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HOMOCLINIC ORBITS FOR SECOND ORDER 
HAMILTONIAN SYSTEMS POSSESSING 

SUPERQUADRA TIC POTENTIALS 

VITTORIO COTI ZELATI AND PAUL H. RABINOWITZ 

O. INTRODUCTION 

The goal of this paper is to establish the existence of infinitely many homo-
clinic orbits for a class of second order Hamiltonian systems of the form: 

(HS) ij - L(t)q + ~(t, q) = O. 

Here q E Rn , and we assume the n x n matrix L(t) satisfies 

(L) 

is T-periodic in t, and is symmetric and positive definite uniformly for t E 
[0, T]. The function V satisfies 

(VI) V E C2(R x Rn, R) and V(t, q) is T-periodic in t, 
(V2) ~q(t, 0) = 0, 
(V 3) There is a fl > 2 such that 

0< flV(t, q) ::; q. Vq(t, q) for all q E Rn\{O}. 

Integrating (V3 ) shows V(t, q) = o( lqI2) as Iql ~ 0 and V(t, q)lql-2 ~ 00 as 
Iql ~ 00 , i.e., V is a "superquadratic" potential. 

Our approach to (HS) involves the use of variational methods of a mini-max 
nature. To describe them more fully, let E = Wi ,2(R, Rn) under the usual 
norm (i: (Iti12 + Iq12) dt) 1/2 

Thus E is a Hilbert space and it is not difficult to show that E C CO (R, Rn) , 
the space of continuous functions q on R such that q(t) ~ 0 as It I ~ 00 (see, 

Received by the editors November 27, 1990. 
1991 Mathematics Subject Classification. Primary 34C99, 58E99, 58F99. 
The first author was supported by Ministero P. I. gruppo 40% "Ca1co10 delle variazioni ... ". 
The second author's research was sponsored in part by the U.S. Army Research Office under 

contract #DAAL03-87-K-0043, the National Science Foundation under Grant #MCS-8110556 and 
the Office of Naval Research under Grant #NOOO 14-88-KO 134. Any reproduction for the purpose 
of the United States Government is permitted. 

693 

© 1991 American Mathematical Society 
0894-0347/91 $1.00 + $.25 per page 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



694 V. COTI ZELATI AND P. H. RABINOWITZ 

e.g., [1]). We will seek solutions of (HS) as critical points of the functional I 
associated with (HS) and given by 

(0.1 ) I(q) = i: [~(lqI2 + L(t)q· q) - V(t, q)] dt. 

By (L), 

2 100 
2 Ilqll = _oo(lql +L(t)q·q)dt 

can and will be taken as an equivalent norm on E . Hence I can be written as 

(0.2) I(q) = ~lIq112 - i: V(t, q) dt. 

As is shown in §1, (V/)-(V3) imply that I E d(E, R). (In fact I E 

C 2(E, R) but this fact will not be used.) Moreover, critical points of I are 
classical solutions of (HS) satisfying q(t) -> 0 as It I -> 00. Thus q is a homo-
clinic solution of (HS). Note also that I possesses a Z-action. If q E E, j E Z, 
and !j(q) = q(t - jT), then 

(0.3) 

To prove the existence of critical points of functionals like (0.2), especially 
multiple critical points, one generally needs some compactness as embodied 
by the Palais-Smale condition (PS) or one of its variants. (PS) says whenever 
I(urn ) is bounded and I' (urn) -> 0 as m -> 00, the sequence urn possesses a 
convergent subsequence. Unfortunately (PS) does not hold for (0.2) even if we 
divide out the Z symmetry. Indeed suppose b is a critical value of I with 
corresponding critical point q. Consider urn = q + rrn q . Then I(urn) -> 2b 
and I' (urn) -> 0 as m -> 00. Thus (PS) fails at 2b and similarly at kb for all 
k E N\{1}. 

Let IS == {q E EII(q)::; s}, Is = {q E EII(q) ~ s}, and I: = I a nIb' As will 
be shown in §1, hypotheses (V/)-(V3 ) imply I(q) = ~lIq112 + 0(llqI12) as q -> 0 
and 1°\ {O} 1= 0. If (PS) were satisfied these facts together with the Mountain 
Pass Theorem would imply that I has a critical value c > 0 given by 

(0.4) 

where 

c = inf max I(g(O)) , 
gErOE[O,1] 

r = {g E C([O, 1], E)lg(O) = 0 and g(l) E IO\{O}}. 

The number c in (0.4) plays a special role in our study of (HS). We will prove: 

Theorem 0.5. If (V/)-(V3 ) and (L) are satisfied and 

(*) there is an a > 0 such that Ic+a jZ contains only finitely many critical 
points of I, 
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HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEMS 695 

then c is a critical value of I. Moreover for each k E N\ {I}, I:~~:/Z contains 
infinitely many distinct critical points of I . 

As noted above, each of these critical points is then a classical homoclinic 
solution of (HS). Of course if (*) is not satisfied then I already has infinitely 
many distinct critical points in INa /Z. Our main result, Theorem 3.34, is a 
more precise version of Theorem 0.5 and tells us there are critical points of I 
of a certain form. Roughly speaking it says if q is a mountain pass critical 
point, i.e., I(q) = c and I' (q) = 0, then there is a critical point of I near 
L:~=, rmj q for all (m" ... , m k ) E Zk provided that (mi - m) is sufficiently 
large for all i =1= j. Alternatively interpreting the main result from the point 
of view of dynamical systems, it roughly says for each k E N\ { I} , there is a 
homoclinic solution of (HS) which emanates from 0 at t = -00, returns to a 
neighborhood of 0 and spends at least a prescribed amount of time there, and 
repeats this process k - 1 more times before terminating at t = 00. Thus our 
approach to (HS) is a kind of variational version of shadowing. 

Observe that if (V,)-(V3) and (L) are satisfied and V and L are indepen-
dent of t, then (0.3) holds for all j E R. In particular, if q E I c+a \ {O} is a 
solution of (HS) (and the existence of such a q E I C was established in [1]), 
then for j E [0, 1) the functions r jq are distinct solutions of (HS) in INa. 
Therefore (*) is not satisfied in the autonomous case. Indeed there may only 
be one homoclinic solution of (HS) (up to translation) for the autonomous case 
(as can be easily seen in the case of n = 1, e.g., L(t) == 1, V(t, q) == q4 for 
q ~ 0 and == l for q < 0) and it is essential for our results that L or V 
depend explicitly on t. 

One final remark about (*) is in order. In the usual dynamical systems 
approach to homoclinics, given one homoclinic solution and an associated Poin-
care map for the equation for which the stable and unstable manifolds intersect 
transversally at the corresponding homoclinic point, one gets a rich structure of 
homoclinics and other special solutions of the equation nearby. It is generally 
difficult to verify such a transversal intersection condition. In some sense (*) 
replaces this condition in our setting. However it does not seem to be easy to 
make a direct comparison of these two conditions. 

A precise statement of the main result will be given in §3. In §§ 1 and 2 several 
technical results will be proved. In particular the behavior of (PS) sequences 
will be analyzed in § 1 and a "Deformation" Theorem will be proved in §2. Then 
the main result will be stated and proved in §§3 and 4. Lastly a stronger result 
under an additional condition will be discussed in §5. 

There have only been a few papers written which use variational methods to 
find homoclinic solutions of Hamiltonian systems [1-5]. In [2], V. Coti Zelati, 
Ekeland, and Sere studied a general Hamiltonian system of the form 

(0.6) z = f(Az + Hz(t, z)). 

Here z E R2n , f is the usual symplectic matrix, and A is a hyperbolic 
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696 V. COTI ZELATI AND P. H. RABINOWITZ 

matrix. The function if is T-periodic in t, convex in z, 0(lzI2) as Izl ----.0, 
and satisfies an analogue of (V3) as well as a suitable growth condition. Using 
a dual variational transformation, arguments involving understanding the be-
havior of (PS) sequences, the Mountain Pass Theorem, and another mini-max 
argument, the existence of two distinct homoclinic orbits is proved. Next the 
paper [1] studied (HS) under slightly weaker conditions than (V, )-(V 3) and 
proved the existence of one homoclinic solution which moreover was the limit 
of subharmonic solutions, qj (i.e., 2jT-periodic solutions), as j ----. 00. This 
was done using the Mountain Pass Theorem to get the subharmonic solutions 
and appropriate estimates to pass to a nontrivial limit. Lastly in [3], which is 
the first work we know of on the existence of infinitely many homoclinics using 
variational methods, Sere extended the results of [2] to prove that there exist 
infinitely many distinct homoclinics. He assumes condition (*) where c is his 
analogue of (0.4). We have benefited from some of the ideas in [2, 3]. 

Finally we note that extensions have been made of the results of Coti Zelati, 
Ekeland, and Sere [2] by Hofer and Wysocki [4] and Tanaka [5]. These gener-
alizations use different arguments than those of [2] to establish the existence of 
one homo clinic solution. 

1. SOME PRELIMINARIES 

In this section, some of the preliminaries concerning the properties of I that 
will be needed later will be carried out. Even if not explicitly stated, except for 
Proposition 1.1 below, we always assume V satisfies (V, )-(V 3)' With E and 
I as defined in the Introduction we have 

Proposition 1.1. If V satisfies (V,)-(V2), then IE C'(E, R). 
Proof. First we show I: E ----. R. By (V, )-(V 2) , there is a 0 > 0 such that 
Ixl ::; 0 implies 

( 1.2) 2 V(t, x) ::; Ixl . 
Let q E E. Then q E CO(R, Rn) [1]. Therefore there is an R ~ 0 such that 
It I > R implies Iq(t)1 ::; O. Hence by (1.2), 

(1.3) JOO V(t, q) dt ::; jR V(t, q) dt + 1 Iql2 dt < 00 
-00 -R Itl>R 

and I: E ----. R. 
Next we prove I is Frechet differentiable on E. It suffices to show this is 

the case for 

J(q) = i: V(t, q) dt. 

In the process we will see that 

l' (q)rp = i: ~(t, q). rp dt 
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HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEMS 697 

and this is defined for all q, cp E E. Let q E E and e > O. Suppose Ilqll = M. 
Using (V I )-(V2), choose p > 0 such that Ixl ~ p implies 

(1.4) I~(t, x)1 ~ 4(Me+ 1) lx l. 
It is known (see,e.g., [6]) that 

(1.5) i: V(t, q)dt E d(W I ,2([-R, R], Rn); R) 

for any finite R. Therefore there is a J = J (e , R, q) < min(p / 4, 1) such that 
cp E E and Ilcpli ~ J implies 

(1.6) 1 i: (V(t, q + cp) - V(t, q) - ~(t, q). cp) dtl ~ %llcpll. 

Choose R so large that Iq(t)1 ~ p/4 for It I ~ R. For cp E E, 

(1.7) IIcpll£"o(R,Rn) ~ V2l1cpll. 
Therefore 

( 1.8) IIcpll£"o ~ p/2. 

The Mean Value Theorem, (1.4), and (1.8) show for It I ~ R, 

(1.9) W(t, q + cp) - V(t, q)1 ~ eJ~~++'i~) Icpl· 

Hence 

r W(t, q + cp) - V(t, q)1 dt ~ 4(Me 1) (r (lql + Icpl)2 dt) 1/211CPII 
J1tl>R + J1tl>R 

e 
(1.10) ~ 411cpll . 
Likewise, by (1.4) 

(1.11) r 1~(t,q)cpldt~4(Me 1) r Iqllcpldt~-4ellcpll. 
J1tl>R + J1tl>R 

Combining (1.6), (1.1 0), and (1.11) yields the Frechet differentiability of J. 
Lastly to prove that l' is continuous, suppose qm ~ q in E (and therefore 

in L (0). Note that 

(1.12) sup I!oo (~(t, qm) - Vq(t, q)). cp dtl 
119'11=1 -00 

~ (i: I~(t, qm) - ~(t, q)1 2 dt) 1/2 

Let e > O. Choose R so that It I ~ R implies 

(1.13) 
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698 v. COTI ZELATI AND P. H. RABINOWITZ 

We can also assume (1.13) holds for qm for large m. Therefore by (1.12)-
(1.13) 

(1.14) (i: I~(t, qm) - ~(t, q)1 2 dt) 1/2 

::; (i: I~(t, qm) - ~(t, q)1 2 dt) 1/2 + ~(llqmIIL2 + IlqIIL2), 

which implies the continuity of f . 

Remark 1.15. Since V E C 2 by (VI)' it can be shown that I E C2(E, R). 
However we will make no use of this fact. 

Lemma 1.16. If V satisfies (V I )-(V 2), then 

I(q) = !llql12 + o(llqI12) as q --> o. 
Proof. It suffices to show J(q) = o(llqI12) as q --> O. Let e > O. By (VI)-(V2)' 
there is a p > 0 such that Ixl ::; p implies 

(1.17) 2 
W(t, x)1 ::; elxl . 

Choose <5 = p/2. Hence, by (1.7), Ilqll ::; <5 implies IIqllLoo ::; v'2l1qll ::; p. 
Thus, by (1.17), 

( 1.18) 100 2 2 
J(q) ::; e -00 Iql dt::; ellqll . 

Remark 1.19. Let % denote the set of critical points of I. Lemma 1.16 
implies 0 is an isolated point in % . Therefore there exists a v > 0 such that 
x E %\{O} implies Ilxll ~ v . 

Remark 1.20. Let Y E E\{O}. Then (VI) and (V3) imply that I(Py) --> -00 

as IPI --> 00 (see, e.g., [1]). Thus IO\{O} =I- 0. This observation together with 
Proposition 1.1 and Lemma 1.16 shows that I satisfies the hypotheses of the 
Mountain Pass Theorem aside from the Palais-Smale condition (PS). Unfortu-
nately (PS) does not hold. However it was shown in [1] that (HS) possesses a 
nontrivial homo clinic solution under milder hypothesis than (V I )-(V 3) . 

We will study the behavior of (PS) sequences. First we need some estimates. 

Lemam 1.21. Let V satisfy (V I )-(V3). Then 

(i) There is a f> 0 such that I(q) ~ f for all q E %\{O}. 
(ii) If I(q) = band q E %\{O} , 
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Proof. Note first that (ii) and Remark 1.19 imply (i). To prove (ii), observe 
that 

(1.22) b = I(q) = I(q) - ~I' (q)q = [: [~q. ~(t, q) - V(t, q)] dt 

~ (~- t) [: q. ~ (t , q) d t > 0 

if q =1= 0 via (V 3)' Since (HS) holds for q E % , multiplying (HS) by q and 
integrating by parts shows 

(1.23) 2 /00 Ilqll = -00 q. ~(t, q)dt. 

Thus (ii) follows from (1.22)-( 1.23). 

Now the behavior of (PS) sequences, i.e., sequences such that I(u rn ) --+ band 
I'(u rn ) --+ 0, will be studied. We obtain a result like that of [2] by a somewhat 
more direct argument. As was observed in the Introduction, if v E %\{O} , so 
is T j v for all j E Z. The function v can be made unique within the class of 
translates by requiring that 

Ilv Ileo = max Iv (t) I 
fER 

occurs for t E [0, T] and Iv (t) I < Ilv ilL 00 for t < O. We refer to such a 
v E %\{O} as a normalized v. In fact any v E E\{O} can be so normal-
ized. Alternatively we could take the normalized v as the representative for 
the equivalence class of v in E jZ . 

Proposition 1.24. Let (urn) c E be such that I(u rn ) --+ b > 0 and I' (urn) --+ O. 
Then there is an lEN with I bounded above by a constant depending only 
on b, normalized functions vI' ... , vI E %\{O}, a subsequence of urn' and 
corresponding (k~) c Z, 1 ~ i ~ I, such that 

( 1.25) 

( 1.26) 

and, for i =1= j , 

( 1.27) 

as m --+ 00 along the subsequence. 
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700 V. COTI ZELATI AND P. H. RABINOWITZ 

Proof. For m large, by (V3) , 

1 1 I 
(1.28) b + -Ilurnil ~ I(urn) - -I (urn)urn 

f1. f1. 

= (~-l) Il urnl1 2+ i: [l~(t, urn),urn - V(t, Urn)] dt 

~ (~-l) Il urnl1 2 . 

Hence (urn) is bounded in E. There exists a unique P~ E Z and normalized 
u~ E E such that urn = r 1 u~. Note that 

Pm 

{ 
I(urn) = I(u~), 

(1.29) IIII(U~" =111I'(U~)II, 

Ilurnil - Ilurnll· 

Hence (u~) is bounded in E and there is a subsequence of (u~) which con-
verges to u1 E E both weakly in E and in L:c(R, Rn). For convenience we 
assume this is the case for the entire sequence. 

We claim u1 i= O. Otherwise Ilu~IILoo -+ 0 since u~ -+ u1 in L:c and 
maxlu~1 occurs in [0, T). Therefore, by (V2) , for any e > 0 and m = m(e) 
large, we have 

( 1.30) 

and 

(1.31 ) 1 I 1 1 JOO 1 1 1 I(urn) - !I (Urn)Urn = -00 [!U rn . ~(t, Urn) - V(t, Urn)] dt 

~ ~ellu~II~2 ~ ~ellu~1I2. 

Since e is arbitrary, the boundedness of (u~) and (1.31) contradict that I(u~) 
-+ b > O. Hence u 1 i= 0 . 

To see that u1 E % , let rp E E and let (".) denote the inner product in 
E. Since 

I 1 I 1 1 1 JOO 1 1 (1.32) 1 (u )rp - 1 (urn)rp = (u - urn' rp) - -00 (~(t, u ) - Vq(t, urn))' rp dt, 

u~ ~ u1 , and I' (u~) -+ 0, it follows that u1 is a critical point if 

(1.33) JOO 1 1 
-00 (Vq(t, u ) - Vq(t, urn))' rp dt -+ 0 

as m -+ 00. Let e > 0 and T = T(e, rp) be such that 

(1.34) 1_(1¢12 + (L(t)rp, rp)) ~ e. 
t?,T 
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Now 

( 1.35) f oo I I fT 1. (Vq(t,U)-~(t,urn))·(jJdt= _ ... + _ .... 
-00 -T Itl>T 

The first term on the right-hand side of (1.35) approaches 0 as m -+ 00 since 
u~ -+ u l in L;:c. The second term can be estimated by 

( 1.36) I r _(~(t'UI)-~(t,U~)).(jJdtl 
J1tl?T 

::; (r _lVq(t, u l ) - Vq(t, U~)12) 1/2 e ::; Me, 
J1tl?T 

where the constant M depends on ~ and the bounds for u~ and u l in 
E. Thus letting m -+ 00 in (1.36) and using that (jJ is arbitrary shows that 

I I [ (u ) = o. Moreover by Lemma 1.21, 
I (1. 3 7) [( u ) ~ f:. > o. 

2 I I WI· h Next let urn = urn - u. e calm t at 

( 1.38) 

and 

( 1.39) 

Indeed 
( 1.40) 

I 2 I 2 I 2 I 
[(Urn) = /(Urn + U ) = [(Urn) + /(U ) + (Urn' U ) 

f oo 2 I 2 I 
- _oo[V(t,urn+u )-V(t,Urn)-V(t,U )]dt. 

Since (u~, u l ) -+ 0 and /(u~) -+ b as m -+ 00, (1.40) shows (1.38) holds if 

f oo 2 I 2 I 
(1.41) _oo[V(t, urn + u ) - V(t, urn) - V(t, u )]dt -+ 0 

as m -+ 00. By the L;:c convergence of u~ to u l , 

( 1.42) f R 2 I 2 I 
-R [V(t, Urn + U ) - V(t, Urn) - V(t, u )] dt -+ 0 

as m -+ 00 for any R > o. Moreover, for any e > 0, there is an Re > 0 such 
that 

(1.43) r V(t,u')dt::;e. 
J1tl?R, 

By the Mean Value Theorem, there exists e(t) E (0, 1) such that 

(1.44 ) 
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702 v. COTI ZELATI AND P. H. RABINOWITZ 

By (V I )-(V 2) , there is a J > 0 such that 
(1.45) IVq(t, z)1 :S Izl 
for Izl :S J. For J :S Izl :S M with M free for the moment, 

( ) Izl _ Izl 
IVq(t, z)1 :S sup I~(t, ~)I T = MI T' 

Itl~Re' I~I~M u u 
( 1.46) 

Choosing M such that 

:S M2e + e. 
Since e is arbitrary and M2 can be chosen independently of e, (1.47) and 
(1.42) imply that (1.41) holds. Thus (1.38) is proved. 

To verify (1.39), observe that 

'2 " 100 2 , I (1.48) I (urn)£fJ = I (urn)£fJ - -00 (Vq(t, urn) - Vq(t, urn) + Vq(t, U )). £fJ dt. 

Since I' (u~) -> 0 as m -> 00, (1.39) reduces to proving 

1/

00 2 , 2 I sup (~(t, urn)- ~(t, Urn) + Vq(t, U ))'£fJdt -> 0 
II~II=' -00 

( 1.49) 

as m -> 00. By (V I )-(V2), there is a J > 0 such that 

(1.50) IVq(t, q)1 :S Iql 

if Iql :S J. Let e > O. Choose Re so that It I ~ Re implies 

(1.51) lu'(t)I:SJ, r lu'1 2 dt<i. 
Jlt!~Re 

Now 

(1.52) . 

The first integral on the right-hand side of (1.52) tends to 0 as m -> 00. Using 
(V I )-(V2) again and arguing in a similar way to (1.44)-(1.47) yields 

(1.53) I r (~(t,U~)-~(t,U~))'£fJdtl+ r IVq(t,u')'£fJldt 
Jltl~Re Jltl~R, 

:S (M + 1) r lUI. £fJ1 dt:S (M + l)ell£fJll, 
Jltl~Re 
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HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEMS 703 

where the constant M is independent of e. Thus (1.53) implies (1.49) and 
(1.39) is proved. 

Note that by the computation of (1.22), b - J(u l ) ~ O. Therefore there are 
now two possibilities to consider: 

(a) Case 1: b = J(u l ). Thus J(u~) -+ 0 and I'(u~) -+ 0 as m -+ 00. Conse-
2 I I I quently, by (1.28), Ilurnll-+ 0 as m -+ 00. Butthen Ilurn-u II = Ilurn-'p~ ull -+ 

O. The function u l may not be normalized but there is a PI E Z such that 
u I = 'PI V I with v I normalized. Thus Proposition 1.24 holds with I = 1 and 

I I 
krn = Pm +PI ' 

(b) Case 2: b > J(u l ). Then we are back to our original situation with urn 
replaced by u~ and b by b - J (u I) < b - f. Hence by what was shown 
above, u~ = 'p~ w~ with (p~) c Z, w~ is normalized, a subsequence of 

w~ converges weakly in E and in L;:c to u2 E %\{O} , and J(w~ - u2 ) -+ 
b - J(u l ) - J(u2 ) , J'(W~ - u2 ) -+ O. If b = J(u l ) + J(u2 ) , then by Case 1 

22 22 I 12 
Ilwrn-u 11=1I'_p2Urn- U II = "'_p 2 (u rn -u )-U II 

m m 

I 2 
= Ilu rn - , I U -, 2 + I u II -+ O. 

Pm Pm Pm 

Note that (p~) cannot be bounded since u~ ~ 0 while '_p~ u~ -+ u2 E 

%\{O}. Thus after normalizing u l , u2 , we get Proposition 1.24 with I = 2, 
k~ = P~ + PI' and k~ = P~ + P~ + P2 • If b > J(u l ) + J(u2 ) , then continuing 
in this fashion in at most [b/fJ steps, the proposition follows. 

Remark 1.54, The only role (V 3) plays in this proposition is in (1.28) to obtain 
bounds for Ilu rn II in terms of b. Thus the proposition also holds if (V 3) is 
replaced by an assumption about the existence of such bounds. 

Our final result in this section concerns a discreteness property of the set of 
sums of translates of %c+a /Z. We will state it in a more general form. 

Proposition 1.55. Let FeE be a finite set of points and lEN, Let 

.9'i(F)={t'k,Vill~i~l, ViEF, kiEZ}. 
I 

Let fJ = fJ(.9'i(F)) = inf{llx - yllix f= y E .9'i(F)}. Then fJ > O. 
Proof· Let (xrn), (Yrn) c .9'i(F) such that xrn f= Yrn and Ilxrn - Yrnll -+ fJ. Then 

jm 

xrn=L'kiV~, 
m 

i=1 

'm 
Yrn = L'p~ w~, 

i=1 

where 1 < J' ,r < I and Vi ,Wi E F. Since F is finite, without loss of -rn rn- rn rn 
generality it can be assumed that i rn , r rn' v~ , and w~ are independent of m. 
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Therefore 

(1.56) 

1 Since Ilxll = IIrjxll for all x E E and i E Z, we can assume km = o. Now 
two cases will be considered: 
Case (i): (k:) and (p~) are bounded, 1 :$ i :$ i, 1 :$ s :$ r. Then passing 
to a subsequence if necessary, it can be assumed that k~ = k i and P~ = Ps 
for large m so Ilxm - Y m II is independent of m for large m and f..l > 0 since 
xm=!=Ym· 
Case (ii): (k~) and (p~) are bounded, 1:$ i :$ ii' 0:$ S :$ SI ' and unbounded 
i 1 < i :$ i, S 1 < S :$ r. Then 

Ilxm - Ymll = II t rk~ Vi - t rp~ Will 
1=1 1=1 

(1.57) 

+ II t r k~ Vi - t r p~ Will + em ' 
1=}I+1 I=SI+1 

where em -> 0 as m -> 00. As in Case (i), the first term on the right in (1.57) 
can be assumed to be independent of m for large m. Therefore either it is 
positive, in which case f..l > 0, or it equals 0 and 

(1.58) f..l = 2~ II t rk~ Vi - t rp~ Will· 
1=}I+1 I=SI+1 

Thus we have returned to a situation like (1.56) but with at least one fewer term 
except that now one sum may be vacuous, i.e., i = i , or S = SI . Suppose that 
i = i , . Note that 

II t rp~ Will = II. t rp~_p~+IWill· 
sl+1 I=SI+1 

(1.59) 

If (p~ - p~+I) is bounded, SI + 1 < i :$ s, then we are in the setting of Case 
(i) again and can assume P~ - p~+1 is independent of m for large m. Hence 
if (1.59) is positive, then f..l > 0, while if (1.59) is zero, then xm = Ym for large 
m which is impossible. 

The remaining cases are treated by repeating the above arguments. Thus in 
a finite number of steps we conclude f..l > o. 

2. A DEFORMATION THEOREM 

This section contains a version of a standard deformation theorem for I b , 

b < c + a , assuming that (VI )-(V 3) are satisfied and 
(* ) There exists an a > 0 such that Ic+a contains finitely many normalized 

critical points. 
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Without loss of generality, we can assume 
(2.1 ) 0: < ~j3. 
The Deformation Theorem will be applied to construct an approximating "mini-
maxing" curve for c in (0.4) having certain special properties (Proposition 
2.22). Moreover the ingredients in its proof are employed in our main existence 
results. As a simple application of the Deformation Theorem, it will also be 
shown that c is a critical value for I. 

To begin we recall that one of the key roles (PS) plays in the proof of the 
"standard" Deformation Theorem (see, e.g., [6]) is that it provides a <5 > ° 
such that 11I'(x)11 ~ <5 for all x E I:~: for some e > ° if %(b) == ~b = 0 
and an appropriately modified statement if %(b) =I- 0. Since (PS) fails in our 
setting, there is no such <5 but we have the following result. Here Nr(A) = 
{x E Ellix - All < r}. 

Proposition 2.2. Let (V I )-(V 3) and (*) hold. If gr denotes the set of normal-
ized critical points in INa and r < t.u(§y(gr)) , where 7 = [(c + 0:)/£], then 
there is a <5 > ° such that 

III' (x)11 ~ <5 for x E I~~:\Nr/8(Yj(gr))· 

Proof. If not, there is a sequence (xm) C I;~~\Nr/8(Yj(gr)) such that I' (xm) ~ ° and I(xm ) ~ Y E [c - 0:, C + 0:]. By Proposition 1.24, along a subsequence, 
xm ~ Yj(gr) , contrary to xm >t Nr/8(Yj(gr))· 

Now we can prove the Deformation Theorem. Let %; = I; n % . 

Proposition 2.3 (Deformation Theorem). Let V satisfy (V1)-(V3 ) and let (*) 
hold. If b E (0, c + 0:), then for any e E (0, 0:] and r < t.u(Yj(gr)) , there exist 
e E (0, e), r, E C([O, 1] x E, E), and a E C(IbH, [0,1]) such that: 

1 0. r,(0, x) = x for all x E E, 
2°. r,(s, x) = x if x >t I:~i, 
3°. I(r,(s, x)) is non increasing in s, 
4°. (1 IbH\N (5f:b +.:e)) C I b- e 

r" r b-e ' 
5°. a(x) = ° if x E Ib-e\Nr(~~;e) and I(r,(a(x) , x)) = b - e for all 

E IbH\N (%.b~e) x b-e r b-e ' 
6°. 1Ir,(a(x) , x) - xii :S r for all x E E, 
7°. r,(s, TkX) = Tkr,(S, x) for all k E Z, s E [0,1], and x E E. 

Proof. Let 

(2.4) 

Let e < e and set 

(2.5) 
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where e < iJ is free for now. Let r be a locally Lipschitz continuous function 
on E\% such that 

(i) Ilr(x)11 :::; III'~~)II ' 
(ii) I' (x)r(x) 2: 2iJ, 

(2.6) 

(iii) r(rkx) = r(x) for all k E Z, x E E\%, 
i.e., r is an appropriately scaled pseudogradient vector field. The existence of 
such a r follows from [2] or [6]. 

The function 17 will be determined as the solution of an ordinary differential 
equation corresponding to r. Set W(x) = - J(x)rp(x)r(x) and let 17(', x) 
be the local solution of 

d17 (2.7) ds = W(17) , 17(S, x) = x. 

It is clear that 17 satisfies 1 ° , 2° , and, because of (2.6)(iii), 7°. Since 
d , 

(2.8) d/(17(X, s)) = - J(17(X, S))¢(17(S, x))1 (17(S, X))r(17(S, x)) :::; 0, 

3° holds. Before verifying the remaining assertions of the theorem, we will 
show that 17(S, x) exists for all s > 0. This is obvious for x E I b- e U Ib+e U 

Nr/8(~~~e) == Y. Thus suppose x ~ Y and consider I1(S, x). If 17(S, x) 
exists only up to s(x) , let srn / s and urn = 17(Srn' x). Then I(urn) -+ 

b E [b - iJ, b + iJ], I'(urn ) -+ 0, and urn -+ 97(Y) as in Proposition 2.2. 
By Proposition 1.55, 97(Y) consists of isolated points. Therefore either (i) 
urn E Br/ 2 (u) for some u E 97(Y) for all large m, or (ii) urn enters infinitely 
many such Br/ 2 • If (i), then urn -+ u and therefore I' (u) = ° contrary to 
urn ~ Nr/8(~~~e). If (ii), then whenever 17(S, x) travels from Br/2(y j ) to 
Br/2(y) , where Y j , Yj E 97(Y) and i =1= j , we have for some 5j < 5j < s(x) : 

(2.9) r < 1117(5j , x) - 17(5 j , x)11 = Ill,S) ~; dsll 

= II lis) Jrpvdsll:::; ~iJ 1,5) Jrpds 

via (2.6)(i) and Proposition 2.2. On the other hand, by (2.6)(ii), if 17 meets 
k + 1 such balls in the interval (s, 5) , then 

(2.10) 2iJ 2: 1(17(S, x)) - 1(17(5, x)) = l s ~~ ds 

k • k . 
(Sj(/), (Sj(/) 

2: L}, Jrplrds2: 2iJ Lj, Jrpds. 
1=1 Si(/) 1=1 s'(/) 

Combining (2.9)-(2.10) shows 

(2.11 ) 4iJ 2: kr<5 
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and since k is arbitrary, it follows that t7(s, x) exists for all s > O. 
N ext we show there is a a E C (Ib+e , [0, 1]) such that 

b b+e b+e (2.12) I(t7(a(x) , x)) ~ - e for x E I \Nr(~_e ). 

Then 3° and (2.12) imply 4° . An argument like (2.9)-(2.11) will be employed. 
Two cases will be considered to prove (2.12). 

Case 1: x E I~~:\Nr/4(!Ty(!7)). Then the orbit t7(s, x) either (i) intersects 
{)Nr/S(!Ty(!7)) or (ii) intersects {)Ib- e . If (i), there is a time interval of length 
8(x) in which the orbit remains in Nr/4(!Ty(!7)) and runs from {)Nr/4(!Ty(!7)) 
to {)Nr/s(!Ty(!7)). Then, as in (2.9), 

(2.13) r II /S+O(X) d II "8 = 11t7(s + 8(x), x) - t7(s, x)11 = s d; ds 

/
S+O(X) 4§ 

~ s Ilr(t7(s, x))11 ds ~ T 8(x) 

while (observing that f and ({J equal 1 in the region under consideration), as 
in (2.10), 

(2.14) 

Therefore 

(2.15) 

and 

(2.16) 

Choosing 

(2.17) 

/
0 dI 

2e ? I(x) - I(t7(s + 8(x), x)) ? d ds ? 2§8(x). 
s+O(x) s 

e 
8(x) ~ -;: < 1 e 

r 4e -<-8 - <5 • 

r<5 
e < 40' 

we see that (2.16) is not possible. Therefore (ii) occurs and t7(s, x) intersects 
{) I b - e • If w(x) is the amount of time it takes t7 to reach {) I b - e , then (2.14)-
(2.15) show w(x) < 1. Set a(x) = w(x). Thus we have 5° for Case 1. Note 
also that 

4§ 4e 
11t7(a(x), x) - xii ~ Ta(x) ~ T' 

Hence 

(2.18) r 
11t7(a(x), x) - xii ~ TO < r 

so 6° holds for Case 1. 

Case 2: x E (I~~: n Nr/4(!Ty(!7)))\Nr(~~;e). Then x E Br/4(u) for some 
u E !Ty(!7)\~~;e. Either (i) t7(s, x) remains in Br/2 (u) for s E [0, 1] or (ii) 
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YJ(s, X) reaches aBrj2 (u). If (ii), the estimates of (2.13)-(2.17) with r/8 re-
placed by r/4 show YJ(s, x) reaches aIb- e before it reaches aBr/2(u). Hence 
(i) holds. By the argument of (2.14)-(2.15), YJ(s, x) reaches aIb- e within time 
1. Also since YJ(s, x) E Br/2(u) for all s E [0, 1], letting a(x) be the value of 
s at which YJ reaches a I b - e , 6° holds for this case. 

To complete the proof of 5°-6°, we define a(x) = 0 for x E Ib-e\Nr(~~~e). 

Finally, for x E IbH nNr(~~~e), we take 

a(x) = min(l, time at which YJ E alb-e) 
and the proof is complete. 

As a simple application of Proposition 2.3, we have 

Theorem 2.19. If V satisfies (V, )-(V 3) and (*) holds, c is a critical value of 
I. 
Proof. If not, by (*), for 8 sufficiently small, X;~~e = 0. With this choice of 
8 and r < t.u(9f(sr)), let 6 be as given by Proposition 2.3 and g E r such 
that 
(2.20) max I(g(e)) ::; c + 6. 

(;lE[O, I) 

Then by 4° of Proposition 2.3, 

(2.21 ) max I(YJ(l, g(e))) ::; c - 6. 
(;lE[O, '] 

But by 2° of Proposition 2.3, YJ(1, g) E r so (2.21) is contrary to the definition 
of c. 

Theorem 2.19 is not needed in the sequel but the following result is important 
in the proof of our main existence result. Note that if (*) is satisfied, then 

C)7' C + fJ C)7' 0< a, == sup{!J < alJl.c_ fJ = Jl. (en. 
Proposition 2.22. Let V satisfy (V, )-(V 3) and (*). Then there exists a finite 
set A c % (c) such that for all 8, ::; a, /2, r, ::; /2 .u(9f(sr)) , and pEN there 
is an 6, E (0,8,) and g, E r such that 

1 ° ., max{;lE[O, I)I(g, (e)) ::; c + 6,/p and 
2°. I(g, (e)) > c - 6, implies g, (e) E Nr (A). 

I 

Proof. Setting b = c, r = ro/2 == 2'4.u(9f(sr)) , 8 = 80 == a,/2, we invoke 
Proposition 2.3 obtaining· 60 = 6, and YJO ' 0'0 as in the statement of the propo-
sition. Choose g E r such that 

6 
(2.23) max I(g(e)) ::; c + ~. 

(;lE[O, '] P 

Therefore if go = YJo(ao(g) , g), by 3° of Proposition 2.3, 
6 

(2.24) max I(YJo(ao(g) , g)) ::; c + ~ 
{;lE[O, '] P 
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SO 1° above holds with g, --+ go' e, --+ eo. Moreover, by 5° of Proposition 
2.3, if l(go((J)) > c - eo' then gee) E N,(%(c)). By 6° of Proposition 2.3, 

(2.25) /lgo(O) - g(O)11 :::; ,. 
Hence l(go(O)) > c - eo implies go(O) E N, (%(c)). 

° Next we claim there is a set A so that 2° holds with g, --+ go' e, --+ eo' and 
" --+ '0. If not, there exists a sequence of distinct vm E %(c) and Om E [0, 1] 
such that 

(2.26) 

By compactness, there is a 7J E [0, 1] such that Om --+ 7J along a subsequence. 
For such m, 

(2.27) Ilvm - vm II :::; Ilvm - go(OmJII + Ilgo(Om ) - go(OmJII 
I } 1 II} 

+ Ilgo(Om) - vmll 
J J 

:::; 2'0 + Ilgo(Om) - go(Om)11 --+ 2'0 :::; if.l(.97(9')) , 
I J 

contrary to Proposition 1.55. Therefore there is a finite set A such that 2° 
holds for this particular choice of e, ' " ' and p. 

Now take any e, :::; eo' " :::; '0' and pEN. 
Setting b = c, , = ',/2, and e = e, we invoke again Proposition 2.3 

obtaining e, = e and 11" G, as in the statement of the proposition. 
Now choose p so that 

(2.28) 

and define 

e 
max lex) < c + -1 

xEN (Jfb+~O) P 
P b-eo 

A Ilx - Np/8(Jib~:eO)11 
qJ(X) = b+e ° b+e 

Ilx - N p/8(Jib-eoO) II + /Ix - E\Np/4 (Jib-eoO) II 
Setting e = max{e, ' eo} :::; eo' we define 

A Ilx - (lb-eo U Ib+e )11 
f(x) = o. 

Ilx - (Ib-eo U Ib+eo )II + Ilx - It~:11 

and we let V satisfy (2.6) with the e defined here. We now denote by ~(s, x) 
the solution of 

~; = -l(~)rjJ(~) V(~), ~(O,x)=x. 

As in Proposition 2.3 ~(s, x) is defined for all s 2: O. 
Let g(O) = ~(1, go(O)). If, for some 7J E [0, 1], 

- e l(g(O)) > c + -1, 
P 
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then by 3° of Proposition 2.3 and (2.23), 

(2.29) c + ~ < J(¢(s, goCe))) ::; C + eo::; C + § Vs E [0, 1]. p 
Hence (2.28)-(2.29) show 

~(¢(s, go(e)))j(¢(s, goCe))) = 1 "Is E [0, 1]. 

As in Proposition 2.3 one deduces that 

J(go(e)) - J(g(O)) 2 2§, 

contrary to (2.29). Therefore 

(2.30) J(g(O))::; c+ ~ vo E [0,1]. p 
We finally define 

g,(O) = '1,(a,(g(O)) , g(O)). 
Then by (2.30) and 3° and 5° of Proposition 2.3, 

e 
(2.31) max J(g, (0))::; max J(g(O)) ::; C + --.l 

BE[O,1) BE[O,1) P 

and 

(2.32) 

To show that, actually, 

(2.33) 

suppose 

(2.34) 

and 

(2.35) 

Since 

implies g, (0) E Br (%) . 
I 

g, (e) E Nr (%)\Nr (A). 
I I 

J(go(e)) 2 J(g, (e)) > C - e, 2 C - eo' 

we have that goCe) E Nr (A). Consider the trajectory ¢(s, goCe)), 0::; s ::; 1, 
o 

followed by '1, (s, ' g(e)) , 0 ::; s, ::; a(g(e)). It takes goCe) E Nr (A) to 
o 

g, (0) E Nrl (%\Nrl (A)). Since r, ::; ro and 1INro (A) - Nrl (%)\Nrl (A)II 2 lOro 
via the choice of ro' goCe) moves a distance 2 10ro through a region in which 
111'11 2 b'o = b'o(ro) , the value of b' given by Proposition 2.2. But the arguments 
of (2.13)-(2.17) show this is impossible. Hence (2.31) and (2.33) hold and the 
proof is complete. 

3. SOME EXISTENCE RESULTS 

In this section we will establish the existence of infinitely many solutions 
of (HS) in ..7tk:~+o:O: jZ for all k E N\ {1}. In fact we will prove the existence 
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of solutions of a certain form. The first step in this process is to define a 
k class of sets. For k E N\{I} and ° = (0" ... , Ok) E [0, 1] , let OJ = 

(O" ... ,Oj_"O,Oj+" ... ,Ok) and Ij = (O" ... ,Oj_,' 1,0j+" ... ,Ok)' 
For q E E, supp q denotes the support of q (as a mapping of R to Rn). 
Let 

where 
(g,) gjEC([O, 1{,E), 1 ::;i::;k; 
(g2) gj(O)=O, g/I)EJo\{O}, l::;i::;k; 
(g3) there exist P, < P2 < ... < h-, independent of ° such that 

suppg,(O) C (-oo,p,), suPpg2 C (P"P2)' ... , suPpgk(O) C (h-" (0). 

Remark 3.1. Note that 
k 

lk :) { L gj(O)!gj E 1, 1::; i::; nand (g3) hOldS} . 
j=, 

Set 

(3.2) bk = inf max J(G(O)). 
GErk OE[O, l]k 

Observe that if G E lk' then by (g3) 
k 

(3.3) J(G) = LJ(g). 
j=, 

Proposition 3.4. Let gj satisfy (g, )-(g2), 1::; < k. Then there exists a 
- k -° E [0,1] such that J(gj(O)) ~ c, 1::; i::; k. 

Proof. Consider J(g,(O)). Since g,(O,)=O and g,(I,) EJo\{O}, every curve 
joining {O}x[O, l]k-' to {1}x[O, l]k-' (in [0, l]k) lies in 1 and therefore 
intersects r'(c) via the definition of c. It follows that (l(g,))-'(c) sepa-
rates {a} x [0, l]k-' and {I} x [0, l]k-' (in [0, l]k). Let e > 0. Then 
for £>, sufficiently small, J(g,) ~ c - e in a uniform £>, neighborhood of 
(J(g,))-'(c). Since [0, l]k is compact this neighborhood contains only finitely 
many components. Hence at least one component separates {a} x [0, l]k-' and 
{I} x [0, 1{-' . Denote this component by .91,. Note that .91, is an arcwise 
connected set joining 02 = ° to 02 = 1 and, as earlier, J(g2) = c somewhere on 
each curve in .91, joining 02 = ° to 02 = 1. Therefore (J(g2))-'(C) separates 
.91, n{ 02 = O} and .91, n{ 02 = I} in .91, . For £>2 sufficiently small, J(g2) ~ c-e 
in a uniform £>2 neighborhood of (J(g2))-'(c)n.91, and this neighborhood con-
tains finitely many components. Hence at least one of them, which we denote 
by .912 ' separates .91, n {02 = O} and .91, n {02 = 1}. Continuing this process, 
after k - 1 steps, we construct a compact connected set .91k_, C ... C .912 C .91, ' 
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such that J(g) 2:: c - e in 9 k_ l , 1 :=::; i :=::; k - 1 . Since 9 k_1 connects Ok = 0 
to Ok = 1, there exists a 0e E 9 k_1 such that J(gk(Oe)) = c. Letting e --+ 0, 
there is a subsequence 0e --+ ° such that J(gi(O)) 2:: c, 1 :=::; i :=::; k, and the 
proof is complete. 

Proposition 3.5. bk = kc . 
Proof. Proposition 3.4 and (3.3) show 

max J(G(O)) 2:: kc 
OE[O, l]k 

for each G E r k .Hence bk 2:: kc. On the other hand, let e > O. By the 
definition of c, there is agE r such that 

e 
(3.6) max J(g(s)) :=::; c + 2k . 

SE[O, I] 

By appropriately truncating g(O)(t) for large It I (uniformly in 0) we obtain 
R > 0 and g E r such that suppg(s) c [-R, R] and 

(3.7) 

Thus if jT > 2R, then 

(3.8) 

max J(g(s)) :=::; c + -ke . 
SE[O, l] 

G(O) = L~=I TU_I)jg(Oi) E rk 

max J(G(O)):=::; kc + e. 
OE[O, It 

and, by (3.7), 

Since e is arbitrary, it follows that bk :=::; kc and the result is proved. 

Remark. A set related to r 2 and an analogue of Proposition 3.5 for b2 were 
proved in his setting by Sere [3]. 

To prove that .!Jtk:~+aa jZ is infinite, the idea is to argue indirectly and show 
that, if not, there is an HE rk such that J(H) < kc, contrary to Proposition 
3.5. Actually this will be done in such a way as to give more information 
about the form of solutions. To be more precise, let A c %(c) be given by 
Proposition 2.22. With this choice of A, we will construct an associated class 
of sets. Let N = (n l ' ••• , nk ) E Zk with n i+1 - n i 2:: no' Here no is chosen 
so that 

(3.9) 

(see Remark 1.19) for all choices of Vi EA. Let 

k 

L(k, N, A) = { I>n;vilvi E A} (3.10) 
1=1 

and 

(3.11) L*(k, N, A) = U L(k, IN, A). 
lEN 
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Proposition 3.12. There is an rk = rk(a) > 0 and no(A, a) such that if r :::; rk 
and z E Nr(.L*(k, N, A)) n%, then z E ~:~+Q;Q;. 

Proof. If z E Nr(.L*(k, N, A)), then 

(3.13 ) liz - t r'n;vill :::; r 
1=1 

for some lEN and Vi E A, 1 :::; i :::; k. Let x = L:7=1 r'nvi. By the Mean 
I 

Value Theorem, 

(3.14 ) I(z) - I(x) = I' (y)(z - x), 

where y lies on the "segment" joining z and x. Therefore since we can assume 
rk :::; 1, 

Ilyll:::; E IIvill + 1 :::; k C}~C2) 1/2 + 1 

via Lemma 1.21. Since I' is bounded on bounded sets, 

( 3.15) III' (y)11 :::; max III' (w)11 = M k · 
Ilwll'5.k(2J1c/(J1-2))i j 2+ I 

We can choose no :.= no(A, a) so large that 

(3.16) 
k 

I/(X) - L I(Vi)1 = I/(x) - kcl < a12. 
1=1 

Choose r k :::; 1 so that 

(3.17) 

Combining (3.14)-(3.17) yields 

(3.18) I/(z) - kcl < a 

and the proposition is proved. 

Remark 3.19. We can assume rk :::; rk_ 1 :::; ••. :::; rl • 

Proposition 3.20. Let V satisfy (V I )-(V 3) , and let (*) hold, and let r satisfy 

(3.21 ) r < min(/2,u(ry(Y)), l/ /2, rk ). 

Then 
(i) there is a <>, = <>,(k, N, A, r) such that III' (z)11 > <>, for all x E 

Nr(.L(k, IN, A)), or 
(ii) there is a z E Nr(.L(k, IN, A)) such that I'(z) = O. 

Moreover, if 

(3.22) 2' = U{l E NI(i) holdsfor.L(k, IN, A)} 
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and 
7r= UL(k,IN,A), 

IE2' 

then there exists t5 = t5(k, N, A) (independent of l) such that III' (x)11 ~ t5 for 
all x E Nr(7r)\Nr/ S(7r). 

Proof. Suppose that (i) does not hold. Then there exists a sequence (xm) C 

Nr(L(k, IN, A)) such that I'(xm) -+ O. The form of I implies it is bounded 
on bounded sets in E. Hence since L(k, IN, A) is bounded in E, I(xm) is 
bounded. Therefore by Proposition 1.24, there exist WI' ... , wp E %\{O}, a 
subsequence of xm ' and corresponding sequences (k~) C Z, 1 :::; i :::; p, such 
that 

(3.23) IIxm-t'k~Will-+O 
1=1 

as m -+ 00, where (k~) satisfies (1.27). Since A is a finite set, there are 
VI' ... , vk E A so that, along our subsequence, 

(3.24) 

By (3.23)-(3.24), 

(3.25) II t'ln,V i - t'k~ Will:::; r+em, 
1=1 1=1 

where em -+ 0 as m -+ 00. If Ik~ I -+ 00 as m -+ 00 for all i, 1 :::; i :::; p , then 

(3.26) 

contrary to (3.9) and (3.21). Thus, by (1.27), Ik~1 is bounded along a subse-
quence for exactly one choice of i, say i = j . Then for large m, without loss 
of generality, k~ = k i and, by (3.25), 

II t 'InjVi - 'kiWill :::; r. 
1=1 

(3.27) 

Since 'kiWi E %\{O} , (ii) holds. 
It remains to obtain the lower bound t5 for t51 • This is trivial if 2' is a 

finite set. Thus suppose 2' is not bounded. Then there is a sequence xm E 

Nr(L(k, ImN, A))\Nr/s(L(k, ImN, A)), where 1m -+ 00 and I'(xm) -+ 0 as 
m -+ 00. As earlier there are functions vk E A, 1:::; i :::; k, and WI' ... , wp E 
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%\{O} such that 

i-em ~ II t rlmn;Vi - t rk~ Will 
1=1 1=1 

(3.28) 

where em -+ 0 as m -+ 00. If Ik~ -lmnll -+ 00 as m -+ 00, 1 ~ i ~ p, then 
(3.28) and Remark 1.19 show 

v ~ IlvI11 ~ r, 

contrary to (3.9) and (3.21) again. If Ik~ -lmnll is bounded along a subsequence 
for, say, i = ii' then we can assume k~ -lmnl = kit for m large and, as earlier, 

( 3.29) 

Therefore by Proposition 3.12 and (3.21), VI = rk;t Wi' and for large m 

i -em ~ IItrlmn;V i - trk~will 
1=2 1=1 

ii'it 

= II t r1m(n;-nz)Vi - t rk~-lmnz w2 11 ~ r + em' 
1=2 1=1 

ii'it 

Thus we have returned to our original situation with one fewer term in each 
sum. Continuing in this fashion, we arrive at three possibilities depending on 
whether (a) k > p, (b) k = p, or (c) k < p. If (a) occurs, recalling the choice 
of no' for large m, we arrive at 

(3.30) 
k 

1 < II.L r1mn;vill ~ r+em , 
l=p+1 

contrary to (3.9) and (3.21). If (b) occurs, at the k = pth step, we find 
p 

xm = Lrk~wi' 
i=1 

contrary to the lower bound of (3.28). Finally if (c) occurs, after k steps for 
large m we have 

(3.31 ) II t r k~ Will ~ r + em ' 
l=k+1 

which leads to a contradiction like (a) due to (1.27). 
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Now our main existence assertions can be stated. Let A(t) and X(t) denote 
respectively the smallest and largest eigenvalues of L(t) and let 

A = min A(t), 
tE[O,T] 

x = max X(t). 
tE[O,T] 

By (V2) , there is a J> 0 such that lxi, Iyl ::; J implies 

(3.32) V(t, x) ::; (A/4)lxI 2 

and 

( 3.33) I~(t, x) - ~(t, y)1 ::; ! min(l, A)lx - YI· 

The existence result that contains the most information but is somewhat awk-
ward to state is: 

Theorem 3.34. Let r satisfy 

(3.35) r < min(rk' /2f.L(9f(ST)), v /2, Vmin(!, A/4)J) 

and let no satisfy (3.9) and (3.16). Then (~~~+o.o. /Z) n Nr(.L(k, IN, A)) =I- (2) 
for all but finitely many lEN. 

An immediate consequence of Theorem 3.34 is 

Corollary 3.36. If V satisfies (V1)-(V3) and (*) holds, then for each k E 

N\ {I}, ~~~+o.o.\Z is infinite. 

Proof. We need only note that for any admissible N, the sets Nr(.L(k, IN, A)) 
and Nr(.L(k, IN, A)) are disjoint if II-II is sufficiently large. 

Remark 3.37. Roughly speaking, Theorem 3.34 or Corollary 3.36 implies that 
for each k E N\{I}, there is a solution q of (HS) with I(q) near kc, the bulk 
of the support of q is concentrated in k disjoint intervals, and the distance 
between adjacent intervals can be made as large as we please. This latter fact 
accounts for why there are infinitely many solutions in ~~~:o.. Dynamically 
it means that the corresponding solutions start at the origin at t = -00, and 
return to a neighborhood of 0 where they remain for as long a time interval as 
we like, repeating this process k - 1 times before terminating at 0 at t = 00 . 

Another consequence of Theorem 3.34 is a result for (HS) without assuming 
(*) . 

Corollary 3.38. If (VI )-(V 3) and (L) are satisfied, then there is an 0: > 0 such 
that I 2c+o. /Z contains infinitely many distinct critical points of I. 
Proof. If (*) is false, INo. /Z contains infinitely many critical points of I for 
every 0: > 0, while if (*) holds, Theorem 3.34 with k = 2 gives the result. 

Remark 3.39. This result is only of interest when L or V depend explicitly on 
t due to the caveat made in the Introduction. 
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The proof of Theorem 3.34 will be given in the next section. 

4. PROOF OF THEOREM 3.34 

To prove Theorem 3.34, it suffices to show that 2' as defined in (3.22) is 
finite, for then (ii) of Proposition 3.20 must hold for all but finitely many lEN. 
A lengthy indirect argument will be employed to prove that 2' is finite. A brief 
sketch of it will be given now followed by the details. 

Step 1. Using the fact that 2' is infinite, for an appropriate 8 = 8(r) , we find 
G E r k such that the k components of the support of G are separated by k - 1 
intervals of length P with p as large as we please and such that 

max J(G(f))):S: kc + 8. 
I1E[O,1]k 

Step 2. By an argument like the proof of Proposition 2.3, G is deformed to G 
such that 

max J(G(f))):S: kc - 8. 
I1E[O, ,t 

If G E r k ' we would have a contradiction to Proposition 3.5. Unfortunately 
we only know G is within 2r of 0 in an LOa sense on the k - 1 intervals of 
length p. 
Step 3. Using a variational problem on the" P" intervals, we replace G on these 
intervals by U such that U is LOa small compared to 8 near the center of 
each of these intervals and 

max /(U(f))):S: kc - 8. 
I1E[O, ,t 

Step 4. U is modified near the center of each of the "P" intervals obtaining 
HE r k such that 

8 
max /(H( f))) :s: kc - -2 . 

8E[O, ,t 
This contradiction to Proposition 3.5 completes the proof. 

Now for the details: 

Step 1: Construction of G. Assuming that Theorem 3.34 is false and therefore 
2' is infinite, let l5 be given by Proposition 3.20. Choose 

_ . (rl5 a,) 
(4.1) 8, < mm 40' 2" ' 
where r satisfies (3.35) By Proposition 2.22 with this choice of 8, ' r, = r / 16k, 
and p = 6k, there is an 8 = 8,/2 E (0,8,) and g = g, E r such that 

8 
(4.2) max /(g(f))) :s: c + 3k 

I1E[O, '] 

and 

(4.3) J(g(f))) > c - 28 implies g(f)) E Nr/16k(A). 
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By a density argument as in Proposition 3.5, there is agE 1 and R > Osuch 
that 

(4.4) 

(4.5) 

and 

Ilg(e) - g(e)1I :s l~k' 
I/(g(e)) - /(g(e))1 < 6ek 

(4.6) suppgc[-R,R] 

for all e E [0, 1]. By (4.5) and (4.2), 

(4.7) max /(g(e)) :s c + 2ek' 
OE[O, I] 

Moreover if /(g( e)) > c - 3e/2, then by (4.5) 

/(g(e)) = /(g(e)) + /(g(e)) - /(g(e)) > c - 32e - 6ek > c - 2e. 

Thus by (4.3), gee) E N r/ 16k (A) and by (4.4), gee) E Nr/ 8k (A). 

Now for e E [0, It, set 
k 

( 4.8) G(e) = L r1ng(e), 
I 

i=1 

where no satisfies (3.9) and (3.16) and I is such that 

(4.9) IT> 2R + p, 
where p > ° and will be determined later in terms of rand L(t). By (4.8)-
(4.9) and the choice of g, G E l k ; by (4.7), 

k 

(4.10) /(G(e)) = L /(g(e)) :S kc + ~ < kc + e 
i=1 

and if /(G(e)) > kc - e, then 

(k-l)e 
/(g(e i )) + (k - l)c + 2k > kc - e 

or 

(4.11 ) /(g(e)) > c _ ~e , 

Hence gee) E Nr/8k (A) , 1 :S i:S k, and 

k 
( 4.12) G(e) = L r1n;g(e i ) E Nr/ 8(L(k, IN, A)). 

i=1 

Since £' is infinite, for any given p > 0, there is an IE£' satisfying (4.9) so 
that /(G(e)) > kc - e implies G(e) E Nr/8(~)' This completes Step 1. 
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Step 2: The deformation of G. With the choices made above of r, 8 , and I, 
consider the flow given by (2.7) for x E G( e), where b = kc, 8 = a, and 
e E (8,8). If I(G(e)) ~ kc - 8 (which is the case if G(e) fI. Nr/8('W)) , we 
set a(G(e)) = 0 so '1(a(G(e)) , G(e)) E Ike-e. Thus suppose x = G(e) with 
lex) > kc - 8. Then x E N r/8('W'). If the solution '1(S, x) of (2.7) does not 
exist for all S E [0, 1], there is a maximal interval of existence (0, sex)) with 
sex) < 1. If further '1(s, x) remains in Br(u) for some u E ./I(k, IN, A), 
then if srn -+ sex) and urn = '1(Srn ' x) , by Proposition 1.24 there are functions 
Wi E %\{O} , 1 ~ i ~ p, and sequences (k~), 1 ~ i ~ p, satisfying (1.27) 
such that 

( 4.13) Ilurn - t rk~ will-+ 0 
1=1 

as m -+ 00. Taking the form of u into account, by (4.13) we get 

lim lit r'nvi - t rki Will ~ r. 
m~(X) I m 

i=1 i=1 

(4.14 ) 

If for some i, (k~) is bounded along a subsequence as m -+ 00, then by the 
argument of (3.27), there exists Z E Br(u) n % , contrary to I E 2'. On the 
other hand, if Ik~1 -+ 00 as m -+ 00, 1 ~ i ~ p, the argument of (3.26) yields 
a contradiction. 

Thus either (i) '1(s, x) remains in Br(u) for S E [0, 1], or (ii) '1(s, x) 
reaches oBr(u) at some S ~ 1 . If (i), the arguments of Proposition 2.3 show 
there is a continuous a(x) < 1 such that 

( 4.15) 1('1(a(G(e)) , G(e))) = kc - 8. 

If (ii) occurs, '1(s, x) must cross from Br/8(u) to oBr(u). If in this time 
interval '1(s, x) did not reach olc-e, then, as in (2.9)-(2.10), (2.13)-(2.14) 
(using Proposition 3.20), 

7 48 7 gr ~ ~ or 32 rt> < 8, 

contrary to (4.1) and 8 < 82 , Thus as with (i), there is a a(x) < 1 such that 
(4.15) holds. Moreover, as in the proof of Proposition 2.3, 

( 4.16) 11'1(a(G(e)), G(e)) - G(e)11 ~ r. 

Remark 4.17. If G(e) == '1(a(G(e)) , G(e)) E r k , (4.15) would provide a con-
tradiction to Proposition 3.5. By (4.16), 

( 4.18) 

and, in particular, 

( 4.19) IG(e)(t)1 ~ 2r 
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for t in the intervals where G( 0) vanishes: [R, R + Pl , etc. Since r is small, 
it is tempting to try to truncate G(t) in the intervals [R, R + Pl , etc. to obtain 
HEr k' However the error made in this process seems to go like r which is 
large compared to e and therefore it cannot be guaranteed that J(H) < kc. 
Alternatively since P is large and (4.16) holds, for each 0 there are points 
t E [R, R + Pl where IG(O)(t)1 can be made small compared to e and G(O) 
can be truncated at such points. However we do not know how to make a 
continuous selection with respect to 0 E [0, 11k. Thus a more complicated 
procedure will be followed in Step 3. 

Before going on to Step 3, some observations are needed. Note that for 
l'5.i'5.k, 

G(O) = L 1:1 g(O.) 
I jopi nj J 

and 

J(G(O)) = LJ(g(O)) '5. (k-l) (c+ 2ek) 
Hi 

e '5. (k-l)c+"2 < kc-e 

since e < a < c/2. Thus, as in Proposition 2.3, a(G(O)) = 0 and 

(4.20) 

Similarly 

G(O) = G(O), 

G(l) = 1:ln,g(l) + L 1: lnl(O) 
Hi 

so J(G(I)) < kc - e, a(G(li)) = 0, and 

(4.21) G(l i )=G(I), i'5.i'5.k. 

Step 3: The construction of U(O). U(O) will be obtained from G(O) by re-
defining G( 0) in an appropriate way in the k - 1 intervals [R, R + Pl, etc. 
where G(O) vanishes. Let x E W I ,2([R, R + P]' Rn) == Y and set 

rR+/l 2 
(4.22) \f(x) = } R [!-(Ixl + L(t)x . x) - V(t, x)] dt. 

Then \f is C I on this class of functions and is also weakly lower semi con-
tinuous. Note also that \f is not bounded from above or below. However 
if \f is restricted to the subclass of x E Wi, 2([R, R + P]' Rn) such that 
x(R) = 0 = x(R + P) , then x = 0 is a strict local minimum for \f. This 
suggests that \f should also have a small strict local minimum for any other 
subclass of functions which are small at R, R + p. It is this fact that will be 
exploited to construct the modification of G. 

Let 
k-2 

S = U [(2i + I)R + iP, (2i + I)R + (i + I)P]· 
i=O 
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We use (4.22) to extend 'I' to S in the obvious fashion. For each 0 E [0, It , 
define 

(4.23) U(O)(t) = G(O)(t) , t tj. S, 

while for t E S, U(O)(t) is the solution of the variational problem 

( 4.24) minimize '1'( x) , 

where the minimum is taken over the set of x E WI ,2(S, Rn) such that x(t) = 
G(O)(t) for tEaS and Ilxllco(s ,Rn) :s; J. Here J is as defined in (3.32)-(3.33). 
Thus (4.19) shows G( 0) Is lies in the above class of functions. 

Remark 4.25. It is clear that, if it exists, the minimizer restricted to a component 
of S minimizes 'I' on the corresponding class of functions with S replaced by 
the component of S . 

Proposition 4.26. There exists a unique solution, X, of (4.24). Furthermore x 
depends continuously on 0 E [0, 1]k . 

Proof. By Remark 4.25, it suffices to work with [R, R + If]. The choice of J 
shows that, for admissible x, 

(4.27) 'I'(x) ~ lR+P (~(lXI2 + L(t)x· x) - ~IXI2) dt 

~ min (~,~) Ilxll~. 

Let (xm ) be a minimizing sequence for (4.24). Then by (4.27), for m large 

( 1 A) 2 -(4.28) min "2'"4 Ilxmlly:S; 'I'(xm) :S; 'I'(G(O)) 

:S; lR+P [~(IG(0)12 + L(t)G(O)· G(O))] dt. 

By (4.16), 

(4.29) (lR+P IG(0)12 + L(t)G(O). G(O) dt) 1/2 :S; IIG(O) - G(O)II :S; r. 

Hence (4.28)-(4.29) imply 

( 4.30) 

Since for all x E E, 

(4.31) IlxIILoo([R,R+P]'Rn) :S; V2llxlly, 
by (4.30)-(4.31) and (3.35), IlxmIILoo([R,R+P]'Rn) < J. Thus, for m large, 
the minimizing sequence automatically satisfies the L 00 constraint. By 
(4.30)-(4.31), a subsequence of (xm ) converges weakly in Y and strongly in 
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LCXJ([R, R + 13], Rn) to X satisfying IlxIILoo([R,R+P]'R") < J. Standard argu-
ments from the theory of elliptic boundary value problems then show X mini-
mizes \}' and is a classical solution of 

{
X - L(t)x + ~(t, x) = 0, 

( 4.32) 
x(t) = G(O)(t) , 

t E (R, R + 13) , 
t=R,R+f3. 

We claim x is the unique solution of (4.32) satisfying the L CXJ constraint. 
Indeed if there were two such solutions x, y, then by (3.33), 

2 rR+P 2 (4.33) min(l, A)llx - ylly ::; iR [Ix -.PI + L(t)(x - y). (x - y)]dt 

rR+P 
= iR (~(t,x)-Vq(t,y)).(x-y)dt 

::; ! min(l, A)llx - YII~, 

which implies x = y. Finally the continuity of x is immediate from the 
uniqueness of x . 

With U(O) now defined, note that, by construction, 

(4.34) J(U(O)) ::; J(G(O)) ::; kc - e. 
We also have to keep track of U(Oi) and U(li)' For t 1. S, by (4.20) and 
(4.23) for 1::; i::; k, 

(4.35) U(Oi)(t) = G(O)(t) . 

Since G(Oi)(t) = ° for t E S, (4.32) and the uniqueness assertion of Proposi-
tion 4.26 imply U(Oi)(t) = ° = G(Oi)(t) for t E S and therefore 

(4.36) U(O) = G(Oi) , 1 ::; i::; k. 

Similarly, by (4.21) and (4.23), for t 1. S, 

(4.37) U(l)(t) = G(li)(t) 

and G(li)(t) =0 for tES,soasabove, 

(4.38) U(l)=G(li)' l::;i::;k. 
To continue, estimates are needed for U(O)(t) for t near the center of each 

of the subintervals that make up S. We will show that if 13 is sufficiently large, 
then U(O)(t) is small (compared to e) and this will allow us to redefine U to 
get HEr k in Step 4. A comparison argument will be used to get the necessary 
estimate. 

Let 

( 4.39) 
_ d2 

L(t)==--2+ Y' 
dt 

where the positive constant y is free for the moment. Let w = w(O)(t) satisfy 

{ Lw = ° in S, (4.40) 
w = max tE8S IU(O)(t)1 == a, tEaS. 
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Note that for t E S, by (3.33), 

(4.41) Llxl 2 = -2IxI2 -2x,x+YlxI2 

::; - 21xl2 - 2L(t)x.x + min(l, Je)lxl 2 + Ylxl 2. 

Choose Y = 2Je. Then 

( 4.42) 

and 

( 4.43) { L(w -lxI2) ~ ° on S, 

w -lxl2 ~ ° on as. 
Consequently, by the Maximum Principle, 

(4.44 ) w(t) ~ Ix(t)1 2, t E S. 

Now w can be written down explicitly in each of the subintervals that make 
up S; e.g., for t E [R, R + P]' 

(4.45) ( ) _ ( 1 - e -v'YP ) v'Y(t-R) (ev'YP - 1 ) -v'Y(t-R) 
W t - a ev'YP _ e-v'YP e + a ev'YP _ e-v'YP e . 

By (4.44)-(4.45) for S E [-!, !l we have 

(4.46) IX(R+~+s)12::;W (R+~+S) ::;2ae v'Y(1-P)/2. 

Thus x is exponentially small (in P) in [R + ? - !, R + ? +!l with similar 
estimates for the remaining subintervals of S. 

Step 4: The construction of H. Define 

(4.4 7) H(8)(t) = U(8)(t), 

where 

trtS!= [R+~-~,R+~+~] 

U [3R + 3 P _! 3R + 3 P + !] U ... 
2 2' 2 2 ' 

H(8) (R +~) = ° = H(8) (3R + 3f) = ... , 

and H(8)(t) is interpolated linearly for the remaining regions. We claim HE 
r k . To verify (g! )-(g2) , note that by (4.47), for 1 ::; i ::; k 

(4.48) H(O)(t) = U(O)(t), t rt S!' 

Since U(Oi)(t) = ° on as! ' (4.47) implies H(Oi)(t) = 0, t E S! ' and therefore 

(4.49) H(Oi) = G(Oi)' 1 ::; i::; k, 
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via (4.36). Similarly 

( 4.50) 

Defining Po = -00, Pk = 00, PI = R + ~ , P2 = 3R + ¥ ' etc., and 

{ H(O)(t) for t E [Pi-I' pJ, 
h.(O)(t) = . 

I 0 otherwIse, 

we see HE r k . 

We claim that for P sufficiently large, 

(4.51 ) e 
J(H(O)) s:; kc - "2' 

contrary to Proposition 3.5. Indeed, 

(4.52) J(H(O)) = J(U(O)) + J(H(O)) - J(U(O)) 
s:; kc - e + J(H(O)) - J(U(O)). 

Thus to verify (4.51), it suffices to prove 

( 4.53) J(H(O)) - J(U(O)) s:; ~. 

By the definition of H, the left-hand side of (4.53) is the sum of k - 1 terms, 
the first of which is 

(R+I!.+l 
(4.54) JR+I!.~12[!(Il{(O)12 + L(t)H(O)· H(O)) - V(t, H(O)) 

2 2 

- !(IlJ(O)12 + L(t)U(O) . U(O)) + V(t, U(O))] dt. 

We will show that for p sufficiently large, each of the Hand U contributions 
to (4.54) is less than e/4k. To estimate the U contribution, note first from 
(4.32), (4.46), and (3.33), for t E [R + ~ -!, R + ~ +!], 
(4.55) Ix(t)1 s:; IL(t)xl + IVq(t, x)1 s:; (lILIILoo +!(1 + A))lx(t)1 

s:; V2a(IILIILoo + !(1 + A))ev'Y(]-P)/4 == M]e -YIP, 

where .Y] = ivy and M\ depends on A, IILIILoo, and r. (Recall that a 
depends on r.) Since 

(4.56) 

integrating (4.56) over S E [R + ~ -!, R + ~ +!] yields 

(4.57) Ix(t)lS:; IX(R+~+~)I+lx(R+~-~)1 

+ IlxIILOO([R+~_! .R+~+~],Rn) 

< Me-YIP 
- 2 ' 
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where 

( 4.58) ~y M2 = 2 v 2ae I + Ml . 

Thus by (4.46), (4.57), and (3.32), 

( 4.59) 

where 

( 4.60) 

Similarly by (4.47), (4.57), and (4.46), for t E [R + ~ - !, R + ~ +!1, 
(4.61) IH(O)(t)I:::; M 2e-Y1P , IH(O)(t)l:::; ffaeY1(1-Pl 

(4.62) 

It follows that 

( 4.63) 

provided P = p(r, A, IILIILoo) is sufficiently large. Then (4.51) holds and The-
orem 3.34 is proved. 

5. ON WEAKENING (*) 

We conjecture that Theorem 3.34 and Corollary 3.36 remain valid if (*) IS 

replaced by the milder assumption: 
(**) There is an 0: > 0 such that %c+o: consists of isolated points. 

In this section, we will indicate why this conjecture is true if an additional 
assumption is made on V. In fact an even weaker condition than (**) will 
then be required. 

To begin, observe that if q is a solution of (HS), then 

(5.1) Ilq112= i:~(t,q)·qdt. 

Let 

(5.2) ,9 == {q E E\{O}lq satisfies (5.1)}. 

Thus %\{O} c ,9. For p > 0 and q E E\{O} , let If/(p) = J(pq). At a 
nonzero critical point of If/, 

(5.3) 2 JCXJ pllqll = -CXJ Vq(t, pq). q dt. 

Multiplying (5.3) by p shows pq E,9 . Suppose V satisfies 
(V4 ) for all ~ E Sn-l , p-l Vq(t, p~).~ is an increasing function of p. 
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Then 

(5.4) , (2 -1100 
) IfI (p) = p Ilqll - p -00 ~(t, pq) . q dt . 

By (V 2) , as p ~ 0 , 

(5.5) P -I i: ~(t, pq). q dt ~ 0 

and by (V 3) , as p ~ 00 , 

(5.6) P -I i: Vq(t, pq)q dt ~ 00. 

Consequently, by (V4 ) 

that 1fI' (p) = 0 and 

(5.7) 

and (5.4)-(5.6), there is a unique p = p(q) > 0 such 

IfI(P) = max [(pq) . 
p?O 

Let YEE\{O} such that [(y)<O. Then gy(8)=:8YEr. Therefore 

(5.8) 0 < c = inf max [(g(8)) ::; inf max [(gy(())). 
gEr OE[O, IJ yE{yII(y)<O} OE[O, IJ 

By above remarks, max[(gy(8)) occurs on ,9. Hence by (5.8) 

(5.9) 0 < c < inf [. -,9 

On the other hand, if q E %\{O} , then q E,9 and, e.g., by [1], (V1)-(V3) 
imply %\{O} =1= 0. Therefore 

(5.10) c < inf [=: C. 
- .%\{O} 

We claim c is a critical value of [. If not, c < c and therefore (*) holds. 
Hence by Theorem 2.19, c is a critical value of [. Thus 

(5.11 ) c = inf [= inf [. 
,9 %\{O} 

Let v be a critical point of [. Choosing y on the ray passing through 0 and 
v so that [(y) < 0, we have 

(5.12) max [(gy(8)) = c, 
OE[O, IJ 

so gy satisfies 10 of Proposition 2.22 with e 1 = O. Let e 1 be as in Proposition 
2.22 and suppose v = 7Jy. For any el < el ' by (V4 ) , there are 8_(e l ) < 7J < 
8+(e l ) such that 8±(e l ) -> 0 as el -> 0 and [(8y) > c - el for () E (()_, 8+). 
In particular, for any given 'I > 0, there is an el ('I) such that () E (() _ , () +) 
implies ()y E B (v). Hence 20 of Proposition 2.22 holds with this 'I and 

" A = {v}. 
Thus having (V 4) we are able to bypass the construction of Proposition 2.22 

to find g = gy as above and A = {v}. Now /t(k, N, A) and /t*(k, N, A) 
can be defined as in (3.10)-(3.11). By (**), there is an r > 0 such that 

(5.13) B,.(v)n%={v}. 
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Let 

(5.14 ) r < mine /2 Jl(9f(A)) , l/ /2, rk , r*). 

(Note that 7 = 1 here.) An examination of the proof of Proposition 3.20 shows 
the only places (*) enters is via Jl(9f(Y)) , which we replace by Jl(9f(A)) and in 
the argument following (3.29). Choosing r to satisfy (5.14) shows Proposition 
3.20 is still valid. Likewise adding r* to the right-hand side of (3.35), the proof 
of Theorem 3.34 and Corollary 3.36 carry over to our current situation giving 
us infinitely many solutions of (HS) in (.%k~~:a /Z) nNr(L* (k, N, A)) . In fact 
we do not need (**) but simply that v is an isolated point in %(c). 
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