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Abstract. The present work proposes a multi-robot exploration method for con-

junct environments, based on one of the state-of-the-art algorithms. In many ex-

ploration missions, after the subject is found, it is beneficial if the discoverer ro-

bot returns back to the base station, in order to report, delivery or recharge. In 

addition, the exploration might need a long time to be finished or has to be done 

over and over. Returning back to the base station enables robots to get recharged, 

fixed, or even substituted with other robots. Furthermore, the equilibrium in task 

allocation to robots is this work’s other concern. The presented algorithm also 
reduces the maximum energy consumption of robots, as a good side effect. The 

efficiency of the proposed algorithm is demonstrated by providing simulation re-

sults for a variety of obstacle densities and different number of robots. 

1 Introduction 

In the multi-robot exploration field of research, the most important objective is to pro-

vide an efficient method to explore unknown environments using a team of robots. The 

method should lead robots to visit every accessible region in the area, usually under 

connectivity constraints. The application fields of the algorithms vary from demining 

[1] to rescue [2] and mapping [3]. The communication type is usually dynamic and 

robots are equipped with Bluetooth [4], Wi-Fi [5] or ZigBee [6] technologies in order 

to communicate with each other. 

There are two research fields in the literature which have very similar concepts to 

the multi-robot exploration study field: terrain coverage and foraging. For the terrain 

coverage studies, two main differences distinguish them from multi-robot exploration 

researches. Firstly, in terrain coverage studies it is not essential to have permanent com-
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munication between robots. The main concern is to visit every corner of the environ-

ment at least once. Since usually there is no communication range limitations, the con-

figuration space can be visited completely with-out any worry about breaking the con-

nection. In terrain coverage problems, robots also don’t have to report their situation to 
the base center or other robots during the process. Secondly, since the map of the envi-

ronment is not available in multi-robot exploration problems, these algorithms should 

work online. On the other hand, in terrain coverage studies robots usually have access 

to the map of the environment, therefore every move can be computed before beginning 

of the process. In a survey paper from Choset [7], all researches in the field of terrain 

coverage are classified as heuristic algorithms, approximate algorithms, partial-approx-

imate algorithms, and exact cellular decomposition ones. To show the in-tractability of 

this problem, in a paper from Zheng et al. [8], authors have shown those coverage prob-

lem versions which try to minimize the coverage time, are NP-hard problems. Authors 

also have provided a polynomial time algorithm based on another work [9] and claimed 

that the coverage time of their algorithm is close to the optimal solution. In several 

papers authors also consider sensor-based cover-age [10, 11, 12, 13], where a robot 

doesn’t have to move into a cell to add that cell to set of visited ones, it is sufficient to 

observe that cell via sensors. 

In the foraging problems, the number of employed robots are comparatively much 

more than both multi-robot exploration and terrain coverage fields of study. Another 

distinguishing characteristic of foraging researches is that the employed robots are often 

equipped with very limited tools. In foraging problems providing an effective task al-

location scheme, usually based on swarm intelligence algorithms, is the main purpose. 

Similar to multi-robot exploration studies, robots communicate with each other, but in 

a different manner. In most of the studies communication is not dynamic and perma-

nent. Based on the way ants communicate with each other by means of a chemical 

called “pheromone”, robots communicate through virtual pheromone with each other 
[14]. In a paper by Couceiro et.al [15] the authors combine a biology inspired algorithm 

with a potential field method to explore the area. In other work [16], two distributed 

exploration algorithms are provided, gradient and sweeper algorithms. The first one is 

able to quickly return robots back to the base station, while the sweeper algorithm has 

the ability to find food in farther distances, albeit with a slower speed. 

In spite of having different properties mentioned above, there is no exact boundary 

to separate these three categories from each other. For instance, in [17] the authors 

provide a swarm navigating method in which robots are in contact with each other by 

means of a wireless connection. The presented algorithm in this paper, as a multi-robot 

exploration algorithm, has common properties with both terrain coverage and foraging 

algorithms. In the next section, we investigate the multi-robot exploration literature 

more thoroughly. 

2 Previous works 

In an early work [18] a method was proposed in which a center makes decisions for all 

robots. In [19] authors presented a centralized method too, which considers the cost of 



reaching a particular point along with the efficiency of the same point. This algorithm 

always tries to assign a point to a robot as its next position, if reaching to that point 

makes the best possible balance between cost and efficiency. In this study efficiency is 

based on the probability of visibility of the assigned target point to a robot, from the 

assigned target points to the other robots. 

Although centralized methods are able to provide complete solutions, they act 

slowly. On the other hand decentralized algorithms are faster, but lack completeness 

and optimality. In [20] a decentralized method is proposed which con-siders range con-

straints. In this study, robots are able to decide whether to keep persistency of the com-

munication with other robots or to avoid obstacles. The lack of prior knowledge about 

the environment makes it hard to provide a robust method, or to guarantee the perfor-

mance. In [21] a decentralized multi-robot exploration method is provided which guar-

antees the performance of the algorithm under some assumptions. In another work [22] 

as a market-based one, a hierarchical task allocation method is provided that uses coa-

litions. The authors claim that such methods act better than greedy or coalition-free 

ones. In another work [23] two strategies for task allocation is provided. In the first 

strategy as a decentralized method, while the performance is good, the energy con-

sumption is more than the second strategy, which is a centralized one. In [24] the au-

thors have studied two different kinds of explorations where in both cases robots have 

to be in touch with each other. In one case, robots have to be connected with a fixed 

base station also, which delimitates exploration area, similar to the present work. 

Performance measures vary widely. Different papers use total path lengths [25], bal-

ance in workload distribution [25], total steps of the algorithm [26], algorithm’s over-
load [27, 28], energy consumption [28, 29] and time complexity [8, 23] to measure the 

efficiency of provided algorithms. In our work, distribution of exploration task, maxi-

mum energy consumption, traveled distance and number of step-moves for each robot 

are considered.  

In the literature, there are several studies which have considered energy consumption 

[10, 27, 28, 30]. None of these works provide a scheme to recharge robots. If the ex-

ploration process is ongoing, as in a surveillance system [31], robots have to be charged 

or exchanged with other charged ones to continue the exploration task. In a paper from 

Koveos et al. [32], authors have studied multi-robot exploration in space missions. In 

their work robots are in touch with the base station and the base station is responsible 

for tracking and recharging them. In their study robots are getting recharged by radia-

tions emitted from a laser. The distance of robots from the base station, environmental 

conditions and also the amount of energy needed for robots can affect the efficiency of 

recharge procedure in their work. 

In a paper by Kovacs, Pásztor and Istenes [33] authors have proposed an algorithm 

to explore the environment under connectivity constraints. In this work robots have to 

be connected to each other and a fixed base station using a Blue-tooth communication 

system. The algorithm guarantees the communication persistency during exploration. 

The authors have shown that in obstacle-free environments, their algorithm works op-

timally, in the terms of the number of step-moves. The way we define conjunct envi-

ronments in this paper, enables the presented algorithm to see conjunct environments 



similar to obstacle free environments, from a global planner point of view. This prop-

erty is the result of leaving the obstacle avoidance duty to the local planner. The opti-

mality of the provided algorithm in [33], makes it suitable to be used as a basis for our 

global planner.  

Three major contributions of this paper to the field are as follows. First, a systematic 

procedure for returning robots back to the base station have been provided. The return 

procedure executes simultaneous with the exploration task and doesn’t interrupt it. The 
provided method also keeps the communication persistency as long as robots explore 

the environment. Second, the proposed method makes the system balanced in assigning 

the exploration task to robots and also reduces the maximum energy consumption. Sim-

ulation results show that the presented algorithm works close to the optimal solution 

for reducing maximum energy consumption and balancing the system. Third, the pro-

vided global planner works independent from local planners of each robot. Therefore 

the provided algorithm has the ability to be used in any conjunct environment with any 

type of robot. 

3 Preliminaries 

Similar to most studies, we use a grid to divide the environment into square cells. Two 

cells are considered neighbors if they share a common edge. In this part our aim is to 

define conjunct environments in a way that, regardless of where obstacles lie, each ro-

bot is able to move to any neighbor cell, or swap its position with neighbor robots, only 

through the common edge.  

Conjunct environment:  If in the environment E, the length of the edge of cells is A, 

and we have: 

 𝑑𝑜+ 2𝑑𝑟 + 4μ≤A (1) 

 ∀ Obstacle O: Distance (O, 𝑂𝑐) ≥ 2𝑑𝑟+ 4μ (2) 

then we call E a conjunct environment. 

In this definition 𝑑𝑜 is the maximum diameter of excircles of obstacles, 𝑑𝑟  is the di-

ameter of robots, 𝑂𝑐 is the closest obstacle to obstacle O and μ ≥ 0 is the prudential 
margin. The Distance function returns the closest distance between two obstacles by 

the Euclidean metric. 

Fig.1.left illustrates the worst possible case for migration of a robot from one cell to a 

neighbor cell in a conjunct environment. Two robots 𝑅1 and 𝑅2 are in two neighbor 

cells and an obstacle lies in the middle of the common edge. Even in this case, there is 

enough room on both sides of the obstacle for each robot to pass through and go to the 

other cell. The grey tube indicates the obstacle-free area between the obstacle and the 

closest possible obstacle. 

For flying robots when the altitude of flight is constant, it is usually easy to classify 

the workspace as conjunct. It is almost the same for marine robots too, because in both 

cases most of the times there is actually no obstacle in the work space. But the definition 



of conjunct environment also covers obstructed areas. For instance, in a forest the max-

imum diameter of trees is available. The density of trees in the area is also available for  

 

Fig. 1. Left: two neighbor cells of the environment and position of robots and obstacles in one 

possible worst case. Red circles are indicating excircles of robots and the obstacle. Right: the 

exploration Environment, the base station’s cell (in the center) and Toruses. 

many forests (see [34]). This makes it possible to estimate the closest possible distance 

between trees. Our definition of conjunct environment also covers some extra-terres-

trial environments. There are papers which have studied the spatial distribution of rocks 

on mars [35] and size of rocks on it [36]. This information is adequate to decide whether 

the environment is conjunct or not. 

Step-move: robots’ migration from one cell to a neighbor one is called step-move. 

 

Fig. 2. Up: three subareas in the kovacs algorithm. All cells of each subarea is shown by grey. 

Note that in all of these three subareas the center cell is the location of the robot which the area 

is defined for. Only for 𝐸𝑛 the occupied cell by the robot (center cell) is also a subset of the 

subarea. Down: result of running initialize position algorithm for three robots. 



Team-move: migration of all robots together to their next assigned positions is called 

team-move. Next assigned position for a robot can be its current position, but in a team-

move at least one robot goes to a non-visited cell. 

In the kovacs algorithm, the length of a cell’s edge is a function of the communication 
range. If we denote the radius of the communication range by 𝑟𝑐 , the edge length of 

each square shaped cell is determined using this formula: 

 A = 
2𝑟𝑐√26  (3) 

This equation is based on the definition of three subareas [33] (Fig. 2.Up):  𝑬𝒄: is a set of cells that neighbor robots of each robot are only allowed to be in them 

during the exploration process. In other words, neighbors are not allowed to leave the 

coverage range of the robot. 𝑬𝒔: is a set of cells that neighbor robots of each robot are only allowed to be in them 

after the completion of a team-move, and before executing the next team-move. 𝑬𝒏: is a set of cells that a robot can only go to them, during its current team-move. 

Torus: is a set of cells which their distance from the base cell (B) is equal. Here distance 

is measured using the infinite norm: 

                                    Torus𝑖  ={c | c ϵ E, ||c − B||∞= i} (4) 

It can easily be shown that there are 8i cells in the Torus𝑖   (see fig 1.Right). In the 

presented algorithm, since the first Torus is the closest Torus to the base station, robots 

return back to this torus in order to get recharged or deliver an object. 

4 The base algorithm 

In this section we rewrite the kovacs algorithm in our own words, and call it the base 

algorithm. The base algorithm is written in a way that imitates the Kovacs’ algorithm’s 
behavior in obstacle free environments, but in a simpler and clearer manner.  For the 

sake of simplicity, we didn’t put any code in the algorithm concerning connectivity and 
its constraints. All constraints are implicitly covered and satisfied in the base algorithm. 

In the base algorithm, Lines 1-6 are initializations. Line 6 is a call to initialize posi-

tion algorithm, which brings out all robots from the base station and builds up the ex-

ploration chain, as fig. 2.Down illustrates. 

In the base algorithm (Table.1), if we set aside the number of step-moves caused by 

initialize position algorithm, the number of team-moves will be equal to the number of 

step-moves of the farthest robot at the end. Farthest robot has to do 8N step-moves, 

since the last torus has the same number of cells within. As an exception, the result of 

executing initialize position algorithm is considered as the first team-move. 

In the rest of the base algorithm, the main loop lies between lines 8-25. The result 

of running the base algorithm for 3 robots is shown in the fig. 3. It can be seen that 

except for the first robot, all other robots never touch the first torus again during the 

process. In addition the distribution of exploration task in this algorithm is very dispar-

ate. The initialize position algorithm forces i-th robot to do i step-moves. Thereafter ro- 



 
Fig. 3. The result of running the base algorithm for three robots. In the state zero, positions are 

being initialized (fig. 2.right), which results in the first team-move, state 1. Explored cells of each 

robot has shown in different colors, red for first robot, blue for second one and grey for third one. 

Table 1. The base algorithm 

Algorithm Base algorithm 

1 𝐍𝐫 ← number of robots 
2 Robot [] ← new Robot [𝐍𝐫] 
3 Torus [] ← new Torus [𝐍𝐫] 
4 Search_Direction ←choose from {cw, ccw} // cw=clockwise,ccw=counter clockwise 
5 Initialize_Direction ← choose from {right, up, left, down} 
6 Initialize_position (𝐍𝐫 , Initialize_Direction, Torus, Robot) 
7 SFP ← 0 // SFP = swap feasibility pointer 
8 for i=𝐍𝐫 down to 1 
9      for j=1 to 8 
10           if i is equal to 1 and j is equal to 8 
11                   break;//means one round of exploration is done 
12            end if 
13            for k=𝐍𝐫 down to SFP 
14                 Torus[k]. Robot. next_position_in_grid← next neighbor cell in the Torus (k) 
15            end for 
16            for k=SFP down to 1 
17                 Torus[k]. Robot. next_position_in_grid ← Torus[k]. Robot. position_in_grid 
18            end for 
19            move robots together to their next assigned positions 
20            for k=1 to 𝐍𝐫 
21                  Robot[k]. position_in_grid ← Robot[k]. next_ position_in_grid 
22            end for 
23            SFP=𝐍𝐫- | (𝐍𝐫-i) %( 2𝐍𝐫) - 𝐍𝐫| 
24      end for 
25 end for 



bots visit remaining non-visited cells of their current torus in order to complete the 

exploration. Therefore first robot does 8 step-moves, second one 17 step-moves and the 

N-th one 9N-1 steps. It is obvious that farther robots carry the burden of the exploration 

task much more than the closer ones.  

In order to have a simpler maintenance system, it will be much better if we use same 

hardware for all robots, particularly for locomotion parts and power sources. The main 

consumer of the power is the locomotion part. Other parts consume less in comparison. 

In the base algorithm, if we choose the capacity of the power source according to 

requirements of farther robots, it results in forcing closer ones to carry a power source 

much heavier than their needs. On the other hand, if we choose the power source ca-

pacity according to the closer robots, the farther ones soon will get out of energy. In the 

next section we provide the idea to solve these problems. 

5 The Homecoming algorithm 

Assume that the base algorithm runs till the end of the initialize position algorithm. 

Then after every team-move, and before executing the next team-moves, the last ro-

bot𝑅𝑁, is swapped 𝑐𝑖 times with its predecessors, first time with𝑅𝑁−1, then 𝑅𝑁−2 and 

the same way till 𝑅𝑁−𝑐𝑖 . By doing so, if 𝑐𝑖 < 𝑁, then 𝑅𝑁 goes to previous position of 𝑅𝑁−𝑐𝑖  and robots 𝑅𝑁−𝑐1 , 𝑅𝑁−𝑐1+1 , … , 𝑅𝑁−1  go to the previous positions of 𝑅𝑁−𝑐1+1, 𝑅𝑁−𝑐1+2, …, 𝑅𝑁, with no change in the order. Positions of other robots don’t 
change. If ∑ 𝑐𝑖81 =N-1 and above procedure is repeated eight times using 𝑐1, 𝑐2, … , 𝑐8 for 

robot 𝑅𝑁, after these 8 team-moves 𝑅𝑁 goes to 𝑅1’s previous cell, which lies at the first 
torus. All other robots are shifted one cell further.  

Thereafter, if we repeat the whole procedure using the same 𝑐𝑖 values for the current 

last robot, 𝑅𝑁−1, which its current position is𝑅𝑁’s previous position, all other robots 

are shifted one cell further, and 𝑅𝑁−1 goes to the first cell. If this procedure is repeated 

totally N times, at the end 8N team-moves will be done, and all robots experience the 

first torus at least once. The flowchart of this process, which we call it Homecoming is 

shown in fig.4.left. 

To initialize vector C we use a formula which distributes N-1 swaps almost uni-

formly between𝑐1, 𝑐2, … , 𝑐8. This formula plays the main role in distributing the explo-

ration task between robots equally: 

                 𝑐𝑖 = { 0                    𝑖 = 1 𝐾𝑖 − 𝐾𝑖−1       𝑖 > 1    i=1, 2… 8 Where 𝐾𝑖=⌊(𝑖−1).(𝑁−1)7 ⌋ (5) 

The provided scheme for return procedure is very effective. For example if during 

the exploration process a subject is found and the discoverer decides to send it back to 

the base station, there is always a further robot which is returning to the base, and the 

object can be given to this returning robot.  

The connection between robots shouldn’t be broken. When two robot have to swap, 

if cells which they occupy have a common edge, the connection is not broken, otherwise 

it will (fig. 4.Right, two upper cases). In case of a connection-breaking swap, it is post- 



 
Fig. 4. Left: The flow chart of the Homecoming procedure. Right: Four possible situation of 

swap. In two upper situation, if 𝑅𝑖 and 𝑅𝑖+1 do swap, 𝑅𝑖 gets out of the coverage area of  𝑅𝑖−1and 𝑅𝑖+1gets out of coverage area of 𝑅𝑖+2, which results in breaking the connection. But for two 

lower situations at least one cell is common between coverage areas of 𝑅𝑖+2 and𝑅𝑖−1, which is 

highlighted in green. Swap can be done by means of this common cell. 

 
Fig. 5. The result of running the proposed algorithm for three robots. In each state the positions 

of robots after doing swaps are shown. 



poned until the state of occupied cells change into a non-connection-breaking state 

(fig.4.Right, two lower cases). After every 2N team-moves, the chain of robots becomes 

completely straight and swaps can be done without breaking the connection. 

6 Simulation results 

In the first part of this section we provide the simulation results of the proposed 

algorithm without taking into account the effects of obstacle avoidance. In the second 

part, we provide a very simple obstacle avoidance method based on the Bug2 [38] al-

gorithm in order to study the effects of the obstacle avoidance on the global planner’s 
performance. All major parts of the simulator code, including the global planner (base 

algorithm and Homecoming algorithm) and some parts of the local planner module are 

implemented in the visual studio 2010 using C#.net. The rest of the local planner codes 

are implemented in Matlab. 

 
Fig. 6. Up-left: Maximum number of step-moves in kovacs and Homecoming algorithm s. Up-

right: Average number of step-moves (mean) with standard deviation around it for kovacs algo-

rithm (up) and Homecoming algorithm (down). Down: Percentage of reduction in maximum en-

ergy consumption for the Homecoming algorithm. 



6.1 The global planner 

In these experiments, both kovacs and the proposed algorithm was executed for 1 to 

32 robots. To measure how much these algorithm are successful in uniform task allo-

cation, the number of step-moves of each robot was counted and the standard deviation 

around the average was computed. To measure the maximum energy consumption of 

robots, maximum number of step-moves of all robots was calculated. The results are 

shown in Fig. 6. 

6.2 The local planner 

In this section, maps of three set of different conjunct environments was generated. 

We generated 100 maps with the obstacle density d = 2%, 100 maps with d = 5% and 

100 maps with d = 8%. The spatial distribution of obstacles is uniform, but for the size 

of obstacles we used Gaussian distribution with mean=1 meter and standard-devia-

tion=0.25 meter. Fig. 7 illustrates one sample map of each density. 

 
Fig. 7. Three sample maps with different obstacle densities 

According to equation 3, the size of cell’s edge is determined by the range of the com-
munication device. Most of the communication devices provide a connectivity range of 

10-100 meters, therefore the size of the edge can be 3.9 to 39 meters. We chose the size 

of the edge in our experiments A=10 meters, the diameter of robots=50 centimeters, 

and the prudential margin μ =10 centimeters. Our simulated robots are equipped with 
range finders, which are able to detect obstacles up to 7 meters in distance. 

The swap procedure consists three steps (𝑅𝑏=the returning robot, 𝑅𝑎=the other one): 

 𝑅𝑏 determines the closest possible swap point on the path between centers of two 

neighbor cells. Then 𝑅𝑏  moves to reach this point. 𝑅𝑏  uses Bug2 algorithm to 

avoids obstacles along the path. 

 Then 𝑅𝑎 goes to reach the center of the neighbor cell. In this step 𝑅𝑎 treats 𝑅𝑏 like 

an obstacle on its path. 𝑅𝑎 uses Bug2 algorithm to avoid obstacles too. 

 Then 𝑅𝑏 continues its way to reach the neighbor cell’s center. 
An example of swap procedure is shown in fig. 8. It is straightforward to determine the 

closest possible swap point. Firstly 𝑅𝑎 calculates the position of the closest obstacle 

(CO) within the cell. Then the projection of the CO’s center on the path is computed. 
The swap point is the closest point to 𝑅𝑎 which its distance from the projected point is 

equal to 𝑑𝑟/2+𝑑𝑟/2+μ. Fig. 9 illustrates the simulation results for 3 to 10 robots.  



 
Fig. 8. State 1 represents positions of obstacles and robots (𝑅1in the left cell, 𝑅2in the right cell) 

and the connecting line of centers. Other states represent three steps of the swap procedure re-

spectively. The traveled paths of 𝑅1 and 𝑅2 are shown by red and purple trajectories. Robots al-

ways choose left turn in case of facing an obstacle, as a part of Bug2 algorithm. Robots keep their 

distance from obstacles equal to the prudential margin (μ). 

7 Discussion 

If we put aside the base station’s cell, the reachable environment has (2𝑁 + 1)2-1 

cells. Reachability here refers to ability to reach a point without breaking the connec-

tion. The initialize position algorithm does 
𝑁(𝑁+1)2  step-moves, which results in visiting 

N unexplored cells. To visit the rest of the environment (2N + 1)2-N-1 other step-

moves, totally 4.5N2+3.5N step-moves have to be done. 

Here we show that for each algorithm which tries to return robots from the last torus 

to the first one during one complete round of exploration, at least 6.5𝑁2+1.5N total 

step-moves are required. Such an algorithm has to do at least 4.5N2+3.5N step-moves 

to visit the whole area. Then for return procedure, if robots returns back to the first torus 

in a monotonic manner [37] N-1 swaps are required; otherwise robots should do more 

swaps. Each swap is equal to two step-moves, therefore totally 2(N-1) step-moves are 

needed. Thus return procedure for all robots takes 2N (N-1) moves. Therefore the op-

timal algorithm requires at least 6.5N2+1.5N step-moves, as a lower bound to visit the 

whole area. As described before, the provided algorithm acts in the same way. 

The ideal equilibrium in task allocation is achieved when all robots travel same dis-

tance, equal to the mean. The mean for kovacs algorithm is 4.5N+3.5 and for provided 

algorithm is 6.5N+1.5. The increment in average number of step-moves is because of 

the Homecoming procedure. As fig.6.Up-right shows, the task allocation in provided 

algorithm is very close to the optimal and the standard deviation is very intensive 

around the mean. As a result of equalization in the task allocation, the maximum num-

ber of step-moves (NSM) is also less than the kovacs algorithm (fig. 6.Up-left). 



 

Fig. 9. Simulation results for Homecoming algorithm using the provided local planner. The Y 

axis represents the traveled distance and the X axis represents number of the map. Blue plots 

show average traveled distance and the standard deviation around the mean. Red plots show the 

maximum traveled distance in each map. For each density and for each number of robots, the 

Average of maximum traveled distance (AM), the ideal maximum traveled distance(IM) and the 

percentage of increment in the traveled distance (PI) comparing with the ideal traveled distance 

are computed and written under each plot. Ideal situation occurs in obstacle-free environments. 

Since the robot with maximum NSM, consumes the energy more than the others, it is 

possible to set an upper bound on how much an algorithm is able to reduce the maxi-

mum energy consumption of robots, in comparison with the best non-returning algo-

rithm (the kovacs algorithm). Obviously the maximum NSM can’t be less than the av-
erage number of step-moves (6.5N+1.5). In the kovacs algorithm the maximum NSM 

is 9N-1, then the maximum percentage of reduction (MPR) will be: 

 MPR (N) = (9N−1)−6.5N+1.59N−1 =
2.5N−2.59N−1 *100 (6) 

By approaching the number of robots to infinity, MPRmax is derived: 

                                 MPRmax=lim𝑖→∞ 2.5𝑖−2.59𝑖−1 ∗ 100=27.78%  (7) 



The size of the power source is directly related to the maximum energy consumption 

of robots. As fig. 6.Down shows, the maximum possible energy consumption needed 

to accomplish the exploration is decreased in the provided algorithm up to 21.5%, close 

to the maximum possible theoretical reduction. 

The fig. 9 illustrates the effects of the local planner on the global planner’s perfor-
mance. For density = 2%, the maximum travelled distance by 3 to 10 robots are between 

2.2 % to 2.8 % longer than the ideal situation. For densities 5% and 8% these numbers 

are 4.7% to 5.3 % and 7.1% to 8.1% respectively. With a slight difference, the same 

goes for the average travelled distance. 

The provided global planner reduces the maximum energy consumption up to 21.5% 

in compare with the kovacs algorithm, and the local planner affects the global planner’s 
performance up to 8.1 %. This means even when the density of the obstacles in the 

environment is 8%, the provided algorithm is able to reduce the maximum energy con-

sumption up to 20% in compare with the kovacs algorithm. 

8 Conclusion and future works 

In this work, firstly an exact definition of conjunct environments was provided. Then 

based on a referenced work, a new algorithm having two main features was provided, 

return procedure and uniform task allocation. To evaluate the efficiency of the pre-

sented algorithm, several simulation experiments was done. The experiments show the 

efficiency of the provided algorithm. The provided algorithm acts very close to the op-

timal solution. As a good side effect, the maximum energy consumption of robots was 

decreased up to 21.5%. Then, a simple local planner was designed and the performance 

for different numbers of robots was evaluated. Results show that the obstacle avoidance 

task, doesn’t affect the global planners overall performance in a drastic manner. 

In this work we distributed N-1 swaps almost uniformly among the entries of C. A 

more intellectual method should take the initial position of robots into account to assign 

an independent vector C to each robot. This may result in a more uniform task allocation 

scheme. Designing enhanced local planners and also studying the applications of the 

presented algorithm on different types of robots, can be considered for future works. 
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