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Abstract

What preferences will prevail in a society of rational individuals when preference
evolution is driven by their success in terms of resulting payoffs? We show that when
individuals’ preferences are their private information, a convex combination of selfish-
ness and morality stands out as evolutionarily stable. We call individuals with such
preferences homo moralis. At one end of the spectrum is homo oeconomicus, who acts
S0 as to maximize his or her material payoff. At the opposite end is homo kantiensis,
who does what would be “the right thing to do,” in terms of material payoffs, if all
others would do likewise. We show that the stable degree of morality - the weight
placed on the moral goal - is determined by the degree of assortativity in the process
whereby individuals are matched to interact.
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1 Introduction

Most of contemporary economics is premised on the assumption that human behavior is
driven by self-interest. However, in the early history of the profession it was common to
include moral values as part of human motivation, see, e.g., Smith (1759) and Edgeworth
(1881), and, for more recent examples, Arrow (1973), Laffont (1975), Sen (1977) and Tabellini
(2008).! Furthermore, in recent years many economists have begun to question the predictive
power of pure selfishness in certain interactions, and turned to alternative preferences such as
altruism (Becker, 1976), warm glow (Andreoni, 1990), inequity aversion (Fehr and Schmidt,
1999), reciprocal altruism (Levine, 1998), a sense of identity (Akerlof and Kranton, 2000,
Bénabou and Tirole, 2011), a preference for efficiency (Charness and Rabin, 2002), and a
desire for social esteem (Bénabou and Tirole, 2006, Ellingsen and Johannesson, 2008). Our
goal here is to clarify the evolutionary foundation of human motivation, by asking, from first
principles, what preferences and moral values humans should be expected to have.

It is well-known from theoretical biology that evolution favors altruistic behaviors—
behaviors that benefit others at a cost to oneself—between relatives. This insight was for-
mally developed by Hamilton (1964a,b); see also Grafen (1979, 2006), Hines and Maynard
Smith (1979), Bergstrom (1995), and Day and Taylor (1998). While the genetics often is
complex, the intuition is simple; a gene in an individual has a high probability, depending
on the degree of kinship, to be present in his or her relatives. In particular, if this gene
expresses itself in helpful behaviors to relatives, this enhances the reproductive success of
the said gene, as long as the behavior is not too costly for the actor. While kinship altru-
ism evidently cannot explain altruistic behaviors among non-kin, it has been recognized in
the literature that any mechanism that brings about assortativity in the matching process
can favor altruistic behaviors also among unrelated individuals;> a prime example of such
a mechanism is geographic dispersion. In this literature, the unit of selection is behaviors
(strategies) rather than, as here, preferences or moral values. However, if one were to inter-
pret the evolved behaviors as resulting from utility maximization, then this literature would
point to two distinct classes of preferences: (a) altruistic preferences, whereby individu-
als attach positive weight to the well-being or fitness of others, and (b) moral preferences,
whereby individuals instead are concerned with what is “the right thing to do”.? Clearly,

!See Binmore (1994) for a game-theoretic discussion of ethics, and Bolle and Ockenfels (1990), Sugden
(1995, 2011), Bacharach (1999), Brekke, Kverndokk, and Nyborg (2003), Alger and Ma (2003), Alger and
Renault (2006, 2007), Bénabou and Tirole (2011), Huck, Kiibler and Weibull (2012), and Roemer (2010) for
alternative models of moral motivation.

2See, e.g., Hamilton (1971, 1975), Boorman and Levitt (1980), Eshel and Cavalli-Sforza (1982), Toro and
Silio (1986), Frank (1987,1988), Wilson and Dugatkin (1997), Sober and Wilson (1998), Rousset (2004),
Nowak (2006), and Bergstrom (2003, 2009).

3The idea that moral values may have been formed by evolutionary forces can be traced back to at least



these two motivations may give rise to different behaviors. However, this literature is silent
as to whether either altruistic or moral preferences would in fact arise if evolution were to
operate on preferences—as a way for nature to delegate the choices of concrete actions to
the individual in the given situation. It is our goal to fill this gap.

There are several challenges associated with lifting the domain of the analysis from be-
haviors to preferences. We show that these difficulties can be dealt with in a general model
with minimal assumptions on the class of interactions and potential preferences. More ex-
actly, we analyze the evolution of preferences in a large population where individuals are
randomly and pairwise matched to interact. We follow the indirect evolutionary approach,
pioneered by Giith and Yaari (1992), by assuming that individual behavior is driven by (sub-
jective) utility maximization, while evolutionary success is driven by some (objective) payoff.
A large body of research has shown that natural selection leads to preferences that deviate
from objective-payoff-maximization when individuals who interact know each other’s prefer-
ences.! We here instead focus on the case when each individual’s type (preferences or moral
values) is her private information. Moreover, we relax the commonly made assumption that
all matches are equally likely (uniform random matching), and ask whether assortativity in
the process whereby people are matched to interact matters for the preferences that nat-
ural selection favors. Indeed, as we argue in Section 5, assortativity arises in many human
interactions for a variety of different reasons.

We impose few assumptions on the set of admissible preferences that are subject to evo-
lutionary selection. In particular, these may be altruistic, moral, selfish, driven by inequity
aversion or commitment to particular behaviors, etc. Our analysis applies to symmetric in-
teractions, and also to asymmetric interactions in which there is symmetry from an ex ante
perspective, that is, when each individual is just as likely to be in one player role as in
the other. For asymmetric interactions, then, evolution selects preferences behind a veil of
ignorance regarding which role the individual will eventually play. The matching process is
exogenous, and, building on Bergstrom (2003), we identify a single parameter, the index of
assortativity, as a key parameter for the population-statistical analysis. We generalize the

Darwin (1871). More recent, but informal, treatments include, to mention a few, Alexander (1987), Nichols
(2004) and de Waal (2006). The latter claims that moral codes also exist in other primates.

4See Robson (1990), Giith and Yaari (1992), Ockenfels (1993), Ellingsen (1997), Bester and Giith (1998),
Fershtman and Weiss (1998), Kogkesen, Ok and Sethi (2000), Bolle (2000), Possajennikov (2000), Ok and
Vega-Redondo (2001), Sethi and Somanathan (2001), Heifetz, Shannon and Spiegel (2006, 2007) Dekel, Ely
and Yilankaya (2007), Alger (2010), and Alger and Weibull (2010, 2012a). As observed already by Schelling
(1960), it may be advantageous in strategic interactions to be committed to certain behaviors, even if these
appear to be at odds with one’s objective self-interest. Indeed, certain other-regarding preferences such as
altruism, spite, reciprocal altruism, or inequity aversion, if known or believed by others, may be strategically
advantageous (or disadvantageous). For example, a manager of a firm in Cournot competition, with complete
information about manager’s contracts, will do better, in terms of equilibrium profits, if the contract rewards
both profits and sales, rather than only profits (a literature pioneered by Fershtman and Judd, 1987).



standard definition of evolutionary stability to allow for arbitrary degrees of assortativity
and apply this to preference evolution when each matched pair plays a (Bayesian) Nash
equilibrium of the associated game under incomplete information.’

Our main result is that natural selection leads to a certain one-dimensional family of
moral preferences, a family that springs out from the mathematics. This family consists of
all convex combinations of selfishness (“maximization of own payoff”) and morality (“to do
the right thing”). We call individuals with such preferences homo moralis and the weight
attached to the moral goal the degree of morality. A special case is the familiar homo oe-
conomicus, who attaches zero weight to morality. At the other extreme one finds homo
kantiensis who attaches unit weight to morality. We show that evolution selects that degree
of morality which equals the index of assortativity of the matching process. Such prefer-
ences in a resident population provide the most effective protection against mutants, since
the residents’ behavior then is the behavior that would maximize the expected payoffs to
mutants (when rare). It is as if homo moralis with degree of morality equal to the index
of assortativity preempts mutants; any rare mutant can at best match the payoff of the
residents.’

We also establish evolutionary instability of all preferences that induce other behaviors
than those of homo moralis with degree of morality equal to the index of assortativity. A
population consisting of such differently behaving individuals would be vulnerable to invasion
of mutants with other preferences. This instability result has dire consequences for homo
oeconomicus, who is selected against in a large class of interactions that are strategic in the
sense that a player’s payoff depends on the other player’s strategy, whenever the index of
assortativity in the matching process is positive. A sufficient condition for this is that the
behavior of homo oeconomicus (when resident) be uniquely determined and different from
that of individuals with degree of morality equal to the (positive) index of assortativity.

Our work establishes a link between two strands of literature, one (mostly biological)
dealing with strategy evolution under assortative matching, and another (in economics)
dealing with preference evolution under uniform random matching. In the first strand, the
most closely related work is that of Bergstrom (1995) who analyzes evolutionarily stable

5Since the matching process is exogenous and an individual’s preferences are her private information,
there is no room for partner choice or mimickry. An alternative approach would be to either let individuals
choose partners (see e.g. Frank, 1987 and 1988), or allow individuals to quit a partner and rematch (see e.g.
Jackson and Watts, 2010). However, this would bring in additional informational, strategic and matching-
technological elements beyond the scope of this study.

OIn a related literature, on cultural evolution, parents are assumed to be altruistic (or interested in their
future treatment by their children) and, at some cost, they can influence their childrens’ preferences and
values; see, e.g., Bisin and Verdier (2001), Hauk and Saez-Mart{ (2002), Bisin, Topa and Verdier (2004),
and Lindbeck and Nyberg (2006). In our model, evolution is exogenously driven and we make no ex ante
assumptions about parents’ preferences, motives or moral values.



strategies in symmetric interactions between siblings. Bergstrom provides a moral interpre-
tation of the resulting behaviors, which he calls “semi-Kantian” (here corresponding to the
behavior of homo moralis with degree of morality one half). In a similar spirit, Bergstrom
(2009) provides game-theoretic interpretations of several existing moral maxims and relates
these to evolutionarily stable strategies under assortative matching. In the second strand,
the most closely related work is that of Ok and Vega-Redondo (2001) and Dekel, Ely and
Yilankaya (2007). Their main result for interactions under incomplete information is that
homo oeconomicus will prevail, a result that is corroborated in our analysis in the special

case when the index of assortativity is zero.”

As a side result, we obtain a new perspective on evolutionarily stable strategies, namely,
that these behaviors are precisely those that are used in Nash equilibrium play when evolu-
tion operates at the level of preferences under incomplete information. Hence, evolutionary
stability of strategies need not be interpreted in the narrow sense that individuals are “pro-
grammed” to a given strategy; the same behavior emerges if they are rational and play
optimally under correct population-statistical beliefs about each other. This sharpens and
generalizes the result in Dekel, Ely and Yilankaya (2007) that preference evolution under
incomplete information and uniform random matching in finite games implies Nash equilib-
rium play, as defined in terms of the underlying material payoffs, and is implied by strict
Nash equilibrium (again in terms of material payoffs).®

The rest of the paper is organized as follows. The model is set up in the next section. In
Section 3 we establish our main result and show some of its implications. Section 4 is devoted
to finite games. In Section 5 we study a variety of matching processes. Section 6 discusses
three topics: asymmetric interactions, the difference between morality and altruism, and
ways to empirically test the existence of homo moralis. Section 7 concludes.

2 Model

Consider a population where individuals are randomly matched into pairs to engage in
a symmetric interaction with the common strategy set, X. While behavior is driven by
(subjective) utility maximization, evolutionary success is determined by the resulting payoffs.
An individual playing strategy = against an individual playing strategy y gets payoff, or
fitness increment,  (z,y), where 7 : X? — R. We will refer to the pair (X, 7) as the fitness

"Heifetz, Shannon, and Spiegel (2007) show that under uniform random matching and complete infor-
mation, evolution favors other preferences than those of homo oeconomicus. See footnote 4 for references
to related results. For models of preference evolution under complete information and assortative matching,
see Alger and Weibull (2010, 2012a), and Alger (2010).

8Strategies used in symmetric strict Nash equilibria are evolutionarily stable, and any evolutionarily stable
strategy playing against itself makes a symmetric Nash equilibrium.



game. We assume that X is a non-empty, compact and convex set in a topological vector
space, and that 7 is continuous.’ Each individual is characterized by his or her type 6 € ©,
which defines a continuous utility function, ug : X? — R. We impose no relation between a
utility function ug and the payoff function 7. A special type is homo oeconomicus, by which
we mean individuals with the utility function v = 7. An individual’s type is her private
information.

For the subsequent analysis, it will be sufficient to consider populations with at most
two types present. The two types and the respective population shares together define
a population state s = (0,7,¢), where 0,7 € © are the two types and ¢ € [0,1] is the
population share of type 7. The set of population states is thus S = ©% x [0,1]. If ¢ is
small we will refer to 6 as the resident type and call 7 the mutant type. The matching
process is random and exogenous, and it may be assortative. More exactly, in a given state
s = (0,7,¢), let Pr[r|0, ] denote the probability that a given individual of type 6 is matched
with an individual of type 7, and Pr[0|7, ] the probability that a given individual of type
7 is matched with an individual of type 6. In the special case of uniform random matching,
Pr(r|0,e] = Pr|r|r,e] = ¢ for all € € (0, 1).

For each state s = (0, 7,¢) € S, and any strategy x € X used by type 6 and any strategy
y € X used by type 7, the resulting average payoff, or fitness, to the two types are:

Iy (z,y,e) = Pr[0|0,¢] - w (z,x) + Pr[r|0,¢] - 7 (z,y) (1)
I (z,y,e) = Pr{f|7,e] - m (y, 2) + Prr|r,e] - 7 (y,y) (2)

Turning now to the choices made by individuals, a (Bayesian) Nash equilibrium is a pair
of strategies, one for each type, where each strategy is a best reply to the other in the given
population state:

Definition 1 In any state s = (0,7,¢) € S, a strategy pair (x*,y*) € X? is a (Bayesian)
Nash Equilibrium (BNE) if

(3)

r* € argmax,ex Pr(0]0,e| - ug (v,2*) + Prr|0,e] - up (z,y*)
y* € arg maxyex Pr [0|7—7 5] *Ur (ya l’*) + Pr [T|7—7 5] *Ur (ya y*> .

Evolutionary stability is defined under the assumption that the resulting payoffs are

determined by this equilibrium set.'”

With potential multiplicity of equilibria, one may
require the resident type to withstand invasion in some or all equilibria. We have chosen the

most stringent criterion.

9To be more precise, we assume X to be a locally convex Hausdorff space, see Aliprantis and Border
(2006).

10This is in line with the literature on “indirect evolution” — see e.g. Giith and Yaari (1992), Huck
and Oechssler (1999) and Dekel et al. (2007) — and can be interpreted as an adiabatic process in which
preferences change on a slower time scale than actions, see Sandholm (2001).



Definition 2 A type 6 € O is evolutionarily stable against a type ™ € O if there exists
an & > 0 such that Iy (z*,y*,¢) > IL. (x*,y*, &) in all Nash equilibria (z*,y*) in all states
s=(0,7,¢) with e € (0,€). A type 0 is evolutionarily stable if it is evolutionarily stable
against all types T # 0 in O.

This definition formalizes the notion that a resident population with individuals of a given
type would withstand a small-scale “invasion” of individuals of another type. It generalizes
the Maynard Smith and Price (1973) concept of an evolutionarily stable strategy, a property
they defined for mixed strategies in finite and symmetric two-player games under uniform
random matching.

In a rich enough type space O, no type is evolutionarily stable, since for each resident
type 6 there then exist mutant types 7 who behave like the residents and thus earn the same
average payoff. We introduce a stringent notion of instability by requiring that there should
exist some mutant type against which the resident type achieves strictly less payoff in every
equilibrium in some population states where the mutant is arbitrarily rare:

Definition 3 A type 0 € O is evolutionarily unstable if there exists a type T € © such
that for each € > 0 there exists an € € (0,&) such that Iy (z*,y*, &) < II, (x*,y* €) in all
Nash equilibria (z*,y*) in state s = (0, 7,¢).

The next subsection describes the algebra of assortative encounters introduced by Bergstrom
(2003). This facilitates the analysis and clarifies the population-statistical aspects.

2.1 Algebra of assortative encounters

For given types 0,7 € O, and a population state s = (0, 7,¢) with € € (0,1), let ¢ (¢) be
the difference between the conditional probabilities for an individual to be matched with an
individual with type 6, given that the individual him- or herself either also has type @, or,

alternatively, type 7:
¢(e) =Pr(0],e] — Pr(f|r,e]. (4)

This defines the assortment function ¢ : (0,1) — [—1,1]. Using the following necessary
balancing condition for the number of pairwise matches between individuals with types 6
and T,

(1—e)-[L—Pr[o|d,]] = - Pr[d|r,e], (5)

one can write both conditional probabilities as functions of € and ¢ (¢):

{ Pr[0]0,e] = ¢(e) + (1 — ) [1 — ¢ ()] (6)
Pr0|r,e] = (1—¢)[l—¢(e)].



We assume that ¢ is continuous and that ¢ () converges as ¢ tends to zero. Formally:

lin% pe)=o0
for some o € R, the indezx of assortativity of the matching process. Defining ¢ (0) as o,
this extends the domain of ¢ from (0,1) to [0,1), and it follows from (6) that o € [0,1]."
Under uniform random matching, ¢ (¢) = 0 for all € € (0,1) and hence o = 0. In pairwise
interactions between siblings, ¢ (¢) = 1/2 for all € € (0,1) and hence o = 1/2, see Section 5.

2.2 Homo moralis

Definition 4 An individual is a homo moralis (or HM) if her utility function is of the
form
u,.i(a:,y):(1—l-€)-7r(x,y)+/£-7r(x,x), (7)

for some r € [0, 1], her degree of morality.*

It is as if homo moralis is torn between selfishness and morality. On the one hand, she
would like to maximize her own payoff. On the other hand, she would like to “do the right
thing,” i.e., choose a strategy that, if used by all individuals, would lead to the highest
possible payoff to all. This second goal can be viewed as an application of Kant’s (1785)
categorical imperative, to “act only on the maxim that you would at the same time will to be
a universal law”.!3 Torn by these two goals, homo moralis chooses a strategy that maximizes
a convex combination of them. If x = 0, the definition of homo moralis coincides with that
of “pure selfishness,” or homo oeconomicus; given any strategy y used by the other party,
she will use a strategy in arg max,cx 7 (z,y). At the opposite extreme, x = 1, the definition
of homo moralis coincides with that of “pure morality,” or homo kantiensis; irrespective of
what strategy the other party uses (or is expected to use), this extreme variety of homo

moralis will use a strategy in arg max,cy 7 (z, z).!

' This contrasts with the case of a finite population, where negative assortativity can arise for population
states with few mutants (see Schaffer, 1988).

12We thus adopt the notational convention that types 6 that are real numbers in the unit interval refer to
homo moralis with that degree of morality.

3More precisely, to always choose a strategy @ that maximizes 7 (z, ) is a maxim which, if upheld as a
universal law in the population at hand, would lead to the highest possible payoff among all maxims that are
categorical in the sense of not conditioning on any particular circumstance that would permit role-specific
strategies. See Binmore (1994) for a critical discussion of Kant’s categorical imperative.

1Tn his work on strategy evolution among siblings, Bergstrom (1995) finds that the selected strategy must
be a Nash equilibrium strategy of a game in which both players have what he calls semi-Kantian preferences.
Such preferences correspond to homo moralis with degree of morality xk = 1/2.



A special variety of homo moralis turns out to be important from an evolutionary point
of view, namely homo moralis with degree of morality equal to the index of assortativity,
Kk =0:

Uy (zyy)=(1—0)-7(x,y)+o-7(x,z). (8)

We call this variety homo hamiltonensis. This terminology is a homage to the late biologist
William Hamilton, who noted that for interactions between genetically related individuals,
genes driving the behavior of one individual are present in the relative with some genetically
determined probability, and argued that fitness had to be augmented to what he called
inclusive fitness (see Hamilton, 1964 a,b). In interactions between individuals with genetic
degree of relatedness o (Wright, 1922), u, (x,y) is the average inclusive fitness of mutants
in an infinitesimally small mutant subpopulation playing = in a resident population playing
y. For recent analyses of various aspects of inclusive fitness, see Rousset (2004) and Grafen
(2006).

It is worth noting that the preferences of homo moralis differ sharply from any prefer-
ences in which the domain is the payoff distribution, such as altruism, inequity aversion,
or a concern for efficiency. To see this, consider an individual who chooses a strategy in
arg max,cx W [ (z,y) , 7 (y, x)] for some increasing (welfare) function W. This is a set that
in general depends on the other party’s (expected) strategy y, while homo kantientis chooses
a strategy in argmax,cx 7 (x, ), a set that does not depend on the other party’s strategy
choice (see Section 6.2 for a more detailed comparison with altruism). The theory developed
here also differs from models in the literature on psychological games, see, e.g., Rabin (1993),
Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006).

3 Analysis

We first make three observations and then proceed to analyze evolutionary stability proper-
ties of preferences. First, since the strategy set is non-empty and compact and each type’s
utility function is continuous, each type has at least one best reply to each strategy. More
precisely, for each type 6 € © the best-reply correspondence 3, : X = X, defined by

Bo (y) = arg max g (z,y) YyeX,

is nonempty- and compact-valued (by Weierstrass’s maximum theorem) and upper hemi-
continuous (by Berge’s maximum theorem, see, e.g., Section 17.5 in Aliprantis and Border,
2006).

Second, by Definition 1, a (Bayesian) Nash equilibrium (z*,y*) in the limit population
state s = (0, 7,0) is defined by

{ T* € argmax,ey  Up (T, 1¥) (9)
y* €argmaxyex  (1—0)-ur (y,27) +0-ur (y,57).



The first line in this condition requires the strategy of the resident type 6 to be a best reply
to itself, in terms of the type’s own utility function. For each type 6 € O, let Xy, C X be the
set of strategies with this fixed-point property:

Xog={xeX:xzep,(x)}. (10)
In particular, let X, be the fixed-point set of homo hamiltonensis, the Hamiltonian strategies.

Third, letting BV (s) C X? denote the set of (Bayesian) Nash equilibria in population
state s = (0, 7,¢), that is, all solutions (z*, y*) of (3), one may show the following by standard
arguments (see Appendix for a proof):

Lemma 1 B (0,7, ¢) is compact for each (0,7,¢) € S. BNY (0,7,¢) # & if ug and u, are
concave in their first arguments. The equilibrium correspondence BN (0,7,-) : [0,1) = X?
s upper hemi-continuous.

We henceforth assume that the type space © contains homo hamiltonensis. Moreover,
let ©, be the set of types 7 that, as vanishingly rare mutants among resident homo hamil-
tonensis, are behaviorally indistinguishable from the residents:

O, = {7 €0 :3 (2°,y") € X that satisfies (9) for s = (¢,7,0) and z* =y*}.  (11)

Examples of such “behavioral alikes” are individuals with utility functions that are positive
affine transformations of that of homo hamiltonensis, and also individuals for whom some

strategy 7, € X, is dominant.

The type space will be said to be rich if, for every strategy there is some type that always
prefers to use this strategy. More precisely, © is rich if for each x € X there exists some
0 € © such that

ugp (z,y) > ug (2'yy) Vi’ £z, Vye X. (12)

Such a type 0 will be said to be committed to its strategy x.

We are now in a position to state our main result:

Theorem 1 If 5, (z) is a singleton for all x € X, then homo hamiltonensis is evolution-
arily stable against all types T ¢ O,. If © is rich, X9y N X, = & and Xy is a singleton, then
0 is evolutionarily unstable.

Proof: Given any population state s = (6,7,¢), the definitions (1) and (2) of the
associated average payoff functions Ily and II, may be re-written in terms of the assortment
function ¢ as

o (2,y,6) =1 —e+ep(e)]-7(x,2) +e[l = ¢(e)] - 7 (z,y) (13)

L For example, u, (z,y) = — (z — x,)> for all z,y € X.

10



and
- (z,y,e) =(1=e)[1 = ()] -7 (y,z) +[e+ (1 —€) o ()] -7 (y,9) . (14)
Since 7 and ¢ are continuous by hypothesis, so are 1Ty, IT, : X% x [0,1) — R.

For the first claim, let (z*,y*) be a Nash equilibrium in population state s = (o, 7,0).
Then z* € X,. In particular, u, (z*,2*) > u, (v*,2*), and if 8, (z) is a singleton for all
x € X,, this inequality holds strictly if 7 ¢ ©,: u, (z*,2*) > u, (y*,x*), or, equivalently,
m(z*2*) > (1 —o0) -7 (y*,a*)+ o7 (y*,y*). By definition of II, and IL,, we thus have

I, (:L’*, v, O) > 11, (:L‘*, y*,0) (15)

for all (z*,y*) € BN (0,7,0) and any 7 ¢ ©,. By continuity of II, and IL,, this strict
inequality holds for all (z,y,e) in a neighborhood U C X? x [0,1) of (z*,y*,0). Now
BNE(9,7,-) : [0,1) = X2 is closed-valued and upper hemi-continuous. Hence, if (z;,y;) €
BNE(0,7,e) for all t € N, &y — 0 and ((x¢, ),y converges, then the limit point (z,y°)
necessarily belongs to BN (0, 7,0). Thus, for any given £ > 0 there exists a T such that for
allt > T: 0 <e < and (z,y) € U, and thus I, (x4, yr, &1) > IL- (x4, ¢, €¢), establishing

the first claim.'6

For the second claim, let 6 € © be such that Xy = {zy} and 2y ¢ X,. Then u, (z9, xs) <
Uy (Z,29) for some & € X. If © is rich, there exists a type 7 € © committed to . Since 7 is

dominant for 7, individuals of this type will always play . Consequently, for any ¢ € [0, 1),
(ZE*,y*) € BNE (9, 7A',€) iff y* =z and

Tt € arg max 1—c+ep(e)]ug(z,2")+e[l —d(e)|ug(x, ).

In particular, BN (0,7,0) = {(xy, %)}, since xy is the unique solution to the first condition
in (9). Moreover, u, (zg, z9) < uy (Z,zy) is equivalent with

7 (xg,xg) < (1 —0) -7 (Z,29) + 07 (T, 1)

which in turn is equivalent with Iy (zg, £,0) < IL; (z¢,2,0). In other words, in the limit
when € = 0, the mutant 7 earns a higher payoff than the resident §. By continuity of I, and
I1;, this strict inequality holds for all (z, #, €) in a neighborhood U C X2 x [0,1) of (g, Z,0).
Now BNE(0,7,-) : [0,1) = X? is closed-valued and upper hemi-continuous. Hence, if
(24,41, t) € BYF(0,7,¢,) for all t € N, g, — 0 and (2, y1)),y converges, then the limit
point (z*,y*) necessarily belongs to B¥¥ (0,7,0), which, in the present case is a singleton,
so (z*,y*) = (zg, ). Moreover, y, = & for all t. Thus, for any given € > 0 there exists a T
such that for all £ > T: 0 < g, < € and (2, %) € U, and thus Iy (x4, Z,&;) < s (x4, T, &),
establishing the second claim. Q.E.D.

16Under the hypothesis of the theorem, it is not excluded that BY¥ (o,7,0) = @. By upper hemi-
continuity of BN¥ (o, 7,-) : [0,1) = X2, there then exists an £ > 0 such that BN¥ (0, 7,¢) = @ Ve € (0,2).
By definition, 6 is evolutionarily stable against 7 also in this case.
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Theorem 1 establishes that homo hamiltonensis is favored by evolution and that certain
other types are selected against. The first claim expresses that homo hamiltonensis resists
“invasions” by all types who do not, as mutants, respond by playing homo hamiltonensis’
own strategy. The intuition is that the unique “evolutionarily optimal” mutant response
(that is, in terms of the mutant population’s average payoff) to a resident Hamiltonian
strategy, is that same strategy. In this sense, homo hamiltonensis preempts mutants. The
second claim expresses that if the type space is rich, then any type that has a unique resident
strategy is vulnerable to invasion if its resident strategy is non-Hamiltonian. The uniqueness
hypothesis is made for technical reasons and it seems that it could be somewhat relaxed,
but at a high price in terms of analytical complexity.!” However, the intuition is clear: since
the resident type does not play a Hamiltonian strategy, there exists a better reply to it in
terms of homo hamiltonensis’ preferences. Because of the nature of those preferences, such
a better reply, if used by a mutant, results in higher payoff to the mutants than to the
residents. Since the type space is rich, there is a mutant type who is committed to such an
evolutionarily superior strategy, and thus will use it against any resident, who will then lose
out in terms of payoffs.

It follows immediately from the second claim in Theorem 1 that a necessary condition
for evolutionary stability of any type with a unique resident strategy is to behave like homo
hamiltonensis:

Corollary 1 If © is rich, 6 € O is evolutionarily stable and Xo = {xy}, then xy € X,.

Example 1 As an illustration of Theorem 1, consider a canonical public-goods situation.
Let w (z,y) = B(x +y)—C (x) for B,C : [0,m] — R twice differentiable with B',C',C" >0
and B" <0 and m > 0 such that C' (0) < B’ (0) and C' (m) > 2B’ (2m). Here B (x +y) is
the public benefit and C (x) the private cost from one’s own contribution x when the other
individual contributes y. Played by two homo moralis with degree of morality k € [0,1],
this interaction defines a game with a unique Nash equilibrium, and this is symmetric. The
equilibrium contribution, x,, is the unique solution in (0,m) to the first-order condition
C'(z) = (1+k)B'(2z). Hence, X, = {x,}. We note that homo moralis’ contribution
increases from that of the selfish homo oeconomicus when k = 0 to that of a benevolent
social planner when k = 1. Moreover, it is easily verified that 3, (y) is a singleton for all
y € [0,m|. Theorem 1 establishes that homo hamiltonensis, that is homo moralis with degree
of morality k = o, is evolutionarily stable against all types that, as vanishingly rare mutants,
would contribute y # x,. Moreover, if © s rich, and 0 € © is any type that has a unique
resident strateqy and this differs from x,, then 0 is evolutionarily unstable.

1"For a type 6 that does not have a unique resident strategy, the Nash equilibrium correspondence may
“explode” at ¢ = 0. If this happens, the resident’s payoff advantage when ¢ = 0 need no longer remain when
¢ > 0. However, if the correspondence is lower hemi-continuous at ¢ = 0, then it does not explode at that
point. We conjecture that the present proof, mutatis mutandis, will then go through.
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Note that the hypothesis in Theorem 1 that (., (z) be a singleton can be met even
by mixed strategies  when ¢ > 0, since then the preferences of homo hamiltonensis are
quadratic in his or her own randomization (see section 4).

3.1 Homo oeconomicus

Theorem 1 may be used to pin down evolutionary stability properties of homo oeconomicus.
We immediately obtain:

Corollary 2 If o = 0 and (3, (z) is a singleton for all x € Xy, then homo oeconomicus is
evolutionarily stable against all types T ¢ Og. If o > 0 and © is rich, then homo oeconomicus
is evolutionarily unstable if it has a unique resident strategy and this does not belong to X, .

The first part of this result says that a sufficient condition for homo oeconomicus to be
evolutionarily stable against mutants who play other strategies than homo oeconomicus is
that the index of assortativity be zero, granted homo oeconomicus has a unique best reply to
all of its resident strategies. This result is in line with Ok and Vega-Redondo (2001) and Dekel
et al. (2007), who both analyze the evolution of preferences under incomplete information
and uniform random matching. The second part says that if the index of assortativity is
positive, then homo oeconomicus is evolutionarily unstable when it has a unique resident
strategy and this is not Hamiltonian.

To shed more light on the stability /instability of homo oeconomicus, we distinguish two
classes of interactions, those that essentially are decision problems and those that are truly
strategic. First, consider fitness games (X, 7) where a player’s payoff does not depend on
the other’s strategy. For each individual in a population it is then immaterial what other
individuals do, so “the right thing to do,

” irrespective of the index of assortativity, is simply

to choose a strategy that maximizes one’s own payoff. As a result, homo oeconomicus can
thrive in such interactions even if the index of assortativity is positive, o > 0.

Corollary 3 Suppose that 7w (z,y) = 7 (x,y') for all z,y,y’ € X. Then homo oeconomicus
is evolutionarily stable against all types T ¢ ©g for all o € [0, 1].

In fact, in such interactions homo moralis with any degree of morality x € [0,1] is
evolutionarily stable against all types who fail to maximize their own payoff.

Secondly, consider fitness games (X, 7) that are truly strategic in the sense that a player’s
strategy does depend on the other player’s strategy. In order to simplify the reasoning, we
assume that X is one-dimensional and that 7 is twice differentiable, with strictly decreasing
returns to the player’s own strategy. Then the behavior of homo oeconomicus differs from
that of homo moralis with any positive degree of morality. As a result, homo oeconomicus
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is in dire straits when the index of assortativity is positive. Letting subscripts denote partial
derivatives:

Corollary 4 Suppose that Xy is a singleton, w11 < 0 and 7o (x,y) # 0 for all z,y € X. If
© s rich and homo oeconomicus is evolutionarily stable, then o = 0.

3.2 Strategy evolution

Our model differs from classical evolutionary game theory in two ways. First, classical evolu-
tionary game theory views strategies, not preferences or utility functions, as the replicators,
the objects that are subject to evolutionary forces. Second, the background hypothesis in
the standard set-up is that matching is uniform. To assume that strategies are the repli-
cators can be formulated within the present framework as the assumption that each type
is committed to some strategy and that the type space is rich. In such situations one may
identify each type with a strategy and wvice versa, and hence write © = X.

Identifying types with strategies, our general definition of evolutionary stability applies.
For any pair of strategies x,y € X, hence types, and any ¢ € [0, 1), the average payoffs are
as in equations (1) and (2), with 0 being the type committed to x and 7 the type committed
to y. The difference function S, , (¢) = Iy (z,y,e) — I, (x,y, €) is a generalization of what in
standard evolutionary game theory is called the score function of strategy x against strategy
y.'8 Applied to the present setting of strategy evolution, the stability definition in Section 2
boils down to:

Definition 5 Let © = X (strategy evolution) and consider random matching with assort-
ment function ¢. A strateqy v € X is evolutionarily stable if for every strateqy y # x
there exists an &, € (0,1) such that S, (¢) > 0 for all € € (0,&,).

We immediately obtain from Theorem 1 (the proof follows from standard arguments and
is hence omitted):?

Corollary 5 Let © = X (strategy evolution). FEvery strategy x, € X, for which 8, (z,) is
a singleton is evolutionarily stable. FEvery strategy v ¢ X, is evolutionarily unstable.

In other words, every Hamiltonian strategy which is its own unique best reply is evolu-
tionarily stable, and all non-Hamiltonian strategies are evolutionarily unstable. For certain

18Tn the standard theory (Bomze and Péotscher, 1989, and Weibull, 1995), ¢ = 0, so that
Sey () =1 —e)m(z,2) +em(z,y) —en(y,y) —(1—e)m(y,2).

19Note, however, that here homo hamiltonensis is not included in the type space. Homo hamiltonensis is
instead represented by a set of committed types, one for each Hamiltonian strategy.
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payoff functions 7, the Hamiltonian best-reply correspondence is not singleton-valued. The
following characterization is a generalization of Maynard Smith’s and Price’s (1973) original
definition and does not require singleton-valuedness. The hypothesis is instead that the de-
gree of assortment is independent of the mutant population share, a property that holds in
certain kinship relations, see Section 5.

Proposition 1 Let © = X (strategy evolution) and assume that ¢ (¢) = o. A strategy
x € X is evolutionarily stable if and only if (16) and (17) hold:

m(v,x) > 7 (y,z) +o-[r(yy) —7(y,z) VyeX (16)

m(rv,z) = 7w(y,z)+o-[r(yy) —7(y, ) (17)
= 7w(v,y)>7(y,y)+o-[r(yy) —7(y,2)].

(This follows from standard arguments, so no proof is given here.)

The necessary condition (16) can be written as © € X,, that is, the strategy must be
Hamiltonian. Further, condition (17) may be written

m(z,z) = 7w(y,x)+o-[r(y,y) —7(y,2)]
= m(z,y)+7(y,z)—7(x,x)—7(y,y) >0,

a formulation that agrees with the analysis in Hines and Maynard Smith (1979) of ESS in
fitness games played by relatives; see also Grafen (1979, 2006) and Bergstrom (1995).

Remark 1 In fitness games < X, 7™ > where homo hamiltonensis has a unique best reply
to each Hamiltonian strategy, Theorem 1 and Corollary 5 establish that preference evolution
under incomplete information induces the same behaviors as strateqy evolution. Hence, evo-
lutionarily stable strategies also emerge from preference evolution when individuals are not
programmed to strategies but are rational and play equilibria under incomplete information.

4 Finite games

The classical domain for evolutionary stability analyses is mixed strategies in finite and
symmetric two-player games, a domain to which we now apply the above machinery. Let
A be an m x m matrix, that to each row ¢ € S and column j € S assigns the payoft a;;
obtained when pure strategy 7 is used against pure strategy j, for all i, € S = {1,..,m}.
Permitting players to use mixed strategies, X is now the (m — 1)-dimensional unit simplex
A(S)={zeR?: Y, gz =1}, a compact and convex set in R™. The continuous, in fact
bilinear function 7 : X2 — R assigns the expected payoff, 7 (x,y) = x - Ay to each strategy
x € X = A(S) when used against any strategy y € X = A (5).
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Applying our general machinery for preference evolution under incomplete information
to finite games, for each type 0 € © let uy : X? — R be some continuous function, where
X = A(S). In particular, the utility function of homo moralis, of arbitrary degree of morality
k € [0, 1], is quadratic in the individual’s own strategy, =, and linear in the other individual’s
strategy 1:2°

g (,y) = (1 —kK) - 2Ay + k- 2Az = 2A[(1 — k) y + Kx]. (18)

A general stability analysis falls outside the scope of this study, so we here focus on
the more restrictive task of identifying the set of homo-moralis strategies in 2 x 2 fitness
games. For this purpose, it is convenient to use the notation z,y € [0, 1] for the probabilities
attached to the first pure strategy. For each x € [0, 1], the associated set X, C X = [0, 1] of
homo-moralis strategies is then the solution set to the following fixed-point condition:

Z,, € arg max (m,l—x)-(all “12>< G ) (19)

2€[0,1] a91 G99 1—z,—k(z—x)

Depending on whether the sum of the diagonal elements of A exceeds, equals or falls short
of the sum of its off-diagonal elements, the utility of homo moralis is either strictly convex,
linear, or strictly concave in his/her own strategy, so that the following result obtains:

Proposition 2 Let

# (k) = min {1, (20)

a12 + RQ21 — (1 + fi) 929 }
(1+ k) (@12 + agr —ay —ag) |

(a) If K > 0 and ay; + asy > a1z + as, then X,, C {0,1}.
(b) ]fli =0 (J,’I’Ld/OT’ a11 + Qo9 = Q12 + asy, then

{0} Zf a12 + KRag < (1 —+ /i) a92
)(,.i = [0, 1] Zf 19 + KA1 = (1 + Ii) a99
{1} Zf a12 + Kagy > (1 + Ii) a99

(c) If K > 0 and a11 + az < aiz + as, then

X, — { {0} if a1z + Kagy < (14 K) ag
Tl {& (R} if ara + Kas > (1 + k) as

Proof: The maximand in (19) can be written as

K (ay + ax — ajp — agy) - 22 + (1 — k) (a1 + age — @y — ag) T - @

+ [Cllz “+ Kag] — (1 -+ li) (122] - X+ (1 — li) . (agl — a/22) T + A22.

20Tn particular, mixed strategies may have unique best replies. For instance, if o € (0,1] and ags — a1z <
ag1 — a1, then w, is strictly concave in z, for each y € [0, 1].
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For k(aj; + ass — ajp —ag;) > 0, this is a strictly convex function of z, and hence the
maximum is achieved on the boundary of X = [0, 1]. This proves claim (a).

For k(a1 + ass — a12 — az;) = 0, the maximand is affine in x, with slope ajs + kag —

(14 k) age. This proves (b).

For k (a11 + age — aja — agy) < 0, the maximand is a strictly concave function of z, with
unique global maximum (in R) at

12 + KA9o1 — (]. + :‘i) a9

T = .
(1+ &) (a12 + ag1 — a1 — ag)

Hence, X,, = {0} if # <0, X, = {Z} if 7 € [0,1], and X,, = {1} if & > 1, which proves (c).
Q.E.D.

As an illustration, we identify the set X, of homo-moralis strategies, for each x € [0, 1],
in a one-shot prisoners’ dilemma with payoff matrix

A:(?i) (21)

where T'— R > P—S > 0. Case (c) of Proposition 2 then applies for all £ > 0, and an interior
solution, 7 (k) € (0, 1), obtains for intermediate values of k. More precisely, X,, = {0} for all
k< (P—=S)/(T'-P), X, ={1}forall k > (T'=R) /(R—S), and X, = {2 (k)} for all x
between these two bounds. See Figure 1 below, which shows how cooperation increases as
the degree of morality increases. In this example, the hypothesis of Corollary 2 is not met
and homo oeconomicus is not evolutionarily unstable for small ¢ > 0. The reason is that
although the behavior of homo oeconomicus is uniquely determined (namely to defect), it
coincides with that of homo hamiltonensis for all o < 1/4.

Figure 1: The (singleton) set of homo-moralis strategies for (T, R, P,S) = (7,5, 3,2).

As a second illustration, consider the hawk-dove game, the original example used by
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Maynard Smith and Price (1973) when they introduced the notion of an ESS:

()

for 0 < v < ¢ (see also Grafen, 1979). This game has a unique ESS, namely to use the first
pure strategy (“hawk”) with probability 2* = v/c. It is easy to verify that X,, = {z,}, where
1=k v
14k ¢

Ty

The probability for the aggressive and wasteful strategy hawk is thus strictly decreasing in
K, from its “classical” value, v/c, when k = 0 to zero when k = 1.

5 Matching processes

The analysis above shows that the process whereby individuals are matched affects the
stability condition for preferences, even though these are unobservable. This generalizes
the literature on preference evolution, where the underlying assumption has been that the
matching process is uniformly random.?! Arguably, uniform random matching is unrealistic
for most human interactions, since it requires that there be zero correlation between the
contact pattern that determines how mutations spread in society and the contact pattern
that determines who interacts with whom. However, there are many natural sources for a
positive such correlation. Below we provide examples thereof and show when assortativity
is positive in the limit as the population share of mutants tends to zero.

5.1 Kin

Our first example is inspired by the biology literature, which, as mentioned in the intro-
duction, has devoted considerable attention to the evolution of behaviors among genetically
related individuals. For interactions among kin it is straightforward to determine the assort-
ment function ¢ and to show that it takes on a constant and positive value for all mutant
population shares €. Furthermore, it will become clear that these arguments apply equally
well to traits that are culturally, rather than genetically, transmitted from parents to chil-
dren.

While the following arguments can readily be adapted to interactions between other
kin, we here focus on siblings. Suppose that each child inherits his or her preferences or
moral values from one of her parents. The number of mutants in a pair if siblings is then a
random variable, Z, that takes values in {0, 1,2}, and whose probability distribution depends

21 Exceptions are Alger (2010) and Alger and Weibull (2010, 2012a).
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on the parents’ types. Let 6 be the resident preference “type” in the parent generation,
represented in population share 1 —¢, and let the small residual population share e consist of
parents of some other type 7. Suppose that a given child inherits each parent’s preferences
with probability one half, that these random draws are statistically independent, and that
parents are monogamous. The inheritance mechanism could be genetic?? or cultural.?® Then,
the probability distribution for Z in a family where exactly one of the parents is of type
T, is (1/4,1/2,1/4), while in a family where both parents are of type 7, the probability
distribution for Z is (0,0,1). Among families with at least one parent of type 7, the fraction
2¢ (1 —¢) /[2e (1 — &) + £?] are families with exactly one parent of type 7, and the remaining
fraction, €2/ [2¢ (1 — €) + €2], consists of families where both parents are of type 7. Since on
average half of the children in the first kind of family have preferences 7, the probability
that a child with the mutant preference 7 has two mutant parents is

82

26(1—¢)/2+¢€2

=E&.

Hence, Pr[r|r,e] = (1 —¢)-1/24¢-1 = (1 +¢) /2. Likewise, Pr[0|0,¢c] = (1 —¢)-14+¢-1/2 =
1 — ¢/2. The function ¢ thus takes on the constant value one half, ¢(¢) = 1/2 for all
e € (0,1), so this is the index of assortativity. Moreover, one half is the so-called coefficient
of relatedness between siblings (Wright, 1922).2*

5.2 Geography, homophily and business partnerships

In our daily lives, we tend to interact more with those who live and work close to us than
with people at distant locations. More generally, we tend to interact more with those who
are similar to ourselves along one or more dimensions—such as language, culture, profession,
religion, dress, origin. This tendency, called homophily, has been extensively documented
by sociologists, see , e.g., McPherson, Smith-Lovin, and Cook (2001), and Ruef, Aldrich,
and Carter (2003). In the economics literature, homophily has been analyzed by Currarini,
Jackson, and Pin (2009, 2010) and Bramoullé and Rogers (2009). These latter studies
concern race- and gender-based choice of friends and meeting chances on the basis of data

22In biological terms, we here focus on sexual reproduction in a haploid species. Thus, each child has
two genetic parents, and each parent carries one set of chromosomes, and this determines heredity. Humans
are a diploid species, with two sets of chromosomes, which complicates matters because of the distinction
between recessive and dominant genes. For calculations of assortativeness in diploid species, see Bergstrom
(1995, 2003). See further Michod and Hamilton (1980).

23While Bisin and Verdier (2001) focus on the case of one parent per child and assume that each parent is
altruistic towards its child and makes an effort to transmit its cultural values to its child, here the probability
of transmission of parents’ cultural values to their children is exogenous.

24If the two children would have the same mother but different fathers (or the same father but different

mothers), one would instead obtain o = 1/4, the coefficient of relatedness between half-siblings.
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from U.S. high schools. Currarini, Jackson, and Pin (2009) find strong within-group biases
not only in the inferred utility from meetings but also in meeting probabilities. We proceed
to show, by means of a simple model, how and when homophily may give rise to assortativity
in the matching process, even though preferences are not observable.

Consider a finite population divided into groups of equal size n > 1. These groups may
be distinct geographical locations, languages or dialects, professions, cultures or religions
etc. Initially, all individuals in the population have the same preferences, or moral values,
6 € ©. Suddenly one group is hit by some shock, with equal probability for each group to
be hit. The effect on the group in question is that a random number, Z, of its n members
change their preferences or moral values from 6 to some 7 € ©, where E[Z] = € (1,n). If
the total population size is N, the expected population share of mutants is then ¢ = u/N.
After the population shock, pairs are randomly matched to play a symmetric fitness game
as above. The matching is done as follows. First one individual is uniformly drawn from the
whole population (as if looking around for a partner). With probability p (n, N) € [0, 1] the
other individual in the match is uniformly drawn from the same group as the first. With
the complementary probability the other individual is instead uniformly randomly drawn
from the rest of the population. In both cases, the matching probabilities are “blind” to
individuals’ types. However, in general the population share of mutants, in a mutant’s
matches, will not be e, not even on average. For if an individual is of the mutant type 7,
then her group must be the one where the shock occurred and hence

Z —1 w—1

Prir|r,e] = p(n,N) - E {—J =p(n,N) - E—.

By definition, ¢ (¢) = Pr[0]0,e] — 1+ Pr[r|r,e]. Letting N — oo while keeping the group
size n and the mean value y fixed: ¢ = u/N — 0, Pr[6]0,e] — 1 and
= lim 6 (&) = lim Pr |7, €] = - (n) (22)
o =lim¢(e) =lmPrlr|r,e] = —-p"(n),
where p*(n) = limy_ p(n,N). Hence, the index of assortativity is positive whenever
this limit probability of intragroup matching, as the number of groups tends to infinity,
is positive.?” See Rousset (2004) and Lehmann and Rousset (2010) for richer models of
population structure and assortativity.

Arguably, this simple model can shed some light on the role of homophily for assortativity
in matching. For it appears that “new” preferences or moral values usually arise within a
single group, and then spreads by way of teaching or imitation within the group, before it
either dies out, remains group specific, or begins to spread to other groups. In its initial
stages, it is thus like a “mutation” as described in the simple model above. Under homophily,

25 An immediate extension of this simple matching model is to let both the group size and the expected num-
ber of mutants increase with the population size. If n (N), u(N) — oo, p(N) /N — 0 and p (N) /n(N) — 6,
then o = 0 - p* (n), where p* (n) = limy_oop (n(N), N).
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individuals have a tendency to interact with fellow group members, usually because it is easier
or less costly (e.g., in terms of distance, language etc.) than interactions with members of
other groups. In terms of our model, we then have p (k,n) > 0, and the index of assortativity
will be positive if this intragroup matching probability does not tend to zero as the number
of groups grows.

Sociologists Ruef, Aldrich, and Carter (2003) show that homophily is a strong factor
in the formation of business partnerships. Our simple matching model also applies to this
class of interactions. To see this, consider a large population of business students who after
graduation set up pairwise business partnerships. Suppose that individuals’ business ethics
are sometimes influenced by the teachings in their school.?® In the above model, let each
graduating class be a group. Now and then, a teacher changes the teachings about business
ethics, and some students are then influenced by the new material. Under the assumptions
in the model, there will be positive assortativity if, on average, more than one student is
influenced by the new teaching material (2 > 1) and if the probability is positive for partner
formation among class mates even when the number of schools is large (p* (n) > 0). For
example, if the average class size is one hundred, the probability for forming partnership with
a class mate is one half, and the average number of students per class who are influenced by
the new teaching material is forty, then o = .2.

5.3 Conditional degrees of morality

Although our stability analysis was focused on only one fitness game, the model has clear
implications for the more realistic situation where each individual simultaneously engages
in multiple fitness games. Indeed, insofar as individuals can distinguish these, the degree
of morality that will be selected for will simply correspond to the index of assortativity
in the matching process for each fitness game. For instance, if individuals are recurrently
both engaged in some family interaction with a high index of assortativity and also in some
market interaction with a low index of assortativity, then the present theory says that one
and the same individual will exhibit a high degree of morality in the family interaction and be
quite selfish in the market interaction. More generally, the “type” of an individual engaged
in multiple interactions will be a vector of degrees of morality, one for each interaction,
adapted to the matching processes in question (but independent of the payoff structure of
the interaction).

For any given fitness game, an individual’s degree of morality may further depend on
other observable factors, such as group identity. To see this, suppose first that group mem-
bership in the matching model introduced in Section 5.2 is unobservable (to the individuals
in the population); then our model of evolutionary stability of preferences predicts that all

26Whether or not preferences acquired in school persist throughout life is an empirical question, which we
do not address here.
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individuals will be homo moralis with degree of morality

pw—1
n—1

K= p*(n).

However, in many real-life situations, group membership is observable. The evolutionarily
stable degree of morality in an interaction will then be conditioned on group membership.
To see this, suppose that all individuals in the simple matching model know their own
group identity and can recognize others’ group identity (but not others’ preferences or moral
values). Matched individuals can then condition their strategy choice on their own and their
opponent’s group identities. Our model of evolutionary stability of preferences can then be
applied separately to every pair (7,7) of group identities.?” In the simple matching model,
where a mutation occurs only in one group, the index of assortativity in interactions between
individuals from different groups is zero (since each mutant in such a pair is sure to meet a
resident). By contrast, if both individuals are from the same group, then the probability that
a given mutant’s opponent is also a mutant is Pr[7|7,¢] = (1 — 1) / (n — 1), while a resident
who is unaware of in which group the mutation has taken place will assign probability one,
in the limit as ¢ — 0, to the event that also the other individual is a resident. Our model
of preference stability then predicts that individuals will have zero degree of morality in all
inter-group interactions and a positive degree of morality in all intragroup interactions:

/-;‘.:{0 if § # j
“ (w—1)/(n—1) ifi=j.

This suggests that we should expect individuals, in interactions where their moral values is
their private information but group identity is public information, to typically show a higher
degree of morality when interacting with their observational likes. Arguably important—but
perhaps also controversial—applications abound. One need only think about such charac-
teristics as language, ethnicity, nationality, religion, residential location, profession etc.

6 Discussion

6.1 Asymmetry

Symmetric games may well have asymmetric Nash equilibria that Pareto dominate the sym-
metric equilibria. Since evolutionary stability is concerned with strategies that are best

27Game-theoretically speaking, each such pair defines a subgame in a game of incomplete information (as
to others’ types, but not group identities), and each such subgame is reached with positive probability under
any strategy profile.
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replies to themselves, evolutionarily stable outcomes may thus be socially inefficient. Con-
sider, for example, symmetric 2 x 2-games with payoff matrix

A:<2 g) (23)

for a,b > 0.2 The unique evolutionarily stable strategy under strategy evolution and uniform
random matching, the mixed strategy * = (a/ (a +b),b/ (a + b)), is Pareto dominated by
each of the asymmetric equilibria; ab/ (a + b) < min {a, b}. In truly symmetric interactions,
where individuals do not have any cue that assigns player roles to them, this is all that
can be said. However, if there is a public randomization device, or institution, that assigns
player roles 1 and 2 to each of the two individuals in each match, then individuals can
condition their action on the assigned role. If each role assignment is equally likely, then
this defines a symmetric game in which nature first assigns player roles whereafter the two
individuals simultaneously play in their assigned roles.?” This enables Pareto efficient play
in the above game. Indeed, play of the pure strategy equilibria is evolutionarily stable,
with expected payoff (a + b) /2 to each participant. This reasoning can be generalized to
assortative matching and to preference evolution in symmetric and asymmetric fitness games.
We briefly discuss two canonical applications in the next two subsections.

6.1.1 Helping others

Situations where individuals have the opportunity to help others are common, and they
can be modeled by way of a random dictator game. Assume that (a) with probability 1/2,
player 1’s initial wealth is w and 2’s is w! < w!!, (b) with probability 1/2 it is the other
way around, and (c) the wealthier individual may transfer any amount of his or her wealth
to the other. Let x be player 1’s transfer when rich and y 2’s transfer when rich, with
r,ye X = [O, wf ] We may then write the payoff function in the form

1
7 (z,y) = 3 [v (w” —2) +v (v +y)]
for some differentiable function v : [0,1] — R with v > 0 and v” < 0. Here v (w) is the
fitness or well-being that results from wealth w. Homo moralis has the following utility
function:

ug (z,y) = = [v (W’ —2) + ko (W +2) + (1 —kr)v (W +y)].

N —

28These games are strategically equivalent to hawk-dove games, and, under relabelling of one player role’s
strategy set, battle-of-the-sexes games. See Alés-Ferrer and Kuzmics (2012) for an analysis of symmetry
properties of games.

29This approach was first proposed in Selten (1980), for strategy evolution in finite games under uniform
random matching.
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Hence, z,, = 0 if v/ (w?) > ko' (w"), z, = w if v (0) < k' (w” + Aw™) and otherwise
Ty € (O, wht ) is the unique solution to the first-order condition v’ (wH — x) = kv’ (wL + )\:Jc).
At one extreme, k = 0, we have homo oeconomicus who gives nothing: zo = 0. At the
opposite extreme, x = 1, there is homo kantiensis, who transfers half of the initial wealth
difference, z1 = (w —w") /2, so that they end up with equal wealth. The (ultimate)
reason why homo moralis, of sufficiently high degree of morality (k > v’ (wH ) /v’ (wL) ), gives
something to the other individual is not a concern for fairness (although this may well be
an individual’s proximate motivation). Instead, the ultimate reason is fitness maximization
which may require some smoothing across states of nature, because of the assumed concavity
of fitness with respect to wealth. The “right thing to do” may thus be to give something to
the poor. We note that a higher degree of morality implies more efficient risk sharing from
an exr ante perspective.

6.1.2 Ultimatum bargaining

Consider the following scenario: (1) one monetary unit is handed either to individual 1 or
to individual 2, with equal probability, (2) the party who received the monetary unit, the
proposer, proposes a transfer ¢ € [0, 1] to the other party, (3) the other party, the responder,
either accepts or rejects the proposal. If accept: the responder receives ¢t and the proposer
1 —t. If reject: the monetary unit is withdrawn, so both parties receive nothing.

A monotonic pure strategy can be represented by a pair of numbers, z = (z1,22) € X =
[0, 1]2, where the first number, 7, is the amount to propose in the proposer role and the
second number, x5, is the smallest transfer to accept in the responder role, the “acceptance
threshold”. The monetary payoff to strategy = against a strategy y is thus

7o) =0 (0) 4 5 Loz [0 (=20 =0 O]+ 5 Lz [0 () = 0 (0)],

where v is as in the preceding subsection.? This payoff function is clearly not continuous.
Moreover, homo moralis’ best reply to a strategy y € X is in general not unique (if it
is a best reply to accept a certain positive transfer then it is also a best reply to accept
any lower transfer). By way of fairly involved but elementary calculations (see Alger and
Weibull, 2012b), one can verify that, for any given degree of morality x € [0, 1], there is
a whole continuum of homo-moralis strategies. Ultimatum bargaining between two homo
moralis typically admits multiple equilibrium outcomes, and the 50/50 split is an equilibrium
transfer for all x € [0,1].%

30Here 14 is the indicator function that takes the value 1 on the set A and zero outside it.

31This result is compatible with Huck and Oechssler (1999), who analyze evolutionary dynamics of strate-
gies in an ultimatum-bargaining game under uniform random matching.
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6.1.3 Repeated play

Finally, let us briefly consider a situation where no assigned player roles are given, but where
the (fitness) game with payoff matrix (23) is played repeatedly. Suppose further that moni-
toring is perfect. Suppose, more specifically, that this game is played in rounds ¢ = 1, .., 7T and
that payoffs from different rounds are added up. How would homo kantientis play? By defi-
nition, such an individual would use some behavior strategy y in Y} = arg max,ex 77 (v, y),
where 77 : Y2 — R is continuous and Y7 is the non-empty and compact set of behavior
strategies in this repeated game. Preliminary calculations suggest that one strategy in Y,
is to randomize uniformly over the two pure actions in the initial period and to continue
such (i.i.d.) randomization in each round until an asymmetric action pair has been achieved.
As soon as this happens: alternate between the two pure actions in all successive rounds.*?
This alternating strategy, y¢, is the only element of Y when 7' = 2, while for 7" > 2 any
pattern of play of the two asymmetric action pairs, once the symmetry is (randomly) bro-
ken, also belongs to Y;!. We conjecture that this is the unique strategy in Y if the fitness
effect of repeated play is any increasing, continuous and strictly concave function of the sum
of per-period payoffs, and if one requires robustness to (arbitrarily) small probabilities of
termination after each round ¢ < T.23 An investigation of this topic, more broadly dealing
with repeated play among homo moralis of arbitrary degrees of morality, falls outside the
scope of this paper. Such an investigation might shed light on the empirical observation that
human subjects in laboratory experiments engaged in repeated interactions seem to have a
tendency to alternate between asymmetric Pareto efficient action profiles (see , e.g., Arifovic,
McKelvey and Pevnitskaya, 2006).34

6.2 Morality vs. altruism

There is a large body of theoretical research on the evolution of altruism (e.g., Becker, 1976,
Hirshleifer, 1977, Bester and Giith, 1998, Alger and Weibull, 2010, 2012a, and Alger, 2010).
As noted above, the preferences of homo moralis differ sharply from altruism. We first show
that while in some situations morality and altruism lead to the same behavior, in others the
contrast is stark. Second, we discuss a situation where the behavior of homo moralis can be
viewed as less “moral” than that of an altruist, or even than that of homo oeconomicus.

32The use of early rounds of play to coordinate on future action profiles was analyzed for repeated coor-
dination games in Crawford and Haller (1990).

33 Arguably, even the slightest degree of concavity would favor alternating play in face of even the least
risk of break-down.

34While our approach may explain such behavior, learning models generally fail to do so; see Hanaki et
al. (2005) for a discussion and references, and for a model with learning among repeated-game strategies,
allowing for alternation.
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Altruism is usually represented by letting the altruist’s utility be the sum of her own
payoff and the payoff to the other individual, the latter term weighted by a factor « € [0, 1].
In the present context:

Uo (z,y) =7 (z,y) + a7 (y,2), (24)

where we will call a the degree of altruism.

The necessary first-order condition for an altruist at an interior symmetric equilibrium,

[7T1 (I, y) + AT <y7 I)]‘x:y - 07
is identical with that for a homo moralis,

(1 — k)T (2,y) + k1 (2, 2) + Kkmg (2, )] 0,

le=y —

if @« = k. Nonetheless, the second-order conditions differ (Bergstrom, 2009). Furthermore,
there is an important qualitative difference between homo moralis and altruists, namely,
that their utility functions are in general not monotonic transformations of each other. This
is seen in equations (7) and (24): for non-trivial payoff functions 7 and strategy sets X, and
for any «, k # 0, there exists no function 7' : R — R such that 7" [u, (z,y)] = u, (z,y) for all
x,y € X. This is seen most clearly in the case of finite games. Then u,, is linear in x while
u, is quadratic in z:
Uo (z,y) =2 Ay + ay - Az
{ ug (,y) = (1= k) x - Ay + ko - Ax

Consequently, the best-reply correspondence /3, of an altruist in general differs qualitatively

from the best-reply correspondence 3, of homo moralis, even when o = k. Indeed, the

K
equilibria among altruists may differ from the equilibria among homo moralis also when

a = K.

We further illustrate the tension between moralists and altruists, now in a finite game,
an example suggested to us by Ariel Rubinstein. Take the fitness game which consists in a
one-shot interaction with the payoff matrix given in (23), with a = 2 and b = 1, and consider
a homo kantiensis (k = 1), the “most moral” among homo moralis. Such a creature will
play z,—1 = 1/2.

Suppose now that such an individual visits a country where everyone plays the first pure
strategy, thus earning zero payoff in each encounter with each other. When homo kantiensis
interacts with a citizen in that society, the matched native earns more than when interacting
with other natives. However, if the visitor instead were a homo oeconomicus (x = 0), then
this new visitor would play the second pure strategy. Consequently, the other individual
in the match would earn more than in a meeting with homo kantiensis. In fact, this lucky
citizen would earn the maximal payoff in this game. Hence, citizens in this country would be
even more delighted to interact with homo oeconomicus than with homo kantiensis. What if
we would instead replace homo kantiensis by a full-blooded altruist, someone who maximizes
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the sum of payoffs (o« = 1)? Given that all citizens play the first pure strategy, the best such
an altruist could do would be to play the second pure strategy, just as homo oeconomicus
would.

This example illustrates that the behavior of homo kantiensis is not necessarily “more
moral” in an absolute sense and in all circumstances, than, say homo oeconomicus or an
altruist. However, homo kantiensis is more moral in the sense of always acting in accordance
with a general principle that is independent of the situation and identity of the actor (moral
universalism), namely to do that which, if done by everybody, maximizes everybody’s payoff.

Remark 2 Suppose that the citizens of the country imagined above would like to achieve
the highest possible payoff but are not even aware of the second pure strategy. Then homo
kantiensis would, by his own example, show them its existence and thus how they can increase
their payoff in encounters amongst themselves. Indeed, an entrepreneurial and benevolent
visitor to the imagined country could go one step further and suggest a simple institution
within which to play this game, namely an initial random role allocation, at each pairwise
match, whereby one individual is assigned player role 1 and the other player role 2, with equal
probability for both allocations. This defines another symmetric two-player game in which
each player has four pure strategies (two for each role). In this “meta-game” G', homo
kantiensis would use any of two strategies x!._,, each of which would mazximize the payoff

(2. _y, 2 _,), namely to either always play the first (second) pure strategy in the original

game when in player role 1 (2), or vice versa. In both cases, ' (x!._,,x._y) = 3/2, a higher

k=1 YKr=1
payoff than when homo kantiensis meets himself in the original game: m (=1, Zx=1) = 3/4

(c.f. the discussion in section 6.1.3).

6.3 Empirical testing

An interesting empirical research challenge is to find out how well homo moralis can ex-
plain behavior observed in controlled laboratory experiments. Consider, for example, an
experiment in which (a) subjects are randomly and anonymously matched in pairs to play
a two-player game in monetary payoffs (or a few different such games), (b) after the first
few rounds of play, under (uniformly) random re-matching, subjects receive some informa-
tion about aggregate play in these early rounds, and (c) are then invited to play the game
once more (again with randomly drawn pairs). One could then analyze their behavior in
these later rounds under the hypothesis that in this last round they play a (Bayesian) Nash
equilibrium under incomplete information, where each individual is a homo moralis with an
individual-specific and fixed degree of morality. How much of the observed behavior could
be explained this way? How well would homo moralis fare in comparison with established
models of social preferences? In an early experimental study of a prisoners’ dilemma in-
teraction, analyzed as a game of incomplete information, Bolle and Ockenfels (1990) show
that observed behaviors are better explained by individual-specific ‘moral standards’ than
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altruism. Similar experiments could be carried out to test the homo moralis hypothesis. It
would also be interesting to compare empirical results for different cultures, and to see if
such differences can be explained in terms of assortativity differences between these cultures.

7 Conclusion

We have here tried to contribute to the understanding of ultimate causes for human mo-
tivation by proposing a theoretical model of the evolution of preferences, when these are
private information and when the matching process is random but may involve some cor-
relation between types in the matches. Our approach delivers new testable predictions.
Although we permit all continuous preferences over strategy pairs, we find that a particu-
lar one-dimensional parametric family, the preferences of homo moralis, stands out in the
analysis. A homo moralis acts as if he or she had a sense of morality: she maximizes a
weighted sum of own payoff, given her expectation of the other’s action, and the payoff that
she would obtain if also the other party were to take the same action. We show that a cer-
tain member of this family, homo hamiltonensis, is particularly viable from an evolutionary
perspective. The weight that homo hamiltonensis attaches to the second goal is the index of
assortativity in the matching process. Our theory further predicts that if one and the same
individual is engaged in multiple pairwise interactions of the sort analyzed here, perhaps
with a different index of assortativity associated with each interaction (say, one interaction
taking place within the extended family and another one in a large anonymous market), then
this individual will exhibit different degrees of morality in these interactions, adapted to the
various indices of assortativity.

While the general predictive power of preferences a la homo moralis remains to be care-
fully examined, the behavior of homo moralis seems to be broadly compatible with much
of the experimental evidence (for preliminary calculations in this direction, see Alger and
Weibull, 2012b). What’s more, the goal function of homo moralis appears to be consistent
with how many subjects justify their behavior in the lab, namely, by saying that they wanted
to “do the right thing” (see, e.g., Dawes and Thaler, 1988, Charness and Dufwenberg, 2006).
While we leave analyses of policy implications of such moral preferences for future research,
we note that, in our model, the degree of morality, the evolutionarily stable weight attached
to the second goal, is independent of the payoff function in the interaction at hand. Hence,
the degree of morality cannot be “crowded out” in any direct sense by economic incentives.
For instance, if one were to pay people for “doing the right thing” or charge a fee for “doing
the wrong thing,” while this would change the payoffs and thus also the behavior of homo
moralis, in an easily predictable way , evolutionary forces would not change her degree of
morality (as long as the matching process remains the same).

While the self-interested homo oeconomicus does well in non-strategic interactions and in
situations where there is no assortativity in the matching process, natural selection wipes out
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homo oeconomicus in large classes of other situations. Arguably, assortativity is common in
human interactions. Allowing for arbitrary degrees of assortativity in the matching processes,
our analysis suggests that the more general notion of homo moralis (with a degree of morality
in the unit interval) should replace the more special notion of homo oeconomicus (with zero
degree of morality) as a benchmark for human motivation.

This is but a first exploration, calling for extensions and applications in many directions
and areas, such as multi-player interactions, asymmetric and repeated interactions, signals
and cues about others’ types, partner choice, public-goods provision, environmental policy,
institution building, voting and political economy.
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Appendix: proof of Lemma, 1

By hypothesis, uy and w, are continuous and X is compact. Hence, each right-hand
side in (3) defines a non-empty and compact set, for any given ¢ € [0,1), by Weierstrass’s
maximum theorem. For any (0,7,¢) € S, condition (3) can thus be written in the form
(z*,y*) € B. (z*,y*), where B. : C = C, for C = X? and ¢ € [0, 1) fixed, is compact-valued,
and, by Berge’s maximum theorem, upper hemi-continuous. It follows that B. has a closed
graph, and hence its set of fixed points, BN (6, 7,¢) = {(z*,y*) € X? : (z*,y*) € B (z*,y*)}
is closed (being the intersection of graph (B.) with the diagonal of C?). This establishes the
first claim.

If up and u, are concave in their first arguments, then so are the maximands in (3).
Hence, B. is then also convex-valued, and thus has a fixed point by Kakutani’s fixed-point
theorem. This establishes the second claim.

For the third claim, fix 6 and 7, and write the maximands in (3) as U (z,z* y*,¢)
and V (y,z*,y*,€). These functions are continuous by assumption. Let U* (z* y* &) =
max,ex U (z,2%,y*, €) and V* (2%, y*,¢) = max,ex V (y,2*, y*, €). These functions are con-
tinuous by Berge’s maximum theorem. Note that (z*,y*) € BV¥ (0,7, ¢) iff

* * * _ * * >
{U (x*,y*,e) = U (x,2*,y*,e) >0 Ve e X (25)

Ve (a*,y*e) = Uly,2",y%,e) >0 Vye X.

Let (g¢),cy — €° € [0,1) and suppose that (z},y;) € BN¥ (0, 7,¢,) and (x7,y;) — (2°,9°).
By continuity of the functions on the left-hand side in (25),

U* (x°,y°,e°) — U (x,2°,4°,e°) >0 Vre X
V* (x°,y°e°) = U (y,2°,4%¢e°) >0 Yye X

and hence (z°,y°) € BN¥ (0, 7,¢°). This establishes the third claim.
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