HOMEOMORPHIC CONTINUOUS CURVES IN 2-SPACE ARE ISOTOPIC IN 3-SPACE

BY
W. K. MASON(${ }^{1}$)

§I

1. Introduction. The following question appears in [12, p. 57]. If K_{1} and K_{2} are homeomorphic compact continua in E^{2}, is there an isotopy (or even a homeomorphism) of E^{3} onto E^{3} which carries K_{1} onto K_{2} ? (See also [5, p. 230].)

At present the answer to this question is unknown. If E^{3} is replaced by E^{4} an affirmative answer has been obtained by Klee [6, Theorem 3.3, p. 36]. Related results for complexes in higher dimensional hyperplanes have been obtained by Bing and Kister [2]. Conditions under which a homeomorphism between planar continuous curves can be extended to E^{2} have been obtained by Gehman [4], and Adkisson and MacLane [1]. Conditions under which a continuous curve can be embedded in E^{2} have been obtained by Claytor [3]. The following result provides an affirmative answer to the above question when K_{1} and K_{2} are continuous curves.

Extension Theorem. Suppose that S and S^{\prime} are continuous curves in E^{2} and g is a homeomorphism of S onto S^{\prime}. Then there is a homeomorphism H of E^{3} onto E^{3} such that
(a) $H=g$ on S, and
(b) H is realizable by an isotopy.

Because of space limitations this article omits certain parts of the proof. Complete details will be found in [7].
2. Outline of proof. The proof of the extension theorem is divided into two parts. First, the theorem is established for continuous curves without separating points. Next we show that by using an "enlarging process", the general case can be reduced to this special case.

If S and S^{\prime} contain no separating points the general idea of the proof is as follows: there is a planar disk D containing S^{\prime} such that the boundary of D is a subset of S^{\prime}. We construct subdivisions $C_{1}, C_{2}, C_{3}, \ldots$ of D into disks such that, for each i, (a) the interior of every element (disk) in C_{i} is either a complementary domain of S^{\prime} or has diameter no greater than $1 / 2^{i}$, and (b) the boundary of every disk in C_{i}

[^0]is a subset of S^{\prime}. We construct homeomorphisms $H_{1}, H_{2}, H_{3}, \ldots$ such that, for each i and each $x \in S$, (a) $H_{i}(x)$ and $g(x)$ belong to the same disk of C_{i}, and (b) if $g(x)$ is on the boundary of a disk in C_{i}, then $H_{i}(x)=g(x)$. The limit of the H_{i} 's is the required homeomorphism H.

Now assume that S contains separating points. The general idea of the second part of the proof is as follows: we may suppose that S contains a nondegenerate cyclic element C_{1}. We enlarge C_{1} and $g\left(C_{1}\right)$ by attaching arcs to S and S^{\prime} until we obtain continuous curves $S_{2} \supset S$ and $S_{2}^{\prime} \supset S^{\prime}$, and cyclic elements $C_{2} \supset C_{1}$ and $C_{2}^{\prime} \supset g\left(C_{1}\right)$ of S_{2} and S_{2}^{\prime} respectively such that (a) the components of $S_{2}-C_{2}$ and of $S_{2}^{\prime}-C_{2}^{\prime}$ have small maximum diameter, (b) $g: S \rightarrow S^{\prime}$ may be extended to a homeomorphism $g_{2}: S_{2} \rightarrow S_{2}^{\prime}$, and (c) there are homeomorphisms $H_{2}, H_{2}^{\prime}: E^{3} \rightarrow E^{3}$ such that $H_{2}\left(S_{2}\right)$ and $H_{2}^{\prime}\left(S_{2}^{\prime}\right)$ are subsets of E^{2}.

We continue this process, adding arcs of smaller and smaller diameter to S and S^{\prime}, and thereby constructing larger and larger cyclic elements. Finally, we obtain continuous curves $S_{\infty} \supset S$ and $S_{\infty}^{\prime} \supset S^{\prime}$ such that (a) S_{∞} and S_{∞}^{\prime} contain no separating points, (b) there is a homeomorphism $g_{\infty}: S_{\infty} \rightarrow S_{\infty}^{\prime}$ which extends $g: S \rightarrow S^{\prime}$, and (c) there are homeomorphisms $H, H^{\prime}: E^{3} \rightarrow E^{3}$ such that $H\left(S_{\infty}\right)$ and $H^{\prime}\left(S_{\infty}^{\prime}\right)$ are subsets of E^{2}.

§II

Definitions and Notation.
$E^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}, x_{2}, x_{3}\right.$ are real numbers $\}$.
$E^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in E^{3}: x_{3}=0\right\}$.
Suppose A and B are point sets. Then: $A+B$ denotes the union (sum) of A and $B ; \operatorname{Bd}(A)$ denotes the set of boundary points of $A ; \operatorname{Int}(A)$ denotes the set of interior points of $A ; \bar{A}$ denotes the closure of A.

Suppose J is a simple closed curve in E^{2}. Then In (J) denotes the bounded component (domain) of $E^{2}-J$.

Let A and B be metric spaces. Let f_{1} and f_{2} be continuous functions from A into B. Then: $\left\|f_{1}-f_{2}\right\|=\sup \left\{\operatorname{dist}\left(f_{1}(x), f_{2}(x)\right): x \in A\right\} ; f_{1}=$ id means that $f_{1}(x)$ $=x$ for all $x \in A ; f_{1}: A \rightarrow B$ means that f_{1} is a continuous function from A onto B.

A complementary domain of a planar set M is a component of $E^{2}-M$.
A 1-complex is a finite collection of arcs no two of which intersect in an interior point of either.

A continuum is a closed, connected set.
A continious curve is a compact, locally connected, metric continuum.
A nondegenerate cyclic element of a continuous curve M is a nondegenerate connected subset of M which contains no separating points and is maximal with respect to the property of being a connected subset without separating points.

The fence over a planar set M is the set $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in E^{3}:\left(x_{1}, x_{2}, 0\right) \in M\right\}$.
An isotopy of a space M onto itself is a continuous function H from $M \times I$ onto M (where I is the interval $[0,1]$) such that for each $t_{0} \in I$, the function $H_{t_{0}}$, defined
by $H_{t_{0}}(x)=H\left(x, t_{0}\right)$, is a homeomorphism of M onto M. A homeomorphism f from M onto M is realizable by an isotopy if there is an isotopy H of M onto M such that $H(x, 0)=x$ and $H(x, 1)=f(x)$ for all $x \in M$.

A finite or infinite sequence is a null sequence if the diameters of its elements converge to zero.
If D is a bounded subset of E^{2} and C is a circle which encloses both D and its boundary, then the outer boundary of D is the boundary of the set of all points x such that x can be joined to some point of C by an arc which contains no point of D or of its boundary. By a theorem of R. L. Moore [8, Theorem 4, p. 259] if D is a bounded complementary domain of a continuous curve, then the outer boundary of D is a simple closed curve.

A pinched annulus is any set homeomorphic to the set P defined as follows: Let D_{1} and D_{2} be planar disks such that $D_{2} \subset D_{1}$ and $\operatorname{Bd}\left(D_{2}\right) \cap \operatorname{Bd}\left(D_{1}\right)$ is a single point. Then $P=\mathrm{Cl}\left(D_{1}-D_{2}\right)$.

A separating point of a set M is a point $p \in M$ such that $M-\{p\}$ is not connected.
An arc B is a spanning arc of a disk D if (a) B is contained in D, (b) the endpoints of B are contained in $\operatorname{Bd}(D)$, and (c) except for its endpoints, B misses $\operatorname{Bd}(D)$.
An $\operatorname{arc} B$ is a spanning arc of an annulus A if (a) B is contained in A, (b) B intersects both boundary components of A, and (c) except for its endpoints, B misses $\mathrm{Bd}(A)$.

§III

1. Purpose. In this section we shall prove the extension theorem for the case in which S contains no separating points.

We shall make use of the following:
Theorem 1 (R. L. Moore [9, p. 212]). Suppose X is a nondegenerate continuous curve in E^{2}. Then the boundary of every domain of $E^{2}-X$ is a simple closed curve if and only if X contains no separating points.
2. Subdividing continuous curves which contain no separating points. Let S denote a nondegenerate planar continuous curve without separating points. Let J denote the boundary of the unbounded complementary domain of S. By Theorem $1, J$ is a simple closed curve.
In proving the extension theorem it will be necessary to break up the interior (bounded complementary domain) of J into small pieces so that the boundaries of these pieces lie in S. This is the purpose of Theorem 2 and Theorem 5.

Theorem 2. Let In (J) denote the bounded domain of $E^{2}-J$. Let D be a bounded complementary domain of S. Then

$$
\mathrm{Cl}(\operatorname{In}(J))=\bar{D}+R_{1}+R_{2}+\cdots,
$$

where R_{1}, R_{2}, \ldots is a (finite or infinite) null sequence of disks, with disjoint interiors, such that, for each $i, D \cap R_{i}=\varnothing$ and $\mathrm{Bd}\left(R_{i}\right)$ is a subset of S.

Proof. By Theorem 1, the boundary of D is a simple closed curve. We shall consider three cases depending upon how $\operatorname{Bd}(D)$ intersects J.

Case 1. $\operatorname{Bd}(D) \cap J$ is more than one point.

Diagram 1
In this case the theorem is obvious (see Diagram 1). Note that, for each i, $\mathrm{Bd}\left(R_{i}\right) \subset J+\mathrm{Bd}(D)$.

Case 2. $\mathrm{Bd}(D) \cap J$ is one point.
Let p be the point $\operatorname{Bd}(D) \cap J . S$ contains no separating points so there is an arc in $S-\{p\}$ from $\mathrm{Bd}(D)$ to J. This arc divides the pinched annulus $\mathrm{Cl}(\operatorname{In}(J))-D$ into two disks R_{1} and R_{2}. Thus $\mathrm{Cl}(\operatorname{In}(J))=\bar{D}+R_{1}+R_{2}$.

Case 3. $\mathrm{Bd}(D) \cap J$ is empty. Then, by Lemma 3, there are disjoint arcs A_{1} and A_{2} in S, both of which run from $\operatorname{Bd}(D)$ to J.

Thus $\mathrm{Cl}(\operatorname{In}(J))=\bar{D}+R_{1}+R_{2}$.
This completes the proof of Theorem 2.
Lemma 3 (Whyburn [10, p. 78]). If J_{1} and J_{2} are nondegenerate, closed, and mutually exclusive subsets of S, there exist two mutually exclusive arcs in S joining J_{1} and J_{2}.

Lemma 4. Let J be any simple closed curve in S, ε any positive number, and K any subset of $\mathrm{Cl}(\operatorname{In}(J))$ such that diam $(K)<\varepsilon / 2$. Suppose every complementary domain of S contained in $\operatorname{In}(J)$ has diameter less than $\varepsilon / 4$. Then $\mathrm{Cl}(\operatorname{In}(J))=R_{1}+R_{2}+\cdots$ $+R_{n}$, where R_{1}, \ldots, R_{n} are disks, with disjoint interiors, such that
(1) $\sum_{i=1}^{n} \mathrm{Bd}\left(R_{i}\right)$ is a connected 1-complex in S,
(2) for each $i, 1 \leqq i \leqq n$, if K intersects R_{i}, then $\operatorname{diam}\left(R_{t}\right) \leqq 4 \varepsilon$.

Proof. Let p be a point of K. We consider two cases.
Case 1 . dist $(p, J)>\varepsilon$. For any number n, let $D(n)$ be the circular disk with center at p and radius equal to n. Then $D(\varepsilon) \cap J=\varnothing$. And

$$
\begin{equation*}
S \cap \overline{[\overline{D(7 \varepsilon / 8)-D(5 \varepsilon / 8)}]} \text { separates } p \text { and } J \text { in } E^{2} \tag{}
\end{equation*}
$$

But then we can find a continuous curve L^{\prime} such that L^{\prime} separates p and J, and

$$
L^{\prime} \subset S \cap\left[E^{2}-D(\varepsilon / 2)\right] \cap \operatorname{Int}(D(\varepsilon))
$$

Then the point p is in a bounded domain M of $E^{2}-L^{\prime}$. The outer boundary of M bounds a disk R_{1} containing K.

All that remains is to join $\operatorname{Bd}\left(R_{1}\right)$ and J by two mutually exclusive arcs in S. The existence of these arcs follows from Lemma 3.

Case 2 . dist $(p, J) \leqq \varepsilon$. Let m be a point of J such that $\operatorname{dist}(p, m) \leqq \varepsilon$. For any number n, let $D(n)$ be the circular disk, centered at m, with radius equal to n. Note that K is a subset of $D(\varepsilon+\varepsilon / 2)$.

If $\mathrm{Cl}(\operatorname{In}(J))$ has diameter greater than 4ε, there is a point r of J such that r is contained in $E^{2}-D(2 \varepsilon)$. Then:

$$
\begin{equation*}
S \cap[\overline{[D(\varepsilon+7 \varepsilon / 8)-D(\varepsilon+5 \varepsilon / 8)]} \text { separates } m \text { and } r \text { in } \mathrm{Cl}(\operatorname{In}(J)) . \tag{*}
\end{equation*}
$$

(See Diagram 2.)

Diagram 2
Hence there is an $\operatorname{arc} L^{\prime}$, in $S \cap\left(E^{2}-D(\varepsilon+9 \varepsilon / 16)\right) \cap \operatorname{Int}(D(\varepsilon+15 \varepsilon / 16))$, which runs from A_{1} to A_{2} (where A_{1} and A_{2} are the two arcs into which m and r divide J) and such that $A_{1}+A_{2}+L^{\prime}$ forms a θ-curve (with $L^{\prime} \subset \mathrm{Cl}(\operatorname{In}(J))$).

Let F_{0} and F_{1} be the two disks bounded by the θ-curve. Assume $m \in F_{0}$ and $r \in F_{1}$. Suppose the diameter of F_{0} is greater than 4ε. Then we subdivide F_{0}, exactly as we subdivided $\mathrm{Cl}(\operatorname{In}(J))$, into two disks $F_{0}^{(1)}$ and $F_{1}^{(1)}$. If the diameter of $F_{0}^{(1)}$ is still too large we subdivide again. The subdivision process must terminate at a finite stage because J can contain only a finite number of spanning arcs of

$$
\overline{D(2 \varepsilon)-D(\varepsilon+15 \varepsilon / 16)}
$$

Thus, we may write $\mathrm{Cl}(\operatorname{In}(J))=F_{0}+F_{1}+\cdots+F_{p}$, where diam $\left(F_{0}\right) \leqq 4 \varepsilon$.
Suppose the diameter of F_{1} is greater than 4ε and K intersects F_{1}. Then, since K is contained in $D(\varepsilon+\varepsilon / 2)$, there is a point m^{\prime} of J such that $m^{\prime} \in \operatorname{Bd}\left(F_{1}\right)$ and $m^{\prime} \in D(\varepsilon+\varepsilon / 2)$. Hence we may repeat the above process, subdividing F_{1} into disks $F_{0}^{\prime}, F_{1}^{\prime}, \ldots, F_{q}^{\prime}$ with $\operatorname{diam}\left(F_{0}^{\prime}\right) \leqq 4 \varepsilon$. But this process must terminate at a finite stage because J can contain only a finite number of spanning arcs of

$$
\overline{D(\varepsilon+9 \varepsilon / 16)-D(\varepsilon+\varepsilon / 2)}
$$

The proof of Lemma 4 is complete.

Theorem 5. Let J be any simple closed curve in S, and ε any positive number. Suppose every complementary domain of S contained in In (J) has diameter less than e/4. Then $\mathrm{Cl}(\operatorname{In}(J))=R_{1}+R_{2}+\cdots+R_{n}$, where R_{1}, \ldots, R_{n} are disks, with disjoint interiors, such that
(1) $\sum_{n=1}^{n} \mathrm{Bd}\left(R_{1}\right)$ is a connected 1 -complex in S,
(2) for each $i, 1 \leqq i \leqq n$, $\operatorname{diam}\left(R_{i}\right) \leqq 4 \varepsilon$.

Proof. Follows from Lemma 4.
3. The flipping theorem. In 2 we divided $\mathrm{Cl}(\operatorname{In}(J))$ into subdisks with boundaries in S. In 3 we move points of S from one subdisk to another.

Theorem 6 (Claytor [3, p. 812]). If X is a continuous curve in E^{2}, and T is a simple closed curve in X, then there are only a finite number of components of $X-T$ each having diameter greater than a given fixed number.

Throughout 3 we shall use the following notation unless stated otherwise. S, as usual, denotes a planar continuous curve without separating points. J is a simple closed curve in $S . Y$ is an arc of S which is a spanning arc of $\mathrm{Cl}(\operatorname{In}(J))$ (thus $Y+J$ is a θ-curve). D_{1} and D_{2} are the two domains into which Y divides $\operatorname{In}(J)$. Finally, g is a homeomorphism which takes the part of S contained in $\mathrm{Cl}(\operatorname{In}(J))$ into $\mathrm{Cl}(\operatorname{In}(J))$, and $g=\mathrm{id}$ on $J+Y$.

Lemma 7. Suppose K is a component of $S \cap\left(D_{1}+D_{2}\right)$ such that $\bar{K} \cap(J+Y) \subset Y$. Then there is a disk R in $\mathrm{Cl}(\operatorname{In}(J))$ such that \bar{K} is a subset of R, R intersects $\dot{J}+Y$ in a subarc of Y, and $\operatorname{Bd}(R)-Y$ is a subset of K.

Proof. $J+Y+\bar{K}$ is a planar continuous curve without separating points. Lemma 7 then follows by an application of Theorem 1.

Notation. We shall denote the subarc of Y which is the intersection of R and $J+Y$ by $\alpha(K)$. (See Diagram 3.)

We shall use the following definitions based on Claytor [3]. Suppose E and F are distinct components of $S \cap\left(D_{1}+D_{2}\right)$, and $(\bar{E}+\bar{F}) \cap(J+Y) \subset Y$. Then E and F are on opposite sides of Y provided one of the following is true: (a) there are arcs $a b$ in $\bar{E}, c d$ in \bar{F}, having only their endpoints on Y, such that $(a+b)$ separates
($c+d$) on $J+Y$, (b) there are triods T_{1} in \bar{E}, T_{2} in \bar{F} such that $T_{1} \cap(J+Y)$ $=T_{2} \cap(J+Y)=a+b+c$, where a, b, c are the feet of T_{1} and T_{2}.

If $E_{1}, E_{2}, \ldots, E_{n}(n>1)$ is a finite collection of distinct components of $S \cap$ ($D_{1}+D_{2}$) such that E_{i} and E_{i+1} are on opposite sides of $Y, 1 \leqq i \leqq n-1$, then the set $E_{1}+\cdots+E_{n}$ is called a chain joining E_{1} to E_{n}.

If E is a component of $S \cap\left(D_{1}+D_{2}\right)$ such that $\bar{E} \cap(J+Y) \subset Y$, then the nest $n(E)$ determined by E is the set consisting of E together with all components E_{x} of $S \cap\left(D_{1}+D_{2}\right)$ for which there exists a chain joining E and E_{x}.
If E is a component of $S \cap\left(D_{1}+D_{2}\right)$ such that $\bar{E} \cap(J+Y) \subset Y$, then the nest arc $A(E)$ determined by E is the subarc of Y which contains $\mathrm{Cl}(n(E)) \cap Y$ and whose endpoints are points of $\mathrm{Cl}(n(E)) \cap Y$. (It is possible that $A(E)=Y$.)

Lemma 8. Suppose E is a component of $S \cap\left(D_{1}+D_{2}\right)$ such that E is a subset of D_{i} and $g(E)$ is a subset of $D_{j}, i \neq j$. Let the endpoints of the nest arc $A(E)$ be p and m. Then there is a disk M in $\mathrm{Cl}(\operatorname{In}(J))$ such that $\operatorname{Bd}(M) \cap S=\{p, m\}$, and M contains E.

Lemma 9. The disk M in Lemma 8 can be chosen so that if

$$
\varepsilon=\sup \{\operatorname{diam}(\alpha(F)): F \text { is a component of } n(E)\}
$$

and if G is any component of $S \cap\left(D_{1}+D_{2}\right)$ such that $\bar{G} \cap(J+Y) \subset Y$ and $\operatorname{diam}(\alpha(G))>\varepsilon$, then $G \cap \operatorname{Int}(M)=\varnothing$. (For definition of $\alpha(F)$ and $\alpha(G)$, see Notation, following Lemma 7.)

Lemma 10. If A is a subarc of Y, then A is the nest arc for at most a finite number of nests. Moreover, only one nest, having A as its nest arc, can have a component whose closure fails to contain both endpoints of A.

Lemma 11. The collection of nest arcs forms a null sequence.
Lemma 12. Let A be a subarc of Y. Let $n\left(E_{1}\right), \ldots, n\left(E_{p}\right)$ be nests in $S \cap\left(D_{1}+D_{2}\right)$ having A as a nest arc. Let M be a disk in $\mathrm{Cl}(\operatorname{In}(J))$ such that $\operatorname{Bd}(M) \cap S$ is the endpoints of A, and M contains the nests $n\left(E_{i}\right), 1 \leqq i \leqq p$.
Then there is a homeomorphism $H: E^{3} \rightarrow E^{3}$ such that:
(1) $H(S) \subset E^{2}$,
(2) $H=$ id on $J+Y$,
(3) $H\left(E_{i}\right) \subset D_{1}$ if and only if $g\left(E_{i}\right) \subset D_{1}, 1 \leqq i \leqq p$,
(4) $H=$ id outside the fence over M,
(5) $H=$ id outside an arbitrarily small neighborhood (in E^{3}) of M.

Proof. We shall induce on the number p of nests $n\left(E_{i}\right)$. If there is only one nest $n\left(E_{1}\right)$, and $E_{1} \subset D_{i}$ and $g\left(E_{1}\right) \subset D_{i}$, let $H=$ id. If there is one nest $n\left(E_{1}\right)$, and $E_{1} \subset D_{i}$ and $g\left(E_{1}\right) \subset D_{j}, i \neq j$, then we "push in" slightly on Bd (M) to obtain a smaller disk M^{\prime} whose boundary intersects S in the endpoints of A. We flip M^{\prime} end-overend, with A as the axis of rotation.

Now suppose $p>1$. Then, with at most one exception, each E_{i} has the property that \bar{E}_{i} contains both endpoints of A (Lemma 10). Then, by Lemma 7, there is a disk R_{i} corresponding to each E_{i}, such that $E_{i} \subset R_{i}$ and $\mathrm{Bd}\left(R_{i}\right)-Y$ is an open arc in E_{i} with endpoints equal to the endpoints of A.

Let B_{1} be the outermost of the open arcs $\mathrm{Bd}\left(R_{i}\right)-Y$ which are contained in D_{1} (provided some $\mathrm{Bd}\left(R_{i}\right)-Y$ lies in D_{1}; otherwise B_{1} does not exist). Let B_{2} be the outermost of the open arcs $\operatorname{Bd}\left(R_{i}\right)-Y$ which are contained in D_{2}.

Case 1. B_{1} and B_{2} both exist and belong to the same nest. But then $p=1$, which is impossible.

Case 2. B_{1} and B_{2} belong to different nests, or one of B_{1}, B_{2} does not exist. Then one of B_{1}, B_{2}, say B_{1}, has the property that if E_{1} is the component of $S \cap$ ($D_{1}+D_{2}$) containing B_{1}, then $\bar{E}_{1} \cap A$ is exactly the endpoints of A. If $E_{1} \subset D_{i}$ and $g\left(E_{1}\right) \subset D_{i}$, define $H^{\prime}=$ id. If $E_{1} \subset D_{i}$ and $g\left(E_{1}\right) \subset D_{j}, i \neq j$, let H^{\prime} be the end-over-end rotation described above.

Then because $H^{\prime}\left(\bar{E}_{1}\right) \cap A$ is the endpoints of A, and $H^{\prime}\left(B_{1}\right)$ is an "outermost" arc, it is clear that there is a disk M_{0} in M such that the intersection of $\operatorname{Bd}\left(M_{0}\right)$ and $H^{\prime}(S)$ is the endpoints of $A, H^{\prime}\left(E_{1}\right)$ does not intersect M_{0}, and $H^{\prime}\left(E_{i}\right) \subset M_{0}$, $2 \leqq i \leqq p$. Then the induction hypothesis is satisfied by M_{0} and the nests $H^{\prime}\left(n\left(E_{i}\right)\right)$ contained in M_{0}.

The proof of Lemma 12 is complete.
Lemma 13. Let ε be a positive number, and suppose that if G is a component of $S \cap\left(D_{1}+D_{2}\right)$ and $\operatorname{diam} \alpha(G)>\varepsilon$, then $G \subset D_{1}$ if and only if $g(G) \subset D_{1}$.

Suppose E_{1}, \ldots, E_{n} are components of $S \cap\left(D_{1}+D_{2}\right)$ none of which is contained in a nest $n(G)$ where $\operatorname{diam} \alpha(G)>\varepsilon$. Let ε_{0} be the diameter of the largest nest arc among the nest arcs determined by E_{1}, \ldots, E_{n} and suppose ε_{1} is a number such that every component F of $S \cap\left(D_{1}+D_{2}\right)$ has diameter less than ε_{1}, provided $\bar{F} \cap(J+Y)$ $\subset Y$, and F is not a component of a nest $n(G)$ where diam $\alpha(G)>\varepsilon$.

Then there is a homeomorphism $H: E^{3} \rightarrow E^{3}$ such that:
(1) $H(S) \subset E^{2}$,
(2) $H=$ id on $J+Y$,
(3) $H\left(E_{i}\right) \subset D_{1}$ if and only if $g\left(E_{i}\right) \subset D_{1}, 1 \leqq i \leqq n$,
(4) $H=$ id on every component G of $S \cap\left(D_{1}+D_{2}\right)$ such that $\operatorname{diam} \alpha(G)>\varepsilon$,
(5) H moves no point a distance more than $4\left(2 \varepsilon_{1}+\varepsilon_{0}\right)$.

Proof. Lemma 13 follows from several applications of Lemmas 8, 9 and 12.
Theorem 14 (The Flipping Theorem). There is a homeomorphism $H: E^{3} \rightarrow E^{3}$ such that:
(a) $H(S) \subset E^{2}$.
(b) $H=$ id on $J+Y$.
(c) $H=$ id outside the fence over $\mathrm{Cl}(\operatorname{In}(J))$.
(d) $H=$ id outside an arbitrary small neighborhood (in E^{3}) of $\mathrm{Cl}(\operatorname{In}(J))$.
(e) If x is a point of $S \cap\left(D_{1}+D_{2}\right)$ and $g(x) \in D_{i}, i \in\{1,2\}$, then $H(x) \in D_{i}$.

Proof. We shall define a sequence of homeomorphisms $H_{1}, H_{2}, H_{3}, \ldots$ whose limit is the required homeomorphism H.

Suppose that, using Lemma 13, we have defined homeomorphisms H_{1}, \ldots, H_{k} such that for each $n, 1 \leqq n \leqq k$,
(1) $H_{n}: E^{3} \rightarrow E^{3}$ and $H_{n}(S) \subset E^{2}$.
(2) $H_{n}=$ id on $J+Y$ and $H_{n}=$ id outside the fence over $\mathrm{Cl}(\operatorname{In}(J))$.
(3) If, for any number η, we define $E(\eta)=\left\{x \in E^{3}: \operatorname{dist}(x, J+Y) \geqq \eta\right\}$, then $H_{n}=H_{n-1}$ on $E\left(1 / 2^{n-1}\right)$.
(4) $\left\|H_{n}-H_{n-1}\right\|<100 / 2^{n-1}$.
(5) There are numbers $0<\beta_{n}<\beta_{n-1}<\cdots<\beta_{1}$ such that if F is a component of $S \cap\left(D_{1}+D_{2}\right)$, and F intersects $E\left(1 / 2^{n}\right)$, then $\operatorname{diam} \alpha(F)>\beta_{n}$ (provided $\alpha(F)$ is defined, i.e. provided $\bar{F} \cap(J+Y) \subset Y)$.
(6) If F is a component of $S \cap\left(D_{1}+D_{2}\right)$ and $\operatorname{diam} \alpha(F)>\beta_{n}$, then $g(F) \subset D_{1}$ if and only if $H_{n}(F) \subset D_{1}$.
(7) If F is a component of $S \cap\left(D_{1}+D_{2}\right)$ and F is not in a nest $n(G)$ where diam $\alpha(G)>\beta_{n}$, then diam $H_{n}(F)<1 / 2^{n}$, provided $\bar{F} \cap(J+Y) \subset Y$.
(8) If F is a component of $S \cap\left(D_{1}+D_{2}\right), F$ is not in a nest $n(G)$ where diam $\alpha(G)$ $>\beta_{n}$, and $A(F)$ is a nest arc determined by F, then $\operatorname{diam} A(F)<1 / 2^{n+3}$.
We shall now define H_{k+1}. Choose $\beta_{k+1}<\beta_{k}$ to be a number such that (a) if G is a component of $S \cap\left(D_{1}+D_{2}\right), \bar{G} \cap(J+Y) \subset Y$, and G intersects $E\left(1 / 2^{k+1}\right)$, then $\operatorname{diam} \alpha(G)>\beta_{k+1}$; and (b) if $n(G)$ is a nest whose nest arc has diameter not less than $1 / 2^{k+4}$, then diam $\alpha(F)>\beta_{k+1}$ for some component F of $n(G)$.

By an application of Lemma 13, we obtain a homeomorphism $H_{k+1}^{\prime}: E^{3} \rightarrow E^{3}$ such that if F is a component of $S \cap\left(D_{1}+D_{2}\right)$, with $\operatorname{diam} \alpha(F)>\beta_{k+1}$, then $H_{k+1}^{\prime}(F) \subset D_{1}$ if and only if $g(F) \subset D_{1}$ (by Theorem 6 there are only a finite number of components F of $S \cap\left(D_{1}+D_{2}\right)$ such that diam $\left.\alpha(F)>\beta_{k+1}\right)$, and H_{k+1}^{\prime} satisfies conditions (1)-(4) of the inductive hypothesis. Condition (7) will be satisfied if we follow H_{k+1}^{\prime} by a homeomorphism $h_{k+1}: E^{3} \rightarrow E^{3}$ which takes the plane onto itself and which "squeezes" the components of $H_{k+1}^{\prime}\left(S \cap\left(D_{1}+D_{2}\right)\right)$ which are too large in toward their nest arcs. We may choose h_{k+1} carefully enough so that if we let $H_{k+1}=h_{k+1} \circ H_{k+1}^{\prime}$, then H_{k+1} has all the properties required by the inductive hypothesis.

This defines the sequence H_{1}, H_{2}, \ldots Let $H=\lim _{n \rightarrow \infty} H_{n}$.
Corollary 15. Let J be a simple closed curve in S and let $g^{\prime}: S \cap \mathrm{Cl}(\operatorname{In}(J))$ $\rightarrow \mathrm{Cl}(\operatorname{In}(J))$ be a homeomorphism such that $g^{\prime}=\mathrm{id}$ on J. Suppose $\mathrm{Cl}(\operatorname{In}(J))$ $=R_{1}+\cdots+R_{n}$, where R_{1}, \ldots, R_{n} are disks with disjoint interiors, and $\sum_{i=1}^{n} \operatorname{Bd}\left(R_{i}\right)$ is a connected 1 -complex in $g^{\prime}(S)$.

Then there is a homeomorphism $H: E^{3} \rightarrow E^{3}$ such that:
(1) $H(S) \subset E^{2}$,
(2) $H=$ id outside the fence over $\mathrm{Cl}(\operatorname{In}(J))$,
(3) $H=\mathrm{id}$ outside an arbitrarily small neighborhood of $\mathrm{Cl}(\operatorname{In}(J))$,
(4) If x is a point of $S \cap \mathrm{Cl}(\operatorname{In}(J))$ and $g^{\prime}(x) \in \operatorname{Bd}\left(R_{i}\right)$, for some $i, 1 \leqq i \leqq n$, then $H(x)=g^{\prime}(x)$,
(5) If x is a point of $S \cap \mathrm{Cl}(\operatorname{In}(J))$ and $g^{\prime}(x) \in R_{i}$ for some $i, 1 \leqq i \leqq n$, then $H(x) \in R_{i}$.

Corollary 16. Let J be a simple closed curve in S and let $g^{\prime}: S \cap \mathrm{Cl}(\mathrm{In}(J))$ $\rightarrow \mathrm{Cl}(\operatorname{In}(J))$ be a homeomorphism such that $g^{\prime}=\mathrm{id}$ on $J+\operatorname{Bd}(D)$, where D is a complementary domain of $g^{\prime}(S)$ such that $\mathrm{Bd}(D) \cap J$ is more than one point. Then there is a homeomorphism $H: E^{3} \rightarrow E^{3}$ such that:
(1) $H(S) \subset E^{2}$,
(2) $H=\mathrm{id}$ outside the fence over $\mathrm{Cl}(\ln (J))$,
(3) $H=$ id outside an arbitrarily small neighborhood of $\mathrm{Cl}(\operatorname{In}(J))$,
(4) $H=$ id on $\operatorname{Bd}(D)$,
(5) D is a complementary domain of $H(S)$.

Proof. By Theorem 2, Case $1, \mathrm{Cl}(\operatorname{In}(J))=\bar{D}+R_{1}+R_{2}+\cdots$, where R_{1}, R_{2}, \ldots is a null sequence of disks with disjoint interiors such that $D \cap R_{i}=\varnothing, \operatorname{Bd}\left(R_{i}\right) \cap J$ is an arc, $i=1,2,3, \ldots$, and $\sum_{i=1}^{\infty} \operatorname{Bd}\left(R_{i}\right) \subset \operatorname{Bd}(D)+J$.

If there is only a finite number of disks R_{i}, then we apply Corollary 15 .
If there is an infinite number, then $\mathrm{Bd}\left(R_{i}\right) \cap J$ and $\mathrm{Bd}\left(R_{j}\right) \cap J, i \neq j$, can have at most one point in common. By Theorem 6, the components of $S \cap\left[\sum_{i=1}^{\infty} \operatorname{Int}\left(R_{i}\right)\right.$ $+D$] form a null sequence. We can apply Theorem 14 a countable number of times to obtain a sequence of homeomorphisms whose limit is H.

Lemma 17. Let $H: E^{3} \rightarrow E^{3}$ be the homeomorphism obtained in Theorem 14. Let N be a complementary domain of $H(S)$ such that N is a subset of In (J). Suppose N contains a point $H(x)$ such that the distance between x and S is greater than or equal to $1 / 2^{m}$, for some integer m. Then at last one of the following holds:
(a) $H^{-1}(N)$ is a complementary domain of S, and diam $H^{-1}(N) \geqq 1 / 2^{m}$, or
(b) $\operatorname{Bd}(N)$ intersects the θ-curve $J+Y$ in at least two points.

Proof. H is the limit of a sequence of homeomorphisms $H_{1}, H_{2}, H_{3}, \ldots$, where H_{n} differs from H_{n-1} by a finite number of homeomorphisms h_{1}, \ldots, h_{m} each of which is a rotation of a disk end-over-end with a subarc of Y as the axis of rotation.

But (a) or (b) holds for each rotation h_{i}. Hence (a) or (b) holds for each H_{n}, $n=1,2,3, \ldots$ Suppose $\operatorname{Bd}(N) \cap(J+Y)$ is at most one point. Then $\operatorname{Bd}(N)$ is contained in the closure of a component F of $H(S) \cap\left(D_{1}+D_{2}\right)$. By the way in which H was defined, there is an integer n such that $H^{-1}(F)=H_{n}^{-1}(F)$.

4. The extension theorem for continuous curves without separating points.

Theorem 18. Let S and S^{\prime} be continuous curves in E^{2}, and suppose S contains no separating points. Let g be a homeomorphism of S onto S^{\prime}. Then there is a homeomorphism $H: E^{3} \rightarrow E^{3}$ such that $H=g$ on S and H is realizable by an isotopy.

Proof. All homeomorphisms defined below can be chosen to be the identity outside some preassigned cube containing S and S^{\prime}, and hence the final homeomorphism H may be realized by an isotopy.

By Corollary 15 , we may assume that the boundary J of the unbounded complementary domain of S^{\prime} is the same as the boundary of the unbounded complementary domain of S, and that $g=$ id on J.

We shall define a sequence of homeomorphisms whose limit is the required homeomorphism H.

Suppose we have defined homeomorphisms $H_{1}, H_{2}, \ldots, H_{m}$ such that for any n, $1 \leqq n \leqq m$, we have:
(1) $H_{n}: E^{3} \rightarrow E^{3}, H_{n}(S) \subset E^{2}$, and $H_{n}=$ id outside the fence over $\mathrm{Cl}(\operatorname{In}(J))$.
(2) $\mathrm{Cl}(\operatorname{In}(J))=\bar{D}_{1}+\cdots+\bar{D}_{p_{n}}+R_{1}^{n}+R_{2}^{n}+\cdots$, where
(a) $D_{i}, 1 \leqq i \leqq p_{n}$, is a complementary domain of S^{\prime} and of $H_{n}(S)$.
(b) $R_{1}^{n}, R_{2}^{n}, \ldots$ is a null sequence of disks with disjoint interiors, each having diameter no more than $1 / 2^{n}$.
(c) $\sum_{i=1}^{\infty} \mathrm{Bd}\left(R_{i}^{n}\right) \subset S^{\prime}$.
(d) $D_{i} \cap R_{j}^{n}=\varnothing$, for all $i, j, 1 \leqq i \leqq p_{n}, j=1,2, \ldots$.
(3) If x is a point of S, then one of (a), (b), (c) holds:
(a) $g(x) \in \operatorname{Bd}\left(D_{i}\right)$ for some $i, 1 \leqq i \leqq p_{n}$, and $H_{n}(x)=g(x)$.
(b) $g(x) \in \operatorname{Bd}\left(R_{i}^{n}\right)$ for some $i, i=1,2, \ldots$, and $H_{n}(x)=g(x)$.
(c) $g(x) \in \operatorname{Int}\left(R_{i}^{n}\right)$ for some $i, i=1,2, \ldots$, and $H_{n}(x) \in \operatorname{Int}\left(R_{i}^{n}\right)$.
(4) If for any number η, we let $E(\eta)=\left\{x \in E^{3}: \operatorname{dist}(x, S) \geqq \eta\right\}$, and if N is a complementary domain of $H_{n}(S)$ such that N is contained in some disk R_{i}^{n} and N intersects $H_{n}\left(E\left(1 / 2^{k}\right)\right)$ for some integer k, then one of (a), (b) holds:
(a) $H_{n}^{-1}(N)$ is a complementary domain of S and diam $H_{n}^{-1}(N) \geqq 1 / 2^{k}$.
(b) $\mathrm{Bd}(N)$ intersects $\mathrm{Bd}\left(R_{i}^{n}\right)$ in at least two points.
(5) R_{i}^{n} misses $H_{n}\left(E\left(1 / 2^{n}\right)\right)$ for all $i, i=1,2,3, \ldots$
(6) $H_{n}=H_{n-1}$ on $E\left(1 / 2^{n-1}\right)$.
(7) $\left\|H_{n}-H_{n-1}\right\| \leqq 100 / 2^{n-1}$.

We shall now define H_{m+1}.
Let N_{1}, \ldots, N_{l} be the domains of $E^{2}-S$ such that diam $\left(N_{i}\right) \geqq 1 / 2^{m+1}, 1 \leqq i \leqq l$.
Let $\delta=\min \left\{1 / 2^{m+1}, \operatorname{diam} g\left(\operatorname{Bd}\left(N_{1}\right)\right), \ldots, \operatorname{diam} g\left(\operatorname{Bd}\left(N_{i}\right)\right)\right\}$.
Since the disks $\left\{R_{i}^{m}\right\}$ form a null sequence there are only a finite number which have diameter greater than $\delta / 2$. We may assume that R_{1}^{m} is the only disk with diameter greater than $\delta / 2$.

Let $D_{m_{i}}, \ldots, D_{m_{q}}$ be the complementary domains of S^{\prime} such that
(a) $D_{m_{t}} \subset R_{1}^{m}$, and
(b) diam $D_{m_{1}} \geqq 4^{-2}(\delta / 2), 1 \leqq i \leqq q$.

By Theorem 2, we may subdivide R_{1}^{m} as follows: $R_{1}^{m}=\bar{D}_{m_{1}}+R_{1}+R_{2}+\cdots$ where R_{1}, R_{2}, \ldots is a (finite or infinite) null sequence of disks, with disjoint interiors, such that $D_{m_{1}} \cap R_{i}=\varnothing$ and $\operatorname{Bd}\left(R_{i}\right)$ is a subset of $S^{\prime}, i=1,2, \ldots$.

There is a homeomorphism $h_{1}: E^{3} \rightarrow E^{3}$ such that: (a) $h_{1}=$ id outside the fence over R_{1}^{m}, (b) h_{1} moves no point outside a small neighborhood (in E^{3}) of R_{1}^{m}, (c) $h_{1}=$ id on $H_{n}\left(E\left(1 / 2^{m}\right)\right.$), (d) if x is a point of $H_{m}(S) \cap R_{1}^{m}$ and $g \circ H_{m}^{-1}(x) \in \operatorname{Bd}\left(R_{i}\right)$ for some $i, i=1,2, \ldots$, then $g \circ H_{m}^{-1}(x)=h_{1}(x)$, and (e) if x is a point of $H_{m}(S) \cap R_{1}^{m}$, and $g \circ H_{m}^{-1}(x) \in R_{i}$ for some $i, i=1,2, \ldots$, then $h_{1}(x) \in R_{i}$.

The existence of h_{1} follows from Corollary 15 in the case where R_{1}, R_{2}, \ldots is a finite sequence, or from Corollary 16 in the case where R_{1}, R_{2}, \ldots, is an infinite sequence.

We may assume that $D_{m_{2}}$ is contained in R_{1}. We then repeat the above procedure, with R_{1} in place of $R_{1}^{m}, D_{m_{2}}$ in place of $D_{m_{1}}$, and $g \circ H_{m}^{-1} \circ h_{1}^{-1}$ in place of $g \circ H_{m}^{-1}$.

We repeat the procedure a finite number of times, until we obtain a homeomorphism $H^{\prime}: E^{3} \rightarrow E^{3}$ and a subdivision of R_{1}^{m}, so that: $R_{1}^{m}=\bar{D}_{m_{1}}+\cdots+\bar{D}_{m_{q}}$ $+R_{1}^{\prime}+R_{2}^{\prime}+\cdots$, where $R_{1}^{\prime}, R_{2}^{\prime}, \ldots$ is a null sequence of disks with disjoint interiors such that $D_{m_{i}} \cap R_{j}^{\prime}=\varnothing$ for all i and $j, 1 \leqq i \leqq q, j=1,2, \ldots$, and $\operatorname{Bd}\left(R_{j}^{\prime}\right) \subset S^{\prime}$ for $j=1,2, \ldots$ If x is a point of $H_{m}(S) \cap R_{1}^{m}$, and $g \circ H_{m}^{-1}(x) \in \operatorname{Bd}\left(R_{i}^{\prime}\right)$ for some i, $i=1,2, \ldots$, or $g \circ H_{m}^{-1}(x) \in \operatorname{Bd}\left(D_{m_{i}}\right)$ for some $i, 1 \leqq i \leqq q$, then $g \circ H_{m}^{-1}(x)=H^{\prime}(x)$. If x is a point of $H_{m}(S) \cap R_{1}^{m}$ and $g \circ H_{m}^{-1}(x) \in R_{i}^{\prime}$ for some $i, i=1,2, \ldots$, then $H^{\prime}(x) \in R_{i}^{\prime} . H^{\prime}=$ id outside the fence over $R_{1}^{m}, H^{\prime}=$ id outside a small neighborhood (in E^{3}) of R_{1}^{m}, and H^{\prime} moves no point of $H_{m}\left(E\left(1 / 2^{m}\right)\right.$).

By Corollary 15, Theorem 5, and the fact that no $R_{i}^{\prime}, i=1,2, \ldots$, contains a domain of $E^{2}-S^{\prime}$ which has diameter as large as $4^{-2}(\delta / 2)$, we may assume, in addition, that each R_{i}^{\prime} has diameter no more than $\delta / 2$.

By induction hypothesis (4), and Lemma 17, it is clear that if N is a domain of $E^{2}-H^{\prime} \circ H_{m}(S)$, if N intersects $H^{\prime} \circ H_{m}\left(E\left(1 / 2^{k}\right)\right)$ for some integer k, and if N is contained in a disk in the sequence $\left\{R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{2}^{m}, R_{3}^{m}, \ldots\right\}$ then either $\operatorname{Bd}(N)$ intersects the boundary of the disk in at least two points, or $\left(H^{\prime} \circ H_{m}\right)^{-\mathbf{1}}(N)$ is a domain of $E^{2}-S$ with diameter no smaller than $1 / 2^{k}$.

A finite number of disks in the null sequence $\left\{R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{2}^{m}, R_{3}^{m}, \ldots\right\}$ may intersect $H^{\prime} \circ H\left(E\left(1 / 2^{m+1}\right)\right)$. We must subdivide further to eliminate these intersections. We may assume that R_{2}^{m} is the only disk in the sequence which intersects $H^{\prime} \circ H_{m}\left(E\left(1 / 2^{m+1}\right)\right)$.

Let M_{1}, \ldots, M_{τ} be the domains of $E^{2}-H^{\prime} \circ H_{m}(S)$ which are contained in R_{2}^{m} and which intersect $H^{\prime} \circ H_{m}\left(E\left(1 / 2^{m+1}\right)\right)$. By our choice of δ, the boundary of each $M_{i}, 1 \leqq i \leqq r$, intersects $\mathrm{Bd}\left(R_{2}^{m}\right)$ in at least two points. Hence, for each $M_{i}, 1 \leqq i \leqq r$, we may choose a pair of points p_{i}, q_{i} such that $\left\{p_{i}, q_{i}\right\}$ is contained in $\operatorname{Bd}\left(M_{i}\right)$ $\cap \operatorname{Bd}\left(R_{2}^{m}\right)$.

Let $\varepsilon=\min \left\{\operatorname{dist}\left(p_{i}, q_{i}\right): 1 \leqq i \leqq r\right\}$.
Let $D_{n_{1}}, \ldots, D_{n_{y}}$ be the domains of $E^{2}-S^{\prime}$ such that (a) $D_{n_{i}} \subset R_{2}^{m}$, and (b) $\operatorname{Bd}\left(D_{n_{i}}\right)$ contains a pair of points of $\operatorname{Bd}\left(R_{2}^{m}\right)$ which are a distance at least ε apart, $1 \leqq i \leqq y$.

There is a homeomorphism $G: E^{3} \rightarrow E^{3}$ and a subdivision of R_{2}^{m} so that: $R_{2}^{m}=\bar{D}_{n_{1}}+\cdots+\bar{D}_{n_{y}}+R_{1}^{\prime \prime}+R_{2}^{\prime \prime}+\cdots$ where the subdivision and the homeo-
morphism G have properties analogous to the subdivision of R_{1}^{m} and the homeomorphism H^{\prime} above.

Further, we may choose G so that if D is a complementary domain of $G \circ H^{\prime}$ $\circ H_{m}(S)$, and D intersects $G \circ H^{\prime} \circ H_{m}\left(E\left(1 / 2^{m+1}\right)\right)$, then $\operatorname{Bd}(D)$ contains two points p, q of $\operatorname{Bd}\left(R_{2}^{m}\right)$ such that dist $(p, q) \geqq \varepsilon$. But then $D=D_{n_{i}}$ for some $i, 1 \leqq i \leqq y$. Thus D misses $R_{i}^{\prime \prime}$ for all $i, i=1,2, \ldots$.

Hence, if we let $H_{m+1}=G \circ H^{\prime} \circ H_{m}$, relabel $\left\{D_{m_{1}}, \ldots, D_{m_{q}}, D_{n_{1}}, \ldots, D_{n_{y}}\right\}$ as $\left\{D_{p_{m}+1}, \ldots, D_{p_{m+1}}\right\}$, and relabel $\left\{R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{1}^{\prime \prime}, R_{2}^{\prime \prime}, \ldots, R_{3}^{m}, R_{4}^{m}, \ldots\right\}$ as $\left\{R_{1}^{m+1}\right.$, $\left.R_{2}^{m+2}, \ldots\right\}$, then conditions (1)-(7) of the inductive hypothesis are fulfilled. And $H=\lim _{n \rightarrow \infty} H_{n}$ is the required homeomorphism.

§IV

1. Introduction. In this section we shall prove the extension theorem. Henceforth S will denote any planar continuous curve.

We shall make use of the following theorems:
Theorem 19 [10, Theorem 3.1, p. 108]. If A and B are compact subsets of E^{2} such that $A \cap B=T$ is totally disconnected and a, b are points of $A-(A \cap B)$ and $B-(A \cap B)$, respectively, and ε is any positive number, then there exists a simple closed curve J in E^{2} which separates a and b and is such that $J \cap(A+B) \subset A \cap B$, and every point of J is at a distance less than ε from some point of A.

Theorem 20 [10, Theorem 2.1, p. 66]. If C is a nondegenerate cyclic element of S, and T is a component of $S-C$, then there exists a point x of C such that T is a component of $S-\{x\}$.
2. Enlarging cyclic elements. Suppose C is a nondegenerate cyclic element of S, and suppose T is a component of $S-C$. In 2 we shall demonstrate a way of moving S with a homeomorphism H, and then adding planar $\operatorname{arcs} A_{1}, \ldots, A_{n}$ to the planar curve $H(S)$ so that $H(C)$ and a certain part of $H(T)$ belong to the same cyclic element of $H(S)+A_{1}+\cdots+A_{n}$. We shall do this in such a way that if S^{\prime} is a given planar homeomorphic image of S, then we can move S^{\prime} with a homeomorphism H^{\prime}, and add planar arcs $A_{1}^{\prime}, \ldots, A_{n}^{\prime}$ to the planar curve $H^{\prime}\left(S^{\prime}\right)$ so that there is an extension of the natural homeomorphism of $H(S)$ onto $H^{\prime}\left(S^{\prime}\right)$ to a homeomorphism of. $H(S)+A_{1}+\cdots+A_{n}$ onto $H^{\prime}\left(S^{\prime}\right)+A_{1}^{\prime}+\cdots+A_{n}^{\prime}$.

Lemma 21. Let g be a homeomorphism of S into E^{2}, and let J be a simple closed curve in the boundary of a complementary domain of S. Let A be an arc in J, and let p be an endpoint of $g(A)$. Then there is a point x of $g(A)-\{p\}$ such that x and p lie on the boundary of a complementary domain of $g(S)$.

Theorem 22. Let e be a point of S, and let T be a component of $S-\{e\}$. Let J be a simple closed curve in \bar{T}. Suppose f_{1} and f_{2} are homeomorphisms of S into E^{2}. Suppose D_{1} and D_{2} are disks in E^{2} such that, for each $i, i=1,2, \operatorname{Bd}\left(D_{i}\right) \cap f_{i}(S)$
$=\left\{f_{i}(e)\right\}$, and $f_{i}(T) \subset D_{i}$. Then for each $i, i=1,2$, there is a homeomorphism $H_{i}: E^{3}$ $\rightarrow E^{3}$, and a finite collection of arcs $A_{1}^{1}, \ldots, A_{n}^{i}$ such that:
(1) $H=$ id outside the fence over D_{i}, and outside an arbitrarily small neighborhood of D_{i}, and $H_{i} \circ f_{i}(S) \subset E^{2}$,
(2) for each $j, 1 \leqq j \leqq n, A_{j}^{i}$ lies in D_{i} and has an endpoint on $H_{i} \circ f_{i}(T)$,
(3) $\mathrm{Bd}\left(D_{i}\right)$ and $H_{i} \circ f_{i}(J)$ belong to the same cyclic element of $H_{i} \circ f_{i}(S)+\operatorname{Bd}\left(D_{i}\right)$ $+A_{1}^{i}+\cdots+A_{n}^{i}$,
(4) there is a homeomorphism g of $H_{1} \circ f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}+\cdots+A_{n}^{1}$ onto $H_{2} \circ f_{2}(S)+\mathrm{Bd}\left(D_{2}\right)+A_{1}^{2}+\cdots+A_{n}^{2}$ such that $g=H_{2} \circ f_{2} \circ f_{1}^{-1} \circ H_{1}^{-1}$ on $H_{1} \circ f_{1}(S)$, and $g\left(\operatorname{Bd}\left(D_{1}\right)\right)=\operatorname{Bd}\left(D_{2}\right)$.

Proof. Let M_{1} be the simple closed curve in $f_{1}(S)$ such that (a) M_{1} lies on the boundary of the complementary domain of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$ whose outer boundary is $\operatorname{Bd}\left(D_{1}\right)$, (b) $f_{1}(J) \subset \mathrm{Cl}\left(\operatorname{In}\left(M_{1}\right)\right)$. The existence of M_{1} follows from [11, Theorem 17, p. 369].

Lemma 23. Suppose $f_{1}(J)$ and M_{1} belong to different cyclic elements of $f_{1}(S)$ $+\operatorname{Bd}\left(D_{1}\right)$. Let \dot{C}^{\prime} be the cyclic element of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$ which contains M_{1} and let T^{\prime} be the component of $f_{1}(S)-C^{\prime}$ whose closure contains $f_{1}(J)$. Then we may assume without loss of generality that \bar{T}^{\prime} does not intersect M_{1}.
Proof. Suppose \bar{T}^{\prime} intersects M_{1}. Then, by Theorem 20, this intersection is a single point p. By an application of Theorem 19, there is a disk E such that $\operatorname{Bd}(E) \cap f_{1}(S)=\{p\}$, and $\mathrm{Bd}(E)$ separates T^{\prime} and $M_{1}-\{p\}$ (and thus $E \subset \mathrm{Cl}\left(\operatorname{In}\left(M_{1}\right)\right)$). Let A be an arc in D_{1} from $\operatorname{Bd}\left(D_{1}\right)-\left\{f_{1}(e)\right\}$ to p such that A lies, except for its endpoints, in $E^{2}-\left[f_{1}(S)+\mathrm{Bd}\left(D_{1}\right)\right]$. Let d be a small arc with one endpoint on A and the other equal to p so that the resulting disk E_{1}, bounded by d and a subarc of A, intersects $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$ only at p (see Diagram 4).

Let $G_{1}: E^{3} \rightarrow E^{3}$ be a homeomorphism which interchanges E and E_{1} so that $G_{1}\left(f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)\right) \subset E^{2}, G_{1}=\mathrm{id}$ on $\left[f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)\right]-E$, and $G_{1}(p)=p$.

It is clear that if Q is a simple closed curve in $G_{1} \circ f_{1}(S)$, and $G_{1} \circ f_{1}(J)$ is contained in $\mathrm{Cl}(\operatorname{In}(Q))$, then $f_{1}(J)$ is contained in $\mathrm{Cl}\left(\operatorname{In}\left(G_{1}^{-1}(Q)\right)\right)$.

Let $G_{1}\left(M_{1}^{(1)}\right)$ be the simple closed curve in $G_{1} \circ f_{1}(S)$ such that (a) $G_{1}\left(M_{1}^{(1)}\right)$ lies on the boundary of the complementary domain of $G_{1}\left(f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)\right)$ whose
outer boundary is $\mathrm{Bd}\left(D_{1}\right)$, and (b) $G_{1} \circ f_{1}(J)$ is a subset of $\mathrm{Cl}\left(\operatorname{In}\left(G_{1}\left(M_{1}^{(1)}\right)\right)\right.$). Then $M_{1}^{(1)}$ and M_{1} belong to different cyclic elements of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$, and $f_{1}(J) \subset \mathrm{Cl}\left(\operatorname{In}\left(M_{1}^{(1)}\right)\right)$.

Suppose $M_{1}^{(1)}$ and $f_{1}(J)$ belong to different cyclic elements of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$. Let $C^{\prime \prime}$ be the cyclic element containing $M_{1}^{(1)}$, and let $T^{\prime \prime}$ be the component of $f_{1}(S)-C^{\prime \prime}$ whose closure contains $f_{1}(J)$. If $\bar{T}^{\prime \prime}$ intersects $M_{1}^{(1)}$, then, as above, we obtain a homeomorphism $G_{2}: E^{3} \rightarrow E^{3}$ which moves $G_{1} \circ f_{1}(J)$ out of $\operatorname{In}\left(G_{1}\left(M_{1}^{(1)}\right)\right)$.

We continue this process. It must terminate after a finite number of steps, however, because the simple closed curves $M_{1}, M_{1}^{(1)}, M_{1}^{(2)}, \ldots$ belong to different cyclic elements of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$, and each $M_{1}^{(i)}$ contains $f_{1}(J)$ in the closure of its interior. But the nondegenerate cyclic elements of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$ form a null sequence [10, Theorem 4.2, p. 71]. The proof of Lemma 23 is complete.

Resuming the proof of Theorem 22, let M_{2} be the simple closed curve in $f_{2}(S)$ such that (a) M_{2} lies on the boundary of the complementary domain of $f_{2}(S)$ $+\operatorname{Bd}\left(D_{2}\right)$ whose outer boundary is $\operatorname{Bd}\left(D_{2}\right)$, and (b) $f_{2}(J)$ is contained in $\mathrm{Cl}\left(\operatorname{In}\left(M_{2}\right)\right)$. Again, we may assume that either $f_{2}(J)$ and M_{2} belong to the same cyclic element of $f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)$, or if C^{\prime} is the cyclic element containing M_{2}, then the closure of the component of $f_{2}(S)-C^{\prime}$ containing $f_{2}(J)$ does not intersect M_{2}.

For each $i, i=1,2$, let p_{i} be the point of M_{i} such that $M_{i}-\left\{p_{i}\right\}$ and $\operatorname{Bd}\left(D_{i}\right)-\left\{p_{i}\right\}$ belong to different components of $\left[f_{i}(S)+\operatorname{Bd}\left(D_{i}\right)\right]-\left\{p_{i}\right\}$. For each $i, i=1,2$, let N_{i} be the complementary domain of $f_{i}(S)+\operatorname{Bd}\left(D_{i}\right)$ whose outer boundary is $\operatorname{Bd}\left(D_{i}\right)$. One may show that either $f_{2} \circ f_{1}^{-1}\left(p_{1}\right)$ is contained in $\operatorname{Bd}\left(N_{2}\right)$, or $f_{1} \circ f_{2}^{-1}\left(p_{2}\right)$ is contained in $\operatorname{Bd}\left(N_{1}\right)$. Assume that $f_{2} \circ f_{1}^{-1}\left(p_{1}\right)$ is contained in $\operatorname{Bd}\left(N_{2}\right)$.

Let $f=f_{2} \circ f_{1}^{-1}$. There is a disk E such that $\operatorname{Bd}(E) \cap\left[f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)\right]=\left\{f\left(p_{1}\right)\right\}$, $\operatorname{Bd}(E)-\left\{f\left(p_{1}\right)\right\}$ is contained in the domain N_{2}, and $\operatorname{Bd}(E)$ separates $f\left(M_{1}\right)$ $-\left\{f\left(p_{1}\right)\right\}$ and $\operatorname{Bd}\left(D_{2}\right)-\left\{f\left(p_{1}\right)\right\}$.

By an application of Lemma 21, there is an arc B such that one endpoint of B is $f\left(p_{1}\right)$, the other endpoint m is in $f\left(M_{1}\right)$, and except for its endpoints, B misses $f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)+\operatorname{Bd}(E)$. Then the simple closed curve C, formed by B and an arc in $f\left(M_{1}\right)$ from m to $f\left(p_{1}\right)$, lies, except for $f\left(p_{1}\right)$, in the interior of E.

Let E_{1} be a disk which intersects $f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)$ only at $f\left(p_{1}\right)$, and which lies, except for $f\left(p_{1}\right)$, in In (C), and such that E_{1} and C intersect the same complementary domain of $f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)$.

There is a homeomorphism $G: E^{3} \rightarrow E^{3}$ such that (a) G interchanges the pinched annulus bounded by $\operatorname{Bd}\left(E_{1}\right)+C$ and the one bounded by $\mathrm{Bd}(E)+C$, (b) $G=\operatorname{id}$ on $\left[f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)\right]-E$, (c) $G=\mathrm{id}$ on C, and (d) $G\left(f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)\right) \subset E^{2}$. Thus the image, under G, of $\operatorname{Bd}\left(E_{1}\right)$ is the set $\operatorname{Bd}(E)$. Hence there is an arc A from a point of $G \circ f\left(M_{1}-\left\{p_{1}\right\}\right), m$ for example, to a point of $G\left(\operatorname{Bd}\left(E_{1}\right)-\left\{f\left(p_{1}\right)\right\}\right)$ $=\operatorname{Bd}(E)-\left\{f\left(p_{1}\right)\right\}$, so that, except for its endpoints, A lies in a complementary domain of $G\left(f_{2}(S)+\mathrm{Bd}\left(D_{2}\right)\right)$. There is also an arc A^{\prime} from the endpoint of A on $\mathrm{Bd}(E)$ to a point of $\mathrm{Bd}\left(D_{2}\right)-\left\{f_{2}(e)\right\}$ such that A^{\prime} lies, except for its endpoints, in a complementary domain of $G\left(f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)\right)+A$. Let A_{1}^{2} be the $\operatorname{arc} A+A^{\prime}$.

We may add a corresponding arc A_{1}^{1} to $f_{1}(S)+\mathrm{Bd}\left(D_{1}\right)$ so that one endpoint of A_{1}^{1} is the image, under $(G \circ f)^{-1}$, of the endpoint of A_{1}^{2} on $G \circ f\left(M_{1}\right)$, and the other endpoint of A_{1}^{1} lies on $\operatorname{Bd}\left(D_{1}\right)-\left\{f_{1}(e)\right\}$. Then there is a homeomorphism of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}$ onto $G \circ f_{2}(S)+\mathrm{Bd}\left(D_{2}\right)+A_{1}^{2}$ which extends the homeomorphism $G \circ f_{2} \circ f_{1}^{-1}$ of $f_{1}(S)$ onto $G \circ f_{2}(S)$. Note that $\operatorname{Bd}\left(D_{1}\right)$ and M_{1} belong to the same cyclic element of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}$.

Lemma 24. If Q is a simple closed curve in $G \circ f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)+A_{1}^{2}$ such that $G \circ f_{2}(J)$ is contained in $\mathrm{Cl}(\operatorname{In}(Q))$, and Q belongs to a cyclic element of $G \circ f_{2}(S)$ $+\operatorname{Bd}\left(D_{2}\right)+A_{1}^{2}$ different from the one containing $\operatorname{Bd}\left(D_{2}\right)$, then $f_{2}(J)$ is contained in $\mathrm{Cl}\left(\operatorname{In}\left(G^{-1}(Q)\right)\right)$.

Now suppose $f_{1}(J)$ and M_{1} do not belong to the same cyclic element of $f_{1}(S)$ $+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}$. Then we shall further enlarge the cyclic element containing M_{1} (and $\operatorname{Bd}\left(D_{1}\right)$).

First, we describe disks D_{1}^{\prime} and D_{2}^{\prime} which play roles similar to those played above by D_{1} and D_{2}.

Let C_{1} be the cyclic element of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}$ which contains M_{1}. Let T_{1} be the component of $\left[f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}\right]-C_{1}$ which contains $f_{1}(J)$. Then $\bar{T}_{1} \cap C_{1}$ is a point e^{\prime}. Clearly, the boundary of the domain of $E^{2}-C_{1}$ containing T_{1} is also the outer boundary of a domain N of $E^{2}-\left[f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}\right]$. Hence there is a disk D_{1}^{\prime} such that

$$
\operatorname{Bd}\left(D_{1}^{\prime}\right) \cap\left[f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}\right]=\left\{e^{\prime}\right\}
$$

$\operatorname{Bd}\left(D_{1}^{\prime}\right)-\left\{e^{\prime}\right\}$ lies in the domain N, and $\operatorname{Bd}\left(D_{1}^{\prime}\right)$ separates T_{1} and $C_{1}-\left\{e^{\prime}\right\}$ (and thus $T_{1} \subset D_{1}^{\prime}$).

By Theorem 19, there is a disk D_{2}^{\prime} such that

$$
\operatorname{Bd}\left(D_{2}^{\prime}\right) \cap\left[G \circ f_{2}(S)+\operatorname{Bd}\left(D_{2}\right)+A_{1}^{2}\right]=\left\{G \circ f\left(e^{\prime}\right)\right\}
$$

and $\operatorname{Bd}\left(D_{2}^{\prime}\right)$ separates $G \circ f\left(T_{1}\right)$ and $G \circ f\left(C_{1}-\left\{e^{\prime}\right\}\right)$ (and thus, $\left.G \circ f\left(T_{1}\right) \subset D_{2}^{\prime}\right)$.
Lemma 25. We may assume without loss of generality that the image, under $G \circ f$, of the outer boundary of the domain N contains at least two points which
belong to the boundary of N^{\prime}, where N^{\prime} is the complementary domain of $G \circ f_{2}(S)$ $+\operatorname{Bd}\left(D_{2}\right)+A_{1}^{2}$ containing $\operatorname{Bd}\left(D_{2}^{\prime}\right)-\left\{G \circ f\left(e^{\prime}\right)\right\}$.
By Lemma 25 , there are $\operatorname{arcs} B_{1}$ in D_{1}, B_{2} in D_{2} such that (a) one endpoint of B_{1} is on $C_{1}-\left\{e^{\prime}\right\}$, the other endpoint is on $\operatorname{Bd}\left(D_{1}^{\prime}\right)-\left\{e^{\prime}\right\}$, and except for its endpoints, B_{1} misses $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}+\operatorname{Bd}\left(D_{1}^{\prime}\right)$; (b) there is a homeomorphism of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)+A_{1}^{1}+B_{1}+\mathrm{Bd}\left(D_{1}^{\prime}\right)$ onto $G \circ f_{2}(S)+\mathrm{Bd}\left(D_{2}\right)+A_{1}^{2}+B_{2}+\operatorname{Bd}\left(D_{2}^{\prime}\right)$ which extends the previous homeomorphism of $f_{1}(S)+\mathrm{Bd}\left(D_{1}\right)+A_{1}^{\prime}$ onto $G \circ f_{2}(S)$ $+\operatorname{Bd}\left(D_{2}\right)+A_{1}^{2}$.
Then $\operatorname{Bd}\left(D_{1}\right)$ and $\operatorname{Bd}\left(D_{1}^{\prime}\right)$ belong to the same cyclic element of $f_{1}(S)+\operatorname{Bd}\left(D_{1}\right)$ $+A_{1}^{1}+B_{1}+\mathrm{Bd}\left(D_{1}^{\prime}\right)$.
As above we enlarge the cyclic element containing $\mathrm{Bd}\left(D_{1}^{\prime}\right)$ to include a new simple closed curve M^{\prime}, where, by Lemma 24 , we may assume that $G^{-1}\left(M^{\prime}\right)$ contains $f_{1}(J)$ in the closure of its interior.

We continue the process. We must stop after a finite number of steps, however, because the simple closed curves $M_{1}, G^{-1}\left(M^{\prime}\right), \ldots$ belong to different cyclic elements of $f_{1}(S)+\mathrm{Bd}\left(D_{1}\right)$, and by Lemma 24 , each element in the sequence $\left\{M_{1}, G^{-1}\left(M^{\prime}\right)\right.$, $\ldots\}$ either (a) contains $f_{1}(J)$ in the closure of its interior, or (b) the closure of the interior of its image, under f, contains $f_{2}(J)$. But the collection of nondegenerate cyclic elements of a continuous curve forms a null sequence [10, Theorem 4.2, p. 71].

The proof of Theorem 22 is complete.
Lemma 26. Notation same as in Theorem 22. For each $i, i=1,2$, suppose K_{i} is a closed subset of $E^{3}-f_{i}(S)$ and ε_{i} is a number such that if Q is the outer boundary of a complementary domain of $f_{i}(S)$ and Q has diameter less than ε_{i}, then K_{i} does not intersect $\operatorname{In}(Q)$.

Then the homeomorphisms H_{1}, H_{2} of Theorem 22 may be chosen so that for each $i, i=1,2$, if $H_{i}(Q)$ is the outer boundary of a complementary domain of $H_{i} \circ f_{i}(S)$ $+A_{1}^{i}+\cdots+A_{n}^{i}+\operatorname{Bd}\left(D_{i}\right)$ and $H_{i}(Q)$ does not belong to the cyclic element of $H_{i} \circ f_{i}(S)+A_{1}^{i}+\cdots+A_{n}^{i}+\mathrm{Bd}\left(D_{1}\right)$ containing $\mathrm{Bd}\left(D_{i}\right)$ then (a) Q is the outer boundary of a complementary domain of $f_{i}(S)$, and (b) if the diameter of Q is less than ε_{i}, then $H_{i}\left(K_{i}\right)$ does not intersect $\operatorname{In}\left(H_{i}(Q)\right)$.

Proof. It suffices to prove that H_{1} may be chosen to satisfy conditions (a) and (b). H_{1} is a finite composition of homeomorphisms of two types: the first type is the interchange of two disks which meet at a point; the second type is the interchange of two pinched annuli which meet along a simple closed curve.

It suffices to assume that H_{1} is a single homeomorphism of the first or second type. If H_{1} is a homeomorphism of the first type the proof is easy.

Suppose H_{1} is a homeomorphism of the second type. Let E and E_{1} be the disks such that the sum of the two pinched annuli which H_{1} interchanges is the pinched annulus $\mathrm{Cl}\left(E-E_{1}\right)$. Let p be the point $\operatorname{Bd}(E) \cap \operatorname{Bd}\left(E_{1}\right)$. Then $\operatorname{Bd}(E)-\{p\}$ misses $f_{1}(S), E_{1}-\{p\}$ misses $f_{1}(S)$, and $H_{1}(p)$ is a point of the cyclic element of
$H_{1} \circ f_{1}(S)+A_{1}^{1}+\cdots+A_{n}^{1}+\operatorname{Bd}\left(D_{1}\right)$, containing $\mathrm{Bd}\left(D_{1}\right)$. There is a simple closed curve $f_{1}(J)$ in E (this is the J of Theorem 22), and an $\operatorname{arc} Z$ in $f_{1}(S)$ from a point of $f_{1}(J)$ to p such that (1) $Z-\{p\}$ intersects the boundary of the complementary domain of $f_{1}(S)$ containing $E_{1}-\{p\}$, and (2) a subarc of $H_{1}(Z)$ belongs to the same cyclic element of $H_{1} \circ f_{1}(S)+A_{1}^{1}+\cdots+A_{n}^{1}+\operatorname{Bd}\left(D_{1}\right)$ as $\operatorname{Bd}\left(D_{1}\right)$. The existence of Z follows from Lemma 23.

If E contains no point of K_{1}, choose H_{1} to be the identity on K_{1}.
Suppose $H_{1}(Q)$ is the outer boundary of a complementary domain of $H_{1} \circ f_{1}(S)$ $+A_{1}^{1}+\cdots+A_{n}^{1}+\mathrm{Bd}\left(D_{1}\right)$; suppose $H_{1}(Q)$ does not belong to the same cyclic element as $\operatorname{Bd}\left(D_{1}\right)$; suppose the diameter of Q is less than ε_{1}.

Suppose Q is contained in E. If $\mathrm{Cl}(\operatorname{In}(Q))$ contains E_{1}, then the half-open arc $Z-\{p\}$ must be contained in In (Q), hence $f_{1}(J)$ must be contained in $\operatorname{In}(Q)$. One may show that this contradicts Lemma 23. Hence $\mathrm{Cl}(\operatorname{In}(Q))$ is contained in $\mathrm{Cl}\left(E-E_{1}\right)$. Hence $H_{1}(\mathrm{Cl}(\operatorname{In}(Q)))=\mathrm{Cl}\left(\operatorname{In}\left(H_{1}(Q)\right)\right)$ and the lemma is obvious. If Q is not contained in E, then $H_{1}(Q)=Q$, and again the lemma is obvious.
The proof of Lemma 26 is complete.
Remark. The conclusion of Lemma 26 is true even if $H_{i}, i=1,2$, is a finite composition of homeomorphisms each obtained from Theorem 22.
3. The extension theorem. We shall prove the extension theorem by means of Theorem 18 and the following:

Theorem 27. Let S and S^{\prime} be planar continuous curves, and let g be a homeomorphism of S onto S^{\prime}. Then there are continuous curves S_{∞} and S_{∞}^{\prime} in E^{3}, and homeomorphisms H and H^{\prime} of E^{3} onto E^{3} such that:
(a) S is a subset of S_{∞}, S^{\prime} is a subset of S_{∞}^{\prime}, and there is a homeomorphism G of S_{∞} onto S_{∞}^{\prime} such that $G=g$ on S;
(b) $H\left(S_{\infty}\right)$ and $H^{\prime}\left(S_{\infty}^{\prime}\right)$ are subsets of E^{2};
(c) S_{∞} contains no separating points;
(d) H and H^{\prime} may be realized by isotopies.

Proof. All homeomorphisms defined below can be chosen to be the identity outside some preassigned cube containing S and S^{\prime}, and hence the final homeomorphisms may be realized by isotopies.

We may suppose that S is nondegenerate.
We may also assume that there is a nondegenerate cyclic element C_{1} in S such that C_{1} contains at least two points on the boundary of the unbounded complementary domain of S, and $g\left(C_{1}\right)=C_{1}^{\prime}$ contains at least two points on the boundary of the unbounded complementary domain of S^{\prime}.

We shall define sequences of homeomorphisms H_{1}, H_{2}, \ldots and $H_{1}^{\prime}, H_{2}^{\prime}, \ldots$ whose limits are the required homeomorphisms H and H^{\prime} respectively. We shall define nested sequences of continuous curves S_{1}, S_{2}, \ldots and $S_{1}^{\prime}, S_{2}^{\prime}, \ldots$ whose sums are the continuous curves S_{∞} and S_{∞}^{\prime} respectively. S_{i+1} will be obtained from S_{i} by the addition of a finite number of arcs. These arcs will enlarge a certain
cyclic element C_{i} of S_{i} so that the components of S_{i+1} minus the enlarged cyclic element C_{i+1} will have smaller maximum diameter than the components of $S_{i}-C_{i}$. In addition, we shall need some technical δ and ε conditions on the homeomorphisms $\left\{H_{i}\right\}$ and $\left\{H_{i}^{\prime}\right\}$ so that the limits H and H^{\prime} will be one-one functions.

Let $S_{1}=S, S_{1}^{\prime}=S^{\prime}, H_{1}=H_{1}^{\prime}=$ id.
Suppose we have defined homeomorphisms $H_{1}, H_{2}, \ldots, H_{m} ; H_{1}^{\prime}, \ldots, H_{m}^{\prime}$, and continuous curves $S_{1}, \ldots, S_{m} ; S_{1}^{\prime}, \ldots, S_{m}^{\prime}$ such that for each $k, 2 \leqq k \leqq m$, we have:
(1) H_{k} and $H_{k}^{\prime} \operatorname{map} E^{3}$ onto E^{3}, and $H_{k}(S)+H_{k}^{\prime}\left(S^{\prime}\right)$ is contained in E^{2}.
(2) $H_{k}\left(S_{k}\right)=H_{k}(S)+A_{1}+A_{2}+\cdots+A_{n_{k}}$, where $A_{1}, \ldots, A_{n_{k}}$ are planar arcs, each having an endpoint in $H_{k}(S)$, such that the diameter of A_{i}, for $n_{(k-1)}+1 \leqq i \leqq n_{k}$, is at most $1 / 2^{k-1} ; H_{k}^{\prime}\left(S_{k}^{\prime}\right)=H_{k}^{\prime}\left(S^{\prime}\right)+A_{1}^{\prime}+\cdots+A_{n_{k}}^{\prime}$, where $A_{1}^{\prime}, \ldots, A_{n_{k}}^{\prime}$ are planar arcs, each having an endpoint in $H_{k}^{\prime}\left(S^{\prime}\right)$, such that the diameter of A_{i}^{\prime}, for $n_{(k-1)}+1$ $\leqq i \leqq n_{k}$, is at most $1 / 2^{k-1}$.
(3) There is a homeomorphism g_{k} of S_{k} onto S_{k}^{\prime} which extends $g_{k-1}: S_{k-1}$ $\rightarrow S_{k-1}^{\prime}$, and $g=g_{1}$.
(4) There is a cyclic element C_{k} of S_{k} such that (a) $g_{k}\left(C_{k}\right)=C_{k}^{\prime}$, (b) C_{k-1} is contained in C_{k}, and (c) the sum of the arcs $A_{1}, \ldots, A_{n_{k}}$ is contained in $H_{k}\left(C_{k}\right)$.
(5) Let $\varepsilon_{k}=\inf \left\{\operatorname{dist}\left(H_{k}\left(x_{1}\right), H_{k}\left(x_{2}\right)\right):\left(x_{1}, x_{2}\right) \in S \times S\right.$ and dist $\left.\left(x_{1}, x_{2}\right) \geqq 1 / k\right\}$, let $\delta_{1}=\min \left\{\varepsilon_{1}, 1 / 2\right\}$,
let $\delta_{k}=\min \left\{\varepsilon_{k}, 1 / 2^{k}, \delta_{k-1} / 2(1 / 1000)\right\}$.
Then, for $k<m,\left\|H_{k+1}-H_{k}\right\| \leqq \delta_{k-1} / 100$.
(5') A similar condition holds for $\varepsilon_{k}^{\prime}, \delta_{1}^{\prime}, \delta_{k}^{\prime}$ and H_{k}^{\prime}.
(6) For $k<m, H_{k+1}$ is the composition of three homeomorphisms $F_{k} \circ G_{k} \circ H_{k}$, where G_{k} takes the plane onto itself, and $\left\|H_{k+1}-G_{k} \circ H_{k}\right\| \leqq \delta_{k} / 100$.
(6') A similar condition holds for $H_{k}^{\prime}, G_{k}^{\prime}, \delta_{k}^{\prime}$.
(7) If, for any number η, we define $E(\eta)=\left\{x \in E^{3}: \operatorname{dist}(x, S) \geqq \eta\right\}$, and $E^{\prime}(\eta)$ $=\left\{x \in E^{3}: \operatorname{dist}\left(x, S^{\prime}\right) \geqq \eta\right\}$, then, for $k<m$:
$H_{k+1}=G_{k} \circ H_{k}=H_{k}$ on $E\left(1 / 2^{k}\right)$ and on C_{k},
$H_{k+1}^{\prime}=G_{k}^{\prime} \circ H_{k}^{\prime}=H_{k}^{\prime}$ on $E^{\prime}\left(1 / 2^{k}\right)$ and on C_{k}^{\prime},
$\mathrm{H}_{2}=$ id on $C_{1}, H_{2}^{\prime}=$ id on C_{1}^{\prime}.
(8) If T is a component of $S_{k}-C_{k}$ (of $S_{k}^{\prime}-C_{k}^{\prime}$), then:
(a) $\operatorname{diam}(T) \leqq 1 / 2^{k}$
(b) $\operatorname{diam}\left(H_{k}(T)\right) \leqq \delta_{k-1} / 1000 \quad\left(\operatorname{diam} H_{k}^{\prime}(T) \leqq \delta_{k-1}^{\prime} / 1000\right)$
(c) $\operatorname{diam}\left(G_{k} \circ H_{k}(T)\right) \leqq \delta_{k} / 1000 \quad\left(\operatorname{diam} G_{k}^{\prime} \circ H_{k}^{\prime}(T) \leqq \delta_{k}^{\prime} / 1000\right)$
(d) If D is a bounded complementary domain of $H_{k}(\bar{T})$ (of $H_{k}^{\prime}(\bar{T})$), then D does not intersect $H_{k}\left(E\left(1 / 2^{k}\right)\right)$, (does not intersect $H_{k}^{\prime}\left(E^{\prime}\left(1 / 2^{k}\right)\right)$).
(9) $H_{k}\left(C_{k}\right)\left(H_{k}^{\prime}\left(C_{k}^{\prime}\right)\right)$ contains at least two points on the boundary of the unbounded complementary domain of $H_{k}\left(S_{k}\right)$ (of $H_{k}^{\prime}\left(S_{k}^{\prime}\right)$).

We shall now define $H_{m+1}, H_{m+1}^{\prime}, S_{m+1}, S_{m+1}^{\prime}$.
There is a homeomorphism $G_{m}: E^{3} \rightarrow E^{3}$ such that (a) $G_{m}\left(E^{2}\right)=E^{2}$, (b) $G_{m}=$ id on $H_{m}\left(E\left(1 / 2^{m}\right)\right)$, (c) $\left\|G_{m} \circ H_{m}-H_{m}\right\| \leqq(3 / 1000) \delta_{m-1}$, (d) no component of G_{m} - $H_{m}\left(S_{m}-C_{m}\right)$ has diameter greater than $(1 / 1000) \delta_{m}$.

Similarly there is a homeomorphism $G_{m}^{\prime}: E^{3} \rightarrow E^{3}$ which reduces the size of components of $H_{m}^{\prime}\left(S_{m}^{\prime}-C_{m}^{\prime}\right)$.

Let D_{1}, \ldots, D_{p} be the complementary domains of $G_{m} \circ H_{m}\left(S_{m}\right)$ which intersect $G_{m} \circ H_{m}\left(E\left(1 / 2^{m+1}\right)\right)$.

Let $\beta_{m}=\min \left\{\operatorname{diam}\left(\operatorname{Bd}\left(D_{i}\right)\right): 1 \leqq i \leqq p\right\}$.
Let α_{m} be a number less than $1 / 2^{m+1}$ such that if A is a subset of S_{m} and A has diameter no greater than α_{m}, then $G_{m} \circ H_{m}(A)$ has diameter less than β_{m}.

Define β_{m}^{\prime} and α_{m}^{\prime} similarly.
Let V_{1}, \ldots, V_{r} be disjoint open sets in E^{3} such that if T is a component of $S_{m}-C_{m}$ and either the diameter of T is greater than α_{m} or the diameter of $g_{m}(T)$ is greater than α_{m}^{\prime}, then $G_{m} \circ H_{m}(\bar{T})$ is contained in V_{i} for some $i, 1 \leqq i \leqq r$. We may assume that the diameter of each $V_{i}, 1 \leqq i \leqq r$, is no greater than $(4 / 1000) \delta_{m}$. We also may assume that each $V_{i}, 1 \leqq i \leqq r$, misses $G_{m} \circ H_{m}\left(E\left(1 / 2^{m}\right)\right)$.

Define $V_{1}^{\prime}, \ldots, V_{t}^{\prime}$ similarly.
All the remaining homeomorphisms making up H_{m+1} will be the identity outside $\sum_{i=1}^{r} V_{i}$, so that we shall have $\left\|H_{m+1}-G_{m} \circ H_{m}\right\| \leqq(4 / 1000) \delta_{m}$, and similarly for the remaining homeomorphisms making up H_{m+1}^{\prime}.

Let T be a component of $S_{m}-C_{m}$ such that either T has diameter greater than α_{m}, or $g_{m}(T)$ has diameter greater than α_{m}^{\prime}. Assume that T has diameter greater than α_{m}. Then there is an $\operatorname{arc} B_{1}$ in \bar{T} such that (a) B_{1} has diameter greater than $\left(\alpha_{m}\right) / 3$, (b) B_{1} lies on the boundary of a complementary domain of S (it is clear that T is a subset of S, since the part of S_{m} not in S belongs to C_{m}), (c) one endpoint of B_{1} is the point $\bar{T} \cap C_{m}$, and (d) the other endpoint of B_{1} is either contained in a simple closed curve in \bar{T}, or is not a limit point of simple closed curves of \bar{T}.

By an application of Theorem 22, there are homeomorphisms L and L^{\prime} of E^{3} onto E^{3}, and planar arcs $A_{1}^{(1)}, \ldots, A_{x}^{(1)}, A_{1}^{(2)}, \ldots, A_{x}^{(2)}$ such that (a) $L=$ id outside $\sum_{i=1}^{r} V_{i}, L^{\prime}=$ id outside $\sum_{i=1}^{r} V_{i}^{\prime}, L=$ id on $G_{m} \circ H_{m}\left(C_{m}\right), L^{\prime}=\mathrm{id}$ on $G_{m}^{\prime} \circ H_{m}^{\prime}\left(C_{m}^{\prime}\right)$, (b) $\sum_{i=1}^{x} A_{i}^{(1)}$ is contained in $\sum_{i=1}^{r} V_{i}, \sum_{i=1}^{x} A_{i}^{(2)}$ is contained in $\sum_{i=1}^{r} V_{i}^{\prime}$, (c) $L \circ G_{m}$ $\circ H_{m}\left(B_{1}\right), A_{1}^{(1)}, \ldots, A_{x}^{(1)}$, and $L \circ G_{m} \circ H_{m}\left(C_{m}\right)$ belong to the same cyclic element of $L \circ G_{m} \circ H_{m}\left(S_{m}\right)+A_{1}^{(1)}+\cdots+A_{x}^{(1)}$, and (d) there is an extension of g_{m} to a homeomorphism of

$$
S_{m}+\left(L \circ G_{m} \circ H_{m}\right)^{-1}\left(A_{1}^{(1)}+\cdots+A_{x}^{(1)}\right)
$$

onto

$$
S_{m}^{\prime}+\left(L^{\prime} \circ G_{m}^{\prime} \circ H_{m}^{\prime}\right)^{-1}\left(A_{1}^{(2)}+\cdots+A_{x}^{(2)}\right)
$$

Let the cyclic element of $S_{m}+\left(L \circ G_{m} \circ H_{m}\right)^{-1}\left(A_{1}^{(1)}+\cdots+A_{x}^{(1)}\right)$ containing B_{1} and C_{m} be denoted by \widetilde{C}_{m}.

If $\left[S_{m}+\left(L \circ G_{m} \circ H_{m}\right)^{-1}\left(A_{1}^{(1)}+\cdots+A_{x}^{(1)}\right)\right]-C_{m}$ contains a component T_{1} such that either T_{1} has diameter greater than α_{m} or $g_{m}\left(T_{1}\right)$ has diameter greater than α_{m}^{\prime}, we repeat the above process, obtaining an arc B_{2} and adding additional arcs to obtain a new cyclic element containing B_{2}.

This process must terminate at a finite stage, however, because S contains only a finite number of arcs $B_{1}, B_{2}, \ldots, B_{q}$ such that (a) each B_{i} is contained in the boundary of a complementary domain of S, (b) each B_{i} has diameter greater than $\left(\alpha_{m}\right) / 3$, and (c) B_{i} and $B_{j}, i \neq j$, do not intersect in an interior point of both; and similarly for S^{\prime} (see [11, Theorem 6, p. 359]).

Assume this process stops with the addition of the $\operatorname{arcs} A_{1}^{(1)}, \ldots, A_{x}^{(1)}$. Let $\widetilde{C}_{m}=C_{m+1}$; relabel $A_{1}^{(1)}, \ldots, A_{x}^{(1)}$ as $A_{n_{m}+1}, \ldots, A_{n_{m+1}}$; let

$$
S_{m+1}=S_{m}+\left(L \circ G_{m} \circ H_{m}\right)^{-1}\left(A_{1}^{(1)}+\cdots+A_{x}^{(1)}\right)
$$

Then, by Lemma 26 and the remark following Lemma 26, if T is a component of $S_{m+1}-C_{m+1}$, and D is a bounded domain of $E^{2}-L \circ G_{m} \circ H_{m}(\bar{T})$, then D misses $L \circ H_{m} \circ G_{m}\left(E\left(1 / 2^{m+1}\right)\right)$. This is because if Q is the outer boundary of D, then $L^{-1}(Q)$ is the outer boundary of a complementary domain of $G_{m} \circ H_{m}\left(S_{m}\right)$, and the diameter of $L^{-1}(Q)$ is less than β_{m} (because the diameter of T is at most α_{m}).

Finally, we let $K_{m}: E^{3} \rightarrow E^{3}$ be a homeomorphism defined similarly to G_{m}, so that if $H_{m+1}=K_{m} \circ L \circ G_{m} \circ H_{m}$, then every component of $H_{m+1}\left(S_{m+1}-C_{m+1}\right)$ has diameter no greater than $(1 / 1000) \delta_{m}$.

Define K_{m}^{\prime} and H_{m+1}^{\prime} similarly.
This completes the definition of the sequences $\left\{H_{1}, H_{2}, \ldots\right\},\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots\right\}$, $\left\{S_{1}, S_{2}, \ldots\right\}$ and $\left\{S_{1}^{\prime}, S_{2}^{\prime}, \ldots\right\}$.

Let $H=\lim _{n \rightarrow \infty} H_{n}$, let $H^{\prime}=\lim _{n \rightarrow \infty} H_{n}^{\prime}$, let $S_{\infty}=\sum_{i=1}^{\infty} S_{i}$, let $S_{\infty}^{\prime}=\sum_{i=1}^{\infty} S_{i}^{\prime}$, let G be the common extension of $g_{1}, g_{2}, \ldots H$ is one-one on $E^{3}-S$ by the fact that $H_{k+1}=H_{k}$ on $E\left(1 / 2^{k}\right)$ for $k=2,3, \ldots$ By the same fact, we see that $H(S) \cap$ $H\left(E^{3}-S\right)=\varnothing$. It remains to show that H is one-one on S. Let x and y be distinct points of S. If x and y are contained in $\sum_{i=1}^{\infty} C_{i}$ then there is an integer k such that x and y are contained in C_{k}, and hence $H(x)=H_{k}(x) \neq H_{k}(y)=H(y)$. If x is contained in C_{k} for some k, and y is not contained in $\sum_{i=1}^{\infty} C_{i}$, then there is an integer m and a point p such that (a) if T is the component of $S_{m}-C_{m}$ containing y, then p is the point $\bar{T} \cap C_{m}$, (b) $C_{k} \subset C_{m}$, (c) dist $(p, x) \geqq 1 / m$. The point p exists because the diameters of the components of $S_{n}-C_{n}$ become arbitrarily small as n becomes large. Then:

$$
\operatorname{dist}\left(G_{m} \circ H_{m}(x), G_{m} \circ H_{m}(y)\right) \geqq(49 / 50) \delta_{m}
$$

This is because:

$$
\begin{aligned}
\delta_{m} & \leqq \operatorname{dist}\left(G_{m} \circ H_{m}(x), G_{m} \circ H_{m}(p)\right), \text { since } G_{m}=\text { id on } H_{m}\left(C_{m}\right), \\
& \leqq \operatorname{dist}\left(G_{m} \circ H_{m}(x), G_{m} \circ H_{m}(y)\right)+(1 / 1000) \delta_{m} .
\end{aligned}
$$

Hence, by definition of $\delta_{m}, H(x) \neq H(y)$.
If neither x nor y is contained in $\sum_{i=1}^{\infty} C_{i}$, the proof that $H(x) \neq H(y)$ is similar to the above.

Thus H and H^{\prime} are homeomorphisms.
S_{∞} is a continuous curve because $S_{\infty}=S+\sum_{i=1}^{\infty} H^{-1}\left(A_{i}\right)$ where $\left\{H^{-1}\left(A_{1}\right)\right.$, $\left.H^{-1}\left(A_{2}\right), \ldots\right\}$ is a null sequence of arcs each having an endpoint on $S ; G$ is a homeomorphism for the same reason. S_{∞} has no separating points because the components of $S_{n}-C_{n}$ become arbitrarily small as n becomes large.

The proof of Theorem 27 is complete.
Theorem 28 (The Extension Theorem). Let S and S^{\prime} be continuous curves in E^{2}, and let g be a homeomorphism of S onto S^{\prime}. Then there is a homeomorphism H of E^{3} onto E^{3} such that (a) $H=g$ on S, and (b) H is realizable by an isotopy.

References

1. V. W. Adkisson and Saunders MacLane, Extending maps of plane Peano continua, Duke Math. J. 6 (1940), 216-228.
2. R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491-511.
3. S. Claytor, Topological immersion of Peanian continua in a spherical surface, Ann. of Math. (2) 35 (1934), 809-835.
4. H. M. Gehman, On extending a continuous (1-1) correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc. 28 (1926), 252-265.
5. J. M. Kister, "Questions on isotopies in manifolds", in Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 229-230.
6. V. L. Klee, Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 36.
7. W. K. Mason, Homeomorphic continuous curves in 2-space are isotopic in 3-space, Thesis, Univ. of Wisconsin, Madison, 1968.
8. R. L. Moore, Concerning continuous curves in the plane, Math. Z. 15 (1922), 259.
9. -_-_ Concerning the common boundary of two domains, Fund. Math. 6 (1924), 212.
10. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., Vol. 28, Amer. Math. Soc., Providence, R. I., 1942; reprint 1967.
11. R. L. Wilder, Concerning continuous curves, Fund. Math. 7 (1925), 340-377.
12. Summary of lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, (1955, revised 1958); p. 57, Question 8.

University of Wisconsin, Madison, Wisconsin
Rutgers, The State University, New Brunswick, New Jersey

[^0]: Received by the editors April 10, 1968.
 ${ }^{(1)}$ The results presented in this paper are a part of the author's Ph.D. Thesis at the University of Wisconsin, written under the direction of Joseph Martin. Research partially supported by NSF GP-7085.

