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In vitro and in vivo spiking activity clearly differ. Whereas networks in vitro develop strong bursts

separated by periods of very little spiking activity, in vivo cortical networks show continuous activity. This is

puzzling considering that both networks presumably share similar single-neuron dynamics and plasticity

rules.Wepropose that the defining difference between in vitro and in vivo dynamics is the strength of external

input. In vitro, networks are virtually isolated, whereas in vivo every brain area receives continuous input.We

analyze a model of spiking neurons in which the input strength, mediated by spike rate homeostasis,

determines the characteristics of the dynamical state. In more detail, our analytical and numerical results on

various network topologies show consistently that under increasing input, homeostatic plasticity generates

distinct dynamic states, from bursting, to close-to-critical, reverberating, and irregular states. This implies

that the dynamic state of a neural network is not fixed but can readily adapt to the input strengths. Indeed, our

results match experimental spike recordings in vitro and in vivo: The in vitro bursting behavior is consistent

with a state generated by very low network input (< 0.1%), whereas in vivo activity suggests that on the order

of 1% recorded spikes are input driven, resulting in reverberating dynamics. Importantly, this predicts that

one can abolish the ubiquitous bursts of in vitro preparations, and instead impose dynamics comparable to

in vivo activity by exposing the system toweak long-term stimulation, thereby opening new paths to establish

an in vivo-like assay in vitro for basic as well as neurological studies.

DOI: 10.1103/PhysRevX.8.031018 Subject Areas: Biological Physics, Complex Systems,

Interdisciplinary Physics

I. INTRODUCTION

Collective spiking activity clearly differs between in vitro
cultures and in vivo cortical networks (see examples in
Fig. 1). Cultures in vitro typically exhibit stretches of very
little spiking activity, interrupted by strong bursts of highly
synchronized or coherent activity [1–7]. In contrast, spiking
activity recorded from the cortex in awake animals in vivo

lacks such pauses, and instead shows continuous, fluctuat-
ing activity. These fluctuations show a dominant autocor-
relation time that was proposed to increase hierarchically
across the cerebral cortex, from sensory to frontal areas [8].
Moreover, depending on experimental details such as the
brain area, species, and vigilance state, one also observes
evidence for asynchronous-irregular (AI) dynamics [9,10];
oscillations [11–13]; or strong fluctuations associated
with criticality, bistability, or up-and-down states [14–20].
These states differ not only in strength and structure of

fluctuations, but also in synchrony among neurons, from
uncorrelated to fully synchronized spiking. The observa-
tion of such a vast range of dynamic states is puzzling,
considering that the dynamics of all networks presumably
originate from similar single-neuron physiology and plas-
ticity mechanisms.
One particular plasticity mechanism that regulates neural

activity on a long timescale is homeostatic plasticity
[23–28]. Homeostatic plasticity can be implemented by a
number of physiological candidate mechanisms, such as
redistribution of synaptic efficacy [29,30], synaptic scaling
[23–25,31], adaptation of membrane excitability [27,32], or
through interactions with glial cells [33,34]. All these
mechanisms have in common that they implement a slow
negative feedback loop in order to maintain a certain target
spike rate and stabilize network dynamics. In general, they
reduce (increase) excitatory synaptic strength or neural
excitability if the spike rate is above (below) a target rate,
allowing compensation against a potentially unconstrained
positive feedback loop through Hebbian-type plasticity
[35–41]. Recent results highlight the involvement of
homeostatic plasticity in generating robust yet complex
activity dynamics in recurrent networks [42–44].
To understand the physiological mechanisms behind this

large set of dynamic states, different model networks
have been proposed that reproduce one or a set of states.
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To name a few examples, deafferentiation in combination
with homeostatic scaling can generate bursts [45]; the
interplay between excitation and inhibition may lead to
oscillations, synchronous-regular activity, or asynchronous-
irregular activity [46–49],where switching betweendynamic
states can be induced by varying the input [49–51]; synaptic
facilitation and depression promote regular and irregular
network dynamics [52–54]; plasticity at inhibitory synapses
can stabilize irregular dynamics [55,56], whereas specific
types of structural [57–59] or synaptic [53,54,60–68] plas-
ticity foster strong temporal fluctuations characteristic for a
critical state; and last but not least, homeostasis is necessary to
achieve stable dynamics in recurrent networks with spike-
timing dependent plasticity (STDP) orHebbian-type synaptic
plasticity (e.g., Refs. [40,69–73]). Overall, the dynamic state
depends on all aspects: single-neuron properties, synaptic
mechanisms, network topology, plasticity rules, and input
characteristics. Recalling that the single-neuron properties,
synaptic mechanisms, and plasticity rules are presumably
very similar in vitro and in vivo, these factors are unlikely to
explain the observed differences.
In this study, we propose that the input strength is the

defining difference between in vitro and in vivo dynamics.
In vitro systems are completely isolated, whereas in vivo

networks receive continuous input from sensory modalities
and other brain areas. Under these different conditions,
we propose that homeostatic plasticity is a sufficient
mechanism to promote self-organization to a diverse set
of dynamic states by mediating the interplay between
external input rate and neural target spike rate. Treating
the external input as a control parameter in our theoretical
framework allows us to alter the network dynamics from

bursting, to fluctuating, to irregular. Thereby, our framework
offers testable predictions for the emergence of characteristic
but distinct network activity in vitro and in vivo.
Based on our theory, we derive explicit experimental

predictions and implications: (1) The direct relation between
dynamic state, spike rate, and input rate enables us to
quantify the amount of input the neural network receives;
e.g., in mildly anesthetized cat V1, we estimate an input rate
of Oð0.01 Hz=neuronÞ. (2) This implies that about 2%
of cortical activity in catV1 is imposed by the input, whereas
98% is generated by recurrent activation from within
the network. (3) Our results suggest that one can alter the
dynamic state of an experimental preparation by altering the
input strength. Importantly, we predict for in vitro cultures
that increasing the input rate to about Oð0.01 Hz=neuronÞ
would be sufficient to induce in vivo-like dynamics.

II. EXPERIMENTAL OBSERVATIONS

To demonstrate characteristic neural activity in vitro and
in vivo, we analyzed exemplary recordings of spiking
activity. Data sets included cultures of dissociated cortical
neurons [4,74], as well as the hippocampus of foraging rats
[21,75] and visual cortex of mildly anesthetized cats
[22,76] (see Appendix A for details). Note that all prep-
arations were inevitably subsampled, as spikes were
recorded only from a small number of all neurons. For
illustrative purposes, we focus on the average (subsampled)
spiking activity at and the (subsampled) avalanche-size
distribution Psub (see Appendix B for details).
The spiking activity in vitro shows bursting beha-

vior (Fig. 1), i.e., stretches of very low activity interrupted

FIG. 1. Examples of dynamic states observed in experiments. In vitro spike recordings are from cultures of dissociated rat cortical
neurons [4]. In vivo recordings are from the right dorsal hippocampus in an awake rat during an open field task [21] and from the primary
visual cortex in a mildly anesthetized cat [22]. The top row shows population spiking activity (Appendix B-1) from 30–60 single or
multiunits (Δt ¼ 4 ms), with average neural firing rate r; the bottom row shows subsampled avalanche-size distributions (Appendix B-2).

Solid lines indicate the power-law behavior s−3=2 expected for a critical branching process. Dashed lines correspond to distributions

obtained from branching networks matched to the experiments of rat CA1 (τ ¼ 2 s, r� ¼ 11 Hz, h ¼ 5.5 × 10−1 Hz, n ¼ 31, N ¼ 104,

Δt ¼ 1 ms, τhp ¼ 105 s) and cat V1 (τ ¼ 0.2 s, r� ¼ 7 Hz, h ¼ 3.5 × 10−2 Hz, n ¼ 50, N ¼ 104, Δt ¼ 1 ms, τhp ¼ 105 s). For details

and a definition of parameters, see Appendix B-4.
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by periods of synchronized activity. The subsampled
avalanche-size distributions PsubðsÞ exhibit partial power-
law behavior resembling PðsÞ ∼ s−3=2, as expected from a
critical branching process [77] and conjectured for the
synchronous-irregular regime [78]. However, in addition,
PsubðsÞ also shows a peak at large avalanche sizes, which
may indicate either finite-size effects, supercriticality, or
characteristic bursts [79].
In contrast, the spiking activity in vivo shows fluctuating

dynamics (Fig. 1). These have been described as reverberat-
ing dynamics, a dynamic state between critical and irregular
dynamics [80], characterized by a finite autocorrelation time
of a few hundred milliseconds. The subsampled avalanche-
size distributions PsubðsÞ can be approximated by a power
law for small s but show a clear exponential tail. The tails
indicate slightly subcritical dynamics [81], especially
because deviations in the tails are amplified under subsam-
pling [15,16,79].
In sum, the spiking activity and the corresponding

avalanche-size distributions clearly differ between in vitro

and in vivo recordings. Remarkably, however, the average
neural firing rate r is similar across the different experimental
setups.

III. MODEL

To investigate the differences between in vitro and
in vivo, we make use of a branching network, which
approximates properties of neural activity propagation. We
extend the branching network by a negative feedback,
which approximates homeostatic plasticity.

A. Branching network

In the brain, neurons communicate by sending spikes.
The receiving neuron integrates its input, and if the
membrane potential crosses a certain threshold, this neuron
fires a spike itself. As long as a neuron does not fire, its
time-varying membrane potential can be considered to
fluctuate around some resting potential. In the following,
we approximate the complex time-resolved process of
action potential generation and transmission in a stochastic
neural model with probabilistic activation.
Consider a network of size N. Each node corresponds to

an excitatory neuron, and spike propagation is approxi-
mated as a stochastic process at discrete time steps Δt. If a
neuron, described by the state variable si;t ∈ f0; 1g, is

activated, it spikes (si;t ¼ 1) and immediately returns to

its resting state (si;tþ1 ¼ 0) in the next time step, unless

activated again. Furthermore, it may activate postsynaptic
neurons j with probability pij;t ¼ wijαj;t, where wij ∈

f0; 1g indicates whether two neurons are synaptically con-
nected, and αj;t is a homeostatic scaling factor. In addition,

each neuron receives network-independent external input at
rate hi, representing external input from other brain areas,
external stimuli, and importantly also spontaneous spiking

of single neurons generated independently of presynaptic
spikes (e.g., by spontaneous synaptic vesicle release
[82,83]). The uncorrelated external input homogeneously
affects the network at rate hi ¼ h, modeled as Poisson

processes with an activation probability 1 − e−hΔt ≃ hΔt.
This model can be treated in the framework of a

branching process [77], a linear process with a character-
istic autocorrelation time τ (see below). The population
activity is characterized by the total number of spiking

neurons, At ¼
P

N
i¼1

si;t. Each spike at time t generates, on

average, m postsynaptic spikes at time tþ 1 such that, on
average, EðAtþ1jAtÞ ¼ mAt, wherem is called the “branch-
ing parameter.” The branching parameter can be defined for
each neuron individually: Neuron i activates, on average,

mi;t ¼
X

N

j¼1

wijαj;t ð1Þ

of its postsynaptic neurons [84]. This local branching
parameter mi;t thus quantifies the impact of a spike in

neuron i on the network. The network average (denoted in
the following with a bar) of mi;t generates the (time-

dependent) network branching parameter [67]

mt ¼
1

N

X

N

i¼1

mi;t: ð2Þ

The external input generates, on average, NhΔt addi-
tional spikes per time step, resulting in a driven branching
process [85,86]. The expected activity at time tþ 1 is then
EðAtþ1jAtÞ ¼ mAt þ NhΔt. For m < 1, the process is
called “subcritical,” meaning that individual cascades of
events will eventually die out over time. In this case, the
temporal average (denoted in the following as h·i) of
network activity At converges to a stationary distribution
with average activity

hAi ¼
1

T

X

T

t¼1

At !
T→∞

NhΔt

1 −m
: ð3Þ

Considering a homogeneous neural spike rate ri ¼ r ¼
hAi=NΔt, this implies

r ¼
h

1 −m
: ð4Þ

A constant mean spike rate r, which can be considered a
biological constraint, is thus realized by adjusting either
m ∈ ½0; 1Þ or h ∈ ½0;∞Þ.
The subcritical branching process (m < 1) is stationary

with the autocorrelation function CðlÞ ¼ ml. The autocor-
relation time can be identified by comparing with an

exponential decay CðlÞ ¼ e−lΔt=τ, yielding [80]
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τ ¼ −Δt= lnðmÞ; ð5Þ

which diverges as m → 1. At this divergence (m ¼ 1), the
process is critical and the activity At grows linearly in
time with rate h. At criticality, assuming h→ 0, the
number of events s in an avalanche triggered by a single

seed event is distributed according to a power law PðsÞ ∼
s−3=2 [77]. For a nonvanishing h in the subcritical regime
(m < 1), the avalanche-size distributions show a rapid
decay, if they can be measured at all under persistent
activity (Appendix B-2). Finally, for m > 1, the process is
called “supercritical,” and At can, in principle, grow to
infinity. For a finite network, this, of course, is not
possible and will manifest in a peak of the avalanche-
size distribution at large avalanche sizes.
For the computational model, we consider a network of

N ¼ 104 neurons, which represents the size of in vitro

cultures and in vivo cortical hypercolumns. The time step of
the branching process has to reflect the causal signal
propagation of the underlying physiological network.
Since realistic propagation times of action potentials from
one neuron to the next range from 1–4 ms, we choose
Δt ¼ 1 ms. We consider three network topologies.
a. Directed Erdős-Rényi (ER) network: As a standard

model of network topology, we consider a network with
random directed connections. Each connection wij ¼ 1 is
added with probability pcon, excluding self-connections
ði; iÞ. Then, the degree distribution of outgoing as well as
incoming connections follows a binomial distribution with

average degree k ¼ pconðN − 1Þ ≃ pconN. We require
pcon > lnðNÞ=N to ensure that the graph is connected
[87]. The connectivity matrix wij is fixed throughout each

simulation, such that averaging over simulations with
different network realizations results in a quenched aver-
age. A cutout from an example graph is shown in Fig. 2(a).

b. Spatially clustered (SC) network: In order to consider
a more detailed topology with dominant short-range con-
nections, we follow Orlandi et al., who developed a model
based on experimental observations of in vitro cultures
[5,88]. Neural somata are randomly placed as hard discs
with radius Rs ¼ 7.5 μm, to account for the minimal

distance between cell centers, on a 5 × 5-mm2 field.
From each soma, an axon grows into a random direction
with a final length l given by a Rayleigh distribution

pðlÞ ¼ ðl=σ2l Þ expð−l
2=2σ2l Þ, with σl ¼ 900 μm and aver-

age axonal length l̄ ≃ 1.1 mm. The axonal growth is a
semiflexible path with segments of size Δl ¼ 10 μm and
orientation drawn from a Gaussian distribution relative to
the previous segment with σθ ¼ 15°. A connection with
another neuron is formed with probability 1=2 if the
presynaptic axon intersects with the dendritic tree of a
postsynaptic neuron [89]. The dendritic tree is modeled as a
disc around the postsynaptic neuron with radius Rd drawn

from a Gaussian distribution with mean R̄d ¼ 300 μm and
σd ¼ 20 μm. A cutout from an example graph is shown in
Fig. 2(b).
c. Annealed-average (AA) network: We consider, in

addition, a network with k dynamically changing random
connections (annealed average). The connections are dis-
tinguishable, exclude self-connections, and are redrawn
every time step. This model approximates the otherwise
numerically expensive fully connected network (ER with
pcon ¼ 1) with a global mt by choosing αj;t ¼ mt=k. In

practice, we chose k ¼ 4, which produces analogous

dynamics to the fully connected (k ≈ 104) network as long
as mt < 4.
Error bars are obtained as statistical errors from the

fluctuations between independent simulations, which
include random network realizations fwijg for ER and SC.

B. Homeostatic plasticity

In our model, homeostatic plasticity is implemented as a
negative feedback, which alters the synaptic strength on the
level of the postsynaptic neuron (the homeostatic scaling
factor αj;t) to reach a target neural firing rate r�j . We
consider a linear negative feedback with time constant τhp,

which depends solely on the (local) activity of the post-
synaptic neuron sj;t,

Δαj;t ¼ ðΔt r�j − sj;tÞ

�

Δt

τhp

�

; ð6Þ

i.e., adapting a neuron’s synaptic strength does not rely on
information about the population activity At. Since αj;t is a

probability, we additionally demand αj;t ≥ 0. Equation (6)

considers homeostatic plasticity to directly couple to
all postsynaptic synapses of any given neuron j. This
can be implemented biologically as autonomous synaptic
processes or somatic processes, such as translation and

FIG. 2. Cutouts of two random network topologies. (a) Subset

of randomly spaced nodes in an ER network with pcon ¼ 10−3.
Note that connections cross the window also from neurons
outside of the field of view, such that single connections cannot

be distinguished visually in the sketch. (b) 1.4 × 1.4 mm2 subset
of SC topology generated by axonal-growth rules [5,88].
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transcription. In order to further reduce complexity, we
assume a uniform target rate r�j ¼ r�, while, in fact,

experiments show a broad (log-normal) spike-rate distri-
bution [90,91]. Preliminary tests for a log-normal target rate
distribution in ER networks (pcon ¼ 0.1) showed consistent
results. In our simulations, we typically consider a bio-
logically motivated target rate r� ¼ 1 Hz and a homeostatic

timescale of the order of an hour, τhp ¼ 103 s.

IV. RESULTS

Including homeostatic plasticity in our model generates a
broad range of dynamic states, depending on the external
input. Figure 3 shows qualitatively representative results
obtained for AA networks. For strong input [h ¼ Oðr�Þ],
the network organizes itself into a dynamic state where
neural firing is solely driven by the input fluctuations,
resembling an asynchronous-irregular state (green). Here,
temporal and pairwise spike count cross-correlations
approach zero, and the avalanche-size distribution matches
the analytic solution for a Poisson process [92] shown as
dashed lines. For weaker input (h < r�), the system tunes
itself towards fluctuating dynamics (orange–yellow). The
average neural rate and subsampled avalanche-size distri-
butions are qualitatively similar to reverberant in vivo

dynamics with autocorrelation times of several hundred
milliseconds (Fig. 1). In this regime, the temporal corre-
lations increase when weakening the input, approaching
close-to-critical dynamics, characterized by a power-law

distribution PðsÞ ¼ s−3=2 [77], at the lower end of the
regime. Decreasing the input even further (h ≪ r�) leads to
bursting behavior, characterized by silent periods that are
interrupted by strong bursts. These bursts are apparent as a
peak in the avalanche-size distribution at large avalanche

sizes (purple–red). In this regime, the network steadily
increases its synaptic strengths during silent periods until a
spike initiates a large burst, which, in turn, decreases the
synaptic strengths drastically, and so on (cf. Appendix C).
This regime captures the qualitative features of bursting
in vitro dynamics (Fig. 1).
In the following, we derive a quantitative description of

the three regimes sketched above. To quantify the dynamic
state, we consider the temporal average of the branching
parameter m ¼ hmi, as well as the associated autocorrela-
tion time τ of the population activity.

A. Mean-field solution

If we assume that τhp is sufficiently large (i.e., slow
homeostatic plasticity), then Δαj ≈ 0 and the dynamics of

the network is fully determined by the approximately
constant branching parameter mt ≈ m. In this regime,
Eq. (4) holds and, combined with Eqs. (5) and (6), we
obtain the mean-field solution

m ¼ 1 − h=r� and τ ¼ −Δt= lnð1 − h=r�Þ: ð7Þ

Hence, with decreasing input rate h, recurrent network
activation (m) increases; i.e., perturbations cause a stronger
network response and the autocorrelation time increases
(Fig. 4, solid lines).
In the light of this mean-field solution, we discriminate

the three characteristic regimes as follows. First, we define
the input-driven regime by m ≤ 0.5 and τ ≈ Δt. Here, the
network activity is dominated by input [h ¼ Oðr�Þ], and,
thus, the dynamics follows the input statistics and becomes
irregular. Second, we define the fluctuating regime for
0.5 < m < 1 with a nonvanishing but finite autocorrelation

FIG. 3. Homeostatic plasticity induces diverse dynamic states by regulating recurrent network interactions, mediating input rate h and

target neural firing rate r�. The annealed-average network reproduces bursting (m > 1, h=r� ≤ 10−3, purple–red); fluctuating (m ≈ 0.99,

h=r� ≈ 10−2 and m ≈ 0.9, h=r� ≈ 10−1, orange–yellow); and irregular (m ≈ 0, h=r� ¼ 1, green) dynamics. The top row shows
examplary spiking activity at ¼ At=NΔt (Appendix B-1); the bottom row shows avalanche-size distributions PðsÞ (n ¼ N, circles) and
subsampled avalanche-size distributions PsubðsÞ (n ¼ 100, triangles) averaged over 12 independent simulations (Appendix B-2). Solid

lines show the power-law distribution PðsÞ ∝ s−3=2 [77], and dashed lines show the analytical avalanche-size distribution of a Poisson

process [92]. The parameters are N ¼ 104, τhp ¼ 103 s, r� ¼ 1 Hz, Δt ¼ 1 ms.

HOMEOSTATIC PLASTICITY AND EXTERNAL INPUT … PHYS. REV. X 8, 031018 (2018)

031018-5



time Δt < τ < ∞. Here, the network maintains and ampli-
fies input as recurrently generated fluctuations. In these two
regimes, the mean-field solution in Eq. (7) matches
numerical data on different network topologies (Fig. 4).
Third, the mean-field solution predicts that, in the limit
h→ 0, the dynamics become critical with divergent auto-
correlation time (m → 1, τ → ∞). However, we observe a
clear deviation from the mean-field solution, which defines
the bursting regimewith m > 1 and a finite autocorrelation
time, as discussed below.

B. Bursting regime

Deviations from the mean-field solution in Eq. (7)
emerge when the assumption of “sufficiently large τhp”

breaks down. We will derive a bound for τhp, below which

the (rapid) homeostatic feedback causes notable changes
of the network branching parameter m̄t around its mean
m ¼ hm̄i, which in turn jeopardize the stability of the
network dynamics.
To estimate the change of the network branching

parameter, we first consider the change in local branching
parameter Δmi;t, which depends on each neuron’s out-

degree ki ¼
P

N
j¼1

wij and is given by

Δmi;t ¼
X

N

j¼1

wijΔαj;t ¼

�

kiΔt r
� −

X

N

j¼1

wijsj;t

��

Δt

τhp

�

:

On the network level, we make the assumption that the state
of each neuron is approximated by the network average

si;t ≈ At=N, such that
P

N
j¼1

wijsj;t ≈ k̄ At

N
. Then, the change

in network branching parameter can be approximated as

Δmt ¼ Δmt ≈

�

k̄Δt r� − At

k̄

N

��

Δt

τhp

�

≈

�

Δt r� −
At

N

��

Δt

τ0

�

; ð8Þ

where we have introduced an effective homeostatic net-

work timescale τ0 ¼ τhp=k̄, for which Eq. (8) recovers the

form of Eq. (6). Using τ0 allows one to semianalytically
approximate the deviation of m from the mean-field
solution [Fig. 4(a), dashed lines, and Appendix C].
We next show that the stability of network dynamics

requires the autocorrelation time of the dynamic process τ
to be smaller than the timescale of homeostasis τ0. Stability
demands that the homeostatic change in autocorrelation
timeΔτ is small compared to the autocorrelation time itself,
i.e., Δτ ≪ τ. We approximate Δτ by error propagation in
Eq. (5), yielding

Δτ ≃ jðτ2=ΔtÞeΔt=τjΔm ≃ ðτ2=Δtþ τÞΔm; ð9Þ

where we expanded the exponential for small Δt=τ. For
large τ, the leading term in Eq. (9) dominates, and inserting

Eq. (8) yields Δτ ≃ jΔt r� − At=Njðτ2=τ0Þ. Thus, the
dynamics can be described as a stationary branching
process (mean-field solution) only as long as

τ ≪ τ0jΔt r� − At=Nj−1: ð10Þ

Violation of Eq. (10) results in bursting behavior (Figs. 3
and 7). For At ¼ OðNÞ, the right-hand side of Eq. (10) is
minimal, because Δt r� ≪ 1, which implies a maximal

attainable autocorrelation time τ ≃ τ0 ¼ τhp=k̄. This is

in perfect agreement with the saturation of measured

(a) (b)

FIG. 4. Quantitative distinction between dynamic states induced in neural networks of different topologies by homeostatic plasticity as
a function of normalized input rate h=r�. Data points are averages over 12 independent simulations (N ¼ 104, τhp ¼ 103 s, r� ¼ 1 Hz,

Δt ¼ 10−3 s) with connections generated according to AA, ER, or SC topologies with average number of connections k̄. Solid lines
show the mean-field solution in Eq. (7); dashed lines represent (semianalytical) approximations of the bursting regime. (a) Branching
parameter m ¼ hmi varies from irregular (m ≈ 0), to fluctuating (m ⪅ 1), to bursting (m > 1) dynamics. The behavior in the bursting

regime strongly depends on the network timescale τ0 ¼ τhp=k̄. (b) Integrated autocorrelation time of the network population activity

(Appendix B-3) shows a crossover from irregular [τ ¼ OðΔtÞ], over fluctuating [τ ¼ −Δt= lnð1 − h=r�Þ] to bursting (τ ≈ τ0) dynamics.
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autocorrelation time in the bursting regime [Fig. 4(b),
dashed lines].
The transition from the fluctuating to the bursting regime

occurs when the mean-field solution in Eq. (7) equals the
maximal attainable autocorrelation time, i.e., τ ¼ −Δt=
lnð1 − h=r�Þ ≈ τ0. Hence, the transition occurs at h=r�≈

1 − e−Δt=τ
0
≈ Δt=τ0. For an even lower input rate, the

dynamics become more and more bursty, and the ava-
lanche-size distribution exhibits a peak at large avalanche

sizes (Fig. 3 for h=r� < 10−2, where τ0 ¼ 102 ms,
Δt ¼ 1 ms). At the transition, the dynamics can be con-
sidered close to critical, because the (fully sampled)
avalanche-size distribution is closest to a power law with
exponent −3=2.

C. Distributions of spiking activity

The different dynamical regimes imply characteristic
distributions of neural network activity PðatÞ. Figure 5
shows an example of PðatÞ for ER networks with

pcon ¼ 10−2, where the transition from fluctuating to

bursting dynamics is expected for h=r� ≈ Δt=τ0 ¼ 10−4.
In the irregular regime (green), PðatÞ is a unimodal
distribution. In the fluctuating regime (yellow–red), the
peak in PðatÞ shifts towards quiescence, and the distribu-
tion develops a power-law tail with exponential cutoff,
which is expected for a critical branching process. In the
bursting regime (purple–blue), PðatÞ is a bimodal distri-
bution, reflecting network changes between quiescence
and bursty activity. The position and sharpness of the
high-activity maximum depend on the network connectiv-
ity and, hence, the heterogeneity in the single-neuron input.

D. Reproducing experimental results

Using the insight from our theory, we can reproduce
experimental results. Spiking activity recorded in vivo

resembles dynamics of the fluctuating regime. In this
regime, the dynamic state is consistent for all topologies
we considered (Fig. 4). Therefore, already a branching
network on an AA topology suffices to quantitatively
reproduce the avalanche-size distributions by matching
model parameters with experimentally accessible estimates
(Fig. 1, dashed lines). To match the branching network to
recordings from cat V1 and rat CA1, we first estimated the
spike rate r and autocorrelation time τ from the recordings
of spiking activity [80]; we then chose biologically plau-
sible parameters for the network size N, the homeostatic
timescale τhp, as well as the simulation time step Δt; and

finally, we derived the external input h using Eq. (7) (for
details, see Appendix B-4). The resulting subsampled
avalanche-size distributions are in astonishing agreement
with the experimental results, given the simplicity of our
approach. Close inspection of the avalanche-size distribu-
tion for rat CA1 recordings still reveals small deviations
from our model results. The deviations can be attributed to
theta oscillations in the hippocampus, which result in
subleading oscillations on an exponentially decaying auto-
correlation function [80]. While this justifies our approach
to consider a single dominant autocorrelation time, theta
oscillations slightly decorrelate the activity at short times
and thereby foster premature termination of avalanches.
Thus, the tail in the avalanche-size distribution is slightly
shifted to smaller avalanche sizes (Fig. 1).
The in vitro results are qualitatively well matched by

simulations in the bursting regime, with avalanche-size
distributions showing a characteristic peak at large avalanche
sizes (Fig. 3). It is difficult to quantitativelymatch a model to
the data, because a number of parameters can only be
assessed imprecisely. Most importantly, the autocorrelation
time in the burst regime is not informative about the external
input rate h and depends on the average number of con-
nections (Fig. 4). Likewise, the time dependence of the
branching parametermt cannot be assessed directly. Finally,
system size and topology impact the network dynamicsmore
strongly in this regime than in the fluctuating or input-driven
regime. This yields a family of avalanche-size distributions
with similar qualitative characteristics but differences in
precise location and shape of the peak at large sizes.

V. DISCUSSION

We propose the interplay of external input rate and target
spike rate, mediated by homeostatic plasticity, as a neural
mechanism for self-organization into different dynamic
states (cf. sketch in Fig. 6). Using the framework of a
branching process, we disentangled the recurrent network
dynamics from the external input (e.g., input from
other brain areas, external stimuli, and spontaneous
spiking of individual neurons). Our mean-field solutions,

FIG. 5. Distribution of spiking activity in weakly connected
Erdős-Rényi networks (pcon ¼ 10−2, Δt ¼ 1 ms, r� ¼ 1 Hz,

τ0 ¼ 104 ms) averaged over 12 independent simulations. For

irregular dynamics (h=r� ≈ 100), the distribution is clearly

unimodal. For fluctuating dynamics (10−4 < h=r� < 100), the
distribution broadens and shifts the maximum towards quies-
cence. In addition, towards the lower bound of the regime, the
distribution develops a power-law tail with an exponential cutoff.

At the crossover to bursting dynamics (h=r� ≈ 10−4) the distri-
bution becomes bimodal.
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complemented by numeric results for generic spiking
neural networks, show that, for high input, the network
organizes into an input-driven state, while for decreasing
input, the recurrent interactions are strengthened, leading to
a regime of fluctuating dynamics, resembling the rever-
berating dynamics observed in vivo. Decreasing the input
further induces bursting behavior, known from in vitro

recordings, due to a competition of timescales between
homeostatic plasticity and the autocorrelation of population
activity. Thereby, our framework proposes a generic
mechanism to explain the prominent differences between
in vivo and in vitro dynamics.
Our theory suggests that also differences within the

collective dynamic state observed in vivo can be explained
by considering differences in input strength. For the cortex,
it was shown that layer 2=3 exhibits critical dynamics [17]
and, presumably, deeper layers show reverberating dynam-
ics [80,81]. We propose that this can be caused by different
input strengths: Layer 2=3 is more recurrently connected,
while layer 4 is the main target of thalamic input [93],
hence receiving the stronger input. The dynamic state
varies also across different cortical areas, where autocorre-
lation times of network activity reflect a hierarchical
organization [8,94]: Cortical areas associated with
higher-order function show a larger autocorrelation time.
In light of our results, a larger autocorrelation time implies
less afferent input for the area in question. The hierarchical
organization is further supported by our analysis of spiking
activity in vivo (Fig. 1): The autocorrelation times in the
visual cortex (τ ≈ 0.2 s) and hippocampus (τ ≈ 2 s) pre-
cisely reflect that the visual cortex is almost at the bottom,

whereas the hippocampus is at the top of the hierarchy of
visual processing [95].
Our theory provides an approach to experimentally infer

the fraction of spikes generated recurrently within a net-
work and generated by external input. For an average spike
rate r, Eq. (7) implies h=r ¼ ð1 − e−Δt=τÞ. The external
input rate can then be directly calculated from the auto-
correlation time and by assuming a biologically plausible
signal-propagation time, e.g., Δt ≈ 4 ms. We estimate for

recordings from the visual cortex in a mildly anesthetized
cat that about 2% of the network activity is generated by the
input, whereas the majority of 98% is generated recurrently
within the network. From autocorrelation times measured
across the cortical hierarchy (50–350 ms) in a macaque
monkey [8], the fraction of spikes generated by external
input decreases from approximately 8% to 1% from lower
to higher cortical areas. This is consistent with perturbation
experiments in rat barrel cortex, where, after triggering an

extra spike, the decay time of the population rate was at
least 50 ms [96], indicating at most about 8% external input
(for a detailed discussion, see also Ref. [97]). Last, experi-
ments on the visual cortex of awake mice directly after
thalamic silencing found a decay time of τ ¼ 12ð1Þ ms
[98], from which we would estimate about 70% recurrent
activation. This is in perfect agreement with the exper-
imentally measured 72(6)% of recurrent activation in the
same study. This result thus validates our derived relation

between h=r and τ.
One can interpret our findings in the light of up and

down states [18,19,67,99]. Because the membrane potential
was found to correlate with network activity [6,20], our

results for the distribution of spiking activity in the bursting
regime may correspond to the bimodal distributions of
membrane potentials during up and down states (Fig. 5). It
has already been shown that negative feedback can stabilize
up and down states [67,99]. In our theory, negative feed-
back leads to similar results in the low-input regime.
Moreover, we predict that decreasing network input further
prolongs the quiescent periods or down states.
Our theory unifies previous numerical approaches of self-

organization in neural networks, which typically considered
a negative feedback mechanism but made very different
choices on a (fixed) network input. For example, bursting
dynamics have been generated by homeostatic buildup

upon loss of network input [45] or by self-organized
supercriticality through dynamic neuronal gain [100].
Adding weak input, self-organized criticality [101,102]
has been achieved by local rewiring [57–59] and synaptic
depression [53,54,60–65]. In contrast, asynchronous-
irregular network activity typically requires a comparably
strong input, assuming a balanced state [49,103,104], and a
self-organized AI network state can be promoted by inhibi-
tory plasticity [55,56]. While all these studies provide
mechanisms of self-organization to one particular dynamic
state, our theory highlights the role of input in combination

FIG. 6. Sketch of bursting, fluctuating, and input-driven net-
work states, classified by the branching parameter and the
autocorrelation time. We propose (solid lines) that homeostatic
plasticity tunes the dynamic state depending on the ratio of
external input rate (including spontaneous neural firing) and
target neural firing rate. Data points and example activity traces
stem from Erdős-Rényi networks (N ¼ 104, p ¼ 10−1,

τhp ¼ 103 s). In the bursting regime, the homeostatic timescale

τhp influences the resulting dynamics (dashed lines).
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with a negative feedback [42,49–51] and provides a unifying
mechanism of self-organization covering bursting, fluctuat-
ing, and irregular dynamics.
From a broader perspective, we characterized driven

systems with a negative feedback as a function of the input

rate. The negative feedback compensates the input by

regulating the system’s self-activation to achieve a target

activity. In light of this control theory, the bursting regime

can be understood as resonances in a feedback loop, where

feedback dynamics are faster than system dynamics

(cf. Ref. [105]). This qualitative picture should remain

valid for other connected graphs subject to external input

with spatial and temporal correlations. In this case, how-

ever, we expect more complex network responses than

predicted by our mean-field theory, which assumes self-

averaging random networks subject to uncorrelated input.
Our results suggest that homeostatic plasticity may be

exploited in experiments to generate in vivo-like dynamics in

a controlled in vitro setup, in particular to abolish the

ubiquitous bursts in vitro. Previous attempts to reduce

bursting in vitro [106] and in model systems of epilepsy

[107–110] used short-term electrical and optical stimulation

to attain temporal reduction in bursting. Alternatively, one

can reduce bursting pharmacologically or by changing the

calcium level, however, typically at the cost of changing

single-neuron properties [111–113]. We propose a different

approach, namely, applying weak, global, long-term stimu-

lation.Mediated by homeostasis, the stimulation should alter

the effective synaptic strength, and thereby thedynamic state,

while preserving single-neuron dynamics [114]. In particu-

lar,we predict that inducing in everyneuron additional spikes

with h ¼ Oð0.01 HzÞ is sufficient to abolish the ubiquitous
bursts in vitro and render the dynamics in vivo-like instead.

If verified, this approach promises completely novel paths

for drug studies. By establishing in vivo-like dynamics

in vitro, fine differences between neurological disorders,

which are otherwise masked by the ubiquitous bursts, can be

readily identified. Altogether this would present a compa-

rably cost-efficient, high-throughput, and highly accessible

drug assay with largely increased sensitivity.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Dissociated dense cultures of cortical rat neurons.—

The spike-time data from dissociated cortical rat neurons of
mature dense cultures was recorded by Wagenaar et al. [4]
and was obtained freely online [74]. The experimental
setup uses multielectrode arrays (MEA) with n ¼ 59

electrodes. Cortical cells were obtained from dissecting
the anterior part of the cortex of Wistar rat embryos (E18),
including somatosensory, motor, and association areas. For
details, we refer to Ref. [4]. Measurements were performed
every day in vitro (DIV). We here focus on the dense case
with 50 000 cells plated initially with a density of

2.5ð1.5Þ × 103 cells=mm2 at 1 DIV, which is compatible
with standard in vitro experiments in the field that claim to
observe critical dynamic behavior. We selected the repre-
sentative recordings 8-2-34 (exp 1) and 7-2-35 (exp 2) at a
mature age (34/35 DIVs) for Fig. 1.
2. Rat hippocampus.—The spiking data from rats were

recorded by Mizuseki et al. [21,75] with experimental
protocols approved by the Institutional Animal Care and
Use Committee of Rutgers University. The data were
obtained from the NSF-founded CRCNS data sharing
website [75]. The spikes were recorded in CA1 of the
right dorsal hippocampus during an open field task.
Specifically, we used the data set ec013.527 with sorted
spikes from 4 shanks with n ¼ 31 channels. For details, we
refer to Refs. [21,75].
3. Primary visual cat cortex.—The spiking data from cats

were recorded by Tim Blanche in the laboratory of Nicholas
Swindale, University of British Columbia, in accordance
with guidelines established by the Canadian Council for
Animal Care [22,76]. The data were obtained from the NSF-
founded CRCNS data sharing website [22]. Specifically,
we used the data set pvc3 with recordings of n ¼ 50 sorted
single units [76] in area 18. For details, we refer to
Refs. [22,76]. We confined ourselves to the experiments
where no stimuli were presented, such that spikes reflect the
spontaneous activity in the visual cortex of mildly anes-
thetized cats. In order to circumvent potential nonstationar-
ities at the beginning and end of the recording,we omitted the
initial 25 s and stopped after 320 s of recording [80].

APPENDIX B: ANALYSIS DETAILS

1. Spiking activity.—In order to present the spiking
activity over time, we partition the time axis of exper-
imental or numerical data into discrete bins of size Δt.
For the time-discrete simulations, the time bin naturally
matches the time step. For experimental data, we set
Δt ¼ 4 ms. In each time bin, we count the total number
of spikes At and normalize with the number of neuronsN to
obtain the average spiking activity at ¼ At=NΔt. Note that
experimental preparations were inevitably subsampled, as
spikes were recorded only from a small number of all
neurons.
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2. Avalanche-size distribution.—We define the avalanche
size s as the number of spikes enclosed along the discrete
time axis by bins with zero activity [7]. To test for criticality
in terms of a branching process, one compares PðsÞ to the

expected PðsÞ ∼ s−3=2. This is a valid approach in the limit
h→ 0, where avalanches can be clearly identified, and for
fully sampled systems [81]. However, experiments are
limited to record only from n out of N neurons. As a result,
the distributions for subsampled activityPsubðsÞ differ due to
subsampling bias [15,16]. Therefore, we numerically mea-
sure both full (n ¼ N) and subsampled (n < N) avalanche-
size distributions to qualitatively compare PðsÞ to the theory
and PsubðsÞ to experimental data.
3. Integrated autocorrelation time.—We measure the

autocorrelation time of spiking activity at in terms of the
integrated autocorrelation time τint; for details, see, e.g.,
Ref. [115]. In brief, we sum over the normalized auto-
correlation function CðlÞ ¼ Cov½at; atþl�=Var½at� until the
sum converges. Following conventions, we define τint ¼

Δt½1
2
þ
Plmax

l¼1
CðlÞ�, where lmax is self-consistently obtained

as the minimal lmax > 6τintðlmaxÞ.
4. Reproducing experimental results.—We use a branch-

ing network with AA topology subject to homeostatic
plasticity to quantitatively reproduce in vivo subsampled
avalanche-size distributions. We chose networks of size

N ¼ 104, with sufficiently large homeostatic timescale

τhp ¼ 105 s. The following model parameters can be

obtained from experimentally measured values: In the
chosen recordings, we measured the average rate
(rcat ≈ 7 Hz and rrat ≈ 11 Hz) as well as the subsampling
corrected branching parameter [80] (mcat ≈ 0.98 and mrat ≈

0.997 for Δt ¼ 4 ms). In fact, the branching parameter is
not suitable to identify the input rate via Eq. (7), because it
refers to a process in discrete time steps. Since we
are treating a continuous process, the invariant quantity
is the autocorrelation time (τcat ≈ 0.2 s and τrat ≈ 1.6 s).
According to our theory, we can then calculate the input
rate per neuron h ¼ ½1 − expð−Δt=τÞ�r. In order to avoid
convergence effects, we need to choose a sufficiently small
time step Δt ¼ 1 ms of signal propagation (resulting in

hcat ≈ 3.5 × 10−2 Hz and hrat ≈ 5.5 × 10−3 Hz), while we
record in time bins of 4 ms to match the analysis of the
experiments. Subsampled avalanche-size distributions are
estimated by randomly choosing n < N neurons, where we
approximated n by the number of electrodes or channels
(ncat ¼ 50 and nrat ¼ 31).

APPENDIX C: APPROXIMATING THE

DYNAMIC STATE IN THE BURSTING REGIME

We showed in Sec. IV that decreasing the external input
to recurrent networks with homeostatic plasticity leads to
bursting behavior [Fig. 7(a)]. This is directly related to the
network branching parameter mt ¼ mt no longer showing
small fluctuations around the predicted value but instead

exhibiting a prominent sawtooth pattern [Fig. 7(b)], a
hallmark of the homeostatic buildup in the long pauses
with no input.
We here show a semianalytical approximation of the

network branching parameter in the bursting regime. For
sufficiently small external input, we may assume separation
of timescales; i.e., every externally induced spike drives
one avalanche with periods of silence in between. Let us
first consider the periods of silence, i.e., no activity per site.
This holds during the entire growth period T such that
Eq. (8) yields

mt −mt−T ¼ ðΔt r�Þ
T

τ0
: ðC1Þ

The situation becomes more involved within the bursts,
where the behavior of mt is nonlinear. Consider an external
spike that triggers an avalanche at t ¼ s, which ends at
t ¼ e. Because of the separation of timescales, we can
assume As ¼ 1. There are two possible scenarios: (i) The
avalanche dies out before a burst can develop and (ii) the
input triggers a proper burst with a macroscopic activation.
We first estimate the probability that an avalanche dies out

before a burst develops. For τhp ≫ Δt, we approximate
mt ≈ms ¼ const. Then, the probability of ultimate extinc-
tion θ can be calculated as the solution of θ ¼ ΠðθÞ with
ΠðθÞ the probability generating function [77]. In the onset
phase, the branching process is described by a Poisson

process per event withmeanms, such thatΠðθÞ ¼ e−msð1−θÞ.
We are, thus, looking for a solution of

θ ¼ e−msð1−θÞ; ðC2Þ

(a)

(b)

FIG. 7. Temporal fluctuations in an annealed-average network
with homeostatic plasticity subject to different external input
rates. (a) Spiking activity at shows small fluctuations for large
input rates (yellow) and bursts for small input rates (purple);
cf. Fig. 3. (b) Branching parameter fluctuates around predicted
value (black horizontal lines) and develops a distinct sawtooth
pattern for small input rates.
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which can be rewritten to

−msθe
−msθ ¼ −mse

−ms : ðC3Þ

We identify the Lambert-W function WðzÞeWðzÞ ¼ z [116]
with WðzÞ ¼ −msθ ¼ Wð−mse

−msÞ and find for the prob-
ability that no burst develops

pno−burstðmsÞ ¼ θ ¼ −
1

ms

Wð−mse
−msÞ: ðC4Þ

If a proper burst develops, the strong activity diminishes
mt until the burst dies out again. We cannot analytically
estimate the branching parameterme after burst end, but we
can use a deterministic numerical approximation to obtain
meðmsÞ. Instead of stochastically generating new (discrete)
events according to some distribution PðmtÞ with average
mt, we approximate the branching process as deterministic
(continuous) evolution Atþ1 ¼ mtAt. For a finite network,
we need to consider convergence effects when one neuron
is activated by two or more neurons at the same time. In the
absence of external input, this introduces for an AA (i.e.,
approximating fully connected) network the activity-
dependent branching parameter [117]

mtðAtÞ ¼
N

At

�

1 −

�

1 −
mt

N

�

At

�

; ðC5Þ

which we need to consider for the activity propagation
within the burst, i.e., Atþ1 ¼ mtðAtÞAt. In addition, we
introduce an upper bound At ≤ N. The upper limit
on At puts a lower bound on Δmt, according to Eq. (8),
and thus, extends the duration of avalanches. Evolving
mtþ1 ¼ mt þ ðΔt r� − At=NÞðΔt=τ0Þ, with mtþ1 ≥ 0, we
iterate until Ae < 1. This is a quick and numerically robust
iterative scheme to estimate meðmsÞ.
Putting everything together, we numerically approximate

the average network branching parameter m under homeo-
static plasticity in the bursting regime of low external input
for an AA network. For this, we sample the external spikes

(drive) as 104 interdrive intervals Ts from an exponential

distribution PðTÞ ¼ ð1=hNÞe−T=hN , corresponding to N
Poisson processes with rate h. The remaining part can be
interpreted as an event-based sampling with approximate
transformations: Starting with m0 ¼ 0, we evolve mt for
each interdrive interval Ts according to Eq. (C1). Ifmt > 1,
we keep mt with probability pno−burstðmtÞ or else initiate a
burst by setting mt ¼ meðmtÞ. Afterwards, we continue
evolving mt.

APPENDIX D: CHARACTERISTIC DURATION OF

INTER-BURST-INTERVALS IN BURST REGIME

In the bursting regime of low external input, the spiking
activity suggests a characteristic time between bursts. In
order to test for periodicity, we analyzed the distribution of

interburst intervals (IBI), where intervals are measured as
the time between two consecutive burst onsets, defined as a
spiking activity at > 20r�. We find (Fig. 8) that large IBI
are suppressed by the exponentially distributed interdrive
intervals (dashed lines), while short IBI are suppressed by
the probability pno−burstðmÞ that a given external spike does
not trigger a proper burst (Appendix C). This gives rise to a
characteristic duration of interburst intervals in the burst
regime, although the dynamics are not strictly periodic.
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