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On the basis of recent retrospective and prospective
studies, it is now widely accepted that increased total
plasma homocysteine is a risk factor for cardiovascular
disease. Impaired enzyme function as a result of genetic
mutation or deficiency of the essential B vitamins folic
acid, B12, and B6 can lead to hyperhomocysteinemia.
Oxidized forms of homocysteine account for 98–99% of
total plasma homocysteine. Although there is uncer-
tainty as to whether increased homocysteine is causal or
merely a proxy for cardiovascular disease, several lines
of evidence suggest that it may play a role in athero-
thrombotic disease. Homocysteine appears to alter the
anticoagulant properties of endothelial cells to a proco-
agulant phenotype. Mildly increased homocysteine
causes dysfunction of the vascular endothelium. Folic
acid effectively lowers homocysteine concentration in
the plasma. Intervention studies are urgently needed to
determine if lowering homocysteine is effective in de-
creasing the morbidity and mortality of cardiovascular
disease.

Cardiovascular disease (CVD)1 is the leading cause of
mortality in the United States and in most Western
countries. The emergence of new risk factors for heart
disease and other major human illnesses are often greeted
with skepticism in the scientific community. McCully and
Wilson (1) proposed the “homocysteine theory of arterio-
sclerosis” in 1975 on the basis of pathological examina-
tions of autopsy material from children with homocystin-
uria (2). However, only within the past 5 years has

homocysteine taken its place among other major risk
factors such as cholesterol, smoking, and obesity. The fact
that homocysteine is now widely accepted as a major
independent risk factor for cardiovascular, cerebrovascu-
lar, and peripheral vascular disease is because, at least in
part, of methodological advances in the determination of
total plasma homocysteine that have occurred in the past
decade and to a greater appreciation of the role of
micronutrients in health and well-being.

Nearly 80 retrospective and prospective clinical studies
have been published on homocysteine and vascular dis-
ease in the past 10 years. The vast majority of these studies
support the observation that increased total plasma ho-
mocysteine is associated with an increased risk of CVD
(3–10). However, whether homocysteine is causal in
atherogenesis and thrombogenesis, or merely a proxy for
the disease itself, remains to be determined. Secondary
intervention trials that will effectively lower total plasma
homocysteine in patients with CVD followed by the
assessment of mortality and morbidity outcomes are only
now beginning. It may be several years before the answer
is known. In the meantime, it may be prudent to under-
stand the relationship between homocysteine and folic
acid, vitamin B12, and vitamin B6 because, in most
individuals, optimal nutriture with respect to these
vitamins is an effective means of maintaining lower
concentrations of total plasma homocysteine.

The determinants of total plasma homocysteine are
complex and involve demographic, genetic, and acquired
factors. Acquired factors include both state-of-health and
life-style considerations. Although the roles that homo-
cysteine plays in atherogenesis, atherosclerosis, and
thrombosis are unknown, several recent studies suggest
that hyperhomocysteinemia can disrupt functions of the
vascular endothelium that may lead to conversion of its
usually anticoagulant surface to one that is procoagulant.
Treatment of hyperhomocysteinemia and the design of
clinical trials is considered with respect to the current
policy to fortify the food supply with folic acid. Is
homocysteine the “new cholesterol” of risk factors? Time
will tell.
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Total Plasma Homocysteine and Its Determination
In this review, it is important that the term “total plasma
homocysteine” be understood in a biochemical sense,
because this will have relevance in the discussions that
follow on methodology and on pathophysiological mech-
anisms. Human plasma contains both reduced and oxi-
dized species of homocysteine (Fig. 1). Chemical defini-
tions were established by Butz and du Vigneaud over 65
years ago (11). The sulfhydryl or reduced form is called
homocysteine and the disulfide or oxidized form is called
homocystine. Disulfide forms also exist with cysteine and
with proteins containing reactive cysteine residues (pro-
tein-bound homocysteine). The latter oxidized forms are
referred to as mixed disulfides. The oxidized forms of
homocysteine usually comprise 98–99% of total plasma
homocysteine in human plasma, 80–90% of which is
protein-bound (Fig. 1). There is no consensus as yet to
designate multiple forms of homocysteine in plasma (12).
Some investigators write “homocyst(e)ine and hyperho-
mocyst(e)inemia” to designate multiple plasma forms.
This somewhat awkward and archaic usage should be
abandoned. First, it is impossible to pronounce the paren-
theses in speaking, and we certainly don’t use “cholester-
(o)l” when we refer to its multiple forms in plasma. No,
we say and write “total cholesterol”, or identify a specific
chemical form by use of appropriate prefixes. Thus, “total
homocysteine”, “reduced homocysteine”, “protein-bound
homocysteine”, “homocystine”, and “homocysteine-cys-

teine mixed disulfide” are easily understood. Homocys-
teine, like cholesterol, has ever increasing generic mean-
ing, and this should not be discouraged. Total
homocysteine, therefore, is the sum total of all forms of
homocysteine that exist in plasma or serum.

On the basis of work carried out by many investigators,
the range of total homocysteine concentration in plasma
from “healthy adults” is 5–15 mmol/L (Table 1) (13).
However, one must be cautious in the use of so-called
“normal ranges” for homocysteine. We have shown that
risk for coronary artery disease is represented by a
continuum of total homocysteine concentration, with sub-
stantial risk occurring between 10 and 15 mmol/L (14).
Perhaps the upper limit of normal will be 10 mmol/L or
even lower, because it may be possible to achieve this
“desirable level” by optimal nutriture with respect to folic
acid, B12, and B6 (vide infra). Individuals with homocystin-
uria because of rare inborn errors of homocysteine metab-
olism have severe hyperhomocysteinemia, with total ho-
mocysteine concentrations approaching 500 mmol/L. It
has been reported that up to 20% (;100 mmol/L) of the
total homocysteine in these individuals is reduced homo-
cysteine (15). Subjects with coronary artery, cerebrovas-
cular, and peripheral vascular disease usually present
with mild hyperhomocysteinemia (15–25 mmol/L) (3, 6, 8).
However, if renal function is impaired, or if the subject has
end-stage renal disease, total homocysteine can reach inter-
mediate concentrations (25–50 mmol/L) (16, 17).

Methodologies to determine total plasma (or serum)
homocysteine were first developed in the mid to late
1980s (18–23). Free homocysteine must first be generated
in the plasma sample by chemical reduction of disulfide
bonds. Commonly used reductants include 2-mercapto-
ethanol (19), dithiothreitol (24), sodium borohydride (25),
n-tributylphosphine (21), and more recently, the water-
soluble phosphine tris(2-carboxyethyl)phosphine (26).
Homocysteine is then resolved from other low molecular
weight thiols (cysteine, cysteinylglycine, and glutathione)
by reversed-phase HPLC and determined directly by
electrochemical detection (20), or derivatized with a fluo-
rochromophore, resolved by HPLC, and detected fluoro-
metrically (27–29). Alternatively, after reductive genera-
tion, homocysteine can be derivatized for capillary gas
chromatography and detected by mass spectrometry (19).
Although there is relatively good agreement between
different laboratories (13), standardized reference ranges
do not exist, and there is no consensus on the use of a
standardized calibrator. The differences seen between

Fig. 1. Constituents of total plasma homocysteine and percentage of
composition.

Table 1. Total plasma homocysteine: working ranges.
Normal range 5–15 mmol/L
Desirable (?) ,10 mmol/L
Hyperhomocysteinemia

Mild 15–25 mmol/L
Intermediate 25–50 mmol/L
Severe 50–500 mmol/L

1834 Jacobsen: Homocysteine and vitamins in CVD
D

ow
nloaded from

 https://academ
ic.oup.com

/clinchem
/article/44/8/1833/5642861 by guest on 21 August 2022



laboratories may be because of efficiency of disulfide
bond reduction and use of different internal standards
and calibrators. Immunoassays for total homocysteine
were recently reported by Shipchandler and Moore (30)
and by Frantzen et al. (31). Both of these assays use a
mouse monoclonal antibody directed against S-adenosyl-
homocysteine, which is formed when homocysteine,
again generated by reductive cleavage of plasma disul-
fides, is allowed to react with adenosine in the presence of
S-adenosylhomocysteine hydrolase. Advances in the de-
velopment of high-throughput assays for total homocys-
teine are likely to continue over the next several years.

Hyperhomocysteinemia and Links to CVD
Classical homocystinuria, a monogenic defect of homo-
cysteine metabolism, was discovered in 1962 by Carson
and Neill (32) and Gerritsen et al. (33). This rare disease,
occurring in ;1 in every 100 000 to 200 000 births, is
caused by deficiencies of cystathionine b-synthase (CBS),
methylenetetrahydrofolate reductase (MTHFR), and me-
thionine synthase (MS) and is inherited through an auto-
somal recessive mechanism. Individuals who are ho-
mozygous for CBS deficiency are unable to catabolize

homocysteine through the transsulfuration pathway (Fig.
2). Homozygous deficiency of either MTHFR or MS
prevents conversion of homocysteine back to methionine
through the methionine cycle (Fig. 2). The clinical hall-
marks of homocystinuria include mental retardation, skel-
etal abnormalities, ectopic lenses, and premature athero-
thrombotic disease (34). These individuals excrete large
amounts of homocystine in the urine and have total
homocysteine concentrations in the plasma from 50 to 500
mmol/L. The extremely rapid onset of arteriosclerosis and
atherosclerosis seen in these subjects suggests that there
may be a dose-time relationship between total plasma
homocysteine and the onset and progression of CVD.

The association between mild hyperhomocysteinemia
and CVD has been documented in numerous retrospec-
tive case-control studies. In 1976, before development of
assays for total plasma homocysteine, Wilcken and Wilc-
ken (35) reported higher concentrations of homocysteine-
cysteine mixed disulfide in plasma from subjects with
coronary artery disease 4 h after methionine loading
compared with controls. Kang et al. (36) found that
protein-bound homocysteine was higher in subjects with
documented coronary artery disease. In an early study

Fig. 2. Metabolism of homocysteine.
Remethylation: homocysteine is remethylated to methionine by B12-dependent MS (B12MS) in the presence of 5-methyltetrahydrofolate (CH3THF). The latter is the
product of 5,10-methylenetetrahydrofolate (CH2THF) reduction by MTHFR. Homocysteine can also be remethylated by betaine:homocysteine methyltransferase (BHMT)
in the liver and kidney. In the methionine cycle, dietary methionine is converted to S-adenosylmethionine (SAM), which serves as a methyl group donor substrate for
methyltransferases. The other product of this reaction is S-adenosylhomocysteine (SAH), which is hydrolyzed by SAH hydrolase to homocysteine and adenosine. The
methionine and folate cycle enzymes are widely distributed. Homocysteine also enters the catabolic transsulfuration pathway. The first enzyme in this pathway is
B6-dependent CBS. Cystathionine is converted to cysteine by B6-dependent cystathionase. Cysteine is further catabolized to inorganic sulfate, which is excreted in the
urine. The transsulfuration pathway has somewhat limited tissue distribution (liver, kidney, pancreas, and brain).
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using basal total plasma homocysteine, Israelsson et al.
(37) found an incidence of 24% of hyperhomocysteinemia
in men who had suffered a myocardial infarction before
the age of 55. Boushey et al. (38) did a metaanalysis on 27
studies (up to early 1995) relating homocysteine to CVD
and 11 studies on folate as a determinant of plasma
homocysteine. Increased total homocysteine was an inde-
pendent graded risk factor for CVD, with odds ratios of
1.6 and 1.8 for a 5 mmol/L increment in men and women,
respectively. A strong inverse correlation was found be-
tween total homocysteine and serum folate. The authors
speculated that increasing folate intake from foods, or
folic acid by supplementation would substantially reduce
annual mortality from coronary artery disease. More
recently, Graham et al. (39) reported that increased total
homocysteine was as strong as smoking and hyperlipid-
emia as an independent risk factor for CVD on the basis of
a large multicenter European study involving 750 cases
and 800 controls.

Results of prospective studies attempting to link hy-
perhomocysteinemia to CVD have been mixed. In the US
Physicians’ Health Study, Stampfer et al. (40) found
higher total plasma homocysteine in cases compared with
controls (11.1 6 4.0 vs 10.5 6 2.8 mmol/L, P 5 0.03);
however, the relative risk for myocardial infarction was
3.1 for men in the $95th percentile, suggesting a thresh-
old effect. Arnesen et al. (41), on the other hand, found
that total plasma homocysteine was an independent risk
factor for coronary artery disease, with no threshold
concentration. Recently, total plasma homocysteine was
found to be a strong predictor of mortality in Norwegian
patients with coronary artery disease (42). However,
prospective studies conducted by Alfthan et al. (43) and
by Evans et al. (44) were negative.

Secondary intervention studies are only just beginning
in the United States and Europe. These studies, designed
to lower total plasma homocysteine in patients with CVD
by supplementation with combinations of folic acid, B12,
and B6, will assess long-term mortality and morbidity
outcomes in treatment and placebo groups. It may be
several years before the results of these clinical trials are
known. A complicating factor for trials in this country is
the addition of folic acid, a major nutritional determinant
of total homocysteine, to the nation’s food supply, as
discussed below.

Determinants of Hyperhomocysteinemia
The determinants of total plasma homocysteine are com-
plex and involve demographic, genetic, and acquired
factors (Table 2). It is likely that gene-nutrient interactions
will be important determinants in subjects who carry one
or more mutations in genes that regulate homocysteine
metabolism. Thus, genetic background, nutrition, state-of-
health, life-style, gender, and age influence the homeosta-
sis of homocysteine.

demographic factors
Total plasma homocysteine appears to increase through-
out life. In Norwegian children, ages 8–12 years, total
homocysteine concentrations were 5–6 mmol/L, with no
reported differences for gender (45). Nygård et al. (46)
found that in Norwegian men and women 40–42 years
old, geometric mean values for total homocysteine were
10.8 and 9.1 mmol/L, respectively. In Norwegians 65–67
years old, the values increased to 12.3 and 11.0 mmol/L. In
a predominantly female group of French centenarians,
mean total plasma homocysteine was 26.7 6 9.6 mmol/L
(47). It is now clear that men have higher total plasma
homocysteine concentrations than women of the same age
(46); however, the reasons for this difference and when
the divergence begins (presumably after puberty) are
unknown. South African black children (7–15 years old)
had significantly higher homocysteine concentrations
than South African white children (5.8 6 1.8 vs 5.1 6 0.8
mmol/L, respectively); however, Ubbink et al. (48) found
that black men had significantly lower concentrations
than white men (9.7 6 3.4 vs 12.0 6 6.7 mmol/L, respec-
tively) and that young black men were able to metabolize
homocysteine more efficiently than young white men,
based on methionine-loading studies (49). Comparable
studies have not been reported in this country.

genetic factors
Studies in the early 1990s established that genetic factors
were important contributors to the hyperhomocysteine-
mia seen in patients with coronary artery disease (50–53).
Recent evidence suggests that genetic factors, in combi-
nation with acquired or environmental factors, lead to
increased total plasma homocysteine (46, 54).

MTHFR converts 5,10-methylenetetrahydrofolate to

Table 2. Determinants of hyperhomocysteinemia.
Demographic

Age
Sex
Ethnic origin

Genetic
MTHFR
MS
CBS

Acquired
B-vitamin deficiency (folate, B12, and B6)
State of health

Impaired renal function
End-stage renal disease
Heart and other organ transplants
Hypothyroidism

Lifestyle
Smoking
Alcohol (excessive)
Lack of exercise
Coffee (excessive)
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5-methyltetrahydrofolate in the presence of NADPH (Fig.
2). 5-Methyltetrahydrofolate in turn serves as a substrate
for B12-dependent methionine synthase. MTHFR is a
flavin-dependent enzyme consisting of two identical 77-
kDa subunits with N-terminal catalytic domains and
C-terminal regulatory domains (55). Approximately 50
cases of severe MTHFR deficiency have been reported
(56), with neurological or vascular complications appear-
ing in the first or second decade of life. The gene for the
enzyme has been cloned (57), and 14 mutations causing
severe deficiency have been described (58, 59). A thermo-
labile variant of the enzyme, designated D-MTHFR in this
review, was first reported by Kang et al. (60). Subsequent
studies by the same group found a high incidence of
D-MTHFR in patients with coronary artery disease
(61, 62). In a more recent study by Engbersen et al. (63),
28% of hyperhomocysteinemic patients with premature
vascular disease had the thermolabile enzyme. A C677T
gene mutation, which produces an alanine-to-valine sub-
stitution, is the cause of D-MTHFR. The allele frequency of
this mutation is widespread: 38% in the French Canadian
population (64) and 25–39% in other populations (65–72),
but only 10% in African Americans (73). Many reports
support the hypothesis that individuals who are homozy-
gous for D-MTHFR may be at greater risk for CVD
(65–68, 71), but others do not (69, 72), irrespective of folate
status (70, 74). Although Ma et al. (75) found no increased
risk for myocardial infarction in men because of
D-MTHFR, they did find higher total homocysteine con-
centrations in homozygous men with low folate status. A
similar gene-nutrient interaction was found by Jacques et
al. (76) who studied 365 individuals from the NHLBI
Family Heart Study. In patients with end-stage renal
disease, Bostom et al. (77) found 33% higher total homo-
cysteine in pooled homozygote and heterozygote patients
who had plasma folate values below the median when
compared with patients with wild-type MTHFR geno-
type.

Vitamin B12-dependent MS is found in most cells and
tissues (78). Inborn errors that affect B12 absorption,
systemic transport, intracellular transport, and conversion
to the coenzyme form (methyl-B12) will produce loss of
MS activity and hyperhomocysteinemia (56, 79). Muta-
tions in the structural gene for MS itself are only now
being described (80–82). Human MS cDNA contains an
open reading frame of 3798 nucleotides encoding a
polypeptide of 1265 amino acids (predicted molecular
mass, 140 kDa). On the basis of complementation studies
using patient fibroblast cell lines, two types of MS-
associated genetic diseases, cblE and cblG, have been
described (83). The cblE class may involve a reducing
component of the MS system (84), whereas cblG is thought
to be caused by defective MS apoenzyme (85, 86). Several
MS mutations have now been identified in cblG patients
(81, 87); however, the prevalence of these mutations in the
general population and their contribution to hyperhomo-

cysteinemia in heterozygous individuals remain to be
determined.

Entry of homocysteine into the transsulfuration path-
way is catalyzed by B6-dependent CBS, which has limited
tissue distribution (78). Several hundred cases of CBS
deficiency, the most common form of homocystinuria,
have been described (34). The human cDNA for CBS,
cloned by Kraus et al. (88) in 1993, contains 2554 nucleo-
tides encoding a subunit of 551 amino acids with a
predicted molecular mass of 63 kDa. When bacterial
(89, 90) and yeast (91, 92) expression systems have been
used, close to 40 mutations have been identified in the
CBS gene. Obligate heterozygotes for CBS deficiency
might be at greater risk for CVD because of possible
increases in basal and postmethionine load total homo-
cysteine (35, 51, 93). However, the reliability of assessing
heterozygosity based on CBS enzyme activity measure-
ments and postmethionine-loading studies has been ques-
tioned (94). A number of genotyping studies have been
done; however, they have failed to identify CBS polymor-
phisms that correlate with CVD (68, 95, 96). Clearly, ad-
ditional studies are needed to assess the role of CBS
polymorphism in atherosclerotic disease.

acquired and life-style factors
The source of homocysteine in the diet is l-methionine.
Fruits and vegetables generally contain 0.9–1.2 g of me-
thionine per 100-g serving. Peaches and grapes (3.6 g/100
g) are exceptions. Nuts and cereal grains contain 1.4–1.8
g/100 g, except Brazil nuts, which contain 5.8 g/100 g.
Sources of animal protein have a higher methionine
content: meat and fish, 2.7 g/100 g, eggs, 3.2 g/100 g, and
cow’s milk, 2.9 g/100 g. By comparison, human milk has
only 1.4 g/100 g.

Dietary insufficiency or malabsorption of folate, vita-
min B12, or vitamin B6 will lead to hyperhomocysteinemia
and an increased risk of CVD (97–103). Even in well-
nourished generally healthy populations, serum folate
and B12 inversely correlate with total homocysteine
(29, 104). The B vitamins drive homocysteine metabolism,
with 5-methyltetrahydrofolate serving as substrate for
B12-dependent MS in the remethylation of homocysteine
back to methionine and vitamin B6 (as pyridoxal-5-phos-
phate) as a cofactor for CBS in the transsulfuration path-
way (Fig. 2). The large Hordaland study in Norway found
that increased total plasma homocysteine was associated
with smoking, high blood pressure, increased cholesterol,
and sedentary life-style (46). Alcoholics have higher total
homocysteine concentrations, perhaps because of mal-
nourishment and malabsorption (105, 106). Heavy coffee
consumption is associated with higher homocysteine con-
centrations as well (54).

Certain disease states produce higher total homocys-
teine concentrations. Patients with end-stage renal disease
have intermediate hyperhomocysteinemia and an in-
creased risk for vascular disease (16, 17). Heart transplant
recipients have mild to intermediate hyperhomocysteine-
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mia (107, 108), which may in part be related to renal
insufficiency (109). Hypothyroidism produces increased
total plasma homocysteine (110), but treatment with l-
thyroxine will normalize homocysteine concentrations
(111).

Mechanisms of Blood Vessel Injury
It is usually assumed that reduced homocysteine is the
atherogenic form of homocysteine in circulation. But
recall that it contributes only 1% of the basal total plasma
homocysteine in normocysteinemic and mildly hyperho-
mocysteinemic individuals (Fig. 1). However, in addition
to basal concentrations, we should also consider the
transient hyperhomocysteinemia that occurs after eating.
Within 2 h after methionine loading, reduced homocys-
teine reaches a maximum and then declines as oxidized
forms (homocystine and mixed disulfides) become in-
creased and reach peak values in 6 h (112). The transient
hyperhomocysteinemia seen after methionine loading
also occurs after meals, and its magnitude is proportional
to protein consumption (113). Abnormal methionine load-
ing in which peak total plasma homocysteine concentra-
tions exceed an overall reference range have been seen in
up to 40% of subjects, predominantly female (37, 39, 114).
Silberberg et al. (115), however, recommend that age- and
gender-specific reference ranges be used to prevent over-
diagnosis.

It can be hypothesized that reduced homocysteine
directly alters vascular cell function. Because reduced
homocysteine undergoes oxidation in vivo, one could
argue that the homocysteine oxidation products such as
hydrogen peroxide, superoxide anion radical, and other
reactive oxygen species are the injurious agents. Thus, a
second hypothesis is that homocysteine is acting indi-
rectly through its oxidation and formation of reactive
oxygen species.

Many of the in vitro studies using cultured endothelial
and smooth muscle cells from human and animal vessels
during the past 10 years used exceedingly high concen-
trations of reduced homocysteine (5–10 mmol/L), far
exceeding physiological and pathophysiological concen-
trations of reduced homocysteine (and for that matter
total plasma homocysteine). Another problem is that
many of these studies failed to demonstrate specificity for
homocysteine and in many cases found a “general thiol
effect”. Keep in mind that total plasma cysteine is 20- to
30-fold higher than total plasma homocysteine and that
the concentration of reduced cysteine is ;70-fold higher
than reduced homocysteine (5.0 6 3.6 vs 0.07 6 0.02
mmol/L) (112). There is little or no evidence in the
literature that cysteine is atherogenic. Nevertheless, it is
widely believed that homocysteine can alter the surface
properties of endothelial cells by changing their pheno-
type from anticoagulant to procoagulant (116).

Wang et al. (117) recently reported that 10–50 mmol/L
d,l-homocysteine (but not l-cysteine or l-cystine) in the
presence of 50 mmol/L adenosine inhibited the growth of

vascular endothelial cells by a mechanism involving de-
creased carboxymethylation of p21ras. This is one of the
few reports in which physiologically relevant concentra-
tions of homocysteine have been used and in which thiol
specificity has been demonstrated. Upchurch and co-
workers reported that homocysteine modulated the ex-
pression of glutathione peroxidase (118) and nitric oxide
synthase (119) in bovine aortic endothelial cells; however,
relatively high concentrations of homocysteine were used.
Tsai and co-workers (120, 121) reported that homocys-
teine was mitogenic to smooth muscle cells by a mecha-
nism involving synergistic induction of cyclin A mRNA
expression with serum. However, other thiols, such as
cysteine and glutathione, could replace homocysteine,
suggesting a general thiol effect on the stimulation of
smooth muscle cell proliferation. Matrix proteins accumu-
late in atherosclerotic plaques, and recently Majors et al.
(122) reported that relatively low concentrations of homo-
cysteine (50–300 mmol/L) stimulate collagen production
in cultured rabbit aortic smooth muscle cells.

There have been some interesting in vivo studies in
both humans and animal models that support the hypoth-
esis of impaired endothelial cell function in the presence
of hyperhomocysteinemia. Van den Berg et al. (123)
assessed endothelial dysfunction in young patients with
peripheral arterial occlusive disease and mild hyperho-
mocysteinemia by measuring plasma von Willebrand
factor, thrombomodulin, and tissue plasminogen activa-
tor. Plasma concentrations of the first two were above
reference values at baseline but decreased after treatment
of the hyperhomocysteinemia with pyridoxine and folic
acid. Tawakol et al. (124) observed impaired endothelial-
dependent vasodilation in subjects with mild hyperhomo-
cysteinemia. Linear regression analysis revealed that total
plasma homocysteine was the only meaningful predictor
of flow-mediated vasodilation. No attempt to correct
impaired vasodilation with cofactor therapy was re-
ported. Similar results were obtained by Woo et al. (125)
in subjects with intermediate hyperhomocysteinemia.

Using an animal model, Lentz et al. (126) recently
tested the hypothesis that diet-induced mild hyperhomo-
cysteinemia would lead to vascular dysfunction. In cyno-
molgus monkeys on a diet with high methionine and low
folate for 4 weeks, total plasma homocysteine was 10.6 6
2.6 mmol/L. Monkeys on a regular diet had total plasma
homocysteine concentrations of 4.0 6 0.2 mmol/L. Im-
paired endothelial-mediated vasodilation was observed
in the hyperhomocysteinemic animals. However, in ath-
erosclerotic animals maintained on an atherosclerotic diet
for 17 months, normalization of their moderate hyperho-
mocysteinemia by administration of folic acid, B12, and B6

was insufficient to restore normal vascular function (127).
Work in our laboratory has focused on the metabolism

of homocysteine in vascular cells and tissues. Using direct
enzyme assays and Western and Northern blotting, we
found that cultured human aortic endothelial cells do not
express an active form of CBS (128) and thus apparently
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cannot initiate homocysteine catabolism through the
transsulfuration pathway (Fig. 2). Their inability to ex-
press a major pathway for homocysteine could render
them highly susceptible to mild increases of total homo-
cysteine seen in the hyperhomocysteinemia of CVD. Our
laboratory has also investigated the role of homocysteine
in possible early events in atherogenesis. We found that
extremely low concentrations of reduced homocysteine
(10–50 mmol/L) up-regulated the expression of the che-
mokine monocyte chemoattractant protein 1 in cultured
human aortic endothelial cells and that the up-regulation
was specific for homocysteine (129). At maximal dose–
response for homocysteine (50 mmol/L), cysteine, cystine,
methionine, and homocystine had no effect.

Treatment of Hyperhomocysteinemia
The severe hyperhomocysteinemia seen in subjects with
classical homocystinuria often responds to treatment.
Approximately 50% of homocystinurics with CBS defi-
ciency respond to pyridoxine (vitamin B6) (34). In patients
with congenital deficiency of transcobalamin, the serum
protein that delivers B12 to cells throughout the body,
weekly injections of vitamin B12 will normalize their
hyperhomocysteinemia and allow them to lead relatively
normal lives. Deficiencies of MTHFR and MS are usually
more refractory to treatment (56, 130). Nevertheless,
many of these homozygous monogenic diseases respond
quite well to treatment. Can the mild hyperhomocysteine-
mia associated with vascular disease be treated? The
answer is emphatically yes.

The treatment of mild hyperhomocysteinemia is based
on the hypothesis that the nutritional status of the micro-
nutrients that drive homocysteine metabolism, folate, B12,
and B6, is suboptimal and that by dietary supplementa-
tion with folic acid, cyanocobalamin (vitamin B12), and
pyridoxine hydrochloride (vitamin B6), either singly or in
combination, one can optimize homocysteine metabolism
and lower not only basal total plasma homocysteine, but
abnormal methionine-loading hyperhomocysteinemia as
well. This hypothesis has been confirmed by many inves-
tigators. In 1988, Brattström et al. (131) showed that 5 mg
of folic acid per day for 14 days was very effective in
lowering total homocysteine in healthy subjects, whereas
40 mg of pyridoxine HCl or 1 mg of cyanocobalamin had
little or no effect when overall effects of the three treat-
ment groups were compared. Brattström et al. (132) later
reported that administration of 10 mg of folic acid plus
240 mg of pyridoxine HCl per day for 4 weeks reduced
mean total plasma homocysteine by 53% and abnormal
methionine loading by 39% in 20 patients with premature
cerebral and peripheral occlusive disease. The same
group showed that patients who had suffered a myocar-
dial infarction were able to lower their total homocysteine
concentrations with 2.5 mg of folic acid daily for 6 weeks
(133).

Folic acid is clearly the most effective form of supple-
mentation to reduce total homocysteine concentrations in

subjects with mild hyperhomocysteinemia. But is it safe
for all individuals and are lower doses effective as well?
Before 1986, the recommended daily allowance for folic
acid was 400 mg per day. The recommended daily allow-
ance was then changed to 180 mg per day for women and
200 mg per day for men. Women who have folate defi-
ciency at the time of conception are at much greater risk
for giving birth to children with neural tube defects. For
this reason, the Food and Drug Administration in this
country has approved the addition of folic acid to cereals
and flour products (134). Individuals will now be con-
suming on average an additional 100 mg of folic acid a
day. Will this have an impact on total plasma homocys-
teine? Recent studies from John Scott’s laboratory in
Dublin suggest that it will. Ward et al. (135) showed that
even 100 mg of folic acid daily for 6 weeks can lower total
homocysteine concentrations in healthy individuals, but
that 200 mg per day was near optimal. These doses are
clearly safe for most individuals. However, the elderly
with undiagnosed B12 deficiency could experience ad-
verse effects by folic acid supplementation. Stabler et al.
(136) have recently reviewed the problem that could affect
millions of individuals in this country. To protect against
unrecognized B12 deficiency, cyanocobalamin could be
combined with folic acid supplementation. Approxi-
mately 1–2% of an oral dose of cyanocobalamin is ab-
sorbed by passive diffusion, even in subjects with perni-
cious anemia. Bostom et al. (137) found that patients with
renal failure require much more aggressive B-vitamin
therapy to achieve total plasma homocysteine lowering.

Studies on classical homocystinuria provide strong
evidence that homocysteine is causal; however, the role
that homocysteine plays in the usually mild hyperhomo-
cysteinemia associated with coronary artery disease, ce-
rebrovascular disease, and peripheral vascular disease is
still unclear. Clinical trials are urgently needed to deter-
mine if lowering total plasma homocysteine will reduce
the mortality and morbidity of CVD.
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