HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS

W. Omana and M. Willem
Institut Mathematique, Universita de Louvain Chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgium

(Submitted by: Jean Mawhin)

Abstract

Using a new compact imbedding theorem, we prove the existence of infinitely many solutions in $H^{1}(\mathbb{R})$ of the system

$$
\ddot{q}-L(t) q+W_{q}(t, q)=0
$$

when $W_{q}(t, \cdot)$ is even, superquadratic at infinity and subquadratic at the origin.

1. Introduction. This paper deals with the existence of nontrivial solutions $q \in H^{1}\left(\mathbb{R}, \mathbb{R}^{n}\right)$ of the system

$$
\begin{equation*}
\ddot{q}+V_{q}(t, q)=0 \tag{HS}
\end{equation*}
$$

Those solutions are called homoclinic orbits emanating from 0.
P.H. Rabinowitz and K. Tanaka [4] have recently shown that the Hamiltonian system (HS) possesses a homoclinic orbit emanating from 0 by using a variant of the "Mountain Pass" theorem relying on Ekeland's Variational Principle. The use of this method is due to the difficulty of verifying the Palais-Smale condition. In this paper, we show that the Palais-Smale condition is satisfied and we use the usual Mountain Pass Theorem to prove the result of Rabinovitz and Tanaka. Moreover, if $W(t, \cdot)$ is an even function, we prove the existence of an unbounded sequence of homoclinic orbits of (HS) emanating from 0 by using the "symmetric" mountain pass theorem.

Throughout the paper, it will be assumed that V satisfies
(V1) $V(t, x)=-\frac{1}{2} L(t) x \cdot x+W(t, x)$,
(V2) $L(t) \in C\left(\mathbb{R}, \mathbb{R}^{n^{2}}\right)$ is a positive definite symmetric matrix for all $t \in \mathbb{R}$, and there is continuous function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ such that $\alpha(t)>0$ for all $t \in \mathbb{R}$ and $L(t) x \cdot x \geq \alpha(t)|x|^{2}$,
(V3) $W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{n}, \mathbb{R}\right)$ and there is a constant $\mu>2$ such that

$$
0<\mu W(t, x) \leq x \cdot W_{q}(t, x)
$$

for all $x \in \mathbb{R}^{n} \backslash\{0\}$ and $t \in \mathbb{R}$,
(V4) $W_{q}(t, x)=o(|x|)$ as $x \rightarrow 0$ uniformly in $t \in \mathbb{R}$.

Remarks. Assumptions (V3)-(V4) imply
(1) $W(t, x)=o\left(|x|^{2}\right)$ as $x \rightarrow 0$ uniformly in $t \in \mathbb{R}$. Hence, by (V1)-(V4), $x=0$ is a local maximum of $V(t, x)$ for all $t \in \mathbb{R}$; however, it is not a global maximum since, by (V3), for each $t \in \mathbb{R}$ there is $\alpha_{1}(t)>0$ such that
(2) $W(t, x) \geq \alpha_{1}(t)|x|^{\mu}$ for each $|x| \geq 1$.

1. Compact imbedding and Palais-Smale condition. Let

$$
X=\left\{q \in H^{1}\left(\mathbb{R}, \mathbb{R}^{n}\right) \mid \int_{\mathbb{R}}\left[|\dot{q}|^{2}+L(t) q \cdot q\right] d t<\infty\right\}
$$

The space X is a Hilbert space with the inner product

$$
(x, y)=\int_{\mathbb{R}}(\dot{x} \cdot \dot{y}+L(t) x \cdot y) d t
$$

and the corresponding norm

$$
\|x\|^{2}=(x, x)
$$

Lemma 1. Suppose V satisfies (V2). If
(V5) $\quad \alpha(t) \rightarrow+\infty \quad$ as $\quad|t| \rightarrow \infty$
then the imbedding of X in $L^{2}(\mathbb{R})$ is compact.
Proof. Let $\left(x_{k}\right) \subset X$ be a sequence such that $x_{k} \rightharpoonup x$ in X. We will show that $x_{k} \rightarrow x$ in L^{2}. Suppose, without loss of generality, that $x_{k} \rightharpoonup 0$ in X. The BanachSteinhaus theorem implies that

$$
A=\sup _{k}\left\|x_{k}\right\|<+\infty
$$

Let $\varepsilon>0$; there is $T_{0}<0$ such that $\frac{1}{\alpha(t)} \leq \varepsilon$ for all t such that $t \leq T_{0}$. Similarly, there is $T_{1}>0$ such that $\frac{1}{\alpha(t)} \leq \varepsilon$ for all $t \geq T_{1}$. Since $\alpha(t)>c>0$ on $] T_{0}, T_{1}[=I$, the operator defined by $S: X \rightarrow H^{1}(I):\left.u \rightarrow u\right|_{I}$ is a linear continuous map. So $x_{k} \rightharpoonup 0$ in $H^{1}(I)$. Sobolev's theorem (see e.g. [1]) implies that $x_{k} \rightarrow 0$ uniformly on \bar{I}, so there is a k_{0} such that

$$
\begin{equation*}
\int_{I}\left|x_{k}(t)\right|^{2} d t \leq \varepsilon \quad \text { for all } k \geq k_{0} \tag{i}
\end{equation*}
$$

Since $\frac{1}{\alpha(t)} \leq \varepsilon$ on] $-\infty, T_{0}$], we have

$$
\begin{equation*}
\int_{-\infty}^{T_{0}}\left|x_{k}(t)\right|^{2} d t \leq \varepsilon \int_{-\infty}^{T_{0}} \alpha(t)\left|x_{k}(t)\right|^{2} d t \leq \varepsilon A^{2} \tag{ii}
\end{equation*}
$$

Simiarly, since $\frac{1}{\alpha(t)} \leq \varepsilon$ on $\left[T_{1},+\infty[\right.$, we have

$$
\begin{equation*}
\int_{T_{1}}^{+\infty}\left|x_{k}(t)\right|^{2} d t \leq \varepsilon A^{2} \tag{iii}
\end{equation*}
$$

Combining (i), (ii) and (iii) we get $x_{k} \rightarrow 0$ in L^{2}.
Remark. The above result is due to C. De Coster and M. Willem see [5].
We now state the theorem of Rabinowitz and Tanaka. We shall use the following assumption:
(V6) There exists $\bar{W} \in C\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that

$$
|W(t, x)|+\left|W_{q}(t, x)\right| \leq|\bar{W}(x)|
$$

for every $x \in \mathbb{R}^{N}$ and $t \in \mathbb{R}$.

Theorem 1. Suppose V satisfies (V1)-(V6). Then there exists a homoclinic orbit q of (HS) emanating from 0 such that

$$
\begin{equation*}
0<\int_{\mathbb{R}}\left(\frac{1}{2}|\dot{q}|^{2}-V(t, q)\right) d t<+\infty \tag{3}
\end{equation*}
$$

To prove this theorem, we shall need some technical lemma's.
Lemma 2. Suppose V satisfies (V1)-(V6). If $q_{k} \rightarrow q_{0}$ in X, then $W_{q}\left(t, q_{k}\right) \rightarrow$ $W_{q}\left(t, q_{0}\right)$ in L^{2}.

Proof. There is a $c_{1} \geq 0$ such that

$$
\sup _{k \in \mathbb{N}}\left\|q_{k}\right\|_{L^{\infty}} \leq c_{1}
$$

Assumptions (V4) and (V6) imply the existence of a $c_{2} \geq 0$ such that

$$
\left|W_{q}\left(t, q_{k}(t)\right)\right| \leq c_{2}\left|q_{k}(t)\right|
$$

for all $k \in \mathbb{N}$ and $t \in \mathbb{R}$. Hence,

$$
\left|W_{q}\left(t, q_{k}(t)\right)-W_{q}\left(t, q_{0}(t)\right)\right| \leq c_{2}\left(\left|q_{k}(t)\right|+\left|q_{0}(t)\right|\right) \leq c_{2}\left(\left|q_{k}(t)-q_{0}(t)\right|+2\left|q_{0}(t)\right|\right)
$$

Since, by Lemma $1, q_{k} \rightarrow q_{0}$ in L^{2}, passing to a subsequence if necessary, it can be assumed that

$$
\sum_{k=1}^{\infty}\left\|q_{k}-q_{0}\right\|_{L^{2}}<+\infty
$$

But this implies $q_{k}(t) \rightarrow q_{0}(t)$ almost everywhere $t \in \mathbb{R}$ and

$$
\sum_{k=1}^{\infty}\left|q_{k}(t)-q_{0}(t)\right|=v(t) \in L^{2}(\mathbb{R})
$$

Therefore,

$$
\left|W_{q}\left(t, q_{k}(t)\right)-W\left(t, q_{0}(t)\right)\right| \leq c_{2}\left(v(t)+2\left|q_{0}(t)\right|\right) .
$$

Thus, using Lebesgue's convergence theorem, the lemma is proved.
Remark. The above argument is due to M. Ramos [2]. For $q \in X$, let

$$
\begin{equation*}
\varphi(q)=\int_{\mathbb{R}}\left(\frac{1}{2}|\dot{q}|^{2}-V(t, q)\right) d t=\frac{1}{2}\|q\|^{2}-\int_{\mathbb{R}} W(t, q) d t \tag{4}
\end{equation*}
$$

Then $\varphi \in C^{1}(X, \mathbb{R})$ and any critical point of φ is a classical solution of (HS) with $q(\pm \infty)=0=\dot{q}(\pm \infty)$; see e.g. [4].

Lemma 3. Suppose V satisfies (V1)-(V6). Then φ satisfies the Palais-Smale condition.

Proof. Let $\left(q_{k}\right)$ be a sequence in X such that

$$
\begin{equation*}
\varphi\left(q_{k}\right) \rightarrow c, \quad \varphi^{\prime}\left(q_{k}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{5}
\end{equation*}
$$

We show that $\left(q_{k}\right)$ possesses a convergent subsequence. By (5), there is a constant $d \geq 0$ such that

$$
\begin{aligned}
d+\left\|q_{k}\right\| & \geq \varphi\left(q_{k}\right)-\frac{1}{\mu} \varphi^{\prime}\left(q_{k}\right) q_{k} \\
& =\left(\frac{1}{2}-\frac{1}{\mu}\right)\left\|q_{k}\right\|^{2}-\int_{\mathbb{R}}\left[W\left(t, q_{k}\right)-\frac{1}{\mu} W_{q}\left(t, q_{k}\right) q_{k}\right] d t \\
& \geq\left(\frac{1}{2}-\frac{1}{\mu}\right)\left\|q_{k}\right\|^{2} \quad(\text { by }(\mathrm{V} 3)) .
\end{aligned}
$$

Hence, $\left(q_{k}\right)$ is bounded. So passing to a subsequence if necessary, it can be assumed that $q_{k} \rightharpoonup q_{0}$ in X and hence, by Lemma $1, q_{k} \rightarrow q_{0}$ in L^{2}. It follows from the definition of φ that

$$
\begin{gather*}
\quad\left(\varphi^{\prime}\left(q_{k}\right)-\varphi^{\prime}\left(q_{0}\right)\right)\left(q_{k}-q_{0}\right) \\
=\left\|q_{k}-q_{0}\right\|^{2}-\int_{\mathbb{R}}\left[W_{q}\left(t, q_{k}\right)-W_{q}\left(t, q_{0}\right)\right]\left(q_{k}-q_{0}\right) d t . \tag{6}
\end{gather*}
$$

Since $q_{k} \rightarrow q_{0}$ in $L^{2}(\mathbb{R})$, we have (see Lemma 2) $W_{q}\left(t, q_{k}\right) \rightarrow W_{q}\left(t, q_{0}\right)$ in $L^{2}(\mathbb{R})$. Hence, $\int_{\mathbb{R}}\left[W_{q}\left(t, q_{k}\right)-W_{q}\left(t, q_{0}\right)\right]\left(q_{k}-q_{0}\right) d t \rightarrow 0$ in \mathbb{R} and (6) implies that $q_{k} \rightarrow q_{0}$ in X.

Proof of Theorem 1. We use the usual Mountain Pass Theorem (see e.g. [1]) to prove the existence of a nontrivial critical point of φ. We already know that $\varphi \in C^{1}(X, \mathbb{R}), \varphi(0)=0$ and φ satisfies the Palais-Smale condition. Hence, it suffices to prove that φ satisfies the following conditions:
$\left.1^{\circ}\right)$ there are constants α and $\rho>0$ such that $\left.\varphi\right|_{\partial B_{\rho}} \geq \alpha$;
2°) there is a $q_{0} \in X \backslash B_{p}$ such that $\varphi\left(q_{0}\right) \leq 0$.
By Lemma 1 , there is a $c_{0}>0$ such that $\|q\|_{L^{2}} \leq c_{0}\|q\|$. On the other hand, there is $c_{1}>0$ such that $\|q\|_{\infty} \leq c_{1}\|q\|$. And by (V4), for all $\varepsilon>0$, there is $\delta>0$ such that $|W(t, x)| \leq \varepsilon|x|^{2}$ whenever $|x| \leq \delta$. Let $\rho=\frac{\delta}{c_{1}}$ and $\|q\| \leq \rho$; we have $\|q\|_{\infty} \leq \frac{\delta}{c_{1}} \cdot c_{1}=\delta$. Hence, $|W(t, q(t))| \leq \varepsilon|q|(t)^{2}$ for all $t \in \mathbb{R}$. Integrating on \mathbb{R}, we get

$$
\int_{\mathbb{R}} W(t, q) d t \leq \varepsilon\|q\|_{L^{2}}^{2} \leq \varepsilon C_{0}^{2}\|q\|^{2}
$$

So, if $\|q\|=\rho$, then

$$
\varphi(q)=\frac{1}{2}\|q\|^{2}-\int_{\mathbb{R}} W(t, q) d t \geq\left(\frac{1}{2}-\varepsilon c_{0}^{2}\right)\|q\|^{2}=\left(\frac{1}{2}-\varepsilon c_{0}^{2}\right) \rho^{2}
$$

And it suffices to choose $\varepsilon=\frac{1}{4 c_{0}^{2}}$ to get

$$
\begin{equation*}
\varphi \geq \frac{\rho^{2}}{4}=\alpha>0 \tag{7}
\end{equation*}
$$

Consider

$$
\varphi(\sigma q)=\frac{\sigma^{2}}{2}\|q\|^{2}-\int_{\mathbb{R}} W(t, \sigma q) d t
$$

for all $\sigma \in \mathbb{R}$. By (V3), there is a continuous function $\alpha_{1}(t)>0$ such that

$$
W(t, x) \geq \alpha_{1}(t)|x|^{\mu} \text { for all }|x| \geq 1
$$

Let $\bar{q} \in X$ be such that $|\bar{q}(t)| \geq 1$ on an open and non-empty interval $I \subset \mathbb{R}$. For any $\sigma \geq 1$, we have

$$
\varphi(\sigma \bar{q}) \leq \frac{\sigma^{2}}{2}\|\bar{q}\|^{2}-\int_{I} W(t, \sigma \bar{q}) d t \leq \frac{\sigma^{2}}{2}\|\bar{q}\|^{2}-\sigma^{\mu} \int_{I} \alpha_{1}(t)|\bar{q}(t)|^{\mu} d t
$$

Since $\mu>2$, we can find a $\sigma \geq 1$ such that $\|\sigma \bar{q}\| \geq R>\rho$ and

$$
\begin{equation*}
\varphi(\sigma \bar{q}) \leq 0=\varphi(0) \tag{8}
\end{equation*}
$$

Theorem 2. Suppose V satisfies (V1)-(V6). If
(V7) $W(t,-x)=W(t, x)$ for all $x \in \mathbb{R}^{N}$ and $t \in \mathbb{R}$,
then there exists an unbounded sequence in X of homoclinic ordits of (HS) emanating from 0 .

Proof. The condition (V7) implies that φ is even and by (V1)-(V6) and Lemma 3 , we already know that $\varphi \in C^{1}(X, \mathbb{R}), \varphi(0)=0$ and φ satisfies the Palais-Smale condition. To apply the symmetric Mountain Pass Theorem (see e.g. Theorem 9.12 in [3]), it suffices to prove that φ satisfies the following conditions.
1°) There is constants ρ and $\alpha>0$ such that

$$
\begin{equation*}
\left.\varphi\right|_{\partial B_{\rho}} \geq \alpha \tag{9}
\end{equation*}
$$

2°) For each finite dimensional subspace $\tilde{X} \subset X$, there is $R=R(\tilde{X})$ such that $\varphi \leq 0$ on $\widetilde{X} \backslash B_{R}$.
1°) is identically the same as in Theorem 1 , so it is already proved.
We prove 2°). Let $\widetilde{X} \subset X$ be a finite dimension subspace. Consider $q \in \widetilde{X}$ with $q \neq 0$. By (2), there is a continuous function $\alpha_{1}(t)>0$ such that

$$
\begin{equation*}
W(t, q(t)) \geq \alpha_{1}(t)|q(t)|^{\mu} \quad \text { for all }|q(t)| \geq 1 \tag{10}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\int_{|q(t)|>1} W(t, q(t)) d t \geq \int_{|q(t)|>1} \alpha_{1}(t)|q(t)|^{\mu} d t \tag{11}
\end{equation*}
$$

and

$$
\varphi(q)=\frac{1}{2}\|q\|^{2}-\int_{|q(t)|>1} W(t, q(t)) d t-\int_{|q(t)| \leq 1} W(t, q(t)) d t
$$

Now for all $q \in \tilde{X}$, we have $\|q\|^{2} \leq c\|q\|_{\infty}^{2}$, where $c=c(\tilde{X})$.
Let us define $m=\inf _{\|q\|_{\infty}=2}^{q \in X} \ \int_{|q(t)|>1} \alpha_{1}(t)|q(t)|^{2} d t$. If $m=0$, we will have $|q(t)| \equiv 0$ for all $t \in\{t:|q(t)|>1\}$ which contradicts $\|q\|_{\infty}=2$. Thus, $m>0$ and we obtain

$$
\begin{aligned}
\varphi(q) & \leq C\|q\|_{\infty}^{2}-\int_{|q(t)|>1} W(t, q(t)) d t-\int_{|q(t)| \leq 1} W(t, q(t)) d t \\
& \leq C\|q\|_{\infty}^{2}-\int_{|q(t)|>1} \alpha_{1}(t)|q(t)|^{\mu} d t \\
& \leq C\|q\|_{\infty}^{2}-\frac{\|q\|_{\infty}^{\mu}}{2 \mu} \int_{|q(t)|>1} \alpha_{1}(t) 2^{\mu} \frac{|q(t)|^{\mu}}{\|q\|_{\infty}^{\mu}} d t \\
& \leq C\|q\|_{\infty}^{2}-\frac{m}{2 \mu}\|q\|_{\infty}^{\mu}
\end{aligned}
$$

Since $\mu>2$, we deduce that there is an $R=R(\tilde{X})$ such that $\varphi(q) \leq 0$ whenever $\|q\|_{\infty} \geq \rho$. Hence, by the Theorem 9.12 in [3], φ possesses an unbounded sequence of critical values $\left(c_{j}\right)$ with $c_{j}=\varphi\left(q_{j}\right)$, where q_{j} is such that

$$
0=\varphi^{\prime}\left(q_{j}\right) q_{j}=\left\|q_{j}\right\|^{2}-\int_{\mathbb{R}} W_{q}\left(t, q_{j}\right) q_{j} d t
$$

so that

$$
\begin{equation*}
\int_{\mathbb{R}} W_{q}\left(t, q_{j}\right) q_{j} d t=\left\|q_{j}\right\|^{2} \tag{12}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
c_{j}=\int_{\mathbb{R}}\left[\frac{1}{2} W_{q}\left(t, q_{j}\right) q_{j}-W\left(t, q_{j}\right)\right] d t \tag{13}
\end{equation*}
$$

Since $c_{j} \rightarrow \infty$ as $j \rightarrow \infty$, (V3), (12) and (13) imply that $\left(q_{j}\right)$ is unbounded in X.

REFERENCES

[1] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer Verlag, New-York, 1989.
[2] M. Ramos, Personal Communication.
[3] P.H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications in Differential Equations," CBMS Reg. Conf. Series no. 65, Amer. Math. Soc., Providence, 1986.
[4] P.H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, preprint, 1989.
[5] M. Willem, "Analyse Convexe et Optimisation," CIACO, Louvain-la-Neuve, 1989.

