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Abstract—Remote sensing (RS) scene classification plays an
essential role in the RS community and has attracted increasing
attention due to its wide applications. Recently, benefiting from
the powerful feature learning capabilities of convolutional neural
networks (CNNs), the accuracy of the RS scene classification has
significantly been improved. Although the existing CNN-based
methods achieve excellent results, there is still room for improve-
ment. First, the CNN-based methods are adept at capturing the
global information from RS scenes. Still, the context relationships
hidden in RS scenes cannot be thoroughly mined. Second, due
to the specific structure, it is easy for normal CNNs to exploit
the heterogenous information from RS scenes. Nevertheless, the
homogenous information, which is also crucial to comprehensively
understand complex contents within RS scenes, does not get the
attention it deserves. Third, most CNNs focus on establishing the
relationships between RS scenes and semantic labels. However,
the similarities between them are not considered deeply, which
are helpful to distinguish the intra-/interclass samples. To over-
come the limitations mentioned previously, we propose a homo–
heterogenous transformer learning (HHTL) framework for the RS
scene classification in this article. First, a patch generation module
is designed to generate homogenous and heterogenous patches.
Then, a dual-branch feature learning module (FLM) is proposed to
mine homogenous and heterogenous information within RS scenes
simultaneously. In the FLM, based on vision transformer, not only
the global information but also the local areas and their context
information can be captured. Finally, we design a classification
module, which consists of a fusion submodule and a metric-learning
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module. It can integrate homo–heterogenous information and com-
pact/separate samples from the same/different RS scene categories.
Extensive experiments are conducted on four public RS scene
datasets. The encouraging results demonstrate that our HHTL
framework can outperform many state-of-the-art methods. Our
source codes are available at the below website.

Index Terms—Homo–heterogenous transformer, metric
learning, remote sensing (RS) scene classification.

I. INTRODUCTION

W ITH the rapid development of remote sensing (RS) data
acquisition technologies, a large number of RS images

are produced every day. They contain a lot of useful information,
and how to use this much data to study our planet stands in
the way for researchers. As a basic task in the RS community,
RS scene classification receives growing attention recently. By
assigning semantic labels to different scenes according to their
contents [1], it can be used in a wide range of applications,
such as urban planning [2], land resource management [3],
agriculture [4], forestry [5], etc.

During the last decades, an ocean of successful methods
has been proposed for RS scene classification [6]–[12]. Before
the prosperity of deep learning (DL) techniques, most of the
proposed methods contain a feature extractor and a classifier.
The feature extractor focuses on finding a proper feature space
for RS scenes, while the classifier aims at grouping scenes into
different semantic classes. For feature extractors, hand-crafted
visual features are popular since they are easy to accomplish and
stable in performance. Those feature descriptors can be divided
into low- and midlevel representations. The popular low-level
features are histogram of oriented gradients (HOG) [13], scale-
invariant feature transform (SIFT) [14], and local binary pattern
(LBP) [15]. They are good at capturing key points, texture,
and shape information from RS scenes. The famous midlevel
features are bag-of-visual-word (BoVW) [16], vector of locally
aggregated descriptors (VLAD) [17], and so on. They usually
encode low-level features in a particular manner to construct
the new ones [18], [19]. For classifiers, the statistic theory and
machine learning-based tools, such as support vector machine
(SVM) [20] and decision tree [21], are popular due to their
strict mathematical deduction and complete theoretical foun-
dation. Although the combinations of low-/midlevel features
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and classical classifiers complete RS scene classification tasks
well, they still cannot get what we expect due to the complex
contents within RS scenes, especially with the spatial resolution
increases.

When DL techniques boom, they bring many opportunities to
the RS scene classification. Among diverse DL networks, convo-
lutional neural networks (CNNs) are the most eye catching. Due
to the hierarchical structure and specific learning manner, CNNs
can learn semantic information from RS scenes and accomplish
the classification at the same time, which not only improves
the feature representation but also simplifies the categorization
process. Many general-purpose CNNs have been proposed, such
as VGG-Net [22] and Residual Network (ResNet) [23], and
their pretrained versions achieve cracking results in RS scene
classification tasks [24], [25]. Also, abundant RS-oriented CNNs
have been developed, and they perform perfectly in both RS
scene classification, and other RS applications [26]–[28].

Although CNN-based models have significantly improved RS
scene classification accuracy, some limitations are still needed to
be noticed. First, they are good at exploiting global information
from RS scenes. However, the context information hidden in
RS scenes cannot be fully captured, which is essential to define
the semantic categories of different RS scenes. Second, since
the land covers in RS images are diverse in type and huge in
volume, the regions covered by the normal convolutional kernels
(square shape) contain many various land covers. Therefore,
ordinary CNNs pay more attention to the regions with het-
erogenous information instinctively [29], [30]. Nevertheless, it
is not easy for CNNs to explore the information within homoge-
nous regions, which can help models further understand the
contents of different scenes. Third, most CNNs aim to bridge
the corresponding relations between RS scenes and semantic
labels through a mass of training samples. However, distances
between inter-/intraclass samples, which are crucial in pattern
recognition, are not considered.

In this article, we propose a new method for the RS scene
classification, named homo–heterogenous transformer learning
(HHTL) framework, to overcome limitations mentioned previ-
ously. It contains a patch generation module (PGM), a feature
learning module (FLM), and a classification module. The PGM
consists of a heterogenous patch generation submodule (HPGM)
and an adaptive homogenous patch generation submodule (AH-
PGM). They aim to divide the RS scenes into heterogenous and
homogenous patches, respectively. The FLM is a dual-channel
network embedded by vision transformer [31]. On the one hand,
both global and local context information can be learned by
vision transformer effectively. On the other hand, the knowledge
within homogenous and heterogenous patches can be mined
simultaneously. In the classification module, we introduce the
metric learning strategy into our model and develop a new
loss function to integrate the contributions of homogenous and
heterogenous features and compact/disperse the intra-/interclass
samples.

The CNN and transformer have their own characteristics.
In this article, we select transformer instead of normal CNNs
as the feature extractor. The exact reasons are summarized as
follows. First, the transformer is a model that relies on the
attention mechanism to model global dependencies between

input and output [32]. It can seem like the enhanced CNN.
Due to the specific structure of CNNs, which is stacked by
multiple convolutional kernels, they pay more attention to the
local information within RS scenes [33]–[35]. In other words,
a convolution layer only models the relationships between
neighboring pixels. The transformer can not only capture local
information from the RS scene by linear mapping each patch
but also explore the global context knowledge hidden in the RS
scene by the self-attention mechanism [31]. A transformer layer
directly models the relationships between all pixels, thereby
extracting long-range information within RS scenes. Second,
convolution can be regarded as a kind of template matching,
where the same template is used for filtering at different positions
in the image [36]. The summation method of the convolution
kernel is static. However, the transformer is an adaptive filter.
The weight of the template is determined by the relationship
between pixels, and the summation method is dynamic. This
adaptive computing module could mine more useful information
from complex RS scenes. Finally, once CNN is trained, all
parameters are fixed for different input remote sensing scenes.
Thus, the weights of different scenes are the same. Nevertheless,
the transformer models the correlation between patches within
the input remote sensing scene, and then, calculates the features.
As the obtained correlations are different, different RS scenes
can be weighted dynamically. In summary, the CNN is local and
static, and the transformer is global and dynamic, and they have
different advantages.

The major contributions of this article are summarized as
follows.

1) We develop an end-to-end network based on the vision
transformer to accomplish RS scene classification tasks.
The homogenous and heterogenous information within RS
scenes can be mined simultaneously, and local knowledge
and global contextual relations can also be exploited from
RS scenes. Therefore, the complex contents of RS scenes
can be fully interpreted.

2) A new loss function named homo–heterogenous classi-
fication loss (HHCL) is proposed in the classification
module. On the one hand, it can enhance the feature learn-
ing ability of the homo–heterogenous transformer. On the
other hand, both the contributions of homo–heterogenous
features and the distance relationships between inter-
/intraclass samples are simultaneously considered.

3) Extensive experiments are conducted on four benchmark
datasets, and the encouraging results demonstrate that the
proposed method is effective in the RS scene classification.

The rest of this article is organized as follows. The literature
related to CNN-based methods and attention-based methods for
the RS scene classification is reviewed in Section II. Then, the
proposed method is introduced in Section III. The experimental
results and discussion are given in Section IV. Finally, Section V
concludes this article.

II. RELATED WORK

In this section, we divide the existing RS scene classification
methods into two groups for the brief review, i.e., CNN-based
and attention-based methods.
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A. CNN-Based Methods for RS Scene Classification

Due to the powerful feature learning capability, a variety
of CNN-based methods have been proposed for the RS scene
classification and they have achieved remarkable performance.
Nogueira et al. [37] fine-tuned six popular CNNs to extract
features from RS scenes directly, and the classification results
based on those deep features are competitive. Li et al. [38]
embedded transfer learning into the CNN to reduce the influ-
ence of overfitting problem and improve the classification ac-
curacy with limited labeled samples. To elaborately explore the
complementarity of multilayer features for scene classification,
Lu et al. [39] proposed an end-to-end feature aggregation CNN
(FACNN). In FACNN, a supervised feature encoding module
is proposed to encode the different convolutional features from
the CNN. Another model, named gated bidirectional network,
was presented in [40] to fuse the contributions of multilayer
features. Therefore, more complementary information can be
exploited for RS scene classification tasks. In general, CNN-
based methods learn RS images’ features from the global aspect.
However, the local regions that are also important to the RS scene
classification cannot be fully considered. To overcome this lim-
itation, Wang et al. [41] proposed an enhanced feature pyramid
network with deep semantic embedding to extract multiscale
multilevel features for scene classification. In addition, a joint
global and local feature representation method was introduced
in [42] for the RS scene classification, in which a dual-stream
network is constructed to capture the global and local features
from RS scenes, respectively. In this network, to locate the most
important areas in RS scenes, a weakly supervised key area
detection strategy is designed. To further study the complex
contents within RS scenes, some specific networks have been
proposed. For example, He et al. [24] developed a kip-connected
covariance (SCCov) network, which embeds the skip connection
and covariance pooling into the normal CNN to classify RS
scenes. Wang et al. [43] introduced a multigranularity canonical
appearance pooling to learn multigrained features. It adopts
the Siamese style architecture to learn transformation-invariant
features for the RS scene classification.

In addition, some models that combine CNNs with other
techniques to further improve the performance of RS scene
classification. For example, Cheng et al. [44] integrated the
metric learning and CNN to boost the performance of the RS
scene classification. Through adding the distance constraint into
the hierarchical learning process, the obtained features are more
discriminative. A contextual information-preserved architecture
learning (CIPAL) framework was presented in [45] for the
RS scene classification, in which the architecture learning and
channel compression mechanisms are combined to mine the
contextual information and reduce the memory consumption
simultaneously. Considering the scene classification problem
from the perspective of multiple instance learning, Li et al. [46]
proposed a multiple instance CNN (MI-CNN) to acquire more
robust scene representations, where an instance-level classifier
is developed that is sensitive to the discriminative local patches.
Inspired by the potential of relation inference of the graph convo-
lutional network (GCN), a new model that combines the CNN
and GCN was developed for the RS scene classification [47],

which can learn both the global-based visual features and the
object-based location features. Although the aforementioned
methods have achieved excellent results in remote sensing scene
classification, they rely on large amounts of training data. Con-
sidering the scale of the RS scene is limited, the few-shot
classification of the RS scene has attracted the attention of
researchers [48]. Zhang et al. [49] proposed a metalearning
method for few-shot classification of RS scenes, including a
feature extraction module and a metalearning module, in which
the CNN as a feature extractor to learn a representation and the
classifier is optimized in the metric space by the cosine distance.

B. Attention-Based Methods for the RS Scene Classification

CNN-based methods have achieved remarkable performance
on the RS scene classification because their strong capacity
of global information exploration. However, most of them are
not good at capturing the local knowledge from RS scenes. To
overcome this limitation, scholars introduce attention mecha-
nism into their models. Those attention-based models can mine
salient regions from RS scenes, which are conducive to enhance
features’ discrimination.

For clarity, we divide the existing attention-based methods
into two groups, i.e., regular-attention- and transformer-based
approaches. In the first group, the methods aim to capture
the discriminative local areas from RS scenes. For instance,
Li et al. [50] adopted an augmentation attention mechanism to
develop a classifier for completing RS scene classification tasks.
Augmentation operations over attention feature maps are used
to ensure the model to exploit discriminative regions as much
as possible. Guo et al. [51] proposed a global-local attention
network (GLANet) to capture both global and local information
for the RS scene classification. It concatenates global and local
features to ensure the discrimination of feature representation.
Tang et al. [52] developed an attention consistent network (AC-
Net) for the RS scene classification. First, intermediate feature
maps are learned by VGG-Net [22]. Second, a parallel-attention
model is designed to mine the local information from feature
maps. Third, an attention consistent model is developed to
unify the salient regions. Finally, the learned features are used
to classify RS scenes. An unsupervised deep feature learning
method was proposed for the RS scene classification [53], which
integrates the attention mechanism into GANs to enhance the
representation power of the discriminator.

In the second group, the deep classification networks are con-
structed based on the transformer, which was proposed in [32]
and it achieves excellent performance in many computer vision
tasks [54]–[59]. The transformer can capture long-range context
information through multihead attention [60] and can be seen
as an enhanced version of the attention mechanism. Recently,
Dosovitskiy et al. [31] applied a fully-transformer model, named
vision transformer (ViT), to image classification. Instead of
using images directly, ViT splits images into fixed-size patches
first. Then, by mining the relations between image patches,
the effective visual features can be learned. Based on ViT, a
knowledge distillation token was added along with the class
token [61]. By introducing a knowledge distillation strategy,
ViT can achieve a better performance on small-scale datasets
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Fig. 1. Overall structure of the proposed HHTL framework, which consists of a PGM, an FLM, and a classification module.

without pretraining. To model surrounding tokens for capturing
local structure and simplifying backbone, Yuan et al. [62] pro-
posed a tokens-to-token vision transformer (T2T-ViT), including
a T2T module and an efficient backbone with a deep-narrow
structure. In addition, a convolutional vision transformer is de-
veloped in [63], which can simultaneously extract local features
and contextual information from images to build discriminative
feature representations. In the RS community, the number of
transformer-based methods is few. A recent work directly used
vision transformer for the RS scene classification [64], and trans-
former’s potential in the RS scene classification task is being
developed. In this article, we explore an HHTL framework with
metric learning to capture global and local context discriminative
information for the RS scene classification.

III. PROPOSED METHOD

A. Overall Framework

The architecture of the proposed HHTL framework is il-
lustrated in Fig. 1, which consists of a PGM, a FLM, and a
classification module. The PGM aims at generating multiple
types of patches, which includes HPGM and AHPGM. The goal
of the HPGM is to divide RS scenes into heterogeneous patches
directly, while the target of the AHPGM is to obtain homogenous
patches using the superpixel segmentation method. The FLM
is proposed to extract complete features from heterogenous
and homogenous patches. It can learn global and local context
information within RS scenes. For the classification module, a
new loss function is developed. It can compact/disperse intra-
/interclass samples and integrate the homo–heterogeneous fea-
tures so that the discriminative feature representation for the
RS scene classification can be obtained. Now, let us discuss the
proposed HHTL in detail.

B. Patch Generation Module (PGM)

Considering the complex contents within RS scenes, we de-
velop the PGM to generate diverse patches for mining the RS
scenes’ information comprehensively. There are two submod-
ules in the PGM, including HPGM and AHPGM.

In the HPGM, we divide a scene into a set of nonoverlapping
patches with fixed size directly. Thereby, for each input scene
I ∈ RH×W×C (where C, H , and W indicate the number of
channels, spatial height, and spatial width), we can get a set
of heterogenous patches Phe = {pihe}Ni=1, where pihe ∈ RS×S×C

denotes the ith heterogenous patch,N = HW/S2 is the number
of patches, and S is the patch size. To reduce memory and time
costs, S equals 32 in this article.

Apart from the heterogenous information, homogenous
knowledge is also essential to understand complex contents
within RS scenes. Here, the AHPGM is proposed to adap-
tively generate homogenous patches with uniform size from
an input RS scene. The flowchart of the AHPGM is shown in
Fig. 2. First, the simple linear iterative clustering (SLIC) [65]
algorithm is used to segment the input RS scene into a set of
superpixels. Second, each superpixel corresponds to a fixed
value in the mask so that we can take it out according to the
value of the mask. Third, we select the maximum and minimum
values of the x- and y-axes in the RS scene plane to get a
quadrangular area for each superpixel. Here, the coordinates
of the four vertices of the quadrangular area are (xmin, ymin),
(xmin, ymax), (xmax, ymin), and (xmax, ymax). Then, we can get
centroid coordinates (cx, cy) of the quadrangular area. Fourth,
the 16 pixels around the centroid are captured and cropped from
the scene to generate a uniform rectangular patch. Note that if
the vertex is at the boundary of the RS scene and the coordinate
distance between the vertex and centroid pixels is less than 16,
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Fig. 2. Flowchart of the AHPGM.

we take the vertex coordinates as the starting point and select
16 pixels to get the new centroid coordinates, thereby, obtaining a
patch with uniform size. Finally, the input RS scene is adaptively
divided into a sequence of homogenous patchesPho = {piho}Ni=1,
where piho ∈ RS×S×C denotes the ith homogenous patch. Note
that, to avoid the overlapping issue, we process each superpixel
independently. In other words, we pick a superpixel out and
adjust its shape individually. If the size of a superpixel is less
than 32× 32, the expanded part would be filled with zero.

C. Feature Learning Module

The information within Pho and Phe is complementary, which
is critical to fully understand the complex contents of the RS
scenes. Here, we propose FLM to learn homogenous and het-
erogenous features simultaneously. As shown in Fig. 1, the FLM
is a dual-branch network that does not share parameters, and the
structure of each branch is the same to each other. Therefore, we
only introduce the heterogenous feature learning branch in the
following for clarity.

The feature extractor of the heterogenous feature learning
branch can be any deep learning model. In this article, due
to the powerful feature learning ability of vision transformer,
the Vision Transformer-Base 32 (ViT-B 32) [31] model is used
to extract features. In ViT-B˜32, the layer numbers of the
transformer encoder and the number of self-attention heads
in each multihead self-attention (MSA) are set to 12 and 12,
respectively. First,Phe are input to heterogenous feature learning
branch and are mapped into a set of d-dimensional heterogenous
patch embedding through a trainable linear projection. Next, the
heterogenous patch embeddings are concatenated with a learn-
able class embedding he-token, which is a specialized vector
to perform scene classification task. Then, to retain positional
information of the heterogenous patches in the original scene, a
learnable position embedding is added. Afterwards, the desired
heterogenous embedded patches z0 are formed as follows:

z0 = [he-token; p1heE; p2heE; . . .; pNheE; ] + Epos (1)

where E ∈ R(S2.C)×d is the patch embedding projection, and
Epos ∈ R(N+1)×d denotes the position embedding. Finally,
the heterogenous embedded patches z0 are input to the He-
transformer encoder to learn heterogenous features.

As a core part of the heterogenous feature learning branch,
the He-transformer encoder can learn both global information

Fig. 3. Architecture of the transformer encoder. As a core part of the FLM,
the transformer encoder consists of (a) He-transformer encoder and (b) Ho-
transformer encoder, and can learn heterogenous information and homogenous
information from embedded patches simultaneously.

and local areas’ contextual relations from heterogenous em-
bedded patches. The framework of the He-transformer encoder
is illustrated in Fig. 3(a), which is composed of L identical
layers. Each layer has two sublayers, e.g., an MSA block and a
multilayer perceptron (MLP) block. Layernorm (LN) is applied
before every block, and residual connections after every block.
The MLP block consists of two linear transformations with a
Gaussian error linear unit (GELU) activation in between. Thus,
the output of the lth layer can be written as follows:

zMSA
l = MSA (LN (zl−1)) + zl−1, l = 1 . . . , L (2)

zl = MLP
(
LN
(
zMSA
l

))
+ zMSA

l , l = 1 . . . , L (3)

where zl is the encoded scene representation. We use the first
element of the last encoder layer z0L to generate the heterogenous
feature representation he-token0, which can be formulated as

he-token0 = LN
(
z0L
)
. (4)

The homogenous feature representation ho-token0 can be ob-
tained in the same manner. Note that, similar to heterogenous
patches, the position embedding of homogenous patches is
same for different scenes. For special cases, if the number of
homogenous patches generated from the image is different from
the length of the position embedding, we will adjust the number
of patches, and the expanded patches will be filled with zero.

The key component of the transformer encoder is MSA,
which aims to explore the context information among patch em-
beddings from different representation subspaces and different
positions. Before explaining MSA in detail, we first introduce
the self-attention head function. The self-attention head function
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is actually the scaled dot-product attention mechanism, which is
apt at establishing the relationship between the elements in the
input patches sequence. Its formulation is

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (5)

where {Q,K, V } indicates an input data,
√
dk is a scaling

factor, and softmax(·) denotes the softmax function. The MSA
performs h self-attention heads in parallel, and the outputs are
concatenated and projected to the final values. For input zl−1,
the formulation of the MSA is

MSA(zl−1) = Concat (head1, . . ., headh)WO (6)

where WO represents the learned matrices and headi is the
ith self-attention head function. The definition of headi can be
described as

headi = Attention(zl−1WQ
i , zl−1WK

i , zl−1WV
i ) (7)

where WQ
i ,WK

i , and WV
i ∈ Rd×d/h are the learned parameter

matrices.

D. Classification Module

The classification module consists of a fusion submodule
and a metric-learning submodule. In the fusion submodule,
the learned heterogenous features he-token0 and homogenous
features ho-token0 form the FLM are first transformed into
classification score he-class and ho-class through an MLP head
layer. Second, to better integrate heterogenous information and
homogenous information, he-class and ho-class are added to get
a fusion classification score S as

S =
he-class + ho-class

2
. (8)

Finally, a softmax loss function Lsoftmax is used to enhance
the fusion classification score S. Lsoftmax aims to minimize
the classification error between the model outputs and their
corresponding labels, and is defined as

Lsoftmax = − 1

N

N∑
1

〈yi, log(si)〉 (9)

where 〈., .〉 denotes inner product of two vectors, N is the size
of minibatch, si denotes the probability, and yi is the real scene
label.

In the metric-learning submodule, a dual cosine contrastive
loss Ldccl is proposed to reduce the interclass similarity and
enhance the intraclass similarity in the feature space, and its
definition is

Ldccl = Lhe
dccl + Lho

dccl (10)

Lhe
dccl =

1

N2

N∑
i

⎛
⎝ N∑

j:yi=yj

(1−cossim(he-token0i, he-token0j)

⎞
⎠

+

N∑
j:yi �=yj

max((cossim(he-token0i, he-token0j)−α), 0))

(11)

Fig. 4. Illustration of feature space. (a) Original feature space. (b) FLM feature
space.

Lho
dccl =

1

N2

N∑
i

(
N∑

j:yi=yj

(1− cossim(ho-token0i, ho-token0j)

)

+

N∑
j:yi �=yj

max((cossim(ho-token0i, ho-token0j)−α), 0))

(12)

where Lhe
dccl and Lho

dccl are used to optimize the heterogenous and
homogenous branch of the FLM, respectively, N is the size of
a batch, cossim(., .) is the cosine similarity of two features, α
is used to constrain the interclass distances, and he-token0 and
ho-token0 are preprocessed with l2 normalization to have unit
norm.

After using Ldccl, the distances between samples from the
same/different semantic classes can be reduced/increased. The
schematic illustration of Ldccl is exhibited in Fig. 4.

In summary, a joint loss function named HHCL function is de-
fined to enhance the discriminability of the homo–heterogenous
transformer feature representations. Its definition is

Lhhcl = Lsoftmax + λLdccl (13)

where λ is a hyperparameter to control the importance of metric
embedded term in the loss function.

IV. EXPERIMENT

A. Dataset Introduction

To evaluate the performance of the proposed HHTL frame-
work, we conduct experiments on four public RS scene datasets,
including the UC Merced (UCM) Land Use dataset [16],
Aerial Image dataset (AID) [1], NWPU-RESISC45 (NWPU)
dataset [2], and RSSDIVCS dataset [66], [67].

The UCM dataset was published by University of California
Merced and has 2100 RS scene images. These RS images are
divided into 21 scene categories, and each class consists of 100
scene images with a size of 256× 256 pixels. The spatial resolu-
tion is 0.3-m per pixel in the red, green blue (RGB) color space.
Some images of this dataset are shown in Fig. 5. The AID dataset
was proposed by Wuhan University and has 10 000 RS images
with 600× 600 pixels. These images are split into 30 scene
categories, and the number of images in each category varies
from 220 to 420. The spatial resolution changes from about 8 m
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Fig. 5. Examples of the UCM dataset.

Fig. 6. Examples of the AID dataset.

to 0.5 m per pixel. Some RS images of this dataset are shown
in Fig. 6. The NWPU dataset was constructed by Northwestern
Polytechnical University and has 3 1500 RS scene images in the
RGB color space. It has 45 scene categories, and each category
contains 700 scene images with a size of 256× 256 pixels,
and the spatial resolution changes from about 0.2 m to 30 m.
This dataset is a large-scale scene classification dataset with
large image variations, and some examples of this dataset are
shown in Fig. 7. The RSSDIVCS dataset is a large-scale RS
scene classification dataset, including the instance-level visual
images and class-level semantic representations. It has 70 scene
categories, and each category contains 800 scene images with a
size of 256× 256 pixels. Examples of this dataset are shown in
Fig. 8.

B. Dataset Settings and Evaluation Metrics

To obtain objective results, we repeat the experiments five
times by randomly selecting training/testing samples. Then, the
average results and their standard deviations are reported. For
UCM, we choose 50% and 80% scenes randomly to train our

Fig. 7. Examples of the NWPU dataset.

Fig. 8. Examples of the RSSDIVCS dataset.

model. For AID, the training data ratios are set to 20% and 50%.
For NWPU, the training–testing ratios are set to 10%–90% and
20%–80%. For RSSDIVCS, the training ratio is set to 10%.

We adopt two widely used evaluation metrics, including
overall accuracy (OA) and confusion matrix (CM). The OA is
defined as the number of correctly classified images divided
by the total number of testing images. It reflects the model’s
overall classification performance. The CM is used to analyze
the detailed classification information of each scene class, which
can intuitively reflect whether the prediction is correct or not and
the degree of confusion between different scene classes. In our
CMs, the rows represent true classes, while the columns denote
the predicted classes.

C. Experimental Settings

All experiments are implemented using Pytorch frame-
work [68] on a workstation with Intel Xeon CPU E5-2650,
NVIDIA Titan Xp, and 256-G RAM. The parameters of
each branch of the LFM are initialized from the official Vi-
sion Transformer-Base˜32 (ViT-B˜32) model (pretrained on
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Imagenet-21k [69], and then, fine tuned on Imagenet2012 [70]).
We employ the stochastic gradient descent (SGD) optimizer with
a momentum of 0.9 to train our model. The learning rate is
initialized as 0.03, and a cosine decay learning rate scheduler
with a linear warm-up is adopted. The epoch number and batch
size equal 300 and 32. For the AHPGM, we use SLIC to segment
an RS image into 144 superpixels. In addition, the horizontal
and vertical flipping are used for data augmentation, and all
input scenes are resized into 384× 384. Our model has two free
parameters, i.e., the constant margin α and the hyperparameter
λ [see (13)]. They are set to be different values for different sce-
narios, including various datasets and training sets. Also, their
influence is discussed in Section IV-G. Note that the selection of
SGD is not our limitation. Some other optimizers (e.g., AdamW)
can also be used. From analyzing the experimental results, we
can find that the performance differences between HHTLs based
on two optimizers are small. The details can be found in the
supplementary material.

D. Experimental Results and Comparisons

To comprehensively evaluate the classification performance
of the proposed HHTL framework, we compare our method
with some state-of-the-art CNN-based and transformer-based
methods. The CNN-based methods are GoogLeNet [1], [2],
VGGNet-16 [1], [2], VGG-16-CapsNet [71], SCCov [24],
VGG-VD16+MSCP+MRA [72], GBNet+global feature [40],
MIDC-Net ˜ CS [73], EFPN-DSE-TDFF [41], DFAGCN [74],
EfficientNet-B0-aux [75], SF-CNN with VGGNet [76], MG-
CAP (Sqrt-E) [43], ACNet [52], ACR-MLFF [77], and MSA-
Network [78]. The transformer-based methods are T2T-ViT-
12 [62], pooling-based vision transformer-small (PiT-S) [79],
and pyramid vision transformer-medium (PVT-Medium) [80].
Note that, the results of CNN-based methods are from the
original literature. Meanwhile, the transformer-based methods
are accomplished by ourselves. Except the image size, other
experimental settings are the same as ours.

1) Results on UCM Dataset: For UCM, the value ofα is set to
0.1/0.3 when training ratios is 50%/80%, and the value of λ is set
to 0.5 for two training ratios. The results of different methods are
summarized in Table I. From the observation of results, we can
find the following points. First, all of the results are acceptable
due to deep neural networks’ energetic feature learning capac-
ity. Among the compared methods, the strongest and weakest
CNN-based models are EfficientNet-B0-aux and GoogLeNet,
while the best and worst transformer-based methods are PVT-
Medium and T2T-ViT-12. Second, the performance of the con-
ventional CNN models (e.g., GoogLeNet and VGGNet-16) is
weaker than that of the transformer-based networks. This is
because that the global information mining capacity of the
transformer is higher than that of normal CNNs. Nevertheless,
when some RS-oriented schemes are embedded into CNNs,
the CNN-based models’ behavior is increased distinctly. For
example, MG-CAP (Sqrt-E) outperforms all of the transformer-
based models. Third, our HHTL framework achieves the best
performance in all cases because the dual-channel FLM and
the proposed new loss function of our method can comprehen-
sively learn information within RS scenes and compact/disperse

TABLE I
OVERALL ACCURACIES AND STANDARD DEVIATIONS (%) OF THE PROPOSED

HHTL FRAMEWORK AND THE COMPARISON METHODS ON THE UCM DATASET

intra-/interclass samples, respectively. Compared with the best
CNN- and transformer-based models, the improvements in OA
obtained by the HHTL are 0.86% (over EfficientNet-B0-aux)
and 2.6% (over PVT-Medium) when the training ratio is 50%.
When the training ratio equals 80%, the enhancements are 0.44%
(EfficientNet-B0-aux) and 1% (PVT-Medium). The encourag-
ing results discussed previously demonstrate that our HHTL
framework is effective for the UCM dataset.

Apart from OA, we also report CMs of our method under
the different training ratios in Fig. 9. From the observation,
we can see that most scenes are categorized correctly. For
example, when the training ratio is 80%, the incorrect predicted
results only appear in “Forest” and “Sparse Residential.” These
encouraging results demonstrate the effectiveness of our method
again.

2) Results on AID Dataset: For AID, the values of α and
λ are set to be 0.9 and 0.05 under the training ratio of 20%,
while under the training ratio of 50%, their values are equal
to 0.5 and 0.05. The results of different methods are shown
in Table II. Similar to UCM, HTTL achieves the best perfor-
mance in any case. Its OA values are as high as 95.62% and
96.88% when the training ratios are 20% and 50%. Compared
with the weakest model (GoogLeNet), the increases in OA
obtained by the HHTL under two training ratios are 12.18%
and 10.49%, respectively. Interestingly, there is a distinct perfor-
mance gap between conventional CNN models (i.e., GoogLeNet
and VGGNet-16) and other RS-oriented CNN-based networks.
This factor demonstrates that mining the characteristics of RS
images (such as the multiscale property) plays a vital role in
scene classification, especially when the archive is complex in
the scene and large in volume. Also, although transformer-based
methods are general-purposed, their behavior is still assertive
due to the forceful feature learning capacity of the transformer
model. These encouraging results mentioned previously confirm
that the HHTL is helpful to the AID dataset.

Besides, CMs of our HHTL framework under different train-
ing ratios are displayed in Fig. 10. Although the RS scenes
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Fig. 9. Confusion matrices of the proposed HHTL framework under the training ratio of (a) 50% and (b) 80% on the UCM dataset. The scene category
corresponding to each number can be found in Fig. 5.

Fig. 10. Confusion matrices of the proposed HHTL framework under the training ratio of (a) 20% and (b) 50% on the AID dataset. The scene category
corresponding to each number can be found in Fig. 6.

in AID are large in scale and diverse in the category, our
HHTL still achieves competitive classification results in most
cases. In detail, as shown in Fig. 10(a), 26 of the 30 categories
have classification accuracies over 90%. Besides, as shown in
Fig. 10(b), 28 of the 30 categories have classification accuracies
over 90%, and 24 categories have classification accuracies over
95%. Nevertheless, the performance of the HHTL is not as good
as what we expect in some scenes, such as “Resort” and “Park.”
The reason behind this is the high interclass similarities between
RS images within these two categories. As exhibited in Fig. 6,
the main contents within “Resort” and “Park” are green plants,
bare soil, and a handful of manual buildings. Therefore, the
features learned by the HHTL are not discriminative enough
to distinguish them. Developing an effective scheme for this
scenario is one of our future work.

3) Results on NWPU Dataset: For NWPU, the values of
α and λ are set to be 0.7 and 0.5 for two training ratios
(e.g., 10% and 20%), and the results of different methods are
shown in Table III. Like to UCM and AID, we can find that
the performance of our HHTL framework is best. Compared
with other methods, when 10% scenes are used for train-
ing, the enhancements in OA obtained by our HHTL frame-
work are 15.88% (over GoogLeNet), 15.6% (over VGGNet-
16), 6.99% (over VGG-16-CapsNet), 2.77% (over SCCov),
4% (over VGG-VD16+MSCP+MRA), 5.95% (over MIDC-
Net CS), 0.98% (over ACNet), 2.11% (over EfficientNet-
B0-aux), 2.18% (over SF-CNN with VGGNet), 2.06% (over
ACR-MLFF), 1.69% (over MSA-Network), 1.24% (over MG-
CAP(Sqrt-E)), 7.16% (over T2T-ViT-12), 6.22% (over PiT-S),
and 4.67% (over PVT-Medium). When 20% scenes are used for
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The extensive experimental results counted on four widely used
RS scene datasets illustrate that our method is helpful to RS
scene classification tasks. We will focus on designing a more ef-
ficient transformer to further improve the classification accuracy
and decrease computational costs in future work.
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