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In an attempt to elucidate’the laminar/turbulent transition mechanism in a Blasius boundary-layer 
flow, a nonsemisimple resonance of phase-locked secondary instability modes is investigated. The 
local nonhnear behavior is described by means of a center manifold reduction. The numerically 
computed normal form is of the symmetric Takens-Bogdanov type and predicts a homoclinic orbit 
which is possibly related to a physical bursting process. A global continuation procedure for 
equilibrated three-dimensional (3-D) waves in the full Navier-Stokes system validates some of the 
local predictions and very closely outlines the experimentally observed skin friction domain 
including subcritical transition. Q 1995 American institute of Physics. 

I. INTRODUCTION 

The question of a possible link between turbulent fluid 
flow and low-dimensional dynamics has been explored ex- 
tensively during recent years. One hopes that low- 
dimensional models capture the main features of the flow 
and elucidate more readily the relevant laminar/turbulent 
transition scenario or provide a deeper understanding of the 
turbulence generating mechanism. Most of the previous 
work in this area deals with “closed” flow systems, such as 
Taylor-Couette or convection problems (see, for example, 
Refs. 1 and 2 and references cited therein). 

One of the first attempts to establish a rational relation- 
ship between a turbulent “open” flow system and low- 
dimensional dynamical systems appears to be the work of 
Aubry et al.3’4 and Zhou and Sirovich.’ These authors de- 
rived a low-dimensional model by expanding the known ve- 
locity field (obtained either experimentally or numerically) in 
terms of, Karhunen-Loeve eigenfunctions and truncating at 
low order. These Karhunen-Lo&e eigenfunctions are ob- 
tained by the so-called proper orthogonal decomposition 
technique, ‘which is optimal In the sense that the series for 
the velocity field converges optimally fast by well-defined 
criteria. While serious controversies still exist with regard to 
the correct modeling (cf. Berkooz et aZ.,6 Sirovich and 
Zhou7), both research groups find intermittent and chaotic 
bursting behavior in their models. 

Using direct numerical simulation data of Rist and 
Fasel,s Rempfer and Fasel’ applied the proper orthogonal 
decomposition to a transitional flat plate boundary layer 
which is also at the center of our interest. They were able to 
demonstrate that the most energetic Karhunen-Loeve eigen- 
functions are indeed related to observed “coherent struc- 
tures” and at the same time provide an unambiguous math- 
ematical formulation of the latter. In particular, Rempfer and 
Fasel” identified a higher-order structure during which the 
spike stage induces a strong updraft away from the wall. As 
pointed out by the authors, this striking similarity to the 
bursting event of fully turbulent boundary layers suggests 
similar underlying mechanisms. More light could be shed on 

these mechanisms by applying the methods of dynamical 
systems theory to the truncated evolution equations, as, for 
example, in Aubry et al.3*4 While such an investigation is 

planned for the future by the authors, we use in the present 
paper an alternative method for deriving a low-dimensional 
model built upon successive bifurcations of the flow. In par- 
ticular, Guckenheimer and Holmes” and Coullet and 
Spiegel’ observed that multiple bifurcation points often pro- 
vide organizing centers for the dynamics of the problem. A 
local nonlinear analysis leads to so-called normal form or 
amplitude equations which frequently capture the main fea- 
tures of the full system in a sufficiently large neighborhood 
of the degeneracy. A major task remains finding the flow 
conditions which correspond to such multiple bifurcation 
points. In general, only one primary instability mode can 
become unstable. Therefore, at the primary instability level, 
it is customary to add additional control parameters, such as 
density or concentration gradients, rotation or magnetic 
fields, to create multiply unstable systems, which can then be 
traced to polycritical states (see, for example, Refs. 11-13). 
Without any additional parameters but using the empirical 
turbulent mean profile as basic flow input, Jang et aLI found 
a bicritical direct resonance between three-dimensional (3-D) 
primary Orr-Sommerfeld and vertical vorticity (Squire) 
modes. They used this to explain the preferred scales of 3-D 
disturbances in turbulent flow. 

For the classical Blasius boundary layer, and its parallel- 
flow paradigm plane Poiseuille flow, it is well known (cf. 
Herbert”) that the two-dimensional (2-D) finite-amplitude 
primary instability waves become unstable to 3-D secondary 

instabilities, but the consecutive bifurcations and their impor- 
tance for the transition process are still poorly understood. 
Using 2-D equilibrium solutions in a Blasius boundary 
layer16,17 as base flow it was shown by Koch,16 that two 
neutral phase-locked temporal secondary instability modes 
can coincide to form a bicritical, nonsemisimplk resonance. 
Here nonsemisimple means that only one eigenfunction ex- 
ists for the two coinciding eigenvalues. Equilibrium solu- 
tions are very special, generally unstable solutions of the 
Navier-Stokes equations possibly related to the large-scale 
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coherent structures observed in transitional or turbulent tlqw 
(cf. Saffman,” Newell et aZ.19). But they have the advantage 
that, aside from the parallel-flow assumption used in our in- 
vestigation, no modeling or empirical input is needed. 

In the present work, we investigate the nonlinear solu- 
tion in the vicinity of this bicritical modal degeneracy in the 
hope of finding some clues for the transition mechanism. 
Similar to our previous local analysis near semisimple de- 
generate bifurcation points in plane Poiseuille flow,?-’ the rel- 
evant nonlinear normal form equations are derived by a nu- 
merical reduction on the center manifold.“,: In the present 
Blasius boundary-layer case this leads to the symmetrical 
Takens-Bogdanov normal form. Of prime interest is the ap- 
pearance of a homoclinic bifurcation which possibly is the 
dynamical origin of a bursting process. To test the local pre- 
dictions we also performed a global numerical continuation 
analysis for equilibrated 3-D w‘aves in the full Navier- 
Stokes system. While the predicted tertiary Hopf bifurcations 
were verified for the full system, the homoclinic bifurcations 
can only be detected by a dynamical full scale simulation 
which is outside the scope of the present investigation. 

II. FORMULATION OF THE PROBLEM AND LINEAR 
RESULTS 

We consider the flow of an incompressible viscous fluid 
of constant kinematical viscosity V* past a semi-infinite flat 
plate located at y*=O, OGX”, --rio<z*<m. In order to com- 
pute the basic (laminar) state for this geometry, we impose 
certain simplifying assumptions, most stringent of all the 
parallel-flow assumption.” By introducing an artificial force 
term, the laminar Blasius boundary layer becomes an exact 
solution of the Navier-Stokes equations. This is a weak 
point of our approach, but as shown by Bertolotti and 
Herber? the~effect of nonparallelity is small as long as the 
direction of wave propagation does not deviate too much 
from the mean-flow direction. With increasing deviations 
from the basic Blasius flow, this force term is kept constant 
in our formulation. This corresponds to a constant wall shear 
stress, analogous to the constant pressure gradient formula- 
tion for plane Poiseuille flow.” Similar to the changed 
center-line velocity in plane Poiseuille flow, the free-stream 
velocity far from the plate will therefore also differ from the 
laminar free stream velocity Uz . The use of the physically 
more realistic constant free stream velocity boundary condi- 
tion necessitates the use of a variable force term.‘7723 

Introducing the self-similarity reference length L * 
= (v*~*/lJ:)“~, h t e quasiparallel Blasius profile depends 
only on the nondimensional coordinate y = y *IL * normal to 
the wall. Superimposing a disturbance velocity v= (u,u, w) 
and pressure perturbation p to the quasiparallel Blasius 
boundary-layer f-low [ti(y),O,O], the Navier-Stokes equa- 
tions can be written in the primitive variable formulation 

;+I:uw-Cl 
1 

g+u E (y)i+Vp-- g *v 
dy 

f(v-V)v=O, (1) 

Here Re = Uz*/v’ = (U~X*/V*)~~ is the local Reynolds 
number and i denotes the unit vector in the nondimensional 

streamwise direction x=x*/L*. The equations have been 
transformed to a frame of reference moving with the (un- 
known) wave speed C in the streamwise direction, where 
initially C is determined by the 2-D traveling-wave equilib- 
rium solution. In this moving frame of reference the flow is 
steady, i.e., d/&=0. Equations (1) are subject to the no-slip 
condition for v at the. wall y=O and to appropriate decay 
conditions. at infinity for all fluctuating quantities. Only the 
mean-flow correction remains finite and satisfies a Neumann 
boundary condition at infinity due to’the constant wall shear 
stress condition.16 

The system (1) can-be reformulated in terms of the nor- 
mal velocity u and the normal.vorticity ~=dnldz- dwldx as 
independent variables,.“‘24 .. The solution is assumed to be pe- 
riodic in the streamwise x direction, as well as spanwise z 
direction with wavelengths XXs271-la and Xz~2~.l& respec- 
tively. Then the independent flow quantities can be expressed 
as (truncated) modal expansions 

[ ;z::i) =ngN & (:::‘,::ii ; 
Xexp[i(ncu+m@z)]. (2) 

According to Squire’s theorem, the critical Reynolds 
number is reached via 2-D linear Tollmien-Schlichting 
waves. Starting with these on the neutral curve, a numerical 
continuation procedure provides the nonlinear 2-D equilib- 
rium surface (M=(l), as described in Ref. 16, where the stir: 
face of the nonlinear Tollmien-Schlichting waves was com- 
puted for various Fourier truncations N. Besides the 
description of the 2-D neutral surface, Ref. 16 also contains a 
secondary stability analysis of these nonlinear solutions. The 
basic state (the 2-D nonlinear equilibrium solution) is peri- 
odic in the streamwise direction x and its stability, with re- 
spect to three-dimensional disturbances, can be computed by 
applying Floquet theory:r5 Concentrating on fundamental 
parametric resonances, corresponding to phase-locked distur- 
bances of Klebanoff-f-type (cf. Ref. 15), the existence of a 
bicritical direct resonance, that is a nonsemisimple reso- 
nance, was detected in Ref. 16. Interestingly, this modal de- 
generacy occurs for a Reynolds number in the range of the 
experimentally observed transition Reynolds number for 
Blasius flow .(cf. Fig. 10 in Ref. 16). 

The analysis of this modal degeneracy between three- 
dimensional secondary instability modes is the main topic of 
this paper. Using a streamwise truncation N=2 and K =SO 
Chebyshev polynomials in the wall normal direction, the 
resonance occurs on the 2-D equilibrium surface for Re=882 
and a+.232 8913. The upper part of Fig. 1 shows the cor- 
responding cuts through the 2-D neutral surface in the (E,cr) 
and (E,Re) plane, respectively, E being the 2-D fluctuation 
energy. l6 The bicritical point (marked by the open circle in 
Fig. 1) is located below the turning point of the 2-D equilib- 
rium solution, where instabilities due to (superharmonic) 2-D 
disturbances are also expected. Hence, before investigating 
the resonance between 3-D instability modes, we briefly dis- 
cuss 2-D instability. Two-dimensional secondary instability 
can be computed via Floquet analysis (see, for example, 

Phys. Fluids, Vol. 7, No. 6, June 1995 U. Ehrenstein and W. Koch 1283 
Downloaded 15 Mar 2006 to 134.59.10.172. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



a) 

.050 

w 

.025 

.ooo 
.15 .20 .25 

a 

.050 

w 

-025 

1000 

Re 

.20 

a Re 

FIG. 1. Amplification rate Re(@ of superharmonic Z-D phase-locked (solid lines in lower figures) and nonphase-locked (dashed lines) secondary instability 
modes as function of streamwise wave number cx for Re=882 (a), or as function of Reynolds number Re for (~=0.232 8913 (b) with N=2. The upper part 
of the figures shows the corresponding cuts through the 2-D neutral surface, E being the 2-D fluctuation energy. The location of the bicritical point is marked 
by open circles. 

Pugh and Saffman” or Soibelman and Meiron% for the cor- 
responding plane Poiseuille flow casej. In our moving frame 
of reference the Z-D equilibrium solution is steady, so that 
we may obtain its stability, with respect to 2-D superhar- 
manic disturbances, as a byproduct of the 2-D continuation 
procedure. Linearizing the time-dependent equations around 
the 2-D equilibrium solution, we may use the Jacobian of the 
continuation procedure to formulate a large generalized ei- 
genvalue problem. To minimize numerical errors this gener- 
alized eigenvalue problem is reduced to an ordinary eigen- 
value problem which is then solved by a standard eigenvalue 
routine. 

After eliminating the phase-shift eigenvalue CT=O, a con- 
sequence of the translational invariance in streamwise direc- 
tion (cf. Pugh and SaffmanE), the 2-D equilibrium solution 
is unstable to 2-D secondary disturbances if the real part of 
the largest eigenvalue max, %e(c)>O. For the Re=const and 
cr=const cuts through the bicritical point (marked by the 
circle) the resulting amplification rates se(u) are shown in 
the lower part of Fig. 1. Phase-locked 2-D instability modes 
[%e(cr)>O, Jm(oj=O, depicted by solid lines] are observed 
on the lower branch, while nonphase-locked instability 
modes [%e(oj>O, 3m(c)#O, depicted by dashed lines] ap- 
pear near the turning point, as well as for higher Reynolds 
numbers on the upper branch (compare the corresponding 
plane Poiseuille flow results25-27). The amplification rate at 
the bicritical point is again marked by a circle. 

The secondary amplification rates se(c) for 3-D sec- 
ondary disturbances are depicted in Fig. 2 as functions of the 

spanwise wave number p for Re=882 and ~=0.2328913. 
The solid lines in Fig. 2 represent phase-locked modes (i.e., 
these modes generate 3-D solutions traveling with the phase 
speed of the 2-D solution), dashed lines show nonphase- 
locked modes corresponding to quasiperiodic solutions in the 
laboratory frame of reference. One observes the modal de- 
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FIG. 2. Amplification rate Re(u) of 3-D phase-locked (solid lines) and 
nonphase-locked (dashed lines) secondary instability modes as function of 
spanwise wave number p on the 2-D equilibrium surface for Re=882, 
a=0232 8913, N=2. The point in the insert marks the position of the 
modal coincidence (at p=2.554) on the Z-D neutral surface. 
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FIG. 3. Change of phase-locked (--) and nonphase-locked (---) 3-D secondary amplification rates as function of spanwise wave number p in the vicinity of 
the N=2 bicritical bifurcation point at ((~b~~,Re&=(0.232 891 3, 882). 

generacy between the first and second phase-locked mode at 
,G=2.554. Only minor deviations are observed from the bi- 
critical N=3 result of Ref. 16, such that one can be fairly 
confident that nonlinear dynamics of our truncated system (at 
N=2) is in qualitative agreement with the full solution near 
the degeneracy. Again, the insert of Fig. 2 shows the position 
of the resonance on the 2-D neutral surface (for Re=882) in 
the (E, a) plane. We note that the maximal amplification rate 
of the 3-D disturbances is an order of magnitude higher than 
that of the 2-D disturbances (cf. Fig. 1) clearly indicating the 
dominance of 3-D secondary instabilities (cf. Herbert15). 

The occurrence of a bicritical resonance between 3-D 
secondary instability modes is possibly of importance for the 
transition process. This modal degeneracy implies the exist- 
ence of a double zero eigenvalue with only one eigenvector, 
indicating a nonsemisimple resonance (cf. Ref. 28) leading 
to an algebraic growth of secondary amplitudes.‘6 For in- 
stance, the secondary temporal growth at the bicritical point 
~i,=2.554 is proportional to t (see next section). For a 
certain transient time this algebraic growth is the dominant 
one, because the amplification rates of nearby exponentially 
amplified modes (i.e., for p<pbicr in Fig. 2) are small. Also, 

the existence of this resonance provides a rare opportunity to 
apply bifurcation theory to finite-amplitude solutions of the 
Navier-Stokes equations. Figure 3 summarizes the linear 
connect-and-cut process between the phase-locked secondary 
modes in the vicinity of the bicritical bifurcation point (ar,tcr, 

Rebicr). Of particular interest is that a local (positive) change 
in the parameter values leads to the appearance of a Hopf 
bifurcation. This obviously results from the mode interac- 
tion. We note that in 2-D plane Poiseuille flow similar sec- 
ondary Hopf bifurcations have been predicted as a result of a 
resonance between secondary 2-D modes.29 Those secondary 
Hopf bifurcations also lead to quasiperiodic solutions, since 
the basic state is a traveling wave.26,27,29 Computations of 
those 2-D solutions for plane Poiseuille flow can be found in 
Ref. 26. In our Blasius flow computation, the resonance oc- 
curs between 3-D disturbances. It is generally believed that 
three-dimensionality is essential for the transition process. 
We therefore disregard the weak instabilities resulting from 
2-D secondary disturbances, and concentrate on the reso- 
nance of the 3-D secondary instability modes whose ampli- 
fication rates are typically an order of magnitude higher. For 
the corresponding local reduction to be significant it is im- 
portant to note that for the ~3 value of resonance all other 3-D 
secondary stability modes are damped (cf. Fig. 2). 

III. LOCAL NONLINEAR REDUCTION 

The nonsemisimple resonance is a bifurcation point of 
algebraic multiplicity two and geometric multiplicity one. 
Therefore, the description of the local behavior necessitates 
the computation of the generalized nullspace of the 3-D 
Jacobian .U=J (v20, abicr, Rebtcr , &icr) at the degenerate bi- 
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FIG. 4. Real part (-) and imaginary part (...) of the $v(y) component of 
the secondary neutral eigensolution (a), as well as of the generalized sec- 
ondary eigensolution (b) in the bicritical bifurcation point at Re=882, 
a=0232 8913, p=2.554. 

furcation point (cf. Ref. 28). The computation of the 3-D 
Jacobian can be performed by extending our 3-D continua- 
tion analysis” to quasiparallel boundary-layer flow. Using 
the constant force term formulation, preliminary 3-D equilib- 
rium results for spanwise symmetric oblique waves in a qua- 
siparallel Blasius boundary layer are reported in Ref. 24. 

The 3-D secondary eigensolutions q are single p modes 
of the general form 

rJ CGY ,z) i I 
N 

= exp(Wz) C 
~,lCY) 

VkY 72) i I n=-N c%,(Y) 
exp(incux). 

Figures 4(a) and 4(b) show a component of the secondary 
eigenfunction ‘pr , as well as of the generalized eigenfunction 
e, which is a solution of the system 

In the following, we try to check the correspondence 
between the stability of the trivial solution of (3) and the 
numerically obtained linear secondary stability results de- 
picted in Fig. 3. Introducing a small amplitude E and per- 
forming the following scaling in amplitude variables, param- 
eters and time 

JR = WC, -q=41, x, = E2& ) a,= E2S.. 
‘l ’ 7= Et, 

for an appropriate constant of normalization y The center 
manifold reduction provides a powerful technique in order to 
describe the local bifurcation behavior.1090 If we denote the 
generalized nullspace by EC, the center manifold theorem 
stipulates the existence of a center manifold w” tangent to 
EC at the bifurcation point. The reduced system is then ob- 
tained by projection onto EC. If there is no unstable eigens- 
pace EU at the bifurcation point, the reduced system deter- 
mines the stability of the global system.30 In our case, the 
physically most important instabilities are 3-D and, as noted 
before, E* is empty for the family of 3-D disturbances in the 
degenerate bifurcation point. 

Similar to our plane Poiseuille flow study,20p22 we as- 
sume that the bifurcating 3-D solutions are invariant with 
respect to the spanwise reflection z-+-z. Accordingly, the 
continuous translation in the spanwise direction z-+z+ 1 re- 
duces to the discrete one z-+r+X$2, 1, being the wave- 
length in the z direction. Since the secondary modes gener- 
ating the generalized nullspace are single p modes, this leads 
to a symmetry operator S such that 

We denote by xi, i = 1,2, the (local) amplitudes of ‘pi, i = 1,2. 
Then the representation of S in the amplitude space is given 

by 

h,x2)4--q,-x2). 

The reduced system is equivariant with respect to this sym- 
metry and its Taylor expansion containing all cubic terms in 
the amplitude variables is 

X2= 6,,x1+ 8222x2+blx;+ b&2+b3x1x;+b4.x;, (3) 

where the ~ij are functions of the local changes in the physi- 
cal parameters a: p, and Re. 

The various coefficients of (3) were computed by nu- 
merical projection of the global, discrete system (truncated at 
N=M=2) onto the center manifold and are listed in the 
Appendix [we have used ln(Re) instead of Re in order to 
normalize the corresponding coefficients]. In our computa- 
tion we kept only the linear dependence of $ on the param- 
eter changes SLY, SD and ii[ln(Re)], which is sufficient for a 
qualitative, local analysis. The corresponding algorithm is 
tedious but straightforward. The different terms of the Taylor 
expansion of the center manifold are obtained by solving a 
sequence of linear systems together with the so-called Fred- 
holm alternative.31 For ej=O in (3) {that is at the bicritical 
point), linearization leads to the linear algebraic growth in t 
for x1, which corresponds to the transient growth of the sec- 
ondary eigensolution, mentioned in Sec. II. 
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to emphasize the differing order of magnitude, Eq. (3) be- 
comes up to first order in E 

&=52+ ~&I&+ ealti 

~2==2151+E~22~2+b15:+Eb2~:~2. 

The stability of the trivial solution (which corresponds to the 
2-D equilibrium state) is then given by the eigenvalues of the 

Jacobian 

Steady bifurcations occur for parameter values such that 
- - 

s=E2zj11s22-s~~=o, (4) 

whereas Hopf bifurcations occur for 
- - 
Sllf &=O, DO, (5) 

with S defined by (4). Keeping for instance the Reynolds 
number fixed at its bicritical value and introducing the scaled 
wave-number deviations SLY= C?&Y and &3= Zap, we obtain 

E’-55.77&3z+(0.04-E”4103.04&)~/3 

+~a16 336.28&2+154.498cr=0, (6) 

by substituting into Eq. (4) the values given in the Appendix. 
Figure 3 depicts results for 164<0.003. Therefore, an 

appropriate scaling would be e=O.O5, and (6) becomes ap- 
proximately 

0.146~2+(0.04-10.26~a)~j3+40.84&2 

-t- 154.49&=0. (7) 

For &<O (of the order of one) in (7) there will be two roots 
for $p indicating two steady bifurcation points. They corre- 
spond to the phase-locked bifurcation points of Fig. 3 for 
&X0. For &>O.OOO 02, Eq. (7) has no real roots (with &Y 
of order one). This lower bound is outside the accuracy of 
our computation, because it corresponds to a real deviation 
of S&=10-* (and abicr has only been computed up to seven 
digits). Therefore, there are locally no steady-state bifurca- 
tions for Sa;>O. 

To see whether the Hopf bifurcations are predicted cor- 
rectly, we substitute the numerical values listed in the Ap- 
pendix into (5) and obtain Sp=34.95 Sa. The left-hand side 
of (7) will be positive for values of & bounded by one. In 
terms of the real deviation, SCY, this would correspond to a 
value of about 0.0025. The conditions (5) for a Hopf bifur- 
cation to occur are satisfied, which again is in agreement 
with Fig. 3. In order to get further information about the 
validity of relation (7), we put &x=O in (7): there are two 
zeros, a/3=0 and a/+-0.29. The second value is obviously 
spurious, because for &=O and fixed Reynolds number 
there is locally only the bicritical bifurcation point for ap=O. 
In terms of the real deviation, the above value corresponds 
approximately to Sp=-0.0007. However, we only deter- 
mined the bicritical p value (pbicrz2.554) up to about three 
digits, hence the spurious Spvalue is outside the accuracy of 
our computation. Similarly, for ?ip=O we find the two roots 
&PO and &w-3.78, the second value corresponding to 

the streamwise wave-number deviation SLY= -0.01. This 
value is again outside the validity of our local analysis be- 
cause already very small deviations from abi,=O.232 891 3 
(1&]<0.003 in Fig. 3) lead to significant changes in the sec- 
ondary linear stability behavior. This is the reason why we 
had to compute obu,i,r up to seven digits. A similar analysis 
could be performed by keeping o&r fixed, while varying the 
Reynolds number in the vicinity of Rebt,.,=882. 

The above scaling has been introduced in order to quan- 
titatively relate the numerically computed linear secondary 
stability results to the stability of the trivial fixed point of the 
center manifold equations (3). In Sec. IV we shall attempt a 
quantitative comparison with our global nonlinear computa- 
tion. However, at the center of our interest is the qualitative 
dynamical behavior in the vicinity of the bicritical point on 
the 2-D equilibrium surface. For that purpose the normal 
form technique provides a powerful tool to transform (3) into 
a simpler form. ’ This can be achieved by a (nonlinear) co- 
ordinate transformation which preserves the degree of ap- 
proximation of the vector field on the center manifold. The 
simplified system exhibits then the same qualitative dynam- 
ics as the original one. For our example, the coordinate 
change 

XI=YI+ 4 (&+ady:+ %b4+ady~~2+w& 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 03) 

leads to the following normal form containing all cubic terms 
in the transformed amplitude variables: 

Yl=Y2s 

(9) 

where ,x1=&, h=~$~+b;,~, a=bl, b=b2+3aI. 
The normal form (9) is of the symmetrical Takens- 

Bogdanov type” and the local bifurcation behavior can be 
described as function of the two bifurcation parameters ,z~ 
and h. With the numerical values listed in the Appendix the 
coefficients in the normal form (9) are 

a=-0.21, b=l9.01. w 

Their respective sign is important to determine the type of 
local dynamics that occurs. 

The bifurcation behavior for normal forms similar to the 
system (9) has been discussed for example in the context of 
double-diffusive systems.32 For the unfolding of (9) we fol- 
low the treatment given in Ref. 10. The (local) stability of 
the trivial solution (y r ,y2) =(O,O) (which, in our case, corre- 
sponds to the 2-D nonlinear traveling wave) is given by the 
real part of the eigenvalues of the linearized system 

Puzl22 Lb2f2)=+Pl. (11) 

Consequently, the trivial fixed point undergoes a Hopf bifur- 
cation for 

ILL2=0, lw<o, (12) 

which corresponds qualitatively to the Hopf bifurcation for 
the fixed point of.(3). The (local) stability of the Hopf bifur- 
cation can be determined through normal form 
computations.” In our case, the coefficient b in the normal 
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form (9) is positive [cf. (lo)], therefore the bifurcation is 
subcritical and there is locally an unstable family of periodic 
orbits surrounding the sink for pl,k<O. 

The nontrivial fixed points for the normal form (9) are 
given by 

yf=-/.cJa, y2=0. (13) 

They bifurcate as pitchforks for ,ur>O, the coefficient a be- 
ing negative [cf. (lo)]. Linearizing at these points, their sta- 
bility is determined by the real parts of 

with 

p=,e-b,qla. (14) 

Consequently, the pair of fixed points (13) undergoes a Hopf 
bifurcation for 

p=O, Pl’O. (15) 

The nontrivial fixed points (13) correspond qualitatively to 
steady-state bifurcations of (3) and hence locally to 3-D trav- 
eling waves for the global Blasius flow problem. Conse- 
quently, the Hopf bifurcations (15) can be interpreted as ter- 
tiary bifurcations to quasiperiodic solutions. Using again 
normal form computations it can be shown that these Hopf 
bifurcations are supercritical leading to locally stable peri- 
odic orbits surrounding the pair of sources (13) for 
p+b,q/a. For the normal form there is only one pitchfork 
bifurcation as function of pl. However, fir depends on the 
three physical parameters and an accurate nonlinear expan- 
sion of pi, i =1,2, in terms of the physical parameters is 
needed to obtain quantitative results [for instance, two sepa- 
rate bifurcation points would appear in the physical param- 
eter space, as demonstrated in the discussion of system (3) in 
Sec. IV]. Also the physical amplitudes (x1 ,x2) depend on the 
normal form amplitudes by inclusion of the parameters via 
&r and Sr, in (8), which is a further difficulty in an actual 
quantitative comparison. 

Normal forms of the type (9) are known to undergo a 
(double) saddle connection for particular values of the 
parameters.‘0 Using a scaling analysis it can be shown (cf. 
Ref. 10) that the homoclinic bifurcation occurs approxi- 
mately on the line 

p2=4bpll(5aj7 lu1>0. (16) 

The bifurcation behavior of the system (9) is summa- 
rized in Fig. 5. For each major region in the (,ur ,,!.+J plane we 
computed the corresponding phase portrait. For pr>O the 
lines bh and bsc correspond to the location of the Hopf 
bifurcation and the homoclinic bifurcation given by (15) and 
(16), respectively [note that the actual slope of these lines, 
given by b/a and 4bl(5a), respectively, is not drawn to 
scale]. For clarity, the phase portraits have been computed 
for normalized coefficients a = -1 and b =l in the normal 
form (9). This ensures a qualitatively correct picture, since 
these coefficients have the same sign as the actual ones given 
by (10). Note that the homoclinic orbit on the line bsc in the 
parameter space is stable for our normal form. 

FIG. 5. Bifurcation diagram of normal form (9) with a sketch of the asso- 
ciated phase portraits. Line bh: location of the Hopf bifurcation. Line bsc: 
location of the double saddle connection (homoclinic bifurcation). 

IV. GLOBAL BlFURCATiON ANALYSIS 

To check some predictions of the local theory we per- 
formed a continuation analysis in the (a; fl, Re) parameter 
space for 3-D phase-locked waves of the full Navier-Stokes 
equations. For this purpose we used highly truncated solu- 
tions (2) with N=M= 2. Applying Keller’s33 pseudo- 
arclength continuation procedure we extended our spanwise 
symmetric plane Poiseuille flow analysis” to Blasius bound- 
ary layer flow as outlined in Ref. 24. Due to the spanwise 
symmetry only modes in the first quadrant have to be re- 
tained. In contrast to Ref. 24, where a symmetric pair of 
neutral primary oblique waves was the starting point of the 
continuation process, we start now with the neutrally stable 
secondary phase-locked waves on the 2-D nonlinear equilib- 
rium surface N=2, M==O. 

First, we keep Re=882 const and choose &=0.2328 
slightly below the bicritical (u=O.232 8913. According to the 
linear results of Fig. 3, two phase-locked secondary bifurca- 
tion branches emanate near the bicritical p=2.554 on the 
lower 2-D branch E$g=0.007 029. The continuation result is 
depicted in the enlarged insert of Fig. 6, with the inverted 
triangles marking the secondary pitchfork bifurcation points 
predicted by the linear secondary stability analysis, as well 
as by the local system on the center manifold (3). For the 
particular example chosen, the 3-D branch simply connects 
the two phase-locked bifurcation points and has no connec- 
tion to the upper 2-D branch at Epd = 0.037 69. Again, 
using the Jacobian of the continuation procedure, a 3-D su- 
perharmonic stability analysis shows that shortly after sec- 
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FIG. 6. Re=882, a=0.2328 cut through the 3-D equilibrium surface with 
N=M=2. Enlarged insert shows the 3-D branch in the vicinity of the 
bicritical bifurcation point /3=2.554 (marked by the arrow) on the lower 2-D 
branch. The location of the tertiary Hopf bifurcations is marked by the open 
circles. 

ondary bifurcation a Hopf bifurcation (marked by the open 
circles) occurs in the moving frame in addition to the 2-D 
phase-locked instability. “ 

Our local bifurcation analysis of Sec. III’is mainly con- 
cerned with qualitative results about the dynamics in the vi- 
cinity of the 2-D equilibrium solution. Following a referee’s 
suggestion, we attempt to quantitatively relate our global re- 
sults of Fig. 6 to the local center manifold system (3). Phase- 
locked bifurcations on the 2-D equilibrium state correspond 
to steady-state bifurcation points of (3), hence they are given 
by (4). The global results depicted in the insert of Fig. 6 have 
been computed for the bicritical Reynolds number Re=882, 
and a change in the streamwise wave number with respect to 
the bicritical value of SLY=-0.000 091 3. With the scaling 
e?=O.O025 (cf. Sec. III) this corresponds to Sa=-0.0365 in 
(7). Substituting this value, (7) becomes approximately 

0.14?ip2+0.41zip-5.58=0, 

the zeros being the scaled spanwise wave-number deviations 
&/?=5.02 and $p=-7.95. Multiplying by t?=O.O025 one 
gets Sp=O.O126 and Sp=-0.0199. These quantities should 
correspond to the deviation of the~p values of the secondary 
bifurcation points from the bicritical pbi,=2.554 marked by 
the vertical arrow in the insert of Fig. 6. A comparison with 
the results of the global computation (the numerically ob- 
tained bifurcation points are marked by upside down tri- 
angles in the insert of Fig. 6j shows that these values only 
approximate the deviations. To obtain more accurate results 
would necessitate a Taylor expansion of (3) to higher orders 
in the parameter values (and perhaps a more accurate deter- 
mination of &icr and Re& which would be a tedious task. A 
separate analysis of the two bifurcating steady-state branches 
of Eq. (3), with the approximate bifurcation points given by 
the two &3 values computed above, would predict the Hopf 
bifurcations occurring on the global 3-D branches (cf. insert 
Fig. 6). The existence of those Hopf bifurcations on the 3-D 
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FIG. 7. Re=3.50, (~=0.2 cuts through the 3-D equilibrium surface, with 
N=M=2. 3-D bifurcating branches with all Fourier modes excited (-), or 
with oniy even spanwise harmonics excited (----;---). 

branches in the vicinity of the 2-D equilibrium state can 
more easily be predicted by an analysis of the normal form 
(9). We must emphasize again that system (9) describes the 
qualitative dynamics in the vicinity of the 2-D state, and that 
this qualitative description is the main object of our local 
analysis. The global computation confirms the normal form 
prediction of nontrivial fixed points which lose their stability 
by undergoing Hopf.bifurcations (cf. Fig. 5). However, our 
local analysis cannot predict the connection between the two 
3-D branches shown in Fig. 6. 

” Since the bifurcating branches on the lower 2-D branch 
are not connected to the upper branch, as we originally ex- 
pected, we started the continuation also at the phase-locked 
bifurcation points on the 2-D upper branch, marked by up- 
right triangles in Fig. 6. [The corresponding local skin fric- 

tion factor defined, by c; = r&/$~*~~(~)~ is shown as 
line 2 in Fig. 8. Here r&, is the dimensional wall shear 
stress, p* the density and U;(W) the laminar free-stream 
velocity at y =m reduced by the mean-flow correction. We 
see that the skin friction factor reaches values near the tur- 
bulent experimental results.] 

In our present calculation, all modes 1 n 1 G2, 1 m 1 =G2 are 
excited as indicated by the dots in the modal pattern of Fig. 
6. In Ref. 24 the oblique wave results, computed with the 
same truncation but giving a chess board like modal pattern 
for the excited modes, did not give such high friction factors. 
This encouraged us to search for 3-D equilibrium solutions at 
lower Reynolds numbers. We chose Re=350 and cu=O.2. For 
these values the linear 2-D solution is unstable and only the 
upper branch Epd = 0.031 84 exists, cf. Fig. 7. The solid 
curves bifurcate at the neutral points of the first and the third 
phase-locked secondary instability modes and end on the 
dashed-dotted curve as marked by the triangle and open 
circle. The dashed-dotted curve starts as a spanwise super- 
harmonic of the lirst phase-locked secondary instability 
mode. The bifurcation point is marked by a cross and the 
bifurcating branch only contains even spanwise Fourier 
modes. In the corresponding modal pattern the excited even 

U. Ehrenstein and W. Koch 

, 

1289 

Downloaded 15 Mar 2006 to 134.59.10.172. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



lE-2 j---z-- I- 

--*-- 

2 4------T-. , t -.-----m 
lE2 3 5 3 

R% 

FId. 8. Local skin friction factor c; as a function of modified Reynolds 
number Re,,, . A laminar and turbulent skin friction measurements, X tran- 
sitional skin friction measurements (Dhawan35); o subcritical transition ex- 
periment (Asai and Nishioka3”). (1) Projection of Z-D equilibrium surface, 
N=2. (2) 3-D equilibrium solution, Re=882, a=0.2328, N=M=2. (3) 3-D 
equilibrium solution with even spanwise Fourier modes, Re=350, (u=O.2 
(4) 3-D equilibrium solution with even spanwise Fourier modes, a=O.Z, 
p=0.4. 

spanwise modes are depicted by dots. The friction factors of 
these three solution branches do not deviate significantly 
from the projection of the 2-D neutral surface (curve 1 in 
Fig. 8). Only when we continued the spanwise superhar- 
manic of the third phase-locked secondary instability mode, 
depicted by the dashed curve in Pig. 7, did we reach higher 
c; values (line 3 in Fig. 8). We note (cf. Fig. 7) that this 
branch ends at a bifurcation point corresponding to the span- 
wise superharmonic of the second phase-locked instability 
mode, whose branch has not been included here. 

Keeping c~=O.2 and p=O.4 fixed, we continued the 
branch, depicted by the dashed curve in Fig. 7, in the Rey- 
nolds number Re, extending the 3-D neutral surface to sub- 
critical Reynolds numbers (cf. curve 4 in Fig. 8). The Rey- 
nolds number Re, in Fig. 8 is defined with the actual free- 
stream velocity u:(a) far from the wall, which due to the 
nonlinear mean-flow correction is lower than the laminar ve- 
locity ‘Uz . We note that 3-D equilibrium states containing 
only even spanwise Fourier modes were also of importance 
for reaching subcritical Reynolds numbers in plane Poi- 
seuille flow.‘” The domain of our computed equilibrium so- 
lutions in the (Re,,, ,c;) plane is shown by the shaded area in 
Fig. 3. Interestingly, these solutions outline almost com- 
pletely the experimentally found transitional and turbulent 
data, in contrast to the oblique mode results of Ref. 24. 

V. DISCUSSION 

The corresponding normal form is of the symmetrical 
Takens-Bogdanov type with numerically computed coeffi- 
cients. This normal form is of codimension two, the two 
unfolding parameters pl and &- being implicitly related to 
the three physical parameters ol, p, Re. The phase portraits 

sketched in Fig. 5 can be interpreted in terms’of the qualita- 
tive structure and dynamics of the physical problem. Starting 
at the second quadrant (pu,CO, h>O) the trivial fixed point 
at the origin corresponds to the 2-D nonlinear equilibrium 
wave which is unstable. Proceeding to the third quadrant this 
fixed point undergoes a subcritical Hopf bifurcation. In the 
laboratory frame of reference this would correspond to a 
quasiperiodical solution. Moving into the fourth quadrant 
two nontrivial stable fixed points appear through pitchfork 
bifurcations, corresponding to’3-D phase-locked waves. Sev- 
eral of those waves have been-computed far beyond the point 
of degeneracy by means of a global numerical continuation 
procedure. Crossing the line bh a supercritical Hopf bifurca- 
tion occurs on these 3-D branches. They constitute tertiary 
bifurcations also found in our global computations (cf. Fig. 
6). The most interesting dynamical behavior of the normal 
form occurs on line bsc where the two limit cycles form a 
locally attracting double-saddle connection. Such homoclinic 
orbits are often related to intermittent physical bursting or 
ejection processes, see, for example, Stone and Holmes.34 
Whether this dynamics prevails in the full Navier-Stokes 
equations can only be checked by a full numerical simula- 
tion, which is difficult and far beyond the scope of our 
present paper. 

Using experimental and numerical simulation, much has It is well known that initial and boundary conditions 
been learned about the laminar/turbulent transition process in 
open flow systems, such as boundary layers. However, the 

influence transition decisively. Therefore, the 2-D equilib- 

appropriate transition scenario or the exact dynamical 
rium solution used as base flow in our analysis provides only 

mechanism leading to breakdown is still largely unknown. 
very special initial conditions. But we’believe that the dy- 
namics found for these special conditions might serve as a 

Such an understanding would be the prerequisite for a physi- model for the more general case. Inclusion of the weak 2-D 
cally realistic transition criterion which is free of empiricism. 
One established transition route is via primary and secondary 

instability will not change this because 3-D secondary insta- 
bilities dominate as demonstrated by numericaI simulations. 

instabilities. But whether tertiary or global bifurcations are It is also of interest that some of the 3-D equilibrium solu- 

the next step is still an open question. Bifurcation theory is 
one possible tool to shed some light on this. In particular, 
modal degeneracies are believed to provide useful models 
for describing a more complex dynamics. At the primary 
instability level it is well known that for boundary-layer-type 
flows without additional physical parameters only one single 
instability mode exists. This primary instability is the starting 
point for nonlinear states which show a more complex spatial 
and temporal behavior. These, in general, numerically com- 

puted nonlinear solutions are the new basic states for second- 
ary disturbances. Frequently, several secondary instability 
modes appear ‘allowing for modal degeneracies. 

In boundary layers one important class of nonlinear 
states are 2-D traveling waves. Using 2-D waves which are 
steady in the moving frame, degeneracies between phase- 
locked secondary instability modes have been found and pro- 
vide the basis for our investigation. In terms of dynamical 
systems theory this degeneracy is a nonsemisimple reso- 
nance between two steady, neutral secondary instability 
modes in the moving frame. The local dynamics can be de- 
scribed by a center manifold reduction. 
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tions can be traced to subcritical Reynolds numbers and 
closely approach the experimental turbulent skin friction 
data. This would be in line with the hypothesis that equilibria 
are related to the large-scale coherent tiow structures as dis- 
cussed by Saffman’* or Newell et all9 
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APPENDIX: COEFFICIENTS OF TAYLOR EXPANSION 

(3) 

S;1=489.556~-7.06S,0+22.48~ln(Re)], 

~112=11.90S~+0.40S,B-0.93~ln(Re)], 

Szl= - 154.496a-0.04S,&-4.42G[ln(Re)], 

&=33.37S~-7.9OSp+ 10.83S[ln(Re)], 

al=0.73, a2= -61.52, a3= -722.66, 

Lz4= -26.55, 

bl= -0.21, b2= 16.82, b,= 190.26, 

b4= - 131.51. 
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