
HomeViews: Peer-to-Peer Middleware for
Personal Data Sharing Applications

Roxana Geambasu, Magdalena Balazinska, Steven D. Gribble, and Henry M. Levy
Department of Computer Science and Engineering

University of Washington, Seattle, WA

Email: {roxana,magda,gribble,levy}@cs.washington.edu

ABSTRACT

This paper presents HomeViews, a peer-to-peer middleware
system for building personal data management applications.
HomeViews provides abstractions and services for data orga-
nization and distributed data sharing. The key innovation in
HomeViews is the integration of three concepts: views and
queries from databases, a capability-based protection model
from operating systems, and a peer-to-peer distributed ar-
chitecture. Using HomeViews, applications can (1) create
views to organize files into dynamic collections, (2) share
these views in a protected way across the Internet through
simple exchange of capabilities, and (3) transparently inte-
grate remote views and data into a user’s local organiza-
tional structures. HomeViews operates in a purely peer-to-
peer fashion, without the need for account administration
or centralized data and protection management inherent in
typical data-sharing systems.

We have prototyped HomeViews, deployed it on a small
network of Linux machines, and used it to develop two dis-
tributed data-sharing applications: a peer-to-peer version
of the Gallery photo-sharing application and a simple read-
only shared file system. Using measurements, we demon-
strate the practicality and performance of our approach.

Categories and Subject Descriptors

D.4 [Operating Systems]: File Systems Management, Se-
curity and Protection; H.3.3 [Information Systems]: In-
formation Search and Retrieval; H.2.4 [Database Manage-

ment]: Systems – Distributed Databases, Query Processing

General Terms

Design, Management, Security

Keywords

Personal information management, access control, capabili-
ties, peer-to-peer, search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

1. INTRODUCTION
The volume of personal data created by home users far

outpaces their ability to manage it. Inexpensive stor-
age, powerful multimedia appliances (e.g., digital cameras,
iPods, TIVOs), and new applications for creating and edit-
ing digital content provide home users with tools to gener-
ate enormous quantities of digital data. As a consequence,
users face several challenges: they need to organize files into
directories, search through large volumes of personal data
to find objects of interest, and manually share their data
with family, friends, and others connected through broad-
band networks.

These challenges have motivated applications such as
desktop search tools, which help users to locate and orga-
nize files using queries and views [14, 38, 28]. Similarly, new
peer-to-peer [3, 26] and Web-based [9, 43] file-sharing sys-

tems help users to share their data. However, such tools
fall short for three reasons. First, they are not integrated
with each other or with other applications; therefore users
must often employ several independent tools to manipulate,
search, organize, and share their data. Second, distribution
is still visible and heavyweight in most of these tools, requir-
ing manual uploads and downloads. Third, many sharing
tools do not deal with dynamically changing data collec-
tions, forcing users to take action every time they update
shared data or add files to a shared collection. Overall, us-
ing today’s data organization, search, and sharing services
is far from effortless for users.

Our goal is to simplify the creation of a new generation
of personal data management and data sharing applications.
To do this, we have designed and implemented HomeViews,
a middleware layer that provides a set of powerful appli-
cation services. Similarly to a DataSpace Support Plat-
form (DSSP) [10, 15], which provides services to applica-
tions operating on a user’s or organization’s “dataspace,”
HomeViews provides services to applications that operate on
a user’s personal and shared data files. HomeViews’ abstrac-
tions and services are thus geared toward personal data or-
ganization and sharing. Specifically, HomeViews supports:

• the creation of database-style views over a user’s file
repository,

• a lightweight protection mechanism for selective grant-
ing (and later revocation) of view access to remote
users,

• seamless sharing and integration of local and remote
data and views, and

• peer-to-peer communication between HomeViews in-
stances on peer computers.

Using HomeViews, applications can leverage flexible orga-
nization and transparent sharing of distributed objects. For
example, a photo-album application built on HomeViews en-
ables users to create and share dynamic photo albums with
their friends, and to integrate their friends’ shared photos
with their own. The application focuses on high-level ab-
stractions (albums in this case), while issues such as view
creation, protection, and distributed query execution are
managed by HomeViews.

HomeViews’ peer-to-peer structure provides direct ad-hoc
data sharing between peer nodes. It requires no centralized
servers or services, no user identities, and no user registra-
tion. All distribution is handled by HomeViews and is trans-
parent to the applications. HomeViews views are dynamic:
users can share views of changing data sets, rather than just
static copies of their files.

A crucial feature of HomeViews is its simple, lightweight,
and flexible protection mechanism for controlling access to
shared views. Protection in HomeViews is based on ca-
pabilities, a protection model developed in the context of
object-based operating systems [5, 23, 37, 42]. A capability
to a view is a data structure that binds together a global
view name with access rights to that view. Users grant each
other access to their data simply by exchanging capabilities
to their views, much like users share access to private Web
pages by exchanging URLs. We show that capabilities are
well matched to the goals of ad-hoc sharing in peer-to-peer
environments that lack (or shun) the identities and coordi-
nated management of common protection structures, such
as user accounts or access control lists (ACLs).

To simplify application development and to support so-
phisticated queries, HomeViews provides a declarative query
language interface based on SQL. We show that a capability-
based access control model can be easily integrated into
SQL, requiring only a small set of changes. The resulting
language, called SQLCapa, enables definitions of new views
atop previously defined local and remote views, and the sub-
sequent sharing of these views without coordinated protec-
tion management. Capabilities also enable rewriting and
optimization of distributed queries, leading to good query
execution performance.

We have prototyped HomeViews and built two applica-
tions on top of it. Our current implementation targets read-
only data sharing for medium-sized peer communities (e.g.,
hundreds of users). This paper presents the HomeViews
design, our experience building high-level applications on
HomeViews, and measurements that validate our approach.

The rest of the paper is organized as follows. Section 2
provides a more in-depth motivation for the features of
HomeViews. Section 3 presents a high-level overview of
the system and gives a detailed technical description of its
main components: the capability-based access control, the
SQL-based query language, and the distributed query exe-
cution. Section 4 describes how to build applications on top
of HomeViews. We evaluate the performance of HomeViews
in Section 5. Section 6 discusses previous work, and we sum-
marize and conclude in Section 7.

2. MOTIVATION
As outlined above, personal data management needs are

Bob

Photos

Parties
album

Christmas
album

Mom

France
album

Italy
album

Aunt

Betty

Photos New photo

Christmas
(shared)

Italy
(shared)

sharing

sharing

(2)
(1)

Figure 1: A simple photo organizing and sharing sce-

nario. Bob shares his Christmas photo album with Mom.

When Mom organizes her photos, some of Bob’s Christ-

mas photos end up in Mom’s Italy album (1) while oth-

ers go into Mom’s France album (2). Sharing is dynamic:

when Bob creates a new photo of Christmas in Italy, it

appears automatically in all appropriate albums.

characterized by three key requirements. First, people need
powerful but simple tools to organize their files. Traditional
organizational structures – static, hierarchical file directo-
ries – fall short when users’ data collections grow large. As
a result, desktop search tools, such as Google Desktop [14]
or Spotlight [38], have emerged. These tools index the user’s
files and support keyword or attribute-based search. Tools
such as Spotlight also provide organizational help in the
form of smart folders or views, which are dynamic collec-
tions of files populated by results from searches. For ex-
ample, when the user creates a new file, the file appears in
all the appropriate smart folders, based on its contents, ex-
tended attributes, or other metadata (such as ID3 tags for
audio files).

Second, people want to share data with friends, family,

and colleagues across the Internet. However, the ability to
share selectively within a small trusted community is lim-
ited. While email remains one of the most commonly used
data-sharing tools, it is inappropriate for sharing large or dy-
namically changing data collections. Hosting services such
as Flickr [9] and YouTube [44] have become popular for
photo and video sharing, respectively. But these services
are centralized and users must register with them to manu-
ally upload content. For protected sharing, recipients must
register to view and download content. Ultimately, users
must trust the service with the storage and control of their
data. This issue has become problematic in light of recent
government data requests to Internet services such as Yahoo
and Google [41].

An alternative to centralized services is peer-to-peer
(P2P) file sharing [3, 26]. P2P systems are designed for
data sharing within communities, particularly where data is
published to the entire community. However, P2P systems
are not usually intended for selective sharing, i.e., sharing
data with restricted sets of users within the community.1

Finally, in a distributed data-sharing environment, peo-
ple want to seamlessly integrate shared files (i.e., files made

1The DC++ [6] system supports selective sharing with
groups of users (called private hubs); however, it requires
the user to create and administer a hub (including keeping
track of the hub’s password) for each set of files shared with
a different set of people.

available by other remote users) with their own local files.
That is, they want to access data in a location-independent
fashion. With current systems, users must manually copy or
download shared data onto their home machines in order to
include them in their local organizational structures. This
is cumbersome, inefficient, and static.

To make these problems concrete, consider the following
simple family photo-sharing scenario. Figure 1 shows three
members of a family: Bob, his Mom, and his Aunt Betty.
Bob and Mom are well-organized people who label their
photos as they upload them from their cameras, noting the
place, the date, the occasion when the pictures were taken,
and other attributes. Using their annotations, they choose
to organize their photo collections into albums. However,
Bob and Mom organize their albums differently. Bob likes
to create albums based on occasion: parties, Thanksgiving,
Christmas, and so on. Mom prefers to organize her albums
based on where the photos were taken: e.g., Home, Italy,
France, etc. Bob and Mom would like these albums to be
automatically populated, just like smart folders, with results
from queries over the photo metadata.

Also, Bob wants to share his Christmas photos with Mom,
while keeping his party photos private (sharing them only
with his close friends). Mom would then like to integrate

Bob’s shared photos into her own photo repository, but she
wants to organize her global collection (including Bob’s pho-
tos) according to her own scheme – the place where the pic-
tures were taken. So, when Mom looks at the Italy photos,
she might find Bob’s photos of their Christmas vacation in
Italy. Similarly, her France photos will include Bob’s photos
from another family Christmas in France.

Mom knows that Aunt Betty loves Italy and decides to
share her Italy album with her. Aunt Betty should then
be able to organize all the photos (Mom’s Italy photos and
Betty’s own photos) in whatever way she wishes and further
share her albums with her own friends. Aunt Betty’s new
organization should include the photos she received from
Mom (and via Mom, from Bob).

Finally, everyone in the family wants the photo sharing to
be dynamic and transparent. For example, when Bob creates
a new photo from a Christmas vacation in Italy, this photo
should automatically appear in all the appropriate albums.

At a high level, then, this scenario suggests several re-
quirements: (a) data is organized into views populated by
queries over a base set of files; (b) views must be directly
sharable with trusted parties, without the need to register
with a service; (c) it should be possible to integrate remote
data shared by others with local data; and (d) views are
dynamic, their contents must change as underlying data are
added or removed.

Our goal is to simplify the implementation of such dy-
namic personal-data-sharing applications by providing a
set of common services for organization, protected sharing,
and integration of data. In the next section we describe
HomeViews and how it fulfills the requirements listed above.

3. ARCHITECTURE AND IMPLEMENTA-

TION
HomeViews provides services that allow applications to

create, compose, and query dynamic, location-independent

Views

File system

H
o
m

e
V

ie
w

s

Local Query Engine

SQ
LC

apa

File

Explorer

Query Parser

Local

Catalog

Files

Local Capability Validation

Distributed Query Execution

 SQLCapa

Applications
Album

App

Native API

SQ
LC

ap
a

HomeViews

peers

Figure 2: HomeViews system architecture.

collections of files and to share them in a peer-to-peer en-

vironment. After we present the high-level architecture of
our system, we describe in detail our implementation of
HomeViews, focusing on capability protection, query lan-
guage, and query processing.

3.1 Architectural Overview of HomeViews
Figure 2 shows the HomeViews system architecture.

HomeViews sits between applications and the underlying file
system. It presents applications a view-based interface to
the filesystem. It executes queries over the local file system
and communicates with other peers to evaluate distributed
queries. More specifically, HomeViews performs the follow-
ing basic functions, which correspond to its internal struc-
ture shown in the figure.

First, HomeViews exposes to applications a database view
abstraction of the file system. Applications use this view
abstraction to define dynamic collections of files on top of
a user’s local file storage. For example, an application can
create a view of all party photos. To create or query views,
applications issue requests to HomeViews using a flexible
query language, called SQLCapa (described in Section 3.3).
The HomeViews query parser receives requests and parses
them into internal data structures.

Second, HomeViews provides a lightweight access control
scheme for views that is based on capabilities [42, 27, 23,
37]. These functions are managed by the HomeViews lo-
cal capability validation layer. When an application creates
a view using SQLCapa, HomeViews validates the request,
creates the view and a new capability for the view, regis-
ters the new view and capability in its local catalog, and
returns the capability to the application. With the help of
applications, users can grant each other access to views sim-
ply by exchanging capabilities. We describe HomeViews’
capability-based access-control further in Section 3.2.

For every incoming query, the capability layer determines
whether the query is on a local view. If so, it uses the local
catalog to validate the request. Invalid queries return with
an error. If the query is on a remote view, the capability
layer forwards it to the distributed query execution layer.

Third, the distributed query execution layer shown in
Figure 2 is responsible for executing queries. It uses the
local query engine to evaluate local queries and communi-
cates with peer HomeViews instances to validate and solve
distributed queries. In this way, HomeViews offers com-

 global view ID password IP hint

 128 bits 128 bits 32 bits

Figure 3: Capability for a view.

 global view ID

global view ID

Node-local view table (ViewTable)

Node-local capability table (CapTable)

… ……

… … …

 view definition other attributes

rightspassword

Figure 4: Capability and view catalog tables.

plete location independence: applications access views in
the same way no matter where these views have been de-
fined. HomeViews uses a pull-based data access method,
similar to that of the WWW: a user sees updates to a view
only after re-evaluating the view. We present HomeViews’
query execution algorithms in Section 3.4.

Below the distributed query execution layer, HomeViews
sees the file system as a database with a local query en-
gine that provides indexing and keyword or attribute-based
search functions. At this layer, we leverage existing tools for
desktop search. Our prototype uses Beagle [2], a keyword-
based desktop search engine for Linux, which is similar to
Spotlight [38] or Google Desktop [14].

Since HomeViews is a middleware layer, users do not in-
teract directly with it. Instead, they interact with applica-
tions that hide views, capabilities, and the query language
behind application-specific abstractions and graphical inter-
faces. For example, the photo application envisioned in our
example scenario displays albums and photos to users. Un-
derneath, it uses HomeViews views to populate these albums
and capabilities to access the views.

3.2 Capability-based Access Control
This section describes capability-based access control in

HomeViews. We introduce capabilities in general, describe
HomeViews’ capability implementation, and discuss data
sharing using capabilities. Overall, we show that our protec-
tion approach is lightweight: it enables selective sharing and
revocation while incurring little administrative overhead.

3.2.1 Background

Conceptually, a capability consists of a name, which
uniquely identifies a single object in the Internet, and a set
of access rights for that object. HomeViews capabilities pro-
tect views and enable view sharing. A capability represents
a self-authenticating permission to access a specified object
in specified ways. It is like a ticket or door key: possession
of a capability is proof of the holder’s rights to access an
object. Without a capability for an object, a user cannot
“name” or access the object.

To be self-authenticating, a capability must be unforge-

able. That is, it must be impossible to fabricate a capabil-
ity, to modify the rights bits in a capability, or to change
the “name” field to gain access to a different object. Previ-
ous systems have guaranteed this property in various ways.
These include encryption [40], storing capabilities in the OS
kernel [42], or using hardware tag bits to prevent modifi-

cation to capabilities in memory [17]. HomeViews uses a
password-capability model [1, 5], in which the integrity of a
capability is ensured through the use of sparse random num-
bers (called passwords) in an astronomically large space.

3.2.2 Naming and Access Control in HomeViews

A HomeViews capability has three parts (Figure 3). First,
a 128-bit global view ID uniquely identifies an individual
view in the Internet; no two views have (or will ever have)
the same ID. To achieve this property, each HomeViews in-
stance creates a global view ID by concatenating a hash of
the local node’s MAC address2 with a locally unique-for-
all-time view ID. Minting of new capabilities is therefore a
local operation for the HomeViews instance on a node and
requires no coordination with other nodes.

Second, associated with each capability is a 128-bit ran-
dom password that ensures the capability’s authenticity.
The protection is thus probabilistic, but the probability of
guessing a valid capability is vanishingly small. To forge a
HomeViews capability requires guessing a 256-bit number
consisting of both a valid 128-bit view ID along with its
associated 128-bit password.

A 32-bit IP hint field in the capability contains the IP
address of a node that likely contains or can locate the object
addressed by the capability in the P2P network. In general,
we expect that objects will not move in our network, and
the IP hint will be the address of the node that created the
capability and still holds its definition. If the hint fails, we
fall back on a conventional distributed hash-table scheme for
location [39]. In this case, IP hints serve as entry points for
a new node to join the peer-to-peer network.

Figure 4 shows the per-node catalog tables that hold view
and capability information. For each view created on a node,
there is one entry in a local view table (ViewTable). The
ViewTable entry contains the global view ID, the view def-
inition, and other attributes (such as the human-readable
view name). While a capability identifies only one view,
multiple capabilities for the same view can exist (see Sec-
tion 3.3.3).

A node’s capability table (CapTable) contains one entry
for each capability minted to a locally known view. The
CapTable entry stores the global view ID of the named view,
the password, and the access rights. Storing access rights
in the system catalog rather than in the capability itself
eliminates the need for encryption or other mechanisms to
protect the capability’s rights from being forged.

When HomeViews receives a capability, it uses the IP hint
to determine whether the capability is for a local view. If the
capability is local, HomeViews checks whether the <global
view ID, password> pair in the capability matches a <global
view ID, password> pair in CapTable. If so, the capability
is valid, and HomeViews then examines the access rights
in CapTable to see if the requested operation is permitted.
If the capability is not found in CapTable or the opera-
tion is not permitted, the request fails. If the capability is
for a remote view, HomeViews forwards the request to the
appropriate node in the peer-to-peer network, which then
performs the validation itself.

To revoke a capability, HomeViews simply removes an en-
try from the CapTable. Once a capability is revoked, all
queries issued on that capability will fail. Of course, if a

2The MAC address is the unique identifier of the node’s
network card.

Parties

Bob's PC

Christmas

Mom's PC

FranceItaly

Aunt Betty's PC

 Bob's base view

Files Files

CCCP

C'IT
CIT CFR

 C'C

CM0CB0

 Mom's base view

Figure 5: Solving the photo sharing scenario with views

and capabilities. Rectangles denote views, e.g., ‘Christ-

mas’ is the view of all Bob’s Christmas photos; circles

denote capabilities, e.g., CC is Bob’s capability to his

‘Christmas’ view. C′

C
is a copy of CC that Bob sent to

Mom to share the ‘Christmas’ view with her. Mom’s

‘Italy’ view composes two capabilities, C′

C
and CM0.

user with a capability has made a local copy of the shared
data, revoking the capability cannot prevent them from dis-
tributing that copy. It does, however, prevent the holder
from executing a query and seeing new or modified files that
would result from that query.

Because a capability is independent of the person using
it, HomeViews’ access control scheme requires no user iden-
tities. Thus, sharing in a capability-based model requires
no user accounts, no user authentication, and no centralized
protection structures.

3.2.3 Sharing

Capabilities facilitate data sharing because they can be
easily passed from user to user as a way to grant access.
Figure 5 illustrates the use of capabilities for the dynamic
album-sharing scenario we previously presented. An album
corresponds to a HomeViews view; it is is accessed through
a capability and populated with results from querying the
view. For example, the figure shows that Bob has a capabil-
ity, CC , for his ‘Christmas’ album. Bob shared this album
with Mom by giving her a copy of his capability (shown as
C

′

C) for that album. When Mom looks at her Italy album,
her application uses that capability to query Bob’s album,
integrating the results with those from her local files.

As previously noted, a capability is a 288-bit data struc-
ture (shown in Figure 3), which names and protects a view.
In this form, a capability would be difficult for users to deal
with. However, applications typically store capabilities as
part of their internal representation of the abstractions they
support (such as albums in our example). Applications can
then convert capabilities to a different form when passing
them to users. This form is a human-readable text string
that we call a token. For example, when a user requests a ca-
pability from our photo-album application, the application
produces a URL as a token. The URL is simply a text string
that includes the capability, encoded as a numeric string, as
an embedded parameter. The user can then treat that URL
as a capability, storing it, passing it to an application, or
passing it to others as he wishes.

Returning to our previous scenario, to share his Christ-
mas album, Bob obtains a token for it from his application.
He then emails it to Mom, just as he would email her a
URL to a Web page. Mom then presents the URL to her

local photo application as proof of her right to access Bob’s
album. Given the URL, the application extracts the capa-
bility and executes HomeViews queries on the remote view
to populate the local albums. Of course, tokens are best
sent in secure email.3

As mentioned previously, sharing capabilities is similar to
exchanging URLs to folders holding a user’s private files,
except that capabilities enable selective revocation and pro-
vide a greater range of access rights (as we discuss in Sec-
tion 3.3). Like URLs, a user must trust his friends not to
forward capabilities to people who should not have access to
the data. Our protection system is intended to enable selec-
tive sharing within trusted communities, while preventing
access from disconnected third parties; however, it cannot
prevent cheating by trusted peers. Similar trust assumptions
exist for other protection mechanisms, as well. For example,
consider an access control list (ACL) scheme. When a user
adds his friend to an object’s ACL, nothing stops the friend
from copying the object and distributing it further, or from
acting as an invisible proxy for unwanted third parties.

Overall, we believe that several features of capability pro-
tection make it perfectly suited for our target environment of
protected peer-to-peer data sharing. Capabilities are easily
exchanged using simple channels that users are accustomed
to. They are anonymous, require no identities, no global au-
thentication, and no centralized or distributed management
of protection structures. In these ways, they are consistent
with the goals of a P2P system.

3.3 Query Language
To facilitate application development, HomeViews offers

a flexible relational query language interface that enables so-
phisticated queries over files. HomeViews’ query language,
SQLCapa, is a modified version of SQL with integrated
capability-based access control. Our SQL modifications are
simple and intuitive, and the resulting language is easy to
understand and enables seamless view sharing and compo-
sition across peers.

HomeViews models the file system as a single relation,
called Files. Each tuple in the relation represents one file.
All files that are indexable by a desktop search engine are
included in the Files relation (e.g., annotated files, Office
documents, emails, etc.). The schema of the relation is the
set of all known file attributes (e.g., name, author, date, mu-
sic genre, photo resolution). File contents are also included
in the relation either under the ‘text’ or ‘binary’ attributes.
If a file does not support an attribute, it has a NULL value
for that attribute. Using a single relation permits files of
different types to be returned as part of a single query.

On this relation, applications define views using predi-
cates on file attributes and content. Views can also be com-
posed with union, set difference, and intersection operators.

Table 1 summarizes SQLCapa’s modifications to SQL. We
now describe these modifications in more detail.

3.3.1 Specifying Capabilities With Queries

To execute queries on views, HomeViews client applica-
tions must present appropriate capabilities as proof of au-
thority. This requirement is reflected in SQLCapa. Because
a capability identifies exactly one view, capabilities are used

3To simplify the presentation, we consider capabilities and
tokens to be identical for the remainder of the paper, refer-
ring to both forms as capabilities.

New/modified statement Return
Type

Meaning

SELECT ∗ FROM Cap [WHERE ...] Relation Query
CREATE VIEW <ViewName> AS Capability Create a view and a capability to the view.
SELECT statement [UNION/... SELECT statement]
SELECT ∗ FROM CATALOG OF Cap Catalog info Look up capability in catalog
CREATE BASEVIEW Capability Create the base view
DROP VIEW Cap Void Drop view associated with capability
ALTER VIEW Cap ... Void Modify view associated with capability
RESTRICT Cap RIGHTS rights Capability Create new capability to same view, possibly

with different access rights
REVOKE Cap1 USING Cap2 Void Revoke capability Cap1

Table 1: SQL modifications. Cap, Cap1, and Cap2 are capabilities; rights is a string that encodes access rights

directly to name views in the FROM clause of the SELECT

statement. With this approach, the semantics of SELECT

statements remain unaltered. Only the view naming scheme
changes. Therefore, the query:

SELECT * FROM C′

C

WHERE date > ’2006-01-01’
AND place = ’France’

returns Bob’s France Christmas photos taken after Jan. 1st
2006. C

′

C is Mom’s capability to Bob’s view (see Figure 5),
date is the file creation date, and place is the attribute
indicating the location where the picture was taken. This
query selects all attributes, including the file content.

HomeViews also supports keyword queries with a simpli-
fied form of the CONTAINS predicate used by SQL Server [13].
In HomeViews, the predicate takes the form: CONTAINS

(column, ’k1, k2, ..., kn’), where column indicates the
column to search, and k1 through kn are the keywords that
must be present for the result to match the query. For exam-
ple, if each photo has an attribute description, the query:

SELECT * FROM C′

C

WHERE CONTAINS (description,’snow’)

returns all of Bob’s Christmas photos with snow (or more
precisely, those photos that include the keyword “snow” in
their ‘description’ attribute).

3.3.2 Creating Views

Views are created using the standard CREATE VIEW state-
ment. Once again, capabilities serve to name the underly-
ing views. More importantly, the CREATE VIEW statement
returns a capability to the newly created view. This initial
capability has all rights enabled. Thus, the query:

CREATE VIEW Italy AS
SELECT * FROM CM0 WHERE place = ’Italy’
UNION
SELECT * FROM C′

C
WHERE place = ’Italy’

→ CIT

creates the ‘Italy’ view for Mom. The right arrow denotes
the returned capability, CIT , for the new ‘Italy’ view. This
view is a seamless composition of a local view (Mom’s files,
specified by CMO) and a remote view (Bob’s shared files,
specified by C

′

C). Similarly, applications specify capabilities
instead of view names to ALTER or DROP views.

To bootstrap the system, we add a new CREATE BASEVIEW

statement that creates the first capability and view in the
system for a specific user. The returned capability provides
access to the view containing all files in the file system that
are visible to the user. The underlying file system’s access

control determines this set of files. From this initial capabil-
ity, which has all rights enabled, the user’s applications can
execute queries and create additional views. As an example,
Figure 5 shows Mom’s base view and her initial capability,
CM0, to that view.

3.3.3 Capability Restriction

To share access to a view, a client application can directly
pass the capability returned by the CREATE VIEW statement
to the sharee. In most cases, however, users may want to
limit their friends’ access rights to a view.

To support this operation, we introduce the statement
RESTRICT. Given a valid capability X, RESTRICT X RIGHTS

rights creates a new capability that refers to the same view
as X. The RIGHTS clause enumerates all rights to be enabled

on the view; only rights already present in X can be carried
onto the restricted capability. Before Mom shares her ‘Italy’
view with Aunt Betty, she can ask her application to give
her a restricted capability, C

′

IT . The application creates that
capability by issuing the following statement to HomeViews:

RESTRICT CIT RIGHTS SELECT → C′

IT

Mom can then email C
′

IT (instead of CIT) to Betty; this
gives Betty the ability to look at the Italy photos, but pre-
vents her, for example, from looking up the definition of
the view in the catalog. Currently, HomeViews supports
the following rights: SELECT (read), DROP (delete the view),
ALTER (modify the view definition), REVOKE (revoke capa-
bilities defined for the view), and CATALOG LOOKUP (look up
the view definition in the catalog). File creation, removal,
and updates are currently performed outside of HomeViews,
through the file system. Hence, only the owner of a file can
modify it.4

3.3.4 Capability Revocation

Applications can revoke previously created and shared ca-
pabilities with the REVOKE statement. Given two valid capa-
bilities (CIT and C

′

IT) to the same underlying view, if CIT

has the REVOKE right enabled, then the statement: REVOKE

C
′

IT USING CIT revokes capability C
′

IT . Any subsequent
use of C

′

IT will fail. This REVOKE statement would revoke
Aunt Betty’s capability to Mom’s ‘Italy’ view.

To revoke a capability, an application must have another
capability to the same view that has the REVOKE right en-
abled. This ensures that arbitrary applications (and their

4Similarly, because we focus on read-only sharing in this
paper, the HomeViews prototype currently ignores remote
requests to alter or drop a view.

users) cannot revoke capabilities. By default, capabilities
returned by the CREATE VIEW statement have all rights en-
abled. Thus, the ‘owner’ of a view (the user on whose behalf
it was created) can revoke all capabilities for that view. A
reasonable policy is for applications to restrict the capa-
bilities on behalf of users before sharing them and never
enabling the REVOKE right in these restricted capabilities.
HomeViews, however, does not enforce this policy.

3.3.5 Catalog Information Lookup

Views and capabilities are stored in two catalog tables
(see Section 3.2). The CATALOG LOOKUP right enables the
capability holder to access only the attributes corresponding
to her capability, X, with a statement of the form:

SELECT * FROM ViewTable V, CapTable C
WHERE V.GlobalViewID = C.GlobalViewID
AND V.GlobalViewID = GlobalViewID(X)

where GlobalViewID(X) returns the global view ID of capa-
bility X.

To simplify catalog lookups, we introduce the shorthand
notation CATALOG OF to refer to the results of the above
query. Mom’s application can look up the definition of Bob’s
view of ‘Christmas’ photos with the statement: SELECT

definition FROM CATALOG OF C
′

C .
In summary, the main change we propose to SQL – from

which most other changes derive – is the use of capabilities
to access and name views. Although we currently do not
support joins, the query language can easily be extended to
include this operator.

3.4 Query Processing
HomeViews can process queries in several ways. The

choice depends in part on the CATALOG LOOKUP rights of the
capabilities involved in the query.

3.4.1 Query Execution Algorithms

Recursive evaluation. If capabilities do not have the
CATALOG LOOKUP right, then HomeViews evaluates the query
recursively. Recursive evaluation pushes queries from peer
to peer down the view definition tree, validating access on
each node in the tree. Results are then returned and aggre-
gated hop-by-hop following the same tree. Figure 6 shows
the detailed algorithm for recursive query evaluation. Note
that HomeViews nodes do not perform arbitrary computa-
tion on behalf of other nodes. HomeViews drops queries
from remote nodes if they access views that are not locally
defined. Our algorithm is best-effort: it returns as many
results as are available at the time of the query execution.

Query rewrite and optimization. If capabilities in-
clude the CATALOG LOOKUP right, HomeViews first fetches all
view definitions by contacting the nodes where the views are
defined. It then rewrites the query in terms of base views and
executes the simplified distributed query. In this approach,
each capability is validated during the catalog lookup phase.

In a typical query, different capabilities have different
rights, and query evaluation is a hybrid of the above two
schemes. Our general model also supports a query opti-
mizer, although we have not yet implemented one. For op-
timization, the catalog lookup could return statistics in ad-
dition to the view definition. A standard cost-based query
optimizer could then determine an appropriate query exe-
cution plan. The distributed plan could span nodes holding
base views, but also other nodes in the system.

Input: A query - SELECT * FROM C0 WHERE Q,
where C0 is a capability to view V , and Q is a selection expression
Output: Query result
1. Determine node where C0 should be evaluated (use IP hint)
2. If C0 can be evaluated locally then
3. Look up C0 in local catalog and verify validity (Section 3.2)
4. If C0 is invalid then return ERROR
6. Look up view definition in local catalog
7. If V is a base view then
8. Forward query to query engine and return result
9. Else: View V is defined on capabilities C1, C2, ..., Cn

10. Foreach capability Ci do
11. Recursively evaluate Ci, pushing selections downwards
12. Process results from subqueries and return result
13. Else
14. Forward query remotely and return result

Figure 6: Recursive Query Evaluation Algorithm.

3.4.2 Implications of the CATALOG LOOKUP right

Allowing others to look up view definitions supports query
rewrite and optimization, potentially improving query exe-
cution performance (as shown in Section 5.2). There are
situations, however, when a user may not want to let others
look up a view definition. In our scenario, Bob’s “Christ-
mas” view is defined on a capability to his base view. If Bob
lets Mom look up the definition of the Christmas view, she
will gain access to Bob’s base view capability. Bob may thus
want to prevent Mom from looking up catalog information
to protect his ‘Party’ photos from her.

4. APPLICATIONS
In this section, we show how HomeViews supports per-

sonal data management and sharing applications. We de-
scribe two data-sharing applications that we built on top of
HomeViews and use our experience to show what features
HomeViews provides to applications and what features ap-
plications need to implement themselves.

4.1 Two Data-Sharing Applications
We built two applications on top of HomeViews: View-

Gallery and ViewFS. ViewGallery is a modified version
of the well-known centralized photo-sharing application
Gallery v.1 [11]. ViewGallery allows users to organize their
photos into distributed dynamic albums and to share them
in a P2P fashion. It uses HomeViews views to populate
photo albums and capabilities to access and share these
albums. Each photo album is associated with one view.
Whenever a user opens an album, ViewGallery submits a
query to HomeViews using the capability to the correspond-
ing view. HomeViews returns a list of photos that match
the query, which the application displays as the album.
Since ViewGallery albums are built on location-independent
views, they can be composed of local and remote albums.
We support the following features of Gallery v.1: gallery
and album thumb-level visualization and navigation, album
sharing with other people on the Internet, album creation,
and album naming. Our modifications disabled the follow-
ing features: rating of photos (because we currently support
only read-only sharing) and downloading an album (which
is no longer needed, since the integration of files into local
albums is now transparent).

ViewFS is a simple file system layer that we implemented
on an early HomeViews prototype. It allows users to create
distributed dynamic directories and offers read-only access

to the files in these directories. ViewFS’ directories are dy-
namically populated by results from querying HomeViews
location-independent views. Users create directories to or-
ganize their own files and files shared by other users. ViewFS
supports directory creation, deletion, and listing.

4.2 Application Requirements
The goal of the HomeViews middleware is to provide ab-

stractions that reduce the complexity of building distributed
personal information management applications, by decreas-
ing the set of features that applications must implement. Ta-
ble 2 shows an open list of application features, partitioned
into those provided by HomeViews and those that must or
may be implemented by applications built on HomeViews.
We use our experience with ViewGallery and ViewFS to de-
scribe how applications can implement each feature.

First, an application must construct its own application-

level abstractions defined on top of HomeViews’ view ab-
straction. For example, ViewGallery exposes a dynamic al-
bum abstraction, and ViewFS offers a dynamic directory
abstraction. To implement their abstractions, applications
must track and store the association between their abstrac-
tions and HomeViews capabilities.

Second, applications must provide a user interface for ma-
nipulating their abstractions. ViewGallery uses the unmod-
ified GUI from Gallery 1 to display albums. For album
creation, it exposes a Web form that hides HomeViews’
SQL-based query language. The form also lets users se-
lect backgrounds and other attributes for their new albums.
ViewFS is simpler; it exposes a standard Unix file system
interface to its users. When a user executes ls on a direc-
tory, ViewFS lists the files in the view associated with that
directory. When a user executes mkdir, ViewFS creates a
directory from a query on top of one or more capabilities
specified in the mkdir command.

Third, applications may wish to store application-
dependent metadata associated with their abstractions. For
example, ViewGallery needs to save styles, backgrounds,
and other metadata for its albums. ViewFS, which has fewer
options, does not need to do that.

Fourth, applications can support sharing by helping users
to pass capabilities to others. As previously noted, we use
email to transmit capabilities from one user to another.
ViewGallery could easily provide an “email this album”
function – similar to the numerous Web sites that provide
this function for URLs. Clicking on the function would open
a Web form for the user to enter the email of the recipient.
The form might also allow the user to specify the rights to
enable in the capability that would be mailed. While we
have not yet implemented this feature, it would be straight-
forward to provide.

On the receiving side, applications must present an inter-
face for users to inject capabilities received via email into
the application. ViewGallery exposes a form interface for
this purpose. ViewFS uses a simple mkdir command that
creates a dynamic directory atop a remote capability.

Finally, as seen in Section 3.3, HomeViews provides a
mechanism for revoking the capabilities that it gives out.
However, remembering capabilities that have been given out
is an application-level task. To help users choose the right
capability to revoke, an application could track the associ-
ation between a shared capability and the recipients. This
would be simplified if the application supported an “email

Home- Applications
Feature Views View- View-

Gallery FS
View operations (create, drop) X
Query execution X
Distribution X
Capability generation X
Capability revocation X

App-level abstractions (R) X X
(Graphical) User Interfaces (R) X X
Metadata for app-level X
abstractions (O)
Transmit capabilities (O)
Track capabilities (O)
Help users annotate files (O)

Table 2: Application features and where they are imple-

mented. Applications provide additional features, some

of them are required (R) and others are optional (O).

this capability” function.
Previously, we have assumed that files are either anno-

tated (e.g., Bob’s photos all have the location set) or that
content-based search is performed. These annotations or
attributes are entirely application-dependent and are not
interpreted by HomeViews. Some applications may want
to help users annotate their files so they can build richer
queries.

In summary, applications built on top of HomeViews must
focus primarily on high-level abstractions, user interfaces,
and application-specific metadata issues. HomeViews han-
dles view creation, protection, and distribution.

4.3 Building ViewGallery
We briefly describe our experience implementing View-

Gallery, since it is the more complex of our two applica-
tions. Porting Gallery v.1 to HomeViews was a simple pro-
cess. One developer spent roughly seven work days on the
port: one day to review the source code; two days to re-
move functions related to user account access validation,
integrity checks for album modifications outside of Gallery,
etc.; and the remaining four days to implement the features
mentioned in the previous section. Overall, we modified
only 11 out of 787 files, added or modified 488 lines of code,
and removed 91. The result of this straightforward port
(from Gallery to ViewGallery on top of HomeViews) was to
change a centralized application into a distributed, peer-to-
peer application supporting album sharing, dynamic views,
and integration of local and remote views.

5. EVALUATION
This section uses results from microbenchmarks to char-

acterize distributed query performance in HomeViews. Our
goal is to determine: (1) the impact of various sys-
tem components on overall performance, and (2) whether
HomeViews is sufficiently fast to organize and share data in
practice.

We prototyped HomeViews on Linux using the open-
source Beagle [2] desktop search engine. We implemented
view creation, catalog lookups, and both capability-based
query evaluation algorithms (recursive evaluation and eval-
uation based on view rewrite).

We ran all experiments on a collection of five Dell PCs
running Fedora Core 5 and Beagle 0.2.6. At the high end

 0

 200

 400

 600

 800

 1000

Size 2 10 100 500 2 10 100 500 2 10 100500

E
va

lu
at

io
n

tim
e

(m
s)

Local LAN Broadband

Beagle query time
Communication

Capability validation
Other

Figure 7: Query execution-time breakdown for simple

queries on local and remote views and for different result

sizes. The local query processing time (Beagle query

time) forms the bulk of total query execution even for

remote views.

were 3.2GHz Pentium-4s with 2GB of memory. From our
measurements, we believe that the hardware differences in
our environment had no significant impact on our results.

For our tests, we synthetically generated a file database of
38,000 music files. We chose music files because their ID3 tag
attributes enable rich queries that are supported by Beagle.
We controlled the query result size by appropriately setting
the ID3 tags of different files. For example, to experiment
with a query of size 100, we created 100 files with the album
tag “Album100” and a view that selected them.

We examine both simple and complex queries. Simple
queries are one level deep; that is, they involve a single view,
itself defined directly over a base view. Complex queries
involve views whose definitions include multiple other views
composed in various ways.

5.1 Evaluation of Simple Queries
Simple queries allow us to identify and reason about the

impact of different components of our system on total query
execution times. To evaluate simple queries, we measure the
time to execute such queries both from the local machine and
remotely. Remote queries use a capability on one machine
to access a view defined on another. We experiment with a
100 Mbps local-area network (LAN) and a slower 5 Mbps,
20 ms-delay network (characteristic of home-like broadband
connections). Our queries return file names, i.e., we evalu-
ate queries of the form SELECT filename FROM cap . In our
experiments, we also vary the query result size.

Figure 7 breaks down query execution time into compo-
nents for simple queries on local and remote views. Each
value is the average over 50 trials. For local and LAN config-
urations, most of the query execution time is due to Beagle.
Capability validation time and other HomeViews overhead
(query parsing, view definition lookup in local catalog, and
caching of local query results) are negligible, although the
HomeViews overhead increases slowly with result size.

As the result size increases, the network transmission time
becomes noticeable over slow connections. Table 3 shows
query execution times for larger-size query results. Query
execution is fast for medium-size results, both for local and
remote views (under two seconds for 1000 filenames). Trans-
mission delays increase evaluation time on slow networks

Result size Time (ms)
(# filenames) Beagle Local eval LAN Broadband

1000 1297 1341 1349 1779
3000 3897 4009 4025 5876
5000 6465 6641 6661 11876

Table 3: Local and remote evaluation of simple queries

with large-size results. Times are averages of 50 tri-

als. As the result size increases, result transmission over

broadband becomes the bottleneck.

Result size Time (ms)
Spotlight Local eval LAN Broadband

1000 332 376 384 814
3000 473 585 601 2452
5000 546 722 742 5957

Table 4: Expected query execution times if Spotlight

were used instead of Beagle. Local, LAN, and broad-

band evaluation times are computed from Table 3 by

replacing Beagle query time with Spotlight query time.

In the simple-query benchmarks, requests are serial

and the query engine time does not overlap with other

HomeViews components, which makes this a good ap-

proximation of HomeViews based on Spotlight.

when the result size is large. However, techniques such as
streaming the results can be employed to reduce the user-
perceived response latency.

Since Beagle represents a major component of query exe-
cution time, we ran some basic tests to compare it to Spot-
light (available on Mac OS X). We used out-of-the-box com-
mands to access each tool: beagle-query for Beagle and
mdfind for Spotlight. We used attribute-based queries in
both cases. While Spotlight has similar performance to Bea-
gle for queries with small results (up to 100 files), it scales
much better for large result sizes (e.g., for results contain-
ing 5,000 filenames mdfind is about 12 times faster than
beagle-query).

Table 4 shows the expected local and remote HomeViews
query execution time if we replaced Beagle with Spotlight.
After the substitution, total query execution times remain
below 6 seconds even for 5,000-filename results evaluated
over broadband. Even with a fast local query engine such as
Spotlight, the other HomeViews components (query parsing,
capability validation, etc.) remain below 25% of the total
local query execution time.

Thus, both local and remote query execution is fast for
small result sizes. For large result sizes, query execution
times are dominated by the query engine for LANs or net-
work latency for broadbands. However, with a fast query
engine such as Spotlight, even queries with many results
over broadband can achieve good performance.

5.2 Evaluation of Complex Queries
In our system, views can be composed and distributed

seamlessly. We now analyze the performance of more com-
plex queries. Views can be composed and distributed in two
ways: (1) either by applying a selection on top of another
(remote) view (in which case the depth of the view is said
to grow), or (2) by applying union, set difference, or inter-
section on top of other (remote) views (in which case the
breadth may also grow). Figure 8 gives an intuition of the
two dimensions in which views expand in our system. To
create a view of a given depth, we initially define a view on

Depth 3

Breadth 3

Figure 8: Depth and breadth of views. Dashed lines are

machine boundaries; solid lines denote composition (via

selection, union, etc.).

Result size View depth
(# filenames) 1 2 3 4 5
100 175 182 198 208 225
1000 1341 1353 1376 1400 1429
5000 6641 6669 6785 6788 6849

View breadth
(# filenames) 1 2 3 4
100 179 218 221 261
1000 1355 1566 1594 1616
5000 6665 7663 7749 7848

Table 5: Recursive evaluation of complex queries on a

LAN. Reported times are in ms and are averages over

50 trials. View composition has little effect on recursive

evaluation over fast networks.

top of the base view of a node (depth 1). A capability to
that view is then given to another node that creates a new
view defined on the remote one (the resulting view has depth
2), and so on until we reach the desired depth. Similarly,
to create views of increasing breadth, a node creates views
defined as unions over increasingly many remote views.

Table 5 shows the results of recursive query evaluation
over deep or broad views on a LAN. Because transmission
costs are small, increases in execution time mainly show
HomeViews’ overhead. As shown in the table, increasing
the depth from one to five nodes leads to an increase in
query execution time of 28% on average for the recursive
evaluation and a 100-file result. For a 5000-file result the
same increase is only 3%. Similarly, a 4-level increase in
view breadth results in a 45% execution time increase when
each query returns 100 file names. When each query returns
5000 filenames (so 20,000 filenames are gathered at the root),
the penalty of the 4-level breadth increase is only 17%.

We see that as query result size increases, the overhead
due to the large depth or breadth becomes small compared
to the total cost (which is dominated by Beagle). The in-
crease for broad views is larger than that for deep views,
because more file names are gathered at the root node in the
former case. For small query results, the increase is propor-
tionally higher primarily because all query execution times
are already short. Hence, HomeViews scales well with the
depth and breadth of views distributed over a fast network.

Figure 9 shows the increase in query evaluation time as
the depth of a view increases over a network with limited
bandwidth (5Mbps, 20ms delay). The results show both the
recursive and query rewrite techniques. The recursive eval-
uation of large-size queries is now greatly affected by depth,
because large network transfers occur from hop to hop back
on the recursive path (e.g., when the depth increases from
one to five nodes, query execution time increases by 80% for
a query returning 3000 filenames).

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 1 2 3 4 5

E
va

lu
at

io
n

tim
e

(m
s)

View depth

Query rewrite, size 5000
Recursive, size 5000

Query rewrite, size 3000
Recursive, size 3000

Query rewrite, size 1000
Recursive, size 1000

Query rewrite, size 100
Recursive, size 100

Figure 9: Query rewrite versus recursive query evalu-

ation for deep views distributed over broadband. For

small results recursive evaluation has very good per-

formance; for deep views and large results, the query

rewrite technique outperforms recursive evaluation.

In contrast, the performance of the query rewrite tech-
nique is approximately constant for views deeper than two.
Indeed, the bulk of transfers (the results) occur only over
one hop (from the base node to the ‘root’ node). Hence, for
queries with large-size results on deep views, rewrite is much
more efficient than recursive evaluation. For a 5000-filename
query result and a depth of five, the benefit of applying the
query rewrite technique is 24%. For small-size results (500
filenames), on the other hand, recursive evaluation is faster
than query rewrite even for deep views: results are small
and comparable in transmission time to view definitions.

Thus, on slow networks, recursive evaluation works well
for small results and small view depths, while query rewrite
improves performance for large results and deep views. For
the most general case, in which queries are tree-shaped (both
deep and wide), query execution time would be dominated
by the deepest branch of the tree.

5.3 Scalability
So far, we have shown how our prototype performs when

queries come one by one, for different complex query struc-
tures. We now show how the prototype scales as the number
of incoming queries grows.

When HomeViews performs a distributed query, some
nodes execute local queries, while others simply forward re-
quests and results between peers. Because local query exe-
cution is much more expensive than forwarding operations
(see Section 5.2), we only benchmark the scalability of a
HomeViews instance when all incoming query requests in-
volve a local query.

We used a closed-loop benchmark to measure the through-
put of the system. After issuing a large number of concur-
rent requests (100), we generate a new request whenever an
old request is completed. Figure 10 shows the throughput
for simple queries involving local search, for different result
sizes. For small result sets, the system can support up to 30
concurrent requests. For increasing result sizes HomeViews’
throughput degrades as fast as Beagle’s own throughput (see
the Beagle component in Figure 7).

Using more efficient query engines would perhaps improve
the system’s throughput. Overall, for our targeted medium-

 0

 5

 10

 15

 20

 25

 30

10 50 100 500 1000

C
om

pl
et

ed
 r

eq
ue

st
s/

se
c

Result size

Throughput

Figure 10: HomeViews throughput for different query

result sizes.

scale environment of hundreds of friends who share photos,
blogs, videos, or other media over broadband, we do not
expect that queries on each node will have high frequency.
HomeViews (possibly based on Spotlight) should thus easily
support the expected workload, even on popular nodes.

5.4 Discussion
Our microbenchmarks show the parameters that charac-

terize our system’s performance and enable us to derive the
scalability of the system in real deployments. Our results
demonstrate that our prototype is sufficiently fast to be
practical in medium-scale environments. For local queries
with large-size results, Beagle dominates query execution
times. Using a faster local query engine, such as Spotlight,
could significantly improve performance and scalability. At
the same time, the query engine would still account for the
majority of the execution time. For queries executed re-
motely over slow networks, transmission latency adds signif-
icantly to the time. On fast networks, the depth and breadth
of views have little influence on recursive query evaluation
times. On slow networks, a simple rewrite of views in terms
of base views yields good query execution performance even
when result sizes are large.

Caching is known to increase a system’s performance,
availability, and scalability. In HomeViews, applications can
cache results from queries according to their own freshness
policy to avoid running queries at small time intervals. Also,
file contents can be cached; this allows the system to reduce
network traffic by transferring only new files or updates to
existing files. An in-depth study of the effects of caching
and replication on system performance is beyond the scope
of our current study.

6. RELATED WORK
In recent years, tools such as WinFS [28], Mac OS X Spot-

light [38], and Google Desktop [14] have emerged, enabling
users to create database-style views over their data. Per-
sonal Information Management systems (e.g., [7, 25]) have
begun to explore new techniques for organizing and search-
ing personal information. In particular, the Haystack [25]
project enables users to define “view prescriptions” that de-
termine the objects and relationships that an application
displays on the screen. Our work builds on the same idea
of using views to organize personal data, but our goal is to
facilitate the sharing and composition of these views in a
P2P environment.

Peer-to-peer systems have become popular for sharing dig-
ital information [3, 26]. The main goal of these systems is

for all participants to share all their public data with all

others. These systems thus focus on powerful and efficient
search and retrieval techniques (e.g., [18, 21, 30]). In con-
trast, HomeViews focuses on selective sharing of different
data items with different users. HomeViews is also geared
toward a medium-scale system rather than the millions of
users common in peer-to-peer file-sharing systems.

Operating systems and databases enable access control
(and thus selective sharing) by providing mechanisms that
associate privileges with users [12, 16, 19, 22, 33].

Significant work focuses on the flexibility, correctness,
and efficiency of these mechanisms (e.g., [35, 36]), mak-
ing them well-suited for many application domains. From
the perspective of sharing personal information, however,
these techniques suffer from the same administrative bur-
den: someone must create and manage user accounts.
HomeViews avoids this overhead by decoupling access rights
from user identities. Federated digital identities [8, 20,
31] have been proposed to allow registered users of an ad-
ministrative domain to access resources from another ad-
ministrative domain without requiring registration with the
later. Federated identities assume a contract or prior coor-
dination between the participating administrative domains.
HomeViews has no such requirement.

Another selective sharing technique is to encrypt data
with multiple keys and distribute different keys to different
users [29]. This approach is suitable only for static data sets
that can be encrypted once and published. More dynamic
sharing is possible [4] if users run secure operating environ-
ments. HomeViews enables dynamic sharing without this
restriction.

The capability protection model has been previously ap-
plied to operating systems [40, 42], languages [24], and archi-
tectures [17, 32]. Our sparse capabilities are related to pre-
vious password capability systems [5, 34, 40]. HomeViews
integrates concepts and mechanisms from capability systems
into database views in a distributed peer-to-peer system.

7. CONCLUSION
This paper described HomeViews, a new peer-to-

peer middleware system that simplifies the construction
of distributed, personal-information-sharing applications.
HomeViews facilitates ad hoc, peer-to-peer sharing of data
between unmanaged home computers. Key to HomeViews is
the integration of a dynamic view-based query system with
capability-based protection in a peer-to-peer environment.
With HomeViews, applications can easily create views, com-
pose views, and seamlessly integrate local and remote views.
Sharing and protection are accomplished without central-
ized management, global accounts, user authentication, or
coordination of any kind.

We prototyped HomeViews in a Linux environment us-
ing the Beagle search engine for keyword queries. Our im-
plementation and design show that capabilities are readily
supported by a query language such as SQL, which enables
integrated view definition and sharing. We implemented
two applications on top of HomeViews, a simple file-sharing
application and a port of the Gallery photo-sharing appli-
cation. Our experience with Gallery in particular shows
the ease of supporting protected peer data sharing on top
of HomeViews. Finally, our measurements demonstrate the
negligible cost of our protection mechanism and the practi-
cality of our approach for medium-scale environments.

8. ACKNOWLEDGMENTS
We would like to thank Phil Bernstein, Tanya Bragin,

Alon Halevy, Nodira Khoussainova, Sam Madden, Alexan-
der Moshchuk, Charles Reis, and Dan Suciu for their useful
feedback on early versions of this paper.

This work was supported by National Science Founda-
tion Grants NSF-614975, NSF-0627367, NSF-0430477, and
NSF-0132817, by an Alfred P. Sloan Foundation Fellowship,
by the Wissner-Slivka chair, and by the Torode Family En-
dowed Career Development Professorship.

9. REFERENCES
[1] M. Anderson, R.D. Pose, and C.S. Wallace. A

Password-Capability System. The Computer Journal,
29(1):1–8, 1986.

[2] Beagle: Quickly find the stuff you care about.
http://beagle-project.org/Main_Page, 2006.

[3] BitTorrent. BitTorrent Home Page.
http://bittorrent.com/, 2006.

[4] L. Bouganim, F. Dang Ngoc, and P. Pucheral. Client-based
access control management for XML documents. In Proc.
of the 30th VLDB Conf., September 2004.

[5] J.S. Chase, H.M. Levy, M.J. Feeley, and E.D. Lazowska.
Sharing and protection in a single-address-space operating
system. ACM Trans. on Computer Systems, 12(4), 1994.

[6] Dc++. http://dcplusplus.sourceforge.net/, 2006.
[7] X. Dong and A. Halevy. A platform for personal

information management and integration. In Proc. of the
CIDR Conf., January 2005.

[8] M. Erdos and S. Cantor. Shibboleth architecture draft v05.
http://shibboleth.internet2.edu/docs/
draft-internet2-shibboleth-arch-v0%5.pdf, 2002.

[9] Flickr. Flickr Home Page. http://flickr.com/, 2006.
[10] M. Franklin, A. Halevy, and D. Maier. From databases to

dataspaces: a new abstraction for information
management. SIGMOD Record, 34(4), 2005.

[11] Gallery. Gallery: Your photos on your website.
http://gallery.menalto.com/, 2002.

[12] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2002.

[13] P. Gathani, S. Fashokun, and R. Jean-Baptiste. Microsoft
SQL Server version 2000: Full-text search deployment.
White Paper. http://support.microsoft.com/, May 2002.

[14] Google. Google Desktop: Info when you want it, right on
your desktop. http://desktop.google.com/, 2006.

[15] A. Halevy, M. Franklin, and D. Maier. Principles of
dataspace systems. In Proc. of the 2006 PODS Conf., June
2006.

[16] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection
in operating systems. Comm. of the ACM, 19(8), 1976.

[17] M.E. Houdek, F.G. Soltis, and R.L. Hoffman. IBM
System/38 support for capability-based addressing. In
Proc. of the 8th Int. Symposium on Computer Architecture,
May 1981.

[18] R. Huebsch, J.M. Hellerstein, N. Lanham, B. Thau Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In Proc. of the 29th VLDB Conf., September 2003.

[19] iFolder. Howto: Enabling sharing with Gaim.
http://www.ifolder.com/index.php/HowTo:
Enabling_Sharing_with_Gaim, 2006.

[20] Internet2. Shibboleth. http://shibboleth.internet2.edu,
2006.

[21] H.V. Jagadish, B. Chin Ooi, Kian-Lee Tan, Q. Hieu Vu,
and R. Zhang. Speeding up search in peer-to-peer networks
with a multi-way tree structure. In Proc. of the 2006
SIGMOD Conf., June 2006.

[22] V. Jhaveri. WinFS team blog: Synchronize your WinFS
data with Microsoft Rave. http://blogs.msdn.com/winfs/
archive/2005/09/08/462698.aspx, 2005.

[23] M.B. Jones and R.F. Rashid. Mach and Matchmaker:
kernel and language support for object oriented distributed
systems. In Conf. on Object Oriented Prog. Systems,
Languages, and Applications, October 1986.

[24] E. Jul, H.M. Levy, N. Hutchinson, and A. Black.
Fine-grained mobility in the Emerald system. ACM Trans.
on Computer Systems, 6(1), February 1988.

[25] D. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha.
Haystack: A customizable general-purpose information
management tool for end users of semistructured data. In
Proc. of the CIDR Conf., January 2005.

[26] Kazaa. Kazaa Home Page. http://kazaa.com/, 2006.
[27] H.M. Levy. Capability-Based Computer Systems. Digital

Press, 1984.
[28] S. Mehrotra. WinFS team blog: What a week. http://

blogs.msdn.com/winfs/archive/2005/09/01/459421.aspx,
2001.

[29] G. Miklau and D. Suciu. Controlling access to published
data using cryptography. In Proc. of the 29th VLDB Conf.,
September 2003.

[30] W. Siong Ng, B. Chin Ooi, Kian-Lee Tan, and A. Zhou.
PeerDB: A P2P-based system for distributed data sharing.
In Proc. of the 19th ICDE Conf., March 2003.

[31] OASIS. Oasis security assertion markup language (SAML).
http://www.oasis-open.org/committees/security.

[32] E.I. Organick. A Programmer’s View of the Intel 432
System. McGraw-Hill, 1983.

[33] M. Tamer Özsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, second edition, 1999.

[34] R. Pose. Password-capabilities: Their evolution from the
Password-Capability System into Walnut and beyond.
IEEE Computer Society, 2001.

[35] S. Rizvi, A. Mendelzon, S. Suharshan, and P. Roy.
Extending query rewriting techniques for fine-grained access
control. In Proc. of the 2004 SIGMOD Conf., June 2004.

[36] A. Rosenthal and E. Sciore. Administering permissions for
distributed data: Factoring and automated inference. In
Proc. of IFIP WG11.3 Conf., 2001.

[37] J.S. Shapiro, J.M. Smith, and D.J. Farber. EROS: a fast
capability system. In Symposium on Operating Systems
Principles, pages 170–185, 1999.

[38] Spotlight: Find anything on your Mac instantly.
Technology Brief
http://www.apple.com/macosx/features/spotlight/,
2006.

[39] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proc. of the ACM
SIGCOMM’01 Conference, August 2001.

[40] A.S. Tanenbaum, S.J. Mullender, and R. van Renesse.
Using sparse capabilities in a distributed operating system.
In Proc. of the 6th ICDCS Conf., 1986.

[41] USAToday. Usatoday: U.s. asks internet firms to save data.
http://www.usatoday.com/tech/news/internetprivacy/
2006-05-31-internet-r%ecords_x.htm, 2002.

[42] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. HYDRA: The kernel of a
multiprocessor operating system. Comm. of the ACM,
17(6), June 1974.

[43] Yahoo! Yahoo! photos home page.
http://photos.yahoo.com/, 2006.

[44] YouTube. Youtube: Broadcast yourself.
http://youtube.com/, 2006.

