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Abstract. Using a new compact imbedding theorem, we prove the existence of infinitely 
many solutions in H 1 (!R) of the system 

ij- L(t)q + Wq(t, q) = 0 

when Wq(t, ·)is even, superquadratic at infinity and subquadratic at the origin. 

1. Introduction. This paper deals with the existence of nontrivial solutions 
q E H 1 (IR, !Rn) of the system 

(HS) 

Those solutions are called homoclinic orbits emanating from 0. 
P.H. Rabinowitz and K. Tanaka [4] have recently shown that the Hamiltonian 

system (HS) possesses a homoclinic orbit emanating from 0 by using a variant of 
the "Mountain Pass" theorem relying on Ekeland's Variational Principle. The use 
of this method is due to the difficulty of verifying the Palais-Smale condition. In 
this paper, we show that the Palais-Smale condition is satisfied and we use the usual 
Mountain Pass Theorem to prove the result of Rabinovitz and Tanaka. Moreover, 
if W(t, ·) is an even function, we prove the existence of an unbounded sequence of 
homoclinic orbits of (HS) emanating from 0 by using the "symmetric" mountain 
pass theorem. 

Throughout the paper, it will be assumed that V satisfies 

(Vl) V(t, x) = -~L(t)x · x + W(t, x), 
(V2) L(t) E C(IR,IRn2

) is a positive definite symmetric matrix for all t E IR, and 
there is continuous function a: IR ---. IR such that a( t) > 0 for all t E 1R and 
L(t)x · x ~ a(t)lxl 2 , 

(V3) W E C 1 (IR x !Rn, IR) and there is a constant J-t > 2 such that 

0 < J-tW(t, x) ~ x · Wq(t, x) 

for all x E !Rn \ {0} and t E IR, 
(V4) Wq(t,x) = o(lxl) as x---> 0 uniformly in t E JR. 
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Remarks. Assumptions (V3)-(V4) imply 
(1) W(t, x) = o(lxl2) as x ~ 0 uniformly in t E JR. Hence, by (V1)-(V4), x = 0 is 

a local maximum of V(t, x) for all t E IR; however, it is not a global maximum 
since, by (V3), for each t E IR there is a 1 ( t) > 0 such that 

(2) W(t, x) ~ a1(t)lxl"' for each lxl ~ 1. 

1. Compact imbedding and Palais-Smale condition. Let 

X= {q E H 1 (1R, !Rn) j L [lql2 + L(t)q · q] dt < oo}. 

The space X is a Hilbert space with the inner product 

(x,y)= L<x·iJ+L(t)x·y)dt 

and the corresponding norm 
llxll2 = (x,x). 

Lemma 1. Suppose V satisfies (V2). If 

(V5) a(t) ~ +oo as ltl ~ oo 
then the imbedding of X in L2 (1R) is compact. 

Proof. Let (xk) C X be a sequence such that Xk __.. x in X. We will show that 
Xk ~ x in L2 • Suppose, without loss of generality, that Xk __.. 0 in X. The Banach
Steinhaus theorem implies that 

A= sup llxkll < +oo. 
k 

Let e > 0; there is T0 < 0 such that aCt) ~ e for all t such that t ~ To. Similarly, 

there is T1 > 0 such that a(t) ~ e for all t ~ T1. Since a(t) > c > 0 on ]To,Td= I, 
the operator defined by S: X~ H 1(I): u ~ ul1 is a linear continuous map. So 
Xk __.. 0 in H 1 (I). Sobolev's theorem (see e.g. [1]) implies that Xk ~ 0 uniformly on 
I, so there is a k0 such that 

jlxk(t)l2 dt ~ e for all k ~ ko. (i) 

Since aCt) ~eon]- oo,T0 ], we have I: lxk(t)l2 dt ~ e I: a(t)lxk(tW dt ~ eA2 . 

Simiarly, since a(t) ~ e on [T1, +oo[, we have 

f+oo lxk(t)l2 dt ~ eA2 • JT, 
Combining (i), (ii) and (iii) we get Xk ~ 0 in L2 • 

Remark. The above result is due to C. De Coster and M. Willem see [5]. 

(ii) 

(iii) 

We now state the theorem of Rabinowitz and Tanaka. We shall use the following 
assumption: 

(V6) There exists W E C(lRn, JR) such that 

IW(t,x)l + IWq(t,x)l ~ IW(x)l 
for every x E JRN and t E JR. 
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Theorem 1. Suppose V satisfies (Vl)-(V6). Then there exists a homoclinic orbit 
q of (HS) emanating from 0 such that 

0 < L (~141 2 - V(t,q)) dt < +oo. (3) 

To prove this theorem, we shall need some technical lemma's. 

Lemma 2. Suppose V satisfies (Vl)-(V6). If qk --+ q0 in X, then Wq(t,qk) --+ 

Wq(t, qo) in L 2 • 

Proof. There is a c1 ~ 0 such that 

Assumptions (V4) and (V6) imply the existence of a c2 ~ 0 such that 

for all k E N and t E JR. Hence, 

Since, by Lemma 1, qk--+ qo in L 2, passing to a subsequence if necessary, it can be 
assumed that 

00 

L llqk- qoll£2 < +oo. 
k=l 

But this implies qk(t)--+ q0 (t) almost everywhere t E IR and 

00 

L lqk(t)- qo(t)l = v(t) E L2 (IR). 
k=l 

Therefore, 

IWq(t,qk(t))- W(t,qo(t))l ~ c2(v(t) + 2lqo(t)l). 

Thus, using Lebesgue's convergence theorem, the lemma is proved. 

Remark. The above argument is due toM. Ramos [2]. For q EX, let 

Then <p E C 1 (X, IR) and any critical point of <p is a classical solution of (HS) with 
q(±oo) = 0 = q(±oo); see e.g. [4]. 
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Lemma 3. Suppose V satisfies (V1)-(V6). Then cp satisfies the Palais-Smale con
dition. 

Proof. Let ( qk) be a sequence in X such that 

(5) 

We show that (qk) possesses a convergent subsequence. By (5), there is a constant 
d ~ 0 such that 

Hence, (qk) is bounded. So passing to a subsequence if necessary, it can be assumed 
that qk ~ q0 in X and hence, by Lemma 1, qk ---+ q0 in £ 2 . It follows from the 
definition of cp that 

(cp'(qk)- cp'(qo))(qk- qo) 

= JJqk- qoJI 2 -1[Wq(t,qk)- Wq(t,qo)](qk- qo)dt. 
(6) 

Since qk---+ q0 in L2 (IR), we have (see Lemma 2) Wq(t,qk)---+ Wq(t,q0 ) in L2 (IR). 
Hence, JIR[Wq(t, qk)- Wq(t, qo)](qk- qo) dt---+ 0 in IR and (6) implies that qk ---+ q0 

in X. 

Proof of Theorem 1. We use the usual Mountain Pass Theorem (see e.g. (1]) 
to prove the existence of a nontrivial critical point of cp. We already know that 
cp E C 1(X,IR.), cp(O) = 0 and cp satisfies the Palais-Smale condition. Hence, it 
suffices to prove that cp satisfies the following conditions: 

1 °) there are constants a and p > 0 such that cpJaBp ~ a; 
2°) there is a q0 EX\ Bp such that cp(qo) :::; 0. 

By Lemma 1, there is a c0 > 0 such that JJqll£2 :::; c0 JJqJJ. On the other hand, there 
is c1 > 0 such that JJqJJoo :::; c1JjqJJ. And by (V4), for all c: > 0, there is 8 > 0 
such that IW(t, x)i :::; c:Jxl 2 whenever lxl :::; 8. Let p = :, and JJqJJ :::; p; we have 
JJqiJoo :::; ~ · c1 = 8. Hence, IW(t, q(t))i :::; c:JqJ(t)2 for all t E R Integrating on IR, 
we get 

So, if JJqJJ = p, then 
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And it suffices to choose c = 4 \ to get 
Co 

(7) 

Consider 

cp(aq) = ~2llqll2 -L W(t,aq)dt 

for all a E R By (V3), there is a continuous function o:1 (t) > 0 such that 

W(t,x) ~ o:1(t)lxl 11 for alllxl ~ 1. 

Let q EX be such that lq(t)l ~ 1 on an open and non-empty interval I C JR. For 
any a~ 1, we have 

Since J.L > 2, we can find a a ~ 1 such that llaqll ~ R > p and 

(8) 

Theorem 2. Suppose V satisfies (V1 )-(V6). If 

(V7) W(t, -x) = W(t, x) for all x E IRN and t E IR, 

then there exists an unbounded sequence in X of homoclinic ordits of (HS) ema
nating from 0. 

Proof. The condition (V7) implies that cp is even and by (V1)-(V6) and Lemma 
3, we already know that cp E C1 (X, IR), cp(O) = 0 and cp satisfies the Palais-Smale 
condition. To apply the symmetric Mountain Pass Theorem (see e.g. Theorem 9.12 
in (3]), it suffices to prove that cp satisfies the following conditions. 

1 °) There is constants p and o: > 0 such that 

(9) 

zo) For each finite dimensional subspace X C X, there is R = R( X) such that 

cp ~ 0 on X\BR. 
1 °) is identically the same as in Theorem 1, so it is already proved. 

We prove 2°). Let X C X be a finite dimension subspace. Consider q EX with 
q "/=- 0. By (2), there is a continuous function o:1(t) > 0 such that 

W(t,q(t)) ~ o: 1 (t)lq(t)l~' for alllq(t)l ~ 1. (10) 

Hence, 

1 W(t,q(t))dt ~ 1 o:1(t)iq(t)illdt 
[q(t)[>l [q(t)[>l 

(11) 
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and 

<p(q) = !llqll2 - { W(t,q(t))dt- { W(t,q(t))dt. 
2 Jlq(t)l>l Jlq(t)l~l 

Now for all q EX, we have llqll 2 ::; cllqll~, where c = c(X). 
Let us define m = infllqlloo=2 flq(t)l>l a 1 (t)iq(t)i2dt. If m = 0, we will have 

qEX 
lq(t)l = 0 for all t E {t: lq(t)l > 1} which contradicts llqlloo = 2. Thus, m > 0 and 
we obtain 

<p(q)::;CIIqll~- { W(t,q(t))dt- { W(t,q(t))dt 
}lq(t)i>l }lq(t)i9 

::; Cllqll~- { al(t)iq(t)IIL dt 
}lq(t)i>l 

::; Cllqll~- llqll~ { al(t)21L lq(t)r dt 
2p }lq(t)i>l llqlloo 

::; Cllqll~ - ~ llqll~· 

Since p > 2, we deduce that there is an R = R(X) such that <p(q) ::; 0 whenever 
llqlloo ~ p. Hence, by the Theorem 9.12 in [3], <p possesses an unbounded sequence 
of critical values ( Cj) with Cj = <p( qi), where qi is such that 

so that 

(12) 

Thus, we have 

Cj = 1 [~Wq(t,qj)qj- W(t,qj)] dt. (13) 

Since Cj-+ oo as j-+ oo, (V3), (12) and (13) imply that (qj) is unbounded in X. 
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