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In self-organized criticality (SOC) models, as well as in standard phase transitions,

criticality is only present for vanishing external fields h → 0. Considering that this

is rarely the case for natural systems, such a restriction poses a challenge to the ex-

planatory power of these models. Besides that, in models of dissipative systems like

earthquakes, forest fires, and neuronal networks, there is no true critical behavior, as

expressed in clean power laws obeying finite-size scaling, but a scenario called “dirty”

criticality or self-organized quasi-criticality (SOqC). Here, we propose simple homeo-

static mechanisms which promote self-organization of coupling strengths, gains, and

firing thresholds in neuronal networks. We show that with an adequate separation of

the timescales for the coupling strength and firing threshold dynamics, near critical-

ity (SOqC) can be reached and sustained even in the presence of significant external

input. The firing thresholds adapt to and cancel the inputs (h decreases towards

zero). Similar mechanisms can be proposed for the couplings and local thresholds in

spin systems and cellular automata, which could lead to applications in earthquake,

forest fire, stellar flare, voting, and epidemic modeling.

HIGHLIGHTS

• We introduce a novel mechanism that promotes Self-organized quasicriticality (SOqC)

even in the presence of external fields;

• Criticality is asymptotically approached as the ratio between the homeostatic time
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scales increases;

• The mechanism is general and can be applied to any phase transition.

I. INTRODUCTION

The idea of self-organized criticality (SOC) [1], in which a given dynamical system has

a critical point as an attractor, without any ad hoc imposition of parameter values (fine-

tuning), in some sense has never truly been achieved. The most successful models under

this ideal display bulk conservation, such as in the Abelian sandpile [2–4]. However, this

conservation requirement can also be seen as a form of fine-tuning, since the number of

dissipated grains in the spread of avalanches must be zero. Moreover, the infinite separation

of time scales between driving and avalanches in SOC models can be viewed as yet another

form of fine-tuning.

When we consider dissipative systems such as earthquakes, forest fires or neural networks,

we find that only self-organized quasicriticality (SOqC) holds [5, 6]. This regime is charac-

terized by the system performing stochastic oscillations around the critical point. Several

of such models include continuous drive and dissipation, some of which can be viewed as

homeostatic mechanisms that drive the network toward the critical point.

In the case of cortical models, SOqC mechanisms have been widely employed to explain

the experimental observation of neuronal avalanches [7–11]. The main studied homeostatic

mechanisms are related to synaptic dynamics [12–14], but dynamical gains [15–18] and firing

thresholds have also been considered [19–21] (for a review see [22]).

In the absence of homeostatic mechanisms, a critical regime is obtained only with strong

and non-local fine-tuning over, for example, all coupling weights (synapses) Wij, so that the

distribution P (Wij) must have average 〈Wij〉 ≡ W = Wc (the control parameter). With

homeostasis, this constraint is relaxed: now we can start from any distribution Pt=0(Wij)

and, after a transient (the self-organization process), one obtains a stationary P ∗(Wij) ≡

limt→∞ P (Wij) where W ∗ ≡ limt→∞ 〈Wij〉 ≈ Wc. Similar reasoning applies to neuronal gains

Γi and firing thresholds θi.

One important aspect in any SOC model is that phase transitions, and therefore critical-

ity, exist only for zero or very small external field [4, 23, 24], so any homeostatic mechanism

will need to self-organize the system to a state where the effective external field vanishes.
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Here, we propose a solution to this problem by unveiling an interplay between homeostatic

time scales, network size and external field. We show that the important factor behind

the generation of power-law avalanches that obey the size-duration scaling law is sensory

adaptation, mediated by dynamic firing thresholds. This adaptation must occur over long

periods of time when compared to the intrinsic neuronal and synaptic time scales.

We develop a mean-field theory for the homeostatic model, and compare it to simulation

results for a sparse random network with K input neighbors per node. These mechanisms

are simple and very general: they can be adapted to systems composed of other units such

as spins, cellular automata, discrete time maps or continuous time neuronal models with

pulse coupling given by weights Wij.

II. THE MODEL AND ITS MEAN-FIELD APPROXIMATION

We consider a network of N discrete-time stochastic leaky integrate-and-fire neurons [15,

16, 18, 25–28]. A binary indicator Xi ∈ {0, 1}, i = 1, . . . , N , denotes silence (Xi = 0) or the

firing of an action potential (spike, Xi = 1). The membrane potential of neuron i evolves

according to:

Vi(t+ 1) = µiVi(t) + Ii +
1

K

N∑
j=1

WijXj(t) , (1)

where 0 ≤ µi ≤ 1 are leakage parameters and Ii are external inputs. The directed synaptic

weight matrix Wij has exactly K incoming links from j to i. The outgoing links, by this

construction, have a binomial distribution with average K and standard deviation σ =√
K(1−K/(N − 1)). Notice that while the sum is over all N potential neighbors (all Wij

entries, most of them are zero for finite K), the normalization considers only the true K

(not N) neighbors. In the case of a complete graph, we use K = N − 1 given that Wii = 0.

If a neuron fires at time step t, its membrane potential is reset, Vi(t+ 1) = 0. Otherwise,

its voltage is updated according to Eq. (1). A spike occurs with probability

P (Xi(t) = 1 | Vi(t)) ≡ Φ(Vi(t)) , (2)

where Φ(V ) is the so-called firing function. The model incorporates an absolute refractory

period of one time step by imposing Φ(0) = 0. For this class of models, there are no strong

requirements on the firing function Φ besides a sigmoidal shape. For analytical convenience,
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we adopt a linear-saturating shape [15, 20, 21, 27]:

Φ(Vi) =


0 if Vi < θi

Γi (Vi − θi) if θi < Vi < V S
i

1 if Vi > V S
i

(3)

where V S
i = 1/Γi + θi is the saturation potential. Here, θi represents a firing threshold for

neuron i. This choice of firing function implies that there is a finite probability of the i-th

neuron emitting a spike only when Vi(t) > θi, which increases linearly with Vi.

In the absence of homeostatic tuning (which we call the static model), assuming that

the distribution P (Wij) has finite variance, the average synaptic weight W ≡ 〈Wij〉 can be

taken as a control parameter. The same applies to the neuronal gains Γi, firing thresholds θi,

leakage parameters µi and inputs Ii, so that Γ = 〈Γi〉 and µ = 〈µi〉 can also be considered as

control parameters. Interpreting θ = 〈θi〉 as the average local field (local adaptation current)

and I = 〈Ii〉 as the average external field (external input current), we have that h = I − θ

is the total or effective field.

The fraction of spiking neurons, also known as firing density or firing rate, ρ(t) =

〈Xi(t)〉 ≡ 1
N

∑N
i=1 Xi(t) represents the activity of the network. The time average of ρ(t)

is calculated in the steady state and is the relevant order parameter. A summary of vari-

ables and parameters used in this work is presented in Table I.

TABLE I. Variables and parameters used in the model.

Variable Symbol

Neuron state (binary) Xi

Membrane potential Vi

Saturation potential Vi
S

External field (input current) Ii

Firing probability function Φ

Firing density (activity) ρ

Effective external field hi

Neuronal gain Γi

Synaptic weight Wij

Firing threshold θi

Parameter Symbol

Number of input neighbors K

Leakage parameter µi

Neuronal gain recovery time τΓ

Synaptic weight recovery time τW

Neuronal gain depression UΓ

Synaptic weight depression UW

Synaptic weight baseline Ai

Neuronal gain baseline Bi

Time scale ratio: threshold/synaptic a

Depression ratio: threshold/synaptic b

When Γ, W and θ are fixed (static model), a mean-field approximation (equivalent to
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taking the K →∞ limit) can be calculated from:

ρ(t+ 1) =

∫
Φ(V )Pt(V ) dV , (4)

where Pt(V ) is the distribution of voltages at time t [15, 18].

For µ = 0, considering the case where the stationary potentials fall within the linear

(0 < Vi < V S
i ) branch of equation (3), the solution leads to the mean-field map:

ρ(t+ 1) = (1− ρ(t))Γ(Wρ(t) + h) . (5)

The steady state is the fixed point of equation (5):

ρ± =
ΓW − 1− Γh±

√
(ΓW − 1− Γh)2 + 4Γ2Wh

2ΓW
. (6)

The phase transitions of this model are given by the bifurcations of the map in equation

(5) [29]. When the field h is negative, we have a discontinuous (first order) phase transition

and, when h > 0, there is always activity ρ > 0 and no transition [15, 20].

For h = 0, we have a second order phase transition, which is given by:

ρ(W,Γ) ∼
(
W −Wc(Γ)

Wc(Γ)

)β
(7)

for W > Wc = 1/Γ, while ρ = 0 (absorbing state) for W < Wc. The order parameter

exponent is β = 1. The hyperbola Wc(Γ) = 1/Γ is a critical line in the W × Γ plane.

Similarly to what occurs in the Ising model, where the important variable is the combined

quantity J/T , here the important variable is W̃ ≡ ΓW , which defines the critical point

W̃c = 1 (see Fig. 1). At W̃ = 2, a period-2 orbit is created. However, it is not relevant to

the present work and has been studied in detail elsewhere [15, 20].

For random networks, a continuous phase transition is also observed:

ρ(W̃ ;µ) = C(K,µ)

(
W̃ − W̃c(µ)

W̃

)
, (8)

which can clearly be seen in Fig. 1. The critical point is independent of K (see the Sup-

plementary Material for details), but depends on µ according to W̃c(µ) = (1 − µ)W̃c(0)

similarly to the infinite K limit [21]. Meanwhile, β = 1 is independent of K and µ, which

is compatible with the finding of mean-field directed percolation (DP) exponents in a large

set of experiments [7, 11, 30]. Since the critical exponents of many branching processes-like
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FIG. 1. a) Order parameter ρ(W̃ ;µ = 0) as a function of W̃ for different number of input

neighbors K. From left to right, K = 4, 8, 16, 32 and mean-field (solid). The bifurcation at

W̃ = 2 leads to the creation of a period−2 synchronous regular state [15, 20]. b)

ρ(W̃ ;K = 32) for various leakage parameters µ. From right to left, µ = 0, 0.1, 0.3, 0.6 and

0.95. Network size N = 104. The leakage parameter does not change the critical

exponents, only shifts the critical point [21].

universality classes coincide at the mean-field level (e.g. DP, Manna [31]), we cannot ensure

that our model belongs to the DP class.

In order to tune the network to the critical point [5, 12, 13, 15, 16, 18, 20, 22], we will

introduce homeostatic mechanisms for parameters Γi, θi and Wij. The calculations are done

in the mean-field level for µ = 0, but similar results can be shown in simulations for general

K and µ.

First, we impose depressing-recovering dynamics to the control parameter W̃ (t) ≡

〈ΓiWij(t)〉. Following biological motivations, we propose two mechanisms: one for neu-

ronal gains Γi(t) and another for synaptic weights Wij(t). We use dynamics similar to the

Levina-Hermann-Geisel mechanism [12] for each variable:

Wij(t+ 1) = Wij(t) +
1

τW

(
Ai(1− µi)

Γi(t)
−Wij(t)

)
− UWWij(t)Xj(t) , (9)

Γi(t+ 1) = Γi(t) +
1

τΓ

(Bi − Γi(t))− UΓΓi(t)Xi(t) . (10)

The dynamics for synaptic weights (Wij) has a basal level Ai(1− µi)/Γi(t), a recovery time

τW and a depressing factor 0 < UW < 1 related to the fraction of depleted neurotransmitter
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vesicles in the synapse due to a presynaptic spike Xj = 1. A similar idea applies to the

dynamics of membrane excitability (neuronal gains Γi).

The coupling between Wij(t) and Γi(t) is necessary to get W ∗ = (1 − µ)/Γ∗, resulting

in W̃c = 1 − µ. This is a small non-locality in the basal level of synaptic weights, which

introduces a dependence of the effective recovery time of synapses τW on the neuronal gain

Γi and on the leakage parameter µi. In biological neurons, this coupling between synapses

and neuronal excitability could be mediated by retrograde signals (e.g., active dendritic

spikes [32, 33]).

The Γi(t) dynamics depends on the local activity Xi, referring to the cell body with

gain Γi. Averaging over sites (in the µ = 0 case) and neglecting cross-correlations, the MF

equations become:

W (t+ 1) = W (t) +
1

τW

(
A

Γ
−W (t)

)
− UWW (t)ρ(t) , (11)

Γ(t+ 1) = Γ(t) +
1

τΓ

(B − Γ(t))− UΓΓ(t)ρ(t) . (12)

To achieve criticality, we also need h to be 0. For spin systems, zero external magnetic

field is a natural condition, despite being a fine-tuning operation seldom discussed in the

literature of neuronal avalanches [20, 23, 24]. Here, for integrate-and-fire neurons, this

condition is not so natural: we must fine-tune θc = I/(1−µ) in order to achieve hc = 0 [21].

Therefore, we also need a homeostatic mechanism to drive h toward zero.

We propose a simple firing-threshold adaptation mechanism:

θi(t+ 1) = θi(t)−
1

aτW
θi(t) + bUW θi(t)Xi(t) , (13)

yielding the average over neurons θ(t) ≡ 〈θi(t)〉

θ(t+ 1) = θ(t)− 1

aτW
θ(t) + bUW θ(t)ρ(t) . (14)

Here, the θ time constant and increment parameters are given as multiples a and b, respec-

tively, of the time constant and depression parameters of the synaptic weight dynamics (τW

and UW ).

From the 4-dimensional mean-field map, given by the equations (5), (11), (12), and (14),
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we get the following relevant fixed point:

ρ∗ =
1

ab τWUW
, (15)

Γ∗ =
B

1 + τΓUΓ

ab τWUW

, (16)

W ∗ =
A

Γ∗(1 + 1
ab

)
, (17)

h∗ = I − θ∗ = ρ∗
(
W ∗ − 1

Γ∗

)
+
ρ∗2

Γ∗
−O(ρ3) (18)

Comparing this steady state to the critical point (which requires ρc = 0+,W̃c = WΓ = 1, and

hc = 0), we can see that two conditions are needed to reach quasi-criticality. First, ab� 1,

expressing a large separation between the W and θ recovery times, which is a very common

feature in SOC models [34]. And secondly, we need to fine-tune A = 〈Ai〉 ≈ 1 to obtain

h = O(ρ∗2) ≈ 0 [21]. Notice that under these conditions, the first term in equation (18)

disappears, leaving the correct dependence h ∼ ρ∗2 that, in the static system, defines the

field exponent δh = 2 for the mean-field DP-like phase transition [31, 35].

III. SIMULATION RESULTS

For the simulations, we chose W̃ time scales in the order of 102 ms (τW = 300 and τΓ =

100). Therefore, W̃ evolves more closely with the network activity propagation dynamics.

On the other hand, we model the adaptive threshold mechanism as a long-term homeostatic

regulation (a > 103), which means that this adaptation process occurs on a timescale slower

than that of network dynamics. Recent results show that the mossy cells in the dentate

gyrus present such long recovery threshold time scales [36].

For a robust quasi-critical regime with nearly critical avalanches, the system needs to

evolve towards a stable fixed point not far from the true critical point as quickly as possible.

This should happen while keeping oscillations around the equilibrium to a minimum. This

can be achieved by minimizing the spectral radius of the Jacobian matrix. In Fig. 2(top),

we study the stability of fixed point (ρ∗,Γ∗,W ∗, θ∗) with respect to time scale separation

parameters a,b when A=1. Colored regions indicate dynamics with stable fixed points.

Parameter regions with leading eigenvalue modulus |λm| < 0.9999 and argument ω < 0.01

(top panel of figure 2) give rise to dynamics with |h| < 10−4 (bottom panel of figure 2).

Thus, for a given choice of parameter a, there is a range of b values (coarse tuning) that
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FIG. 2. Mean-field stability diagram. (top) Argument (heat-map) and modulus

(contour lines) of the leading eigenvalue of the 4-dimensional mean-field map

[ρ(t),Γ(t),W (t), θ(t)]. Colored regions correspond to systems with a stable fixed point, and

white regions to dynamics with unstable fixed points. (bottom) Effective field |h| obtained

from random network simulations. Limited power law avalanches, sufficient to explain

experiments, are observed in the blue region. Bifurcation and transition lines are also

shown.
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allow the homeostatic mechanism to reach and maintain the h and W̃ values close enough to

their critical values [|h| ∼ O(10−4) and W̃ ∼ W̃c − O(10−2)], yielding quasi-critical power-

law avalanches that scale with system size for large a (to be shown further ahead in this

section).

Results for the mean-field and random network simulations are shown in figure 3a. Initial

conditions were chosen from four different sets (for a given simulation, Γi(0) is either 0.5 or

1.5, while θi(0) are drawn from normal distributions with mean 0.75 or 1.25 and standard

deviation 0.01, and Wij(0) from the uniform distribution in [0; 2]). In all cases, trajectories in

the W̃ × h space (see figure 4) show low amplitude stochastic oscillations around a slightly

subcritical point, with mean amplitude of approximately 0.01 in W̃ and 10−4 in h. In

figure 3b, we show the stochastic oscillations in the firing rate ρ(t).

We measured the size and duration of 106 avalanche events after disregarding the transient

activity. Avalanches are defined here as all activity between two consecutive visits to the

absorbing state of the underlying static system (ρ = 0) [35, 37]. In other words, we sum all

spikes Nρ(t) from all the time steps between two subsequent instants in which ρ(t) is zero

(i.e., all the activity in each peak between zeros of ρ(t) in figure 3b). This method does not

require thresholding the activity, as it makes use of the actual silent state of the network,

thereby avoiding known biases in the estimation of avalanche exponents [38–40].

Near the critical point, we expect the avalanche sizes s and duration d to be distributed

according to F (s) = P (S > s) ∼ s1−τ and F (d) = P (D > d) ∼ d1−τd respectively, with

exponents τ = 3/2 and τd = 2 (exponents for a mean-field DP-like branching process [31,

34]). The F (x) functions are the complementary cumulative distributions, which are defined

as the integral of the distribution P (X) over X > x. These distributions are a convenient

choice since they are continuous functions that can be directly calculated from the data and

do not rely on binning [41].

Having the correct exponents in the avalanche distributions is not a sufficient condition

for identifying criticality [38, 42]. Therefore, we investigated the scaling law between mean

avalanche size and duration 〈s〉 (d) leading to the scaling relation mtheory = (τd− 1)/(τ − 1).

At the underlying critical point (towards which the system is evolving), we have mtheory = 2.

In order to compare simulation results to the theory, we define the distance to criticality

coefficient dcc by: dcc ≡ |mtheory −mfitted|, where the mfitted is given by directly fitting the

data of 〈s〉 versus d. To compute the dcc, we take the mean value of mfitted adjusted to the
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FIG. 3. Self-organization of W̃ (t) and θ(t) from different initial conditions (blue

and red). The target values are θc = I = 0.1 (or h = I − θ = 0) and W̃c = 1. (a) Time

series for θ(t) (top), W̃ (t) (middle) and ρ(t) (green, bottom). Mean-field (dot-dash lines)

and random network (K = 32, solid lines) simulations with N = 10, 000 neurons. (b)

Avalanche behavior for stationary ρ(t). Parameters: τW = 300,τΓ = 100, UW = 0.01,

UΓ = 0.01,B = 1, A = 1, a = 5000 and b = 0.05.

simulation results with different N for three values of a and b.

The distributions of avalanche sizes and durations for the homeostatic system are pre-

sented in figure 5. In figure 6, we show how the finite-size scaling improves with increasing

time scale separation a. Both the collapse of the curves is enhanced and the characteristic

bump decreases as a grows. Moreover, figure 7 shows that the exponent’s relation also tends

to agree with the theory for increasing separation of time scales a → ∞, resulting in a

small distance to criticality (dcc < 0.01) for a = 106. These results show that the homeo-

static mechanism proposed here is fully capable of approaching the underlying critical point

(τ = 3/2, τd = 2 and m = 2). This is different from other dynamics from the literature,
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FIG. 4. State space. Self-organization in the W̃ × h plane for four different initial

conditions (black triangles), input I = 0.1, in a random network with K = 32 and

N = 10, 000 neurons. The temporal evolution of the system is indicated by the arrows and

the color code (bluish hues correspond to the vicinity of initial conditions, while reddish to

the steady state). Parameters: τW = 300, τΓ = 100, UW = 0.01, UΓ = 0.01, a = 5000 and

b = 0.05.

since previous studies either lead to unclear avalanche distributions, or fail to reproduce the

average size and duration scaling law.

The collapse of the avalanche size distribution can be calculated by, first, rescaling the

variable through u = s/sc, where sc = q1N
D is the cutoff size of avalanches and D is the size

dimensionality (not to be confused with avalanche duration). Then, we define the scaling

function G(u) = q2s
τP (u). If the system is critical, this function will collapse the data from

the simulations of different system sizes by plotting G(u) vs. u. The same can be achieved

for the duration d, and for the cumulative distributions as well. The quantities q1 and q2

are called the metric coefficients; q1 is obtained by collapsing the tail of the distributions on

top of one another, and q2 is obtained by fitting of a given distribution to the simulation

data. These are not universal quantities, changing from one distribution to another [34].

For the avalanche exponents (and hence, criticality) to be well-defined, these coefficients

must not depend on the system size N [34]. In the data shown in figure 6, the failure of
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FIG. 5. Power laws in avalanche sizes and duration distributions for increasing

values of a and network size N . The first and second rows show the distributions of

sizes and duration, respectively. The agreement with the expected power laws (dashed

lines) increases with a. Results obtained for a quenched simulation of a directed random

network with K = 32. Parameters: (a,d) a = 104 and b = 8× 10−2, (b,e) a = 105 and

b = 10−2 and (c,f) a = 106 and b = 10−3.

the collapse for small a indicates that the metric coefficients depend on N . However, this

happens in a non-trivial way, since the collapse enhances for increasing a. This tells us that

the dependence on N also becomes negligible in the growing a limit, as the system gets

closer and closer to the critical point. This is analytically supported by the form of the fixed

points in equations (15)–(18); numerically by the h amplitude in figure 2, as well as by the

dcc in figure 7.

The dependence of the metric coefficients on N for small a is expected due to the

quasi-critical nature of our homeostatic system. We can explain it by the superposition

of avalanches as follows. First, notice that the probability of uncorrelated spikes increases

with N since every neuron is an independent stochastic unit. These random spikes are
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FIG. 6. Finite-size scaling collapse of avalanche size and duration

complementary cumulative distributions for increasing values of a and network

size N . The first row shows the collapse of the complementary cumulative distribution

F (s), and second row for duration, F (d). The collapse improves with increasing a. Results

obtained for a quenched simulation of a directed random network with K = 32.

Parameters: (a,d) a = 104 and b = 8× 10−2, (b,e) a = 105 and b = 10−2 and (c,f) a = 106

and b = 10−3.

spontaneously generated by the network due to a finite external field h, and they act as

seeds to the avalanches. Therefore, the separation between events decreases with growing N

and, hence, avalanche superposition increases (see the Supplementary Information for more

details). As our activity measure ρ(t) cannot distinguish avalanches emerging from different

seeds, this leads to an increased number of larger avalanches for larger N (for more details,

see the Supplementary Material). This effect vanishes for increasing a because such regime

promotes the separation of the internal time scales of the system. This in turn generates a

decreasing effective external field h→ 0, ceasing simultaneous seeding of avalanches.
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FIG. 7. Average avalanche size vs. duration for increasing values of time scale

separation a and network size N . Directed random network with K = 32. Average

initial conditions: θ(0) = 0.09, Γ(0) = 0.75 with W (0) = 1, input I = 0.1. (a) Parameters

a = 104 and b = 8× 10−2; (b) a = 105 and b = 10−2 and (c) a = 106 and b = 10−3. Fitted

exponent relation (mfitted) and distance to criticality coefficient (dcc = |mtheory −mfitted|)

also shown.

IV. DISCUSSION

We have presented a neuronal network model that self-organizes toward quasi-criticality,

even in the presence of non-zero inputs Ii. This is an important result, given that cortical

neurons, for example, are constantly bombarded by input from various areas. The home-

ostatic thresholds θi – which can also be interpreted as adaptation currents [43] – lead to

|h| < 10−4, an (almost exact) adaptation to the inputs. That is, instead of imposing h = 0

as is usually done in standard SOC models [4], here we construct homeostatic mechanisms

such that the effective fields hi(t) = Ii− θi(t) tend towards zero. This is no mere detail, but

a crucial ingredient for a truly self-organized critical model [4].

The W̃ ∗ component of the fixed point is always subcritical, but tends to the critical value

when ab → ∞. From a biological perspective, staying in the vicinity of a subcritical state

might be advantageous to decrease the risk of spontaneous runaway activity [44]. Such ac-

tivity could be linked to dysfunctional regimes like epilepsy. Also, from the perspective of

information processing and task performance, it was recently shown that while criticality

might be beneficial for complex computational tasks, it can be detrimental to the perfor-
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mance in simpler ones [45]. This suggests that the subcriticality expressed by our model,

with just a few excursions to a critical state for some particular tasks, might be the best

regime for the network.

The form of the adaptation currents adopted for thresholds θi is known to generate

negative correlations between consecutive interspike intervals [46]. This means that long

silent intervals will be followed by shorter ones, on average. In addition, experimental

results suggest that large avalanche-like events are followed, on average, by small events in

the resting state of the brain [47]. Thus, the adaptation to the external field displayed by our

model could be the mechanism responsible for the generation of the separation between time

scales. This separation has to be imposed in all classic SOC models, but emerges naturally

in our model for large a.

After the self-organization process, the system hovers around a stable (quasi-critical) fixed

point with small amplitude orbits, minimizing the large stochastic oscillations observed in

previous models [16, 18, 20]. In particular, the system gets closer to criticality as the

timescale ratio a = τθ/τW = τθ/τΓ increases. This effect is related to the decrease of the

effective external field h. In turn, this vanishing h is what restores the true scaling and

power laws in the avalanche distributions as the separation of time scale grows. This is

because both a→∞ and h→ 0 are required to suppress the superposition of avalanches.

Self-organization mechanisms that tune neuronal networks to various states based on the

homeostatic interplay of external input and intrinsic activity have already been explored

in the literature [48]. However, scale-free avalanches with mean-field DP-like exponents

that satisfy the scaling relation had been only observed in the limit of vanishing external

drive [24]. In our model, both the exponents and the scaling arise naturally from the

adaptation mechanism.

Regarding the unavoidable fine-tuning A ≈ 1 imposed in our study, we need to remember

Hernandez-Urbina and Herrmann [22, 49]: fine-tuning a hyperparameter in local homeostatic

mechanisms is very different from globally fine-tuning the parameters {Wij, hi} in the original

static model. In any case, a challenge to the community persists: is it possible to obtain

A ≈ 1 without any form of fine-tuning? We conjecture that this is impossible: the need for

h∗ ≈ 0 will impose strict conditions similar to A ≈ 1 to any other homeostatic model [21].

Generalizing our results, it is plausible that any system under the influence of external

fields (say, a magnetic field H in spin systems) – as in earthquakes, forest fires, voting or
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epidemic models based on spins, cellular automata or even continuous time integrate-and-fire

dynamics – can achieve a near-critical regime through the inclusion of adaptive local fields

(as our θi(t)) whose timescale should be much slower than that of the rest of the system.

Nonetheless, it is not clear how time-varying inputs Ii(t) would affect the behavior of

our system. We conjecture that the thresholds θi(t) would produce a phenomenon akin to

sensory adaptation [50, 51]. If so, for short time scales, our homeostatic networks would

respond to the derivatives of the external signal, as opposed to signal intensity. This could

lead to yet unknown computational properties. For example, the results on the optimization

of the dynamic range in critical networks [52] could be challenged, or, at least, would need

to be reconsidered in the context of sensory systems with adaptation. This important issue

will be studied in a future extended paper.
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olding and the definition of avalanche size. Physical Review E, 100(1):1–6, 2019.

[41] Mauricio Girardi-Schappo, Osame Kinouchi, and Marcelo H R Tragtenberg. Critical

avalanches and subsampling in map-based neural networks coupled with noisy synapses. Phys.

Rev. E, 88(2):024701, 2013.



21

[42] Mauricio Girardi-Schappo. Brain criticality beyond avalanches: open problems and how to

approach them. J Phys Complex, 2:031003, 2021.

[43] Jan Benda, Leonard Maler, and André Longtin. Linear versus nonlinear signal transmission in

neuron models with adaptation currents or dynamic thresholds. Journal of Neurophysiology,

104(5):2806–2820, 2010.

[44] V Priesemann. Self-organization to sub-criticality. BMC Neuroscience, 16(S1):O19, dec 2015.
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