scenarios such as cooperating with humans

or replacing humans to execute routine tasks. Acquiring the

requests committed by robotic applications and scheduling the

corresponding commands to the robot are the critical procedures

of robotic applications in the cloud. In [117], the robot cloud

panels based on the Google App Engine and RaaS extension

received the users’ requests and stored and processed data using

Cloud Computing.

With the development of cloud computing, not only the appli-

cations of robotics, but also the IoHT is promoted. IoHT collects

data from numerous devices based on cloud computing, which

makes HRI more interconnected and intelligent [118].

B. Communication

Increasingly developed communication technologies form the

backbone of Healthcare 4.0 allows the interaction and dissem-

ination of data and information related to the HRS, alleviating

limitation of distance and remoteness [119]. Previous genera-

tions of mobile communication systems have already evolved

with the impacts of extending the network capabilities and

enhancing the user experience. 5G is the fifth generation of

cellular network technology, which consists of three main uses:

Enhanced Mobile Broadband (eMBB), Ultra Reliable Low La-

tency Communications (URLLC), and Massive Machine Type

Communications (mMTC). On the road towards the common vi-

sion of Healthcare 4.0, 5G triggers the development of potential

products and services by the combination of networking, com-

puting, and storage resources. CPS-HRS is expected to remove

distance and time barriers to tele-healthcare provisions, such as

teleoperated surgical systems benefiting from the introduction

of 5G. In addition, 5G will replace cables, reduce costs, and

thus enable wider adoption and utilization of the robotic service

platforms globally [120].

Communication is a steppingstone on the way to fulfill the

vision of CPS-HRS. In addition, the enhancement of com-

puting technology is the main enabler of CPS-HRS by in-

creasing the accessibility, exchange, and sharing of the related

data.

C. Security and Privacy

With the development of IoT technology, numerous personal

healthcare data are generated; therefore, security and privacy are

major issues of healthcare information [121]. Block chain is a

decentralized core architecture, which has become the focus of

security research in recent years [122].

With the integration of technologies, the block chain adopts

distributed accounting, distributed communication and dis-

tributed storage. Block chain consists of many equal nodes to

form an end-to-end network. The data exchanged between nodes

can be verified in the premise of obeying the established rules.

The block chain utilizes the consensus agreement of nodes to

handle with the additions of blocks to ensure the security and

privacy of information. Massachusetts Institute of Technology

(MIT) with its project called Medrec, has shared healthcare data

between electronic health records (EHRs) via block chain [123].

By contrast, the first EHR on the basis of holding the ownership

of the protected health information (PHI) by patients, has been

developed by the Initial Coin Offering (ICO) for Medical Chain

[124]. Within the security and privacy system, all parties are

allowed to use the data with the presentation of authentication.

Different limits of authority are given by different use identities,

such as viewing privileges of the block chain are provided to

only authorized users.



YANG et al.: HOMECARE ROBOTIC SYSTEMS FOR HEALTHCARE 4.0: VISIONS AND ENABLING TECHNOLOGIES 2543

Fig. 6. Motion capture and mapping for the CPS-HRS. (a) A smart phone-based pocket fall accident detection, positioning, and rescue system
[130]. (b) Illustration of teleoperating humanoid robot NAO using Kinect depth camera [133]. (c) Nao imitating complex whole-body motions using
the Xsense MVN motion capture system [131]. (d) A tele-operation Interface with a motion capture system [137]. (e) The wearable haptic device
controlled the opening of the robot’s gripper [139].

VII. MOTION CAPTURE AND MAPPING FOR THE CPS-HRS

A. Motion Capture for Behavior Analytics

Human behavior analytics of the elderly or other caretakers at

home is an important component of CPS-HRS. Motion capture

is an effective way to permit behavior monitoring of older people

in a more natural setting [125]. Advances in sensor technology

over recent years have provided new ways to monitor the elderly

in uncontrolled home environments [126]. Vision-based sensors

and wearable sensors are two main methods of motion capture

[127]. Sensors have become smaller, cheaper, and wearable,

which form a body network of sensors to promote the prac-

tical application of dynamic action capture homecare. Motion

capture in the CPS-HRS can monitor the progression of disease

through behavioral analysis [126]. In addition, reliable fall de-

tection, fall prevention, and emergency assistance notification

can be achieved based on motion capture [128], [129]. Using a

smartphone-based pocket fall accident detector to detect fall is

typical, as shown in Fig. 6(a) [130]. These applications improve

the quality of life for the elderly.

B. Motion Mapping for Teleoperation

Motion capture is the process of obtaining the operator’s

motion data, while motion mapping converts the operator’s

motion to the robot’s motion based on the obtained motion

data [131]. Humanoid robots with different body morphologies

will be a big component in CPS-HRS. Transferring human

motion to humanoid robots is a promising way toward intuitive

programming [132]. In order to control the robot effectively, the

motion capture data need to be converted to the format that can be

programmed in the robot’s low-level controller. The tool central

point (TCP) position-orientation and the joint angles are two

common kinds of programmed data for robotic control. Accurate

position can be obtained by mapping the position-orientation

data of the operator’s hand to the TCP of a humanoid robot.

Human-like motion can be generated by establishing the map-

ping relationship between the Denavit-Hartenberg (D-H) model

of the humanoid robot and the operator [133]. Fig. 6(b) illustrates

the motion mapping progress of teleoperating humanoid robot

NAO (SoftBank Robotics Inc. [134]) based on the motion data

obtained from Kinect (Microsoft Inc. [135]). In addition, consid-

ering the whole-body motion of humanoid robots, to realize the

basic kinematic motion mapping, the related dynamic factors

should also be considered to ensure the stability of humanoid

robots in the process of walking [131]. Fig. 6(c) shows the

whole-body teleoperation system that enables a NAO to imitate

complex whole-body motions of humans in real time.

C. Real Time Motion Capture for Teleoperation

As described in the new features of CPS-HRS, teleoperation

technology will be an important part of the practical application

of homecare. As a method for remotely controlling a robot inter-

acting with uncertain environments, teleoperation is a human-

in-the-loop architecture [136]. The homecare robot is still hard

to program, although examples of advanced program methods,

such as drag-and-drop applications, are emerging [131]. It would

be useful if the robot could learn human skills and utilize the

human’s environment adaptation ability. A promising method is

that the robot can follow human motion in real time. To achieve

this goal, human motion needs to be captured in real time [137].

Extra vision-based sensors and fixed sensors on the human body

are the two most commonly used methods for real time human
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motion capture [138]. Visual-based motion capture systems are

relatively straightforward but rely on a controlled setting with

multiple fixed sensors. Wearable fixed sensors tend to be costly

and inconvenient and will limit actual operation [133]. In order

to control the grippers or other end effectors of a robot, some

devices for capturing the motion data of human hands, such as

the data gloves shown in Fig. 6(d) and the exoskeleton shown

in Fig 6(e) have been developed [139]. In the future with the

development and adoption of edge computing, motion capture

technology will intuitively capture the intentions of the opera-

tors without additional training costs. Teleoperation technology

based on motion capture will bring more novel applications to

remote homecare.

VIII. FUTURE DIRECTIONS AND CHALLENGES

A. Artificial Intelligence and Homecare Robotic Systems

We now have powerful computational resources, large pro-

cessing and storage capabilities and increasingly sophisticated

algorithms and analytical techniques to mine relevant medical

information from the big data associated with healthcare. Col-

lectively, this big healthcare data (BHD) and AI techniques can

be used to effectively reduce the burden of medical systems

and healthcare costs. Further, the combination of BHD and AI

can be used for early detection, diagnosis, treatment, and even

prediction of health and wellness problems, especially for the

rising older population. In addition, BHD and AI when com-

bined with HRS can perform a variety of tasks currently done

by healthcare professionals so that these professionals can focus

on interacting with patients to provide more efficient and high

quality care [140]. Corresponding examples include taking care

of the nutritional needs of patients, helping them with mobility

and exercises that may be part of rehabilitation, especially after

surgery, and medical administrative tasks including booking

appointments, communicating medical information, processing

prescriptions and ensuring medications adherence.

Intelligent automated healthcare robotic systems have the

potential to dramatically change various aspects of healthcare.

For example, robotic systems with humanoid designs and natural

language processing (NLP) capabilities can help the elderly

maintain their independence, improve social interactions, reduce

loneliness and help with long term chronic conditions. In fact,

these robotic systems are expected to replace human caregivers

for geriatric patients, provide relevant medical information to

health questions, and perform tests such as fast and precise

venipuncture for blood analysis [141], [142]. We can also imag-

ine a future where intelligent automated HRS and the IoHT

represent a paradigm shift in personalized medicine, including

diagnostics, treatment, and rehabilitation. This future will also

include the big data from intelligent automated HRS and IoHT

which can be used to predict health events even before they

occur in patients, thus lowering healthcare costs and improving

the health and well-being of patients [143]–[145].

Despite the many attractive features of intelligent automated

HRS, there are several challenges that need to be addressed.

1) First, is the problem of security and privacy of healthcare

data to address and manage new cybersecurity risks,

especially with the increasing use of cloud-based servers

and the proliferation of wireless connectivity [143].

2) A second issue is related to identifying bias in healthcare

datasets, especially with respect to socioeconomic, edu-

cational, ethnic and geographic variations. If such biases

are not properly resolved, then it would be difficult to

address the differences in care and outcomes across these

different groups of the population.

3) A third issue is related to the accuracy and quality of data

that needs to be verified before applying in AI models.

Thus, we need to verify both the accuracy and consistency

of labeled data. For the training data, consistency is re-

quired to ensure that labels agree with one another and are

accurate. Generally, accuracy is measured by comparing

the labeled data to a subset of the training data that has

been labeled by data scientists or experts.

4) A fourth issue is related to the intuition of experienced

healthcare professionals that are very difficult to capture

and store as BHD. Intuition is often developed through

experiences, non-analytical reasoning and thinking, feel-

ings, a solid knowledge base and non-linear creation of

knowledge. In patient care, intuition is very valuable

and is often used because when needed, it re-emerges

in the form of “intuitive intelligence” or “gut feelings”.

However, because intuition is very difficult to capture or

quantify, and thus stored so it can be later uncovered or

mined as with other BHD; intuitive knowledge is often re-

garded as non-scientific and not suitable in investigations

in the sciences including healthcare. This is in contrast to

evidence-based medicine and decision making based on

quantitative information from patients’ data and improved

health outcomes that can be measured and stored as BHD

for later use.

5) A fifth issue is related to experienced clinicians being

able to identify non-traditional medical signals such as

emotional cues, speaking patterns and behavioral signals,

and using this information in diagnosis and treatment.

Another example of such non-medical cues is related to

secondary factors including emotional and alertness state,

engagement, skin tone, breathing patterns that are all

important when feeding a patient. Presently, it is very dif-

ficult for AI-based humanoid robotic healthcare systems

to accurately collect, document and use such secondary

factors.

6) A sixth issue is related to the bias of the developers of

algorithms and the diversity and heterogeneity of big data

used to train HRS. This may seem paradoxical because

artificial intelligence was proposed as a solution to bias

since computers are supposed to be unbiased. However,

intelligent, self-learning software could be trained with

improper or biased data or with data to give one segment

of the population advantages. Therefore, diversity and

heterogeneity of big data that is also representative of the

population it will be used for, is needed to train the intel-

ligent software for applications such as homecare robotic

systems. But even with safeguards for such bias, which

can be regarded as conscious bias, safeguarding against
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unconscious bias is much more difficult. Some solutions

include looking at AI predictions which are counter to

reality to ensure that they are not coded with bias. This

involves close cooperation among many experts including

data scientists, AI researchers and social scientists.

However, despite these challenges, the future prospects for

AI-based automated HRS are very bright.

B. Advanced Soft Materials and Bio-Machines

To obtain precise health data in real time and provide nec-

essary and timely assistance to the users in the CPS-HRS, new

materials and machines are critical technical foundation. From

the perspective of new materials, nanotechnology and polymer

technology have been increasingly applied to wearable devices

and robot skins to enable better health monitoring and HRI.

Existing research directions and challenges mainly focus on

improving the properties and performances of nanomaterials.

However, the high prices and complicated fabrication process

of existing metallic nanomaterials hinder their large-scale appli-

cation [146]. By contrast, chemical vapor deposition processes

for fabrication of carbon-based nanomaterials has been well-

established, but the relatively low conductivity and stability of

carbon-based nanomaterials to date have limited their appli-

cations in homecare services [72]. Polymer materials are also

currently adapted to fabricate flexible substrates such as PDMS

and PI, both of which have excellent flexibility and stretchability

[87], [147]. However, their low adhesion to conductive elements

limits the electrical interconnects on their surface. In future

research for the CPS-HRS, to achieve better comfort of wearable

devices and softer tactility of robot skins, new materials should

be further developed crossing those fields mentioned above.

From the perspective of new machines designed for health-

care, motion assistance or rehabilitation, the main challenge

is that existing machines tend not to provide user-friendliness,

as well as sufficient safety. Meanwhile, the relatively complex

operation leads to the conservative attitude of the elderly, who

think that new machines like robots may not be easy to control.

For example, the joint mechanism of exoskeleton robots cannot

provide biomechanically similar motion function, which means

that it is not likely to reproduce human natural motion, possibly

resulting in user discomfort. Some improvements have been

carried out on exoskeleton robots to better mimic human motions

and enable easier joint movements, but limitations still exist

[148], [149]. Furthermore, ethical and legal issues should also

be taken into account since the application of new machines

like exoskeleton robots or prosthetics involves the privacy of

the wearers. Also, such technologies could be used to enhance

one’s physiological strength so as to turn humans into weapons

[150]. Thus, a major research direction for new machines is to

achieve better integration with human beings so that they can

provide better service without physical and mental barriers in

the CPS-HRS.

C. Fog Computing for Healthcare 4.0 and Healthcare
IoT Systems

Patients interact constantly with surroundings during regular

daily routines. In a typical IoT-enabled healthcare system, these

Fig. 7. Architectural elements of healthcare IoT systems.

activities are registered to the device layer that gathers diverse

information ranging from vital signs to environmental and con-

textual information. All of these sensor data are then transmitted

to and processed by a local set of computing devices, called fog

nodes, within a fog layer [151]. These devices perform various

processing on the received raw data and then transmit processed

data to the cloud layer where long-term storage and statistical

modeling can be easily implemented. This flow is described in

Fig. 7.

Such ubiquitous healthcare systems need to deliver services

to end-users demanding a satisfactory Quality of Experience

(QoE), which poses tremendous challenges in the face of dy-

namic variations at multiple scales of the system stack: at

the application, network, resource, and device levels. A key

mechanism to manage and exploit these variations is person-

alization and holistic coupling of both the system (e.g., IoT)

infrastructure, and the services provided to end-users [152].

Future research needs to be conducted towards self-aware cog-

nitive architectures that delivers acceptable QoE by adapting

to dynamic variations in infrastructural compute, communi-

cation and resource needs, while also synergistically learning

and adapting to end-user behavior. This calls for leveraging

technologies such as Fog and Edge Computing [153], [154],

[155] to introduce intelligence and adaptability in integrated

multiscale ubiquitous healthcare systems which are often based

on the IoT paradigm. Novel solutions are required to efficiently

manage information acquisition, communication and processing

across different scales of the IoT systems [156]. These solutions

need to implement cognitive behaviors by getting feedback from

current status of the user and the context where it is located

and collaborate to perform estimation and control tasks under

resource constraints, while delivering personalized QoE to end

users.

The capability of personalization is becoming essential since

research directions of AI are towards individual services rather

than generic services for a group of people [157], [158]. The

future AI is attempting to target individual user by supporting

customized learning and inference based on a huge amount

of personal data. That is, cloud for AI must be able to assist

these individual AI services by collecting and analysing vast

amount of personal data for individual learning and inferencing.

Hence, the system should be capable of ‘personalization’. In

order to provide the personalization services, it is necessary

to understand the ‘situation’ of each patient, including their

health risk and level of need of acute care. However, it is not
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straightforward to understand the situation of a user in the real

world. Indeed, we need to apply and enhance the state-of-the-art

in collecting and processing a huge amount of sensor data around

users in a multi-dimensional manner. Personalization becomes

more challenging as the heterogeneity and geographic dispersion

of data increseas along with the user base.

D. Cloud Computing and Communication

The Cloud plays a very important role in the healthcare system

since all collected data will be sent to the cloud layer for the final

processing. In Healthcare 4.0, the offloading technology in the

fog layer will reduce some of the computing load in the cloud

layer. However, there are still some critical challenges in the

cloud layer for future CPS-HRS systems.

The first challenge is the heavy pressure brought by more and

more AI and machine learning tasks in Healthcare 4.0. Different

from general cloud computing tasks, AI and machine learning

tasks can be dramatically accelerated by specific hardware.

Some cloud providers bring graphics processing units (GPU)

or tensor processing units (TPU) for acceleration [159], [160].

Since it is very difficult to manage this specific hardware in small

granularity as general computing resources, the efficiency of the

cloud layer is limited for processing a large number of small tasks

in CPS-HRS. Two solutions are adopted for scheduling hard-

ware resources, including hardware virtualization and small size

hardware [161], [162]. However, there is still a need for novel

solutions for scheduling healthcare tasks in the heterogeneous

cloud layer for better energy consumption and higher processing

performance.

Another challenge is the communication between the device

layer and the cloud layer. The latency requirement of CPS-HRS

tasks is much stricter than the general computing tasks in the

cloud layer and a large amount of multimedia data needs to be

processed in real-time. One solution is offloading computing

tasks from the cloud layer to the device layer or fog layer.

However, the task offloading depends on the type of applications.

Because CPS-HRS applications are different from the traditional

ones, it needs new task offloading mechanisms. Some novel

solutions focus on offloading the AI and machine learning

tasks into the device layer or fog layer by introducing new

computing models [163]–[165]. Another solution is optimizing

the task scheduling in the cloud layer according to the geographic

position and latency requirement of each CPS-HRS task [166].

Although many existing works try to optimize the communi-

cation between devices and cloud servers, it still needs better

solutions such as new architecture or protocols to connect these

two separated layers.

IX. CONCLUSION

This paper was carried out to give new visions of the CPS-

HRS with distinguishing features enabled by the closed loops.

The current state of evidence related to the implementation of

enabling technologies for the CPS-HRS has been described,

providing insights into the suitability of each one of the tech-

niques in the CPS-HRS. These new visions have been extracted

from the review of more than 150 references, where the most

relevant methodologies have been identified. This paper reports

clear evidences that the CPS-HRS presented here could provide

valuable tools for in-home care services, and that there is still

room for improvements and relevant contributions. We hope

that this work provides a valuable guide for researchers to make

advances in the CPS-HRS.
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